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Introduction

Clay rocks, often called shales, are being studied as potential host rocks for high-level radioactive waste repositories in several industrial countries (e.g., [START_REF]Dossier 2005 Argile: Synthesis. Evaluation of the feasibility of a geological pository in an argillaceous formation[END_REF][START_REF] Pusch | Clays and nuclear waste management[END_REF] and form the main geological caps of many hydrocarbon reservoirs (e.g., [START_REF] Aplin | Fluid flow, pore pressure, wettability and leakage in mudstone cap rocks, in: Evaluating Fault and Cap Rock Seals[END_REF]. Organic-rich clay rocks are considered to be the key petroleum source rocks for the coming decades (e.g., [START_REF] Klaver | BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[END_REF]. These geological formations are highly heterogeneous at multiple scales, but a major proportion of the literature agrees that the following relevant microstructural levels must be considered (e.g., [START_REF] Bennett | Determinants of clay and shale microfabric signatures: Processes and mechanisms[END_REF][START_REF] Jakobsen | T-matrix approach to shale acoustics[END_REF][START_REF] Ulm | Experimental microporomechanics[END_REF][START_REF] Ortega | The effect of the nanogranular nature of shale on their poroelastic behavior[END_REF]2009;[START_REF] Bobko | The nano-mechanical morphology of shale[END_REF][START_REF] Loucks | Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[END_REF][START_REF] Cariou | An original constitutive law for Callovo-Oxfordian argillite, a two-scale double-porosity material[END_REF][START_REF] Keller | On the representative elementary volumes of clay rocks at the mesoscale[END_REF] (Figure 1):

• Level 0 is the scale of elementary clay layers.

• Level 1 is the scale for which the elementary clay layers are packed together to form clay particles.

• Level 2 is the submicrometer scale, often called the "microscopic" scale of porous clay composites constituted in a mixture of clay particles or aggregates.

• Level 3, often called the "mesoscopic" scale in geosciences, is the scale where the characteristic size is in the submillimeter range. At this scale, the rock is considered to be a porous clay matrix mixed with a population of nonclayey grains (mainly quartz, carbonates and pyrite). This is the scale of the mineral maps used in this work.

• Level 4 is a lamina type that is associated with an alternation of clay-rich layers and non-clayey materials (mainly quartz and carbonates).

With regards to the complexity of this hierarchical organization, the prediction of the engineering properties of shale from its microstructure is clearly a challenging task. In the following work, we will focus on the mesoscopic scale for which numerous theoretical studies have been devoted to the calculations of the engineering or effective properties (e.g., [START_REF] Jakobsen | T-matrix approach to shale acoustics[END_REF][START_REF] Levin | Elastic properties of inhomogeneous transversely isotropic rocks[END_REF][START_REF] Ulm | Experimental microporomechanics[END_REF]Giraud et al., 2007a[START_REF] Giraud | Application of results on Eshelby tensor to the determination of effective poroelastic properties of anisotropic rocks-like composites[END_REF][START_REF] Ortega | The effect of the nanogranular nature of shale on their poroelastic behavior[END_REF]2009;[START_REF] Cariou | An original constitutive law for Callovo-Oxfordian argillite, a two-scale double-porosity material[END_REF]Cosenza et al., 2015a,b). This mesoscopic scale is often considered the key scale for modeling the mechanical and transport behaviors of clay rocks involved in high-level radioactive waste repositories (Abou-Chakra [START_REF] Guéry | A comparative micromechanical analysis of the effective properties of a geomaterial: effect of mineralogical compositions[END_REF][START_REF] Robinet | Solute diffusion in Bure argillite at millimeter to micrometer scales: the role of mineral and microstructural heterogenities, 3 rd[END_REF][START_REF] Christensen | Mechanics of composite materials[END_REF][START_REF] Cariou | An original constitutive law for Callovo-Oxfordian argillite, a two-scale double-porosity material[END_REF]. These effective properties, which are inferred by numerical upscaling techniques or by homogenization theories, are used as inputs for numerical codes, often based on the finite elements method, for engineering purpose.

All the upscaling or homogenization approaches used to estimate these effective properties are based on the paramount concept of the Representative Elementary Volume (REV), which is required to "separate" the following two space scales: the scale of heterogeneity, i.e., nonclayey grains (or rigid inclusions) in our case, and the scale of engineering for which clay rock is viewed as a continuum of homogeneous medium. Thus, the REV is usually considered as a volume of heterogeneous material that is sufficiently large to be statistically representative of the rock, i.e., to include a relevant sampling of all the microstructural heterogeneities existing in the rock at the scale of interest (here, the mesoscopic scale) (e.g., [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF][START_REF] Zhang | Determination of Representative Volume Element Considering the Probability that a Sample Can Represent the Investigated Rock Mass at Baihetan Dam Site, China[END_REF]. At the same time, the REV has to be small enough, compared to the scale of the macroscopic geotechnical systems of study, "so that it may be considered as infinitesimal in the mathematical treatment" [START_REF] Biot | General theory of three-dimensional consolidation[END_REF].

