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OSL signal saturation and dose rate variability: investigating the behaviour of different statistical models

) is applied to determine the dose recovery ratio. The results suggest that the CDM underestimates the given dose if no D0 criterion is applied. (2) Bayesian models and frequentist models (CDM and Average Dose Model: ADM, Guérin et al., 2017) are used in dose variability experiments to compare the estimated average dose. To mimic natural beta dose heterogeneity to single grains of quartz, log-normal dose distributions with different dispersions were created artificially. The results indicate an underestimation of the average dose by at least 10 % for CDM, lognormal-median and Cauchy for dispersion values greater than 40%. Conversely, we show that the ADM, the Bayesian lognormal-average and Gaussian models converge towards the average of the distribution and display almost no underestimation, for a significant gain in accuracy.

Introduction

Optically Simulated Luminescence (OSL) dating requires a series of measurements and data processing steps to determine the palaeodose. Data processing methods are based on two different statistical inferences, the frequentist and the Bayesian approaches (Buck and Millard, 2004). Frequentist statistics can assign probabilities only to events or observations from repeatable experiments. The frequentist interpretation of probability explains outcomes for a large number of repeated experiments under similar conditions. In this approach, after repeated sampling from an unknown distribution, the probability distribution of the observed data is determined [START_REF] Carlin | Bayes and empirical Bayes methods for data analysis[END_REF].

Bayesian inference is based on conditional probability. This means that the probability of an event occurring is related to another phenomenon. This inference generally starts with an initial knowledge about an event, which reflects the current state of knowledge about the parameters of the distribution of interest before observing the data. Then a particular model is applied to show the probability of the parameters of the distribution which best represent the data. Finally, the resulting distribution can be explained as a weighted average between initial knowledge about the parameters before data is observed (prior distribution) and the information about the parameters contained in the observed data (likelihood function, cf. [START_REF] Gelman | Bayesian data analysis[END_REF].

Since Bayesian inference proved to be a powerful tool to evaluate uncertainty [START_REF] Gelman | Bayesian data analysis[END_REF], it was implemented to express the source of uncertainty for luminescence data analysis (e.g., [START_REF] Rhodes | Bayesian methods applied to the interpretation of multiple OSL dates: high precision sediment ages from old scatness broch excavations, Shetland isles[END_REF][START_REF] Huntriss | A Bayesian analysis of luminescence dating[END_REF][START_REF] Zink | Bayesian analysis of luminescence measurements[END_REF][START_REF] Combès | A Bayesian central equivalent dose model for optically stimulated luminescence dating[END_REF][START_REF] Combès | Bayesian analysis of individual and systematic multiplicative errors for estimating ages with stratigraphic constraints in optically stimulated luminescence dating[END_REF]. However, the most common way of data processing in OSL dating has been by frequentist inference. For instance, to determine the palaedose using the Single Aliquot Regenerative (SAR) dose protocol [START_REF] Murray | Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[END_REF] usually the software Analyst [START_REF] Duller | The Analyst software package for luminescence data: overview and recent improvements[END_REF] or the R (R Core Team, 2017) package 'Luminescence' [START_REF] Kreutzer | Introducing an R package for luminescence dating analysis[END_REF], Kreutzer et al., 2017) can be used. In the SAR protocol, individual aliquots (e.g., quartz grains) repeatedly receive different regeneration doses, and the signals are monitored by a constant test dose for sensitivity changes. Such sets of signals with associated doses are used to construct a dose response curve. Following that, individual equivalent dose (De) values, which are parameterised by Gaussian probability densities, are obtained by the projection of the natural luminescence signal onto the dose response curve. The standard error for each equivalent dose is derived from counting statistics and curve fitting uncertainties [START_REF] Galbraith | A note on the variance of a background-corrected OSL count[END_REF][START_REF] Duller | Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[END_REF] as well as measurement reproducibility [START_REF] Thomsen | Sources of variability in OSL dose measurements using single grains of quartz[END_REF]. Frequentist models like the Central Age Model (Galbraith, 1999, henceforth termed CDM for Central Dose Model following Glbraith and[START_REF] Galbraith | Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations[END_REF][START_REF] Bailiff | Luminescence dating of sediments from a Palaeolithic site associated with a solution feature on the North Downs of Kent, UK[END_REF] and the Average Dose Model (ADM, Guérin et al., 2017) are applied to the set of individual De values and associated uncertainties to determine the palaeodose of the sample of interest. According to the depositional environment, different frequentist models may be used [START_REF] Galbraith | Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations[END_REF]. If no problem such as post-depositional mixing and/or poor bleaching is suspected, generally the CDM is applied to determine the palaeodose. This model, which calculates a weighted average of individual equivalent doses, is robust to be applied to data with symmetric error [START_REF] Duller | Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[END_REF]. However, due to early saturation of the blue stimulated luminescence signal of quartz measured in the UV wavelength range, the natural signal of a significant number of grains is often not in the linear part of the dose response curve, where error asymmetry becomes essential. In such a situation, the accuracy of the SAR protocol must be considered as doubtful [START_REF] Duller | Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[END_REF]. To minimise the issue raised by this kind of grains, for which the natural signal lies close to, or above the laboratory saturation level, Thomsen et al. (2016) proposed a rejection criterion based on the curvature parameter of the dose response curves (D0) when dose response curves are fitted with a single saturating exponential curve (L/T=A(1-exp(-D/D0)). By using this criterion, grains are accepted only if the curvature parameter (D0) is larger than the natural dose. While satisfactory in principle, this approach leads to a (sometimes considerable) reduction of the number of accepted grains and finally leads to decreasing precision of the results (Thomsen et al., 2016). Furthermore, the CDM estimator calculates the weighted geometric mean of a De distribution, which does not converge to the arithmetic average of the distribution. Using the latter quantity leads to dose underestimation, especially in situations with explicit beta dose heterogeneity (Guérin et al., 2017; see also Guérin et al., 2015c). Beta dose rate heterogeneity is one of the most critical sources of dispersion for single grains that are believed to be well bleached and that do not suffer from mixing problems (e.g., [START_REF] Mayya | Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution[END_REF]. The range of beta particles is small in comparison to that of gamma rays, thus local hotspots, such as potassium feldspar grains, the main beta dose emitter, can lead to a heterogeneous irradiation field. As a result, beta doses absorbed by quartz form a positively skewed distribution, which can be described by a lognormal distribution [START_REF] Mayya | Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution[END_REF][START_REF] Cunningham | Experimental and computational simulation of beta-dose heterogeneity in sediment[END_REF]Guérin et al., 2015). The CDM estimator converges to the median of such lognormal distributions. However, every statistical model should aim at estimating the average dose absorbed by the grains, since measurements of dose rates all provide an estimate of the average dose rate. This reason led Guérin et al. (2017) [START_REF] Combès | A Bayesian central equivalent dose model for optically stimulated luminescence dating[END_REF] proposed a Cauchy distribution to describe the distribution of equivalent doses around the central dose. A Cauchy distribution is similar to a Gaussian distribution (it is symmetric and bell-shaped), but with heavy tails (undefined variance) which make it more robust against outliers.

Following new models developed by [START_REF] Combès | Bayesian analysis of individual and systematic multiplicative errors for estimating ages with stratigraphic constraints in optically stimulated luminescence dating[END_REF], an R package called 'BayLum' dedicated to Bayesian statistics was developed [START_REF] Christophe | BayLum: Chronological Bayesian Models Integrating Optically Stimulated Luminescence and Radiocarbon Age Dating. R package[END_REF]; see also Philippe et al., accepted; Guérin et al., accepted). With the implemented models, the central dose can be calculated using a Cauchy, a Gaussian, or a lognormal distribution. In the case of lognormal distribution models, there are two possibilities: the central dose can be estimated as the median or the average of the distribution. These models are available in the 'BayLum' package but so far have not been tested.

This study aims to apply frequentist and Bayesian models to analyse OSL data and compare the obtained results. We test whether both approaches can recover a known, target dose to a similar extent. Two laboratory experiments were designed. First, we apply all models to datasets obtained from high-dose, dose recovery experiments on single grains of quartz to investigate saturation issues. The term 'highdose' refers to ca. 150-255 Gy, the dose for which most samples are in, or close to signal saturation. The purpose of the second experiment is to determine the central dose for a set of grains, which absorbed different beta doses to see which model can better converge to the average of doses. Various amounts of beta doses are given to single grains of quartz to create artificial lognormal distributions to mimic heterogeneous beta dose rate distributions encountered in nature. Then, frequentist (CDM, ADM) and Bayesian models are applied and their results compared to the average of absorbed doses; the ratio of estimated to average dose then becomes an indicator of the performance of the models.

Material and methods

Sample preparation

Risø calibration quartz batch 71(100-150 µm) was used for both experiments. For comparison purposes, natural quartz grains in the size range 200-250 µm from the archaeological site of Covalejos [START_REF] Sanguino | Nuevos datos para el conocimiento del Paleolítico Medio en el centro de la Región Cantábrica: la Cueva de Covalejos[END_REF] in northern Spain were additionally used in the saturation experiments. Before mineral separation, the sample was wet sieved to isolate the 200-250 μm fine sand fraction. These grains were then treated with HCl (10%) to remove carbonates, and with hydrogen peroxide (H2O2) to remove organic contaminants. Both treatments were continued until no reaction was observed. The mineral quartz was extracted from the polymineral sample through density separation using a heavy liquid solution (density 2.62 g cm -3 ). The fraction with a density > 2.62 gcm -3 was etched with HF (40%) for 40 min to remove the alpha-irradiated outer layer (~ 20 µm) of the grains. The etched quartz grains were then treated with 10% HCl for 60 min to remove any fluorides that could have been produced during HF etching, and then further rinsed in purified water. This fraction was then re-sieved to > 200 µm to remove grains resulting from the dissolution of residual feldspar in the quartz-rich fraction, or of small quartz grains.