To our knowledge, the approaches used to estimate the size of a REV, named hereafter LREV, can be divided for the sake of simplicity into two groups that introduce the probabilistic concept of realization; here, a realization is any representation of the microstructure considered with a given size and a given fraction of heterogeneities. The first approach or group of approaches aims at using statistical parameters, e.g., mean, standard deviation or covariance, of a given geometrical or physical property (e.g., porosity, fraction of a given mineralogical phase, mechanical property, etc.) calculated over a significantly large set of realizations to quantitatively describe the heterogeneous structure of the material of interest [START_REF] Torquato | Microstructure of two-phase random media. I. The n-point probability functions[END_REF][START_REF] Zhang | Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV[END_REF][START_REF] Kameda | Permeability-porosity transforms from small sandstone fragments[END_REF][START_REF] Houben | A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[END_REF][START_REF] Klaver | BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[END_REF][START_REF] Fauchille | Variability in spatial distribution of mineral phases in the Lower Bowland Shale, UK, from the mm-to μm-scale: Quantitative characterization and Modeling[END_REF]. Following these approaches, REV is defined as the elementary volume below which the property of interest varies significantly across the scale. Among these approaches, the "counting box" method and the covariance or the two-point probability function are likely the most popular and have been recently applied to 2D images acquired on shale samples (i.e., Pasidonia shale, Germany, [START_REF] Klaver | BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[END_REF]Callovo-Oxfordian argillites, France, Song et al., 2015;Opalinus clay, Switzerland, Keller et al., 2013;[START_REF] Houben | A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[END_REF] Bakken shale, United States of America, [START_REF] Liu | Quantification of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis[END_REF]and Bowland shale, United Kingdom, Fauchille et al., 2018). It should be noted that most of these works have been performed on 2D images and, thus, provided estimations of the Elementary Representative Area (REA) size, hereafter named LREA. This first group of approaches is often referred to as "deterministic" approaches [START_REF] Rolland Du Roscoat | Estimation of microstructural properties from synchrotron X-ray microtomography and determination of the REV in paper materials[END_REF]Khdir et al., 2012), in contrast with a second group of approaches that explicitly introduce the concept of the "statistical" REV. Following [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF] and [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF], a "statistical" REV is related not only to the microstructure and the physical properties of each components but, above all, to a given precision in the estimation of the effective property depending on the number of realizations "that one is ready to generate" [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF]. Consequently, in comparison with the aforementioned approaches, the "statistical" LREV depends explicitly on an additional parameter, i.e., the precision desired for the estimate of the effective property and reached for a given number of realizations.

Consequently, the estimate of the "statistical" LREV cannot be unique without any associated precision and number of realizations. This statistical approach has been recently applied to Opalinus clay samples taken from the Mont Terriç rock laboratory in Switzerland [START_REF] Houben | A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[END_REF][START_REF] Keller | On the representative elementary volumes of clay rocks at the mesoscale[END_REF]2016a,b).

In summary, this brief review shows that a large variety of methods used to infer LREV or LREA estimates with regard to shale exist, and these estimates concern mainly the petrographical or mineralogical parameters of the porosity and mineral phases. Most of them have been obtained by deterministic approaches, e.g., the counting box method and dispersion method based on the standard deviation calculations. Moreover, to our knowledge, estimates of the mechanical LREV/LREA of shales are very scarce; one recent and single work was performed on Opalinus clay by Keller (2016a,b), and it focused on the dynamic elastic moduli.

The objective of this paper is thus twofold. First, we would like to provide new estimates of LREA obtained from two mineral maps [START_REF] Jorand | Etude expérimentale de la conductivité thermique: application au forage EST205 du site de Meuse/Haute Marne (Andra)[END_REF][START_REF] Fauchille | Déterminismes microstructuraux et minéralogiques de la fissuration hydrique dans les argilites de Tournemire : apports couplés de la pétrographie quantitative et de la correlation d'images numériques[END_REF] acquired from two shales extensively studied in the framework of the deep disposal of radioactive waste, as follows: Callovo-Oxfordian (COx) claystone from the Meuse/Haute-Marne underground research laboratory (Eastern France) and Toarcian argillite from the experimental station of Tournemire (Southern France). These estimates have been obtained by the classical counting box method and the statistical approach promoted by [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]2006) and [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF]. Second, we would like to quantify the statistical mechanical LREA of COx claystone and Tournemire argillites by focusing on static elastic parameters for further engineering purposes.

These mechanical LREA are inferred by using micromechanical approaches, one of which implicitly accounts for the transverse isotropic nature of shale.

Mineral maps

The LREA estimates calculated in this study have been obtained from two mineral maps acquired following the methodologies described below.