Instrumentation

All measurements were carried out on single grains of quartz extracts using three automated Risø TL/OSL readers (two DA-20, one DA-20 DASH) at the IRAMAT-CRP2A laboratory. Each reader was fitted with a single grain attachment [START_REF] Bøtter-Jensen | Developments in radiation, stimulation and oberservation facilities in luminescence measurements[END_REF]. A green laser (532 nm) was used to stimulate each grain individually. For light detection in the UV wavelength range, a 7.5 mm Hoya U-340 glass filter (2.5 mm + 5 mm for the DASH) was used in front of an EMI 9235QB photomultiplier tube (Electron tube PDM 9107Q-AP-TTL-03 for the DASH).

Dose variability experiment

To mimic heterogeneous beta dose rate distributions, lognormal distributions were created artificially using grains of calibration quartz, which received various beta doses in the laboratory. 34 single grain discs containing 100 holes with 150 μm in diameter and 150 μm in depth, on a 10 x 10 rectangular grid with 600 μm spacing between centres were prepared. Visual inspection under red light confirmed that only one grain was loaded into each hole. First, the 'natural' signal (4.81 Gy) was removed using the blue LEDs (470 Δ 20 nm; ca. 70 mW cm -2 ) for 100 s in the reader. The second blue-LED stimulation was performed after a pause of 10,000 s to allow full emptying of the electron trap associated with the 110 ˚C UV-TL peak [START_REF] Murray | The single aliquot regenerative dose protocol: potential for improvements in reliability[END_REF]. Then each of the 34 discs received beta doses ( 90 Sr/ 90 Y beta source) from 1 Gy to 34 Gy (i.e.. disc 1: 1 Gy, disc 2: 2 Gy, etc. until 34 Gy). This range was chosen to be far from signal saturation, but also to work with doses large enough to be rather easy to measure.

The SAR protocol [START_REF] Murray | Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[END_REF] was used for De determination. For single-grain measurements, the green laser stimulation was carried out at 125 ˚C for 1 s. A preheat temperature of 260 ˚C for 10 s and a cutheat temperature of 220 ˚C was used. A high-temperature blue bleach at 280 ˚C for 40 s was used to avoid recuperation effects [START_REF] Murray | The single aliquot regenerative dose protocol: potential for improvements in reliability[END_REF]. The late light background subtraction approach was applied, since the luminescence signal of calibration quartz is dominated by the fast component (Hansen et al., 2015).

The only rejection criteria applied to individual grains was the relative uncertainty on the first (natural) test dose signal, which was required to be less than 20% (following e.g. Thomsen et al., 2016;Guérin et al., 2015b). Recycling and IR depletion ratios, and the intensity of the recuperation signal were not taken into account as selection criteria, since it was shown recently that selection based on these criteria often leads to a mere loss of grains without improvements in determining any statistical parameters or reduction in dispersion of the data (Thomsen et al., 2016;Guérin et al., 2017b). A single saturating exponential function passing through the origin was used for fitting all dose response curves (L/T=A (1-exp(-D/D0)) to describe a single trap dominated luminescence signal. Although applying other options for fitting dose response curves, such as exponential plus linear functions, may lead to better curve fitting (due to an increased number of fitting parameters), it does not describe signal saturation. Yet, saturation of single-grain OSL has been empirically observed (see for example Fig. 10 in [START_REF] Duller | The Analyst software package for luminescence data: overview and recent improvements[END_REF]. Thus, single saturated exponential fitting were applied to all of the grains, even if the fitting was not perfect.

Tests of the protocol

Figure 1 displays the dose recovery ratios for each disc, based on the grains which passed the selection criterion. For each disc, we obtained between nine and forty-one accepted grains; the dose recovery ratio was estimated using the CDM. Fig. 1 show all dose recovery ratios, which all are within 10% of unity. The average dose recovery ratio is 0.98 ± .01 and the standard deviation is 0.06, which we deemed satisfying for further data analysis -in our view our SAR protocol was well-suited to the studied grains. As a result, we could sample this population of accepted grains to construct artificial distributions of absorbed doses.