The first mineral map, hereafter called the COx map, has been made from a sample taken from the Callovo-Oxfordian (COx) claystone, which is under extensive study at the Meuse/Haute-Marne Underground Research Laboratory (MHM-URL) (Eastern France). The thickness of this formation is 130 m and its age is 150-160 My; the formation is located 420-550 m below the surface, in the eastern part of the Paris Basin [START_REF]Dossier 2005 Argile: Synthesis. Evaluation of the feasibility of a geological pository in an argillaceous formation[END_REF]. The Callovo-Oxfordian formation contains mainly 25 to 65 wt.% clay minerals, with 20-42 wt.% carbonates (calcite, dolomite, ankerite) and 15-31 wt.% quartz and feldspars [START_REF]Dossier 2005 Argile: Synthesis. Evaluation of the feasibility of a geological pository in an argillaceous formation[END_REF]. Considering nonclay minerals, feldspars contents are negligible regardless to quartz. Among carbonates, siderite and dolomite are negligible regardless to calcite. Thus, quartz and calcite will be the only nonclay minerals considered in the following. This mineral map was prepared from a drill-core, denoted as EST05-709 (-492.2 m) and extracted from the Andra EST205 borehole [START_REF] Jorand | Etude expérimentale de la conductivité thermique: application au forage EST205 du site de Meuse/Haute Marne (Andra)[END_REF][START_REF] Conil | How rock samples can be representative of in situ condition: A case study of Callovo-Oxfordian claystones[END_REF]. It was obtained at a micrometer spatial resolution from an advanced image processing of a chemical elements map that was acquired through the use of a Cameca SX100 electron probe microanalyzer [START_REF] Prêt | Nouvelles méthodes quantitatives de cartographie de la minéralogie et de la porosité dans les matériaux argileux : application aux bentonites compactées des barrières ouvragées[END_REF]. This electron microanalyzer provides quantitative concentration maps of 14 chemical elements (Al, Na, K, Ca, Si, Mg, Ti, Fe, S, Ba, Zr, P, Zn, Sr) on a 3 x 0.5 mm 2 area with a spatial resolution of 2 µm/pixel. The image processing of these maps is based on mineral thresholding methods that accommodate mixtures and solid solutions. For details, the reader is referred to [START_REF] Prêt | Nouvelles méthodes quantitatives de cartographie de la minéralogie et de la porosité dans les matériaux argileux : application aux bentonites compactées des barrières ouvragées[END_REF] and Prêt et al. (2010a,b). In our case, this methodology allows for the spatial location of 16 different minerals, including the following three different clay minerals: illite-smectite mixed layers, kaolinite and chlorite.

The geometrical and mineralogical features of the COx map are given in Table 1. The surface fractions of the clay matrix, calcite and quartz are 50.4%, 25.0% and 13.8%, respectively. Note that the largest side (1563 pixels, 3072 µm) and the smallest side (250 pixels, 500 µm) are perpendicular and parallel to the bedding, respectively.

The second mineral map, hereafter called the Toar map, has been extracted form a large mosaic acquired from a nonimpregnated and dried Tournemire clay rock sample [START_REF] Fauchille | Relationships between desiccation cracking behavior and microstructure of the Tournemire clay rock by coupling DIC and SEM methods[END_REF][START_REF] Fauchille | Déterminismes microstructuraux et minéralogiques de la fissuration hydrique dans les argilites de Tournemire : apports couplés de la pétrographie quantitative et de la correlation d'images numériques[END_REF]. The Tournemire clay rock sample studied has been sampled in the horizontal and cylindrical borehole FD90 in the 1996 East gallery of the Tournemire Underground Research Laboratory (URL) of the French Institute for Radioprotection and Nuclear Safety (IRSN). The sample was located at a depth between 4.20 to 4.40 meters far from the gallery wall, outside the so-called Excavation Damaged Zone. The Tournemire URL is located in a Mesozoic basin on the southern border of the Massif Central (Aveyron, France), in the subhorizontal consolidated argillaceous Toarcian formation (200 meters thick) and marly layers of the Domerian age (50 meters thick). The sample comes from the upper Toarcian formation, whose mineralogical composition shows that clay minerals represent nearly 25-70 wt% of the rock with illite (10-40 wt%) and illite/smectite mixed-layer minerals (5-25 wt%), kaolinite (10-35 wt%) and chlorite (1-5 wt%). The Tournemire clay rock also contains 10-40 wt% of carbonates, 10-30 wt% of quartz, 2-7 wt% of sulfides and less than 2 wt% of feldspars [START_REF] Cabrera | Projet Tournemire : Synthèse des Résultats des Programmes de Recherche[END_REF]. Similarly to COx map, quartz and calcite are the dominant nonclay minerals and will be the only nonclay minerals to be considered.

The mosaic of interest (7.1 x 5.2 mm², 11302 x 8355 pixels) has been built from one hundred and fifty three back-scattered electron images (spatial resolution of 0.625 µm.pixel -1 ) acquired by Scanning Electron Microscopy (SEM, JEOL JSM 56000LV with an acceleration voltage of 15 kV, a probe current of 5 nA, a working distance of 16.3 mm, a magnification of x200, and a dwell time of 128 µs per pixel). On the mosaic of images, the clay-matrix, carbonates, quartz, sulfides and macropores were differentiated by the MicroPhaseMap© software developed at the IC2MP laboratory in Poitiers, allowing the boundary between the clay matrix and nonclay grains to be determined (Prêt et al., 2010a,b). The mineral map used in this study concerns an extraction (4000x4000pixels) of the most homogeneous part of the mosaic in order to respect at best the statistical homogeneity assumed in all the further LREA calculations. The geometrical and mineralogical features of this map are also given in Table 1.

Extractions of both maps are given in Figures 2 and3. Note that both maps were prepared from a polished thin section in a plane perpendicular to the stratigraphic plane. The xdirection indicated in Figures 2 and3 is parallel to the bedding planes, whereas the z-direction is perpendicular to the bedding.

The results of these image analyses are given in numerical files in which the location and mineral code of each pixel of the mineral maps are indicated. These numerical files are the input files for the LREA estimate calculations that are presented in the next section.

Methodologies used to infer the REA size

Counting box method

The counting box method, which is likely the most popular to infer LREA, starts from a given subdomain or box in the digitalized image. Then, the mean of a surface property (surface mineral contents, surface porosity, physical property, etc.) is calculated within increasing subdomains, often called boxes, until the actual image size is reached [START_REF] Houben | A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[END_REF][START_REF] Klaver | BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[END_REF]. The characteristic size LREA is considered to be reached when the mean of the considered property does not evolve significantly with the increasing size of boxes. This procedure can be repeated for several starting subdomains to make sure that the inferred LREA is statistically representative of the whole image. This first method will be named hereafter the classical counting box (CB) method.

Regarding the use of square domains in the CB method, the COx and the Toar maps have been divided into six and four nonoverlapping square areas, respectively, following the partitioning given in Figure 4. These nonoverlapping areas, named Ai (i=1,..,6 for COx map; i=1,..,4 for Toar map), are associated with the starting of the subdomains, which are defined and discriminated by the coordinates of their center Ci (i=1,..,6 for COx map; i=1,..,4 for Toar map) (Figure 4). Note that the origin, i.e., x=0, z=0 of the system of coordinates is located in the top left corner of both maps (Figures 2, 3 and4).

The particular partitioning displayed in Figure 4 is due to two reasons. First, the shape of the COx map is elongated following the z-axis and the center of the initial box could not be located only at the center of this map to investigate the whole map. Second, it was interesting from a statistical viewpoint to compare the LREA estimates calculated at different areas with a comparable surface and, thus, to check the statistical homogeneity of each map. Note that the number of pixels of each area is sufficient to apply the deterministic CB approach.

"Statistical" Elementary

Representative Area (REA) [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]2006) and [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF] extended the classic definition of REV by explicitly integrating the concept of "desired precision" into the calculated effective property. Following their approach, the effective physical properties of heterogeneous materials can be determined not only by one single numerical simulation on a large volume (greater than the REV) of the microstructure but also as the mean value of apparent properties calculated on volumes smaller than the REV, provided than a sufficient number of realizations of the microstructure are considered (e.g., [START_REF] Rolland Du Roscoat | Estimation of microstructural properties from synchrotron X-ray microtomography and determination of the REV in paper materials[END_REF]. Therefore, the "statistical" REV introduced in this manner is not unique; it is defined as a function of the physical properties of each component, the microstructure, the desired precision and the number of realizations. This methodology was used to determine the "statistical" REVs of mechanical and thermal properties of specific random microstructures [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF][START_REF] Pelissou | Determination of the size of the representative volume element for random quasi-brittle composites[END_REF] and of real microstructures of clay rock [START_REF] Houben | A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[END_REF][START_REF] Keller | On the representative elementary volumes of clay rocks at the mesoscale[END_REF]2016a,b). In our study, we will focus on elastic moduli of shale considered as a transverse isotropic rock.

The determination of "statistical" REVs is obtained following a two-step procedure. In the first step, the paramount concept of this approach, the integral range A3 (or A2 by considering a 2D image) has to be evaluated.

Determination of integral range

Considering a 2D microstructure, the integral range A2, which depends on the studied property, is directly related to the scatter (the dispersion) in apparent properties calculated from several realizations n of the microstructure of fixed size S. The integral range gives information on the area size of the microstructure, for which the property measured in this area has a convenient statistical representativity (e.g., [START_REF] Matheron | The theory of regionalized variables and it applications[END_REF]Lantuéjoul, 1991).

For an ergodic, stationary random function Z(x), and for a large specimen (S>>A2), the integral range A2 can be obtained by the following expression (appendix; see also Lantuéjoul, 1991;[START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]2006 and[START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF] as follows:

= 1
where is the variance of the mean value ̅ over the surface S and is the point variance of Z(x). Equation ( 1) is valid for additive properties (e.g., surface fraction or mass density) and, thus, can be rewritten as follows when the surface clay fraction, namely, ϕ, is considered:

= 1 - 2
where the variance is 1 -. As the composition of a physical property Z(x) (e.g., elastic moduli in our case) in the change of scale is not additive, the latter relation ( 2) is no more valid, and [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF] proposed the following modified version:

= 3
where α is an exponent that has to be determined. In the case of a two-phase material with the physical property Z1 for phase 1 and Z2 for phase 2, the point variance of the random variable Z is as follows [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF][START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF]): = 1 --4

where P is the volume fraction of phase 1 or phase 2. In practice, phase 1 and phase 2 are the clay matrix and nonclay inclusions, respectively. In this study, this means that properties Z1 and Z2 are the elastic modulus, either the bulk modulus or shear modulus, of the nonclay inclusions and clay matrix, respectively.

As illustrated further, in both cases, i.e., considering the clay fraction ϕ (equation 2) and a chosen physical property Z (equation 3), the integral range A2 is obtained by fitting from the graph of the function or . In our case, let us recall that Z is an elastic modulus, either the bulk modulus or shear modulus, the variance of which is calculated on the partitions of the mineral map in subdomains of a given area S. The value of Z for a given subdomain of area S is obtained from the micromechanical approaches presented in the following section 3.2.2.