Constructing lognormal distributions

To define a lognormal distribution of a variable denoted x, two parameters are needed: µ (which is the average of the logged values; exp(µ) is the median of the x values) and σ (the standard deviation of the logged distribution). The probability for a given dose x is then given by √ . In our experiments, µ was kept constant and σ varied. It should be noted here that the average of given doses is then given by . To avoid saturation issues, we chose Ln (10) for µ and the relative standard deviation σ was varied from 0.1 to 0.9. Fig. 2 illustrates our procedure for creating a lognormal distribution with σ=0.6. We first identified the dose value for which the probability was the greatest, here 7 Gy; we randomly picked 13 grains (among those for which the uncertainty on the test dose signal was smaller than 20%, cf. section 2.3) from the disc having received a 7 Gy dose (note that 13 is arbitrary, we chose this number so that we could pick for each disc the required number of grains). Then, for all other discs (each with its own given dose value), the number of grains selected was determined by the ratio of the probabilities: thus, we picked 1 grain from the disc that was given a 2 Gy dose, 4 grains from the disc that was given a 3 Gy dose, etc. (see Table S1 for the number of grains selected from each disc).

The total number of grains selected for each value of σ is given in Table S2 (the minimum and maximum total numbers are 48 and 163 grains, respectively). Finally, it should be noted that, since we work with discrete dose values and discrete numbers of selected grains for each dose (in particular we cannot select less than 1 grain), the actual value of µ was not exactly constant (it slightly decreased with increasing dispersion, as the cut-off affected higher dose values more than lower dose values due to the positive skewness of lognormal distributions). As a result, in the following we used the actual values of the geometric and arithmetic means of the real distributions of selected grains.

Signal saturation experiment

Six single-grain discs of calibration quartz were given a dose of 150 Gy and twenty-four discs a dose of 200 Gy. Since calibration quartz grains generally displays a higher OSL sensitivity in comparison with usual 'natural' quartz, more discs were prepared for the archaeological quartz: for the sample from the archaeological site Covalejos [START_REF] Sanguino | Nuevos datos para el conocimiento del Paleolítico Medio en el centro de la Región Cantábrica: la Cueva de Covalejos[END_REF] forty-eight and thirty-six single grain discs absorbed doses of 164 Gy and 254 Gy, respectively. To characterise the dose response curve and calculate the D0 values, a wide range of regeneration doses were used. The largest regeneration doses for given doses of 150 Gy, 164 Gy, 200 Gy and 254 Gy were 450 Gy, 419 Gy, 562 Gy and 477 Gy, respectively. Instrumentation and OSL measurement conditions were the same as in the dose variability experiment (see Sec. 2.2 & Sec. 2.3). Typical dose response curves (with a range of D0 values) for all dose recovery experiments are shown in Fig. S1.

Bayesian models

In the Bayesian single inference model designed by [START_REF] Combès | A Bayesian central equivalent dose model for optically stimulated luminescence dating[END_REF], individual De values and the palaeodose are estimated at the same time. Bayesian curve fitting is performed as follows: the model starts with sampling from normal distributions, which are defined as a prior, to generate the parameters of each dose response curve. For instance, if a single saturating exponential ((L/T=A(1-exp(-D/D0)) is chosen to fit a dose response curve, two different Gaussian distributions are assumed for A and D0 which define the priors (see section 4.2.1 in [START_REF] Combès | A Bayesian central equivalent dose model for optically stimulated luminescence dating[END_REF], for a definition of these priors). Monto Carlo runs sample these parameter distributions to generate dose response curves. The most likely values for the parameters of the dose response curves are those for which the curve fitting is best. A so-called burn-in process ensures that the Markov Chain Monte Carlo (MCMC) process has enough time to reach an equilibrium distribution, i.e. to find the best fit to the regenerative points. The output of the model is a set of probability densities estimated for each individual De and for the central dose (note: at present the probability densities for the parameters of the dose response curves are not provided as output of the 'BayLum' functions, but in principle they could be). The user can choose whether the distribution of all the estimated individual equivalent doses are distributed around the central dose following a Gaussian, Cauchy or log-normal distribution, and based on that selection the central dose is determined(see also Philippe et al., accepted).

Software

Data analysis for this study was carried out using the statistical programming framework R. For calculating the CDM and the ADM, the functions calc_CentralDose()(Burow, 2017) and calc_AverageDose() (Guérin et al., 2017) from the R package 'Luminescence' [START_REF] Kreutzer | Introducing an R package for luminescence dating analysis[END_REF][START_REF] Kreutzer | Luminescence: Comprehensive Luminescence Dating Data Analysis[END_REF] were used. For running the Bayesian models, the R package 'BayLum' [START_REF] Christophe | BayLum: Chronological Bayesian Models Integrating Optically Stimulated Luminescence and Radiocarbon Age Dating. R package[END_REF]Philippe et al., submitted) was used. To run the calculations, one folder should be prepared containing all BIN-files and associated information, such as the position of the selected grains and the laboratory dose rate (Philippe et al., accepted). Typical calculation times for Bayesian models for a single set of data (typically including from 200 to ~1000 grains) ranged from days to weeks on the multicore RStudio ® (https://www.rstudio.com) server environment hosted at the IRMAT-CRP2A (note: the number of iterations needed to reach convergence strongly depends on the selected model; for example, in general Cauchy distributions require larger numbers of iterations).

Results

Dose variability

The CDM estimator calculates the geometric weighted mean, which converges towards the median of the assumed lognormal distribution. If the overdispersion dominates the weighting term of each De estimate (i.e., if it is larger than the relative error of each individual De), then the central dose tends toward the unweighted geometric mean of observed De values (Guérin et al., 2017). For each of the created lognormal distributions (section 2.3.2), both the arithmetic and geometric means were calculated. Fig. 3 shows the geometric to arithmetic mean ratio and the CDM dose to average (arithmetic mean) dose ratio; both are in good agreement. This figure illustrates that with increasing dispersion, the difference between geometric mean and arithmetic means is increased, as is the dose underestimation when using the CDM. This underestimation reaches ~25% of the average dose for σ=0.9 (in this case, the actual standard deviation in the logarithm of given doses is σ=0.76, due to the truncation of the lognormal distributions described in section 2.3.2). For all the above presented artificial lognormal distributions, the central doses were determined with frequentist (CDM and ADM) and Bayesian models (Gaussian, lognormal-average, lognormal-median and Cauchy). It should be noted that the term central dose is used here to reflect the outcome of a model and does not always correspond to the same statistical parameter (e.g., it corresponds to the median of equivalent doses in the CDM but to the average in the ADM). The central dose obtained with each model was normalised to the average absorbed dose, illustrating the ability of each model to retrieve the average absorbed dose. Figure 4 shows the determined ratios as a function of the dispersion of the artificial lognormal distributions. Results using the CDM, Cauchy and lognormal-median models systematically underestimate the average absorbed dose, especially when the dispersion is increased.

For these three models, when the dispersion was increased from 10% to 90% (note: Table S1 lists the corresponding 'true' dispersion values together with the CDM overdispersion values), the departure from unity increased from ~5% to ~25%. In general, we observe an underestimation of the average absorbed dose greater than 10% for σ values greater than 40%. This observation argues against the application of the CDM, lognormal-median and Cauchy in such cases (high dose dispersion). By contrast, the Gaussian model underestimates the average absorbed dose by ca. 5%, which is indistinguishable from the expected underestimation of 2% (cf. average dose recovery ratio on all discs, Fig. 1). Conversely, the ADM and lognormal-average model show almost no underestimation, even for high dispersion values (up to 90%).

Signal Saturation

Figure 5 (a,b,c,d) shows the dose recovery ratios for each experiment based on the minimum accepted D0 value. If the D0 value of individual grains is not taken into consideration, for calibration quartz the dose recovery ratio obtained with the CDM is 0.70 ± 0.06 (150 Gy given dose) and 0.78± 0.03 (200 Gy), and for the Covalejos sample 0.70± 0.03 (164 Gy) and 0.54± 0.03 (254 Gy), respectively. In other words, this leads to 22-30% underestimation of the given dose for the calibration quartz and to 30-45% underestimation for grains from the Covalejos sample. By applying the D0 criterion, the dose recovery ratios are steadily improving and getting closer to unity. However, for three out of four samples, even after applying the D0 larger than given dose criterion, 10% underestimation is observed. It should be noted that these improved ratios were obtained by rejecting a significant number of grains (83%, 90%, 91% and 94 % of the total grain population, respectively for the 150, 164, 200 and 254 Gy experiments; see Fig. 6a). On the other hand, almost all the ratios determined with the Bayesian models -no matter if the D0 criterion was applied or not -are within 10% of unity. Moreover, even by not taking into account the D0 filter, the dose recovery ratios estimated by Bayesian models are indistinguishable from unity within errors (i.e. the 95% credible intervals include 1). It should be noted here that the ADM does not apply to dose recovery experiments, since this model only applies to cases where the measured grains have absorbed different doses (if applied, it would give the same result as the CDM -provided the input OD value used to run the ADM is equal to the OD of the dose recovery distribution, i.e. the intrinsic OD).