Determination of the REA size

In a second step, the determination of the integral range allows the calculation of the precision desired to estimate the size LREA. In the theory of samples, the absolute error εabs and the relative error εrel of the mean effective value ̅ obtained with n independent realizations of area S are deduced from the interval of confidence as follows (e.g., [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF]):

= 2 √ 5 !" = ̅ = 2 ̅ √ 6
Thus, the REA area, SREA, can now be defined as the area for which n realization (n=1 for instance) is required to estimate the mean effective property ̅ with a given relative error (εrel=5% for instance) provided that the function is known.

For instance, if Z is the surface clay fraction named ϕ, the parameter SREA, estimated with a given relative error εrel and a given number of realization n, can be obtained by combining equations ( 6) and ( 2), as follows, provided that the mean effective property is known:

$%& = ' $%& = 4 1 - !"
In the same way, if Z is now a physical property, the corresponding parameter SREA, estimated with a given relative error εrel and a given number of realization n, can be deduced by combining equations ( 3), ( 4), ( 5) and ( 6), as follows, provided that the mean effective property ̅ is known:

$%& = ' $%& = ) 4 1 - !" - ̅ * / 8
At this stage, two remarks have to be formulated. First, the integral range A2 in both equations ( 7) and ( 8) are not a priori similar. The integral range A2 depends on the property under study, i.e., ϕ or Z, and has to be evaluated separately. Second, this approach assumes that the mean effective properties and ̅ are known a priori. In practice, the latter are calculated on macroscopic areas supposed to be much greater than the area of the REA.

In summary, a "statistical" REV is therefore determined with the following algorithm [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]:

i) Consider different realizations of the microstructure, i.e., different partitions of the mineral map in subdomains of a given area S.

ii) Calculate the mean and the variance of the property of interest of the whole set of partitions under consideration; the graph of the function or is thus obtained.

iii) Estimate the integral range A2 from the previous graph, equation (2) or equation

(3) (in the later, the exponent α has to be evaluated as well).

iv)

Define the precision εrel and the number of realization n to estimate the effective property of interest and calculate the LREA with equation (7) or equation ( 8). The value of the effective property, or ̅ in equation ( 7) or equation ( 8), is independently estimated.

Calculations of apparent elastic properties

As mentioned previously, the calculation of the integral range A2 associated with a given mechanical property requires the values of the average and the variance of the mechanical property calculated over a set of subdomains of the map of interest (step ii). This means that the mechanical property under study has to be calculated in each subdomain of size S of the map partition. The apparent mechanical property associated with a given subdomain has been estimated in this work by two micromechanical approaches.

Anisotropic model

Following the first micromechanical approach, hereafter called the anisotropic model, the transverse isotropic nature of shale is implicitly taken into account. This anisotropic model is itself achieved in two steps. In a first step, the apparent anisotropic stiffness tensor in the subdomain of interest is calculated by an inclusion-based model, i.e., a nonclay spherical grain embedded in a clay transverse isotropic matrix following a differential effective medium (DEM) scheme (e.g., [START_REF] Cosenza | Effect of the local clay distribution on the effective electrical conductivity of clay rocks[END_REF]. The latter scheme is widely and successfully used in rock physics to model the elastic wave velocities of numerous rocks (e.g., [START_REF] Hornby | Anisotropic effective-medium modeling of the elastic properties of shales[END_REF][START_REF] Markov | Elastic properties of doubleporosity rocks using the differential effective medium model[END_REF].

The DEM scheme consists of iteratively adding spherical inclusions with diluted concentration into the current effective medium determined in the previous step. At the initial stage, a material with elastic moduli CM is considered as the initial host material. A dilute concentration of spherical inclusions is then added into this initial host; the effective tensor of this new composite can be calculated without considering the interactions between the inclusions. The construction process continues as follows: (a) at each stage, the embedded spherical inclusions are scattered in diluted concentration and (b) the required volume fraction of inclusions is satisfied. At a given step, indexed i, the small increment of stiffness due to the addition of a small fraction of inclusions, dfI is given by the following:

-. / 0 = -1 2 1 -1 2
3. 2 -. / 0 4: 61 + 8 9 : 3. 2 -. / 0 4: 9

This increment -. / 0 must be added to the apparent tensor . / 0 obtained in the previous step. Note that the bold capital letters refer here to fourth-order tensors. In our case, the stiffness tensors CI and CM are the stiffness tensor of the isotropic nonclay sphere and the stiffness tensor of the transverse isotropic clay matrix, respectively. The Hill's tensor Pi is a function of . / 0 and the Eshelby's tensor, which depends on the chosen inclusion-based model, as follows:

8 / = < / : 3. / 0 4 = 10
The expressions of components of the Hill's tensor for a spherical inclusion in a transversely isotropic medium have been taken form [START_REF] Withers | The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials[END_REF] and Giraud et al. (2007a,b).

In a second step, the apparent tensor . 0 obtained by DEM is isotropized following the classical decomposition, as follows:

. 0,/ = 3@ / A + 2B / C 11 

and four-rank tensors J and K obey the following algebraic properties:

J : J=J ; K : K=K ; K : J =J :K=0 (14) 
With R /NS" = I T /N T S" ; U /NS" = T /S T N" + T /" T NS ; @ /NS" = U /NS" -R /NS" (15)

This "isotropization" process of apparent stiffness tensor . 0 is due to two reasons. The first reason is theoretical. The original methodology described in [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]2006) and [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF] involves the isotropic physical properties in equations ( 3), ( 4) and (8). We do not know to what extent this methodology can be generalized to anisotropic media, i.e., to mixtures of anisotropic constituents. In other words, this generalization to anisotropic media has to be proven and its demonstration is beyond the scope of this work. Moreover, it should be noted that despite this "isotropization" process, the calculation of the apparent stiffness tensor of shale is impacted by that of the anisotropic stiffness tensor of the clay matrix and, thus, implicitly depends on the anisotropic nature of rock. The second reason is methodological.

This "isotropization" allows the following results to be directly compared to those obtained by a pure isotropic model presented further, since both models provide apparent moduli with the same physical meaning.

Equations ( 11) to ( 15) allow the extraction of the apparent isotropized bulk modulus, K is and the apparent isotropized shear modulus µ is , which are used to infer the statistical mechanical REA sizes (i.e., using equation ( 8)). However, the calculations of K is and µ is and, thus, the . 0 components require input data, which are the components of the stiffness tensors

CI and CM.

The components of stiffness tensor CI correspond to the elastic moduli of nonclay grains (quartz and calcite) whose values have been taken from [START_REF] Mavko | The rock physics handbook: Tools for seismic analysis of porous media[END_REF]. In our calculations, the isotropic elastic moduli of the nonclay phase, i.e., the bulk and shear modulus, are the weighted averages of those of quartz and calcite, where the weights are the gravimetric contents of each phase, as indicated in Table 2. In fact, the pure calcite and quartz phases are anisotropic minerals (e.g., [START_REF] Mavko | The rock physics handbook: Tools for seismic analysis of porous media[END_REF]; their isotropized equivalent elastic properties considered here correspond to random distributions in the orientation and the space of calcite and quartz inclusions (e.g., [START_REF] Ulm | Experimental microporomechanics[END_REF][START_REF] Giraud | Application of results on Eshelby tensor to the determination of effective poroelastic properties of anisotropic rocks-like composites[END_REF].

The elastic moduli of the clay matrix are more difficult to estimate, because the clay phase is also a heterogeneous composite composed of aggregates of clay layers, pores filled with interstitial fluids and, likely, fine nonclay minerals (Figure 1). Consequently, in practice, the elasticity of the clay phase is complex, which makes it difficult to quantitatively characterize in an experimental viewpoint, and, thus, is poorly constrained in our context. To our knowledge, the most relevant range of transverse-isotropic elastic properties of a clay matrix at the mesoscopic scale has been obtained by [START_REF] Ulm | Experimental microporomechanics[END_REF], who used an experimental micromechanics approach by combining nanoindentation measurements with the microporoelasticity theory. These authors have proposed quantitative estimations of elastic moduli, which resulted from the inversion of nanoindentation measurements obtained on three different shale materials at spatial scales of 10 -7 to 10 -5 m, which correspond to that of our mineral maps [START_REF] Ulm | Experimental microporomechanics[END_REF][START_REF] Cosenza | Effect of the local clay distribution on the effective electrical conductivity of clay rocks[END_REF]. In our calculations, only the lower bound of the range proposed by [START_REF] Ulm | Experimental microporomechanics[END_REF] has been considered (Table 2). Indeed, the values of transverse isotropic moduli considered in Table 2 provided mean values of apparent elastic moduli that are the closest to the reference macroscopic elastic moduli measured in both shales under study. Higher values of clay elastic moduli would have led to much higher values of apparent moduli that are significantly higher than the experimental elastic moduli measured on both shales.

Isotropic model

In the second micromechanical approach used in this work, hereafter called the isotropic model, the elastic properties of the clay matrix, KM and µM, were not given a priori. They have been inverted following a Monte-Carlo procedure to overcome the paramount difficulty of quantitatively characterizing the clay phase elasticity. This inversion procedure has considered the following as input data: the weighted averages of quartz and calcite, the elastic properties of both shales and the reference macroscopic elastic properties, which are all given in Table 2.

It was based on a simple micromechanical model, i.e., an inclusion-based model consisting of an isotropic sphere embedded in an isotropic matrix. This isotropic inclusion-based model corresponded again to a DEM approach, which is expressed by the following coupled differential equations (e.g., [START_REF] Christensen | Mechanics of composite materials[END_REF]:
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The Monte-Carlo procedure consisted of 10000 random trials of clay matrix moduli ranging between 0 GPa and the reference macroscopic values given in the first column in Table 2. The maximum relative difference between the reference macroscopic value and the calculated macroscopic value by our inverse procedure was less than 2% (Table 3). This difference was considered acceptable with regard to the high uncertainty associated with the quantification of clay matrix elastic moduli.

Results and Discussion

Counting box REA sizes versus Statistical morphological REA sizes REA sizes inferred by the counting box method

Figures 5 and 6 display the evolutions of the clay fraction calculated on increasing box sizes L considering the different starting domains of the COx map and Toar map, respectively.

Both figures confirm that the calculated clay fraction is a decreasing function of L and converges to a value, hereafter referred to as the parameter W , which is very close to the mean clay fraction obtained on the whole map (Table 1).

Considering the COx map (Figure 5a.), the six curves associated with six starting domains converge to W values in the range [48.6-52.4%], including the mean clay fraction XYZ of 50.4% calculated on the whole map (Table 1). The difference between these asymptotic values, W , and the mean clay fraction XYZ is less than 4%. In the same way, in Figure 5b, the four curves associated with the Toar map converge to W values in the range [68.5-71.4%],

which also include the mean clay fraction [\ of 69.9% calculated for the whole map (Table 1). The difference between the W values and [\ is less than 2.5%.