Discussion

Dose variability

Dose distributions of single grains having been exposed to heterogeneous irradiation fields (e.g., Kfeldspar beta dose hotspots) can be mimicked by artificial lognormal distributions. In such cases, the CDM (which has long been considered the model of choice for well-bleached samples unaffected by post-depositional mixing) converges towards the median of the distribution instead of the average, which in this experiment (and for dating purposes) is the value of interest. The discrepancy between median and average is becoming larger when the dispersion is increased. Thus, by increasing the dispersion the CDM and lognormal-median model show increasing dose underestimation. However, it should be noted that no matter which inference is used, the result of lognormal-median and CDM are in good agreement because both calculate the same quantity (here the median). At least 10% of underestimation should be taken into consideration for a dispersion of 40% (see Table S2 for the corresponding true dispersion and CDM overdispersion value) by applying these two models. Moreover, the Bayesian model using a Cauchy distribution follows the same trend as these two models, since it is attracted by the mode of the De distribution, which is closer to the median than to the average. Although this Cauchy-based model is robust (as demonstrated by [START_REF] Combès | A Bayesian central equivalent dose model for optically stimulated luminescence dating[END_REF], it is not accurate, which could explain the systematic age underestimation for the known-age samples reported by Guérin et al. (2015). On the other hand, we showed that the ADM, as well as the lognormal-average and Gaussian Bayesian models converge towards the arithmetic average of the distribution, and thus provide accurate dose estimates.

OSL signal saturation

Dose recovery tests on single grains of quartz were undertaken to check which models best determine a high laboratory given dose. The results indicate that the CDM is not capable of estimating the true dose for grains close to saturation, unless early saturating grains are rejected using the D0 filter suggested by Thomsen et al. (2016). Accepting only the grains with D0 values larger than the given dose results in a dose recovery ratio close to one, but still ~10% below unity. One possible explanation for this small underestimation (assuming it is meaningful) even after D0 filtering could be a bias in the De estimates (as required for the application of the CDM) towards low doses. This underestimation is caused by the procedure to estimate individual De values and associated uncertainties. In this procedure, described by [START_REF] Duller | Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[END_REF], the natural luminescence signal ( ) is projected onto the dose response curve to obtain the De estimate. The uncertainty associated to this estimate is then derived from the length of the interval corresponding to the projection of ( + and ( -, where is the uncertainty on , on the dose response curve. When the dose response curve is linear, this approach is not problematic; however, when it becomes non-linear the probability density of De values becomes increasingly skewed -as can be seen by using Monte Carlo simulations in Analyst (Duller,2015; unfortunately, the CDM cannot accommodate such variable probability density functions). In addition, some grains are being rejected in the Analyst because or ( + does not intersect the dose-response curve (see Fig. S17 of [START_REF] Singh | Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements[END_REF]. For our data set, the fractions of rejected grains in Analyst due to saturation as a function of the minimum accepted D0 value are shown in Fig. 6b. About half of the grains are rejected if the D0 criterion is not applied (especially for the two highest given dose experiments: 200 and 254 Gy). By increasing the minimum accepted D0 value, the fractions of rejected grains decrease dramatically. These fractions reach about zero when the minimum accepted D0 value is set equal to the given dose.

Moreover, when applying the D0 criterion, the dose recovery ratio is obtained by rejecting a significant number of grains, which implies a significant loss of information. In contrast, the Bayesian models implemented in 'BayLum' use Markov Chain Monte Carlo computations which do not require parameterisation of equivalent doses, and thus include all of the grains. As a result, the D0 criterion appears to be no longer required and the central dose calculated with this approach is more coherent with the original dataset.

Although no significant difference is observed between the four Bayesian models, it seems that the lognormal-average model is better suited to determine the central dose compared to the other Bayesian models applied in our experiments (it seems to give the most accurate dose estimates). However, given the small number of experiments, it is difficult to be conclusive about the best Bayesian model to use when confronted with saturation issues. Moreover, the difference between the Bayesian models and the CDM for the dose recovery ratio with a given dose of 254 Gy is greater than for a given dose of 164 Gy. This observation is in agreement with the findings by Guérin et al. (2015;their Sec. 4.3 and their Fig. 6) on known-age samples. They mentioned that the higher the dose, the greater the difference becomes between the Bayesian model and CDM in terms of dose estimation. In particular, they showed that the accuracy of CDM-based OSL ages decreased with increasing age, whereas such a trend was not observed with their Cauchy-based Bayesian model. Thus, our observations could explain why OSL ages calculated with Bayesian models are closer to the reference ages than those obtained with frequentist models when working with increasing palaeodose values (Guérin et al., 2015).

In the next two sections, we tried to explain our observations by investigating two different routes: (i) how do the models respond to low D0 grains and (ii) how does the recycling ratio influences D0 and thus the D0 filter?