Below 100µm and 200µm for COx and Toar maps respectively, the curves obtained for the different subdomains presents non correlated and high frequency evolutions. Such a behavior is associated to the occurrence of a few grains with such a large size (Robinet, 2008;[START_REF] Fauchille | Déterminismes microstructuraux et minéralogiques de la fissuration hydrique dans les argilites de Tournemire : apports couplés de la pétrographie quantitative et de la correlation d'images numériques[END_REF] and that large enough box size including several grains should be used to estimate a meaningful REA [START_REF] Gaboreau | Optimization of pore-network characterization of a compacted clay material by TEM and FIB/SEM imaging[END_REF]. For larger box size than 100µm and 200µm

for COx and Toar maps respectively, the gap between the curves decreases progressively with low frequency variations. Meaningful REA corresponding to mesoscopic scale (level 3 in Figure 1) could be estimated with an improved accuracy when the box size increases. The careful observation of both maps reveals that grain size is larger for Toar than for COx (compare calcite grains in Figure 2 and carbonates grains in Figure 3), somehow explaining why a larger box size is needed for Toar map to reach a REA as illustrated below (Figures 5a and5b).

The REA size, i.e., LREA, of both maps has been estimated in two steps (Table 4). In the first step, the REA sizes have been calculated for each of the nonoverlapping areas of both maps (6 areas for the COx map and 4 areas for the Toar map) and for two errors or threshold values, i.e., ε= 0.1 (10%) and ε= 0.05 (5%). For each area, the LREA parameter has been identified as the lowest box size L for which the calculated mean clay fraction was significantly similar to that of the whole map ( XYZ or [\ , with a maximum error of ε. In a second step, the average overall LREA estimates of all nonoverlapping areas have been calculated for each map.

The calculated mean LREA for a given map has been considered as the LREA of the latter. 4).

Our results given in

This scatter questions the statistical homogeneity of both maps and could be explained by a small but significant evolution of the microstructure in the x direction and/or in the z direction (i.e., with depth); this is shown in (a), where the W , estimates of the COx map, globally increase with depth, and by (b), where the W estimates of the Toar map, decrease in the x direction (Table 4).

However, the order of magnitude of all these estimates is comparable to the results from Toar map, respectively (Figure 6). Both trends are similar to those already observed for other materials, considering other microstructural properties (porosity and specific surface area) [START_REF] Zhang | Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV[END_REF][START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF][START_REF] Kanit | Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry[END_REF].

The decrease in dispersion with L for both maps evidenced in Figure 6 is also illustrated in Figure 7, which displays the evolution of the pseudovariance / 1as a function of the subdomains area S (i.e., L 2 ). In Figure 7, a 1/S fit for a large S by the least-square method is also indicated to obtain values of the integral range A2 (equation ( 2)) required to calculate estimates of the REA size, LREA, for both maps (equation ( 7)).The results of the fits for both maps and the LREA estimates considering one realization (n=1) and a range of error [5-10%] are given in Table 5. This table shows two results.

First, the LREA estimates in Table 5 are rather close to those obtained by the CB method with similar values of errors, i.e., between 5 and 10% (Table 4). Indeed, in the case of the COx map, the statistical REA size, LREA, is in the range of [205-410 µm], whereas LREA, estimated by CB method is in the range of [50-438 µm] (Table 4). In the case of the Toar map, the statistical LREA estimates are in the range of [345-696 µm], whereas the LREA estimates by the CB method are in the range of [68-749 µm]. However, the comparison between these two types of estimate is no more relevant for smaller errors ε since the LREA estimate inferred by the statistical method drastically increases as a function of 1/ε (see equation ( 10)).

Second, whatever the ε value, these results demonstrate that the REA size of the Callovo-Oxfordian claystone is lower than that of the Tournemire argillite. The REA size estimates of the COx map are in the range of [205-410 µm], whereas those of the Toar map are in the range of [345-696 µm]. This hierarchy has also been observed in Table 4 following the CB method applied with a ε value of 5%. 

Statistical morphological REA sizes versus Statistical mechanical REA sizes

Figures 9a and 9b display the evolution of the mean values of the mechanical moduli (bulk modulus and shear modulus) considering both the anisotropic and isotropic models as a function of the size L of subdomains S. These figures confirm two trends previously observed in Figure 6. First, the mean values @ _ and `̅ tend rapidly towards plateaus which are close to the reference values for large S. These asymptotic values depend on the micromechanical model, i.e., the anisotropic or isotropic model used to calculate the mean values @ _ and `̅ . Second, the dispersion of the results decreases again with an increasing subdomain size. In addition, Figures 9a and9b show that whatever the micromechanical used, the mean values @ _ and their associated dispersion (through standard deviation values) are always greater than the mean values `̅ and its associated dispersion.