Saturation, low D0 values and tests of robustness

To investigate further the behaviour of the here tested models when approaching saturation, we decided to select the earliest saturating grains -in an approach completely opposite to that advocated by Thomsen et al. (2016), who suggested to reject low D0 grains in an attempt to correct for a bias in De distributions (for an illustration, see e.g. Fig. S17 in [START_REF] Singh | Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements[END_REF]). While we implemented the latter approach in our Figs. This result obtained using the Bayesian model is rather counter-intuitive. It is in particular striking to see that even when selecting only grains whose D0 value is at least five times lower than the given dose, the dose recovery ratio estimated using the Bayesian Gaussian model is within 5% of unity. For higher maximum allowed D0 values, the dose recovery ratios determined with the Bayesian model are almost constant and consistent with unity. On the contrary, with the CDM the dose recovery ratios are improving, but still lead to 28% underestimation for a maximum D0 of ca. 200 Gy. One potential reason for the success of the Bayesian models in 'BayLum' to determine an accurate dose recovery ratio for early saturating grains may be due to the non-parameterised probability density distribution for the parameters of the dose response curve for each grain: whereas Analyst characterises this curve by one unique D0 value, the MCMC implemented in 'BayLum' allows a range of D0 value depending on OSL measurement uncertainties. Figs. S9 and S10 of [START_REF] Combès | A Bayesian central equivalent dose model for optically stimulated luminescence dating[END_REF] illustrate the non-parameterised probability density distributions for two grains and the resulting non-parameterised De distributions.

Although the probability of Ln/Tn intersecting the dose-response curve for 'saturated' grains (saturated in the sense of classical analysis with the Analyst software) is low, the Bayesian models take this kind of grains into account. We assume that it is the inclusion of such grains, even although not very informative, which contributes to the significant gain in accuracy for our dose recovery experiments.

The relationship between recycling ratio and D0 value

For our data analysis, the recycling ratio was not used as a rejection criterion. However, if sensitivity changes are not correctly monitored by the SAR protocol, one could imagine a progressive increase (resp. decrease) in normalised OSL signals from one regeneration dose to the other. This might affect the estimation of D0 for such grains displaying poor recycling ratios, so we investigated the influence of the recycling ratio on the outcome of two experiments: the 200 Gy and 254 Gy does recovery experiments (performed on the calibration and Covalejos quartz, respectively). Since the recycling ratio comes with an uncertainty estimate, we first investigated the nature of these errors; Figs S2,b shows the relationship between recycling ratio and its associated uncertainty. The positive correlation indicates multiplicative error properties, as could be expected from first principles (see [START_REF] Galbraith | Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations[END_REF]. As a result, the logged recycling ratios are expected to follow a Gaussian distribution, centred on Ln (1) = 0, where 1 is the expected value for the recycling ratio. Thus, for each grain we calculated the standardised residual of the logged recycling ratio, i.e. the logged recycling ratio divided by its uncertainty (which we assume to be equal to the relative uncertainty on the recycling ratio -see Galbraith and Roberts, 2012, for the mathematical justification of our approach).

First, we plotted the standardised residual recycling ratio as a function of D0 (Figs. S2 c,d); the scatter plots are symmetric and indicate no relationship between these two parameters. Furthermore, on these graphs we could isolate the grains showing a recycling ratio consistent with 1 at 2 standard errors, from those inconsistent with 1 at two standard errors (in practice these are the points for which the standardised residual falls outside the [-2; 2] interval). We decided to calculate the dose recovery ratio for the grains inside and outside of the [-2; 2] interval after D0 filtering larger than the given dose. The ratio was not determined for 254 Gy experiment because there were only 3 grains outside of the [-2; 2] interval after D0 filtering (D0 greater than 254 Gy). The determined dose recovery ratio for the 200 Gy experiment is 0.93 ± 0.02 for 'good-recycling' grains, and 0.98 ± 0.09 for 'bad-recycling grains'. The obtained results for the 200 Gy data set are in agreement with each other and we conclude in our experiments that the recycling ratio is not a valid selection criterion; furthermore, there is no essential relationship between recycling ratio and D0 value.

Conclusion

We presented controlled laboratory experiments to compare frequentist models (CDM, ADM) with Bayesian models (Cauchy, Gaussian, Lognormal-Average and Lognormal-Median; for an application to the dating of an archaeological site, the reader is referred to the case study presented by Lahaye et al., this issue). Two experiments were designed: (1) dose recovery on quartz grains in or close to dose saturation and ( 2) determination of the central dose of quartz grains having absorbed different beta doses (dose variability experiment). For our measurements, two samples, namely a calibration quartz and a natural quartz sample, were used. We conclude the following:

• The CDM is not well-suited to recover high given doses (here: 150-255 Gy) if no D0 filter is used, it leads to systematic underestimation of the given dose. The dose recovery ratio is improved by applying D0 filters at the cost of a decreased grain population. • By contrast, all Bayesian models show satisfying dose recovery ratios within 10% of unity, even without applying a D0 filter. In practice, it means that the dating range of single-grain OSL might be significantly expanded by the use of these models, since the need for a large number of great D0 grains is much less pronounced when using the models implemented in the 'BayLum' package. • The CDM, as well as the Bayesian Lognormal-Median and Cauchy models, result in an underestimation of the average dose when grains have absorbed variable doses. The ADM, as well as the Bayesian lognormal-average and Gaussian models are able to satisfactorily estimate the average dose of a lognormal distribution.

As a result, our laboratory-controlled experiments indicate that the Gaussian and lognormal-average Bayesian models implemented in the R 'BayLum' package are the most accurate models for palaeodose estimation in cases of saturation and dose variability issues; in such conditions, if a D0 filter is applied, the ADM also provides accurate estimates. [START_REF] Galbraith | Optical dating of single and multiple grains of Quartz from Jinmium Rock Shelter, Northern Australia: Part I, Experimental design and statistical models[END_REF] to average absorbed dose ratio, compared with the geometric to arithmetic mean ratio, as a function of the dispersion in absorbed doses. Both values are in good agreement with each other.

Figure and table captions

Figure 4: Comparison of the central dose estimated with frequentist models (CDM [START_REF] Galbraith | Optical dating of single and multiple grains of Quartz from Jinmium Rock Shelter, Northern Australia: Part I, Experimental design and statistical models[END_REF] and ADM (Guérin et al., 2017)) with that estimated with Bayesian models, as a function of the dispersion of the artificial lognormal distributions. The CDM, Cauchy and lognormal-median models show systematic dose underestimation with increasing dose dispersion. Conversely, the ADM, Gaussian and lognormal-average models converge to the average of the distribution. (Note: for the sake of comparison with the CDM and ADM, for the Bayesian models each point indicates the middle of the 95% credibility interval; the associated error bar corresponds to the length of this interval divided by 4). 

Figure 1 :

 1 Figure1: Dose recovery ratio for each disc; all ratios are within 10% of unity and the average is 0.98 ± 0.01 and the standard deviation is 0.06. Each point represents the measured to given dose ratio for a disc, estimated with the CDM.

Figure 2 :

 2 Figure 2: Exemplary created lognormal distribution with parameters (µ=Ln(10), σ=0.6). This figure shows the probability density function of lognormal distribution with 60 % dispersion for various given doses in Gy. The arrows exemplify for four cases the number of grains included in each point for a particular dose.

Figure

  Figure 3: CDM[START_REF] Galbraith | Optical dating of single and multiple grains of Quartz from Jinmium Rock Shelter, Northern Australia: Part I, Experimental design and statistical models[END_REF] to average absorbed dose ratio, compared with the geometric to arithmetic mean ratio, as a function of the dispersion in absorbed doses. Both values are in good agreement with each other.

Figure 5 :

 5 Figure 5: Comparison of dose recovery ratios obtained with all tested models as a function of minimum accepted D0 value for calibration quartz (given doses: 150 Gy (a) and 200 Gy (b)) and the Covalejos quartz sample (given doses: 164 Gy (c) and 254 Gy (d)). (Note: for the sake of comparison with the CDM, for the Bayesian models each point indicates the middle of the 95% credibility interval; the associated error bar corresponds to the length of this interval divided by 4).

Figure 6 :

 6 Figure 6: (a) Fraction of accepted grains based on the minimum accepted D0 value for all dose recovery experiments, regardless of saturation issues. By increasing the D0 value, a significant number of grains becomes rejected due to low D0 values. (b) Fractions of grains rejected in Analyst due to saturation as a function of the minimum accepted D0(see section 4.2 for details).

Figure 7 :

 7 Figure 7: Dose recovery ratios obtained with the Bayesian Gaussian model and the CDM as a function of the maximum accepted D0 value for the calibration quartz, 200 Gy dose recovery experiment.

  to present a new model called the Average Dose Model (ADM), in which the central dose estimate converges to the arithmetic average of individual absorbed dose values. Another way of data processing is via Bayesian inference; Combes et al. (2015) proposed a Bayesian central dose model. In this model, single grain De probability density distributions are not parameterised, and a Monte Carlo approach allows taking into account grains commonly considered as in or near saturation. Since the model is a single hierarchical inference, the palaeodose estimate is obtained simultaneously with individual De estimates. Subsequently, no high De value is rejected.

  4, 5 and 6, where the grains were filtered based on minimum accepted D0, in this section the grains were filtered by maximum accepted D0 values; low maximum D0 values indicate that we only selected early saturating grains. Figure7displays the dose recovery ratio values determined with the Gaussian Bayesian model and the CDM for the 200 Gy, calibration quartz, dose recovery experiment (corresponding to Fig.5bdiscussed above) when selecting early saturating grains. Most of the grains are close or in saturation when the maximum accepted D0 value is 40 Gy. In total, 192 grains have D0 value smaller than 40 Gy; only for 13 of those does Analyst give finite estimates for the De and associated uncertainty. Based on these 13 grains, the CDM-based dose recovery ratio is 0.24 ± 0.06 . Conversely, the 95% credible interval obtained with the Bayesian Gaussian model is of[184; 197] Gy, which is very close to 200 Gy (and the Bayes estimate of the central dose gives a measured to given dose ratio equal to 0.95).
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