The decrease in dispersion with L for both maps evidenced in Figures 9a and9b can also be illustrated in Figures 10a and10b, which display the evolutions of the variance of elastic moduli as a function of the subdomains area S (i.e., L 2 ). Figures 10a and 10b also show that the power fit introduced by equation ( 3) is a relevant model to quantitatively describe these dispersion evolutions and, hence, to determine the integral range; the calculated regression coefficient R 2 values are all greater than 0.99. For each map, the parameters of these fits, especially the exponents are very close (COx map: 0.89 to 0.896 for the bulk modulus and 0.983 to 1.026 to the shear modulus; Toar map: 0.83 for the bulk modulus and 0.813 to 0.824 to the shear modulus), which illustrates the fact that the calculated variances are of the same order of magnitude for any micromechanical model and any elastic modulus under study. Moreover, Figure 10b shows that the variances of the elastic moduli of the Toar map are almost independent of the chosen micromechanical model.

Figures 11a and11b show the mechanical LREA values inferred from the calculations of integral range values obtained from Figures 10a and10b and equation ( 8). These figures highlight at least three results. First, in the case of both mineral maps under study, these figures

show that for any micromechanical model and any elastic modulus under consideration, the mechanical LREA is significantly greater than morphological LREA (compare Figures 11a and11b to Figure 8). The concept of LREA fundamentally depends on the property of interest. Second, all things being equal, the mechanical LREA estimates of the COx map are lower than those of the Toar map (see also Table 6). This hierarchy previously observed for the morphological LREA estimates (see Figure 8) is retrieved when the mechanical properties are considered. Third, for any mineral map and any micromechanical model, the LREA estimates of the bulk modulus are lower than those of the shear modulus (Table 6). However, this difference between both estimates is more tenuous in the case of the Toar map for which LREA estimates for a given ε value can be considered as similar and insensitive to the chosen micromechanical models in a first order approach (Table 6).

Impacts of anisotropy and heterogeneity at the map scale

The calculations of different LREA in this study are based on equations ( 7) and ( 8), which a priori assume an isotropy of mechanical properties of interest. In this framework, the well-known anisotropic nature of shale raises a difficulty that has been bypassed here by "isotropizing" the transverse isotropic stiffness tensor of the clay matrix. Moreover, to study the impact of this underlying anisotropy introduced in this manner, a pure isotropic micromechanical model has been introduced for comparison purposes. Thus, the main objective associated with the introduction of an implicit anisotropic model and a pure isotropic model was to address the following question: what is the impact of the underlying mechanical anisotropy of shale on its LREA estimates?

All the outcomes provided by this work show that the following qualitative results do not depend finally on the chosen micromechanical models and, thus, would be independent of the underlying anisotropic nature of shale. These outcomes are as follows: (i) The mechanical LREA estimates are greater than the morphological ones; (ii) The mechanical LREA estimates of the Toar map are greater than those of the COx map; and (iii) The mechanical LREA estimates of the apparent shear modulus are greater than those of the bulk modulus.

The second underlying assumption used in this work is the statistical homogeneity of both mineral maps, meaning, from a statistical viewpoint, that the stationarity assumption of the properties of interest is satisfied on both maps (see appendix and Lantuéjoul, 1991;[START_REF] Torquato | Random heterogeneous materials: microstructure and macroscopic properties[END_REF]. Let us recall that the stationary assumption means here that the statistical properties implied in our calculations are invariant by translation, i.e., they do not depend on the absolution position in the mineral maps. In our case, the LREA estimated by the CB method strongly depends on the starting domain chosen in the mineral maps, as shown by the high values of standard deviation of the calculated mean LREA values (Table 4). This strong spatial variability of the LREA estimate is a serious indication that the stationarity assumption would not be fulfilled. This indication seems to be confirmed at least for the Toar map by the statistical approach promoted in this study. Figure 12 clearly shows that the 1/S fit associated with equation ( 2) is finally in poor agreement with the calculated pseudovariance of the clay fraction used to calculate the integral range A2 (coefficient of determination R 2 equal to 0.36).

According to Lantuéjoul (1991), a poor agreement between equation ( 2) and the measurements would indicate that the image under study would not satisfy the stationary assumption. This result suggests that a combined use of the simple CB method and a calculation of the integral range following the statistical approach applied here would be a simple and efficient way to check a posteriori the statistical homogeneity of the maps and images under study at the mesoscopic scale, which is scarcely ensured in practice. This suggestion and these results have to be obviously verified on other mineral maps.

Concluding remarks

The main objective of this work was to provide new estimates of REA sizes of the following two shales actively studied in the framework of the deep disposal of radioactive waste: Callovo-Oxfordian (COx) claystone from the Meuse/Haute-Marne underground research laboratory (Eastern France) and Toarcian argillite from the experimental station of Tournemire (Southern France). The LREA estimates obtained from two mineral maps at a mesoscopic scale have been calculated by the classic counting box (CB) method and a statistical approach that introduces the concept of a "statistical" REA. Following this approach, a "statistical" REA is related not only to the microstructure and the properties of each of the components but, above all, to a given precision in the estimation of the effective property depending on the number of realizations "that one is ready to generate" [START_REF] Jeulin | Representative volume element: a statistical point of view[END_REF].

The probabilistic concept of realization here is any representation or observation of the microstructure considered with a given size and a given fraction of heterogeneities, i.e., in our case, from a practical viewpoint, a subdomain of a given area of a mineral map. This statistical approach requires the calculations of the apparent elastic moduli in this subdomain or in the set of subdomains, which have been achieved here by using two micromechanical models. The first micromechanical model consisted of an anisotropic inclusion-based model for which spherical nonclay grain is embedded in a clay matrix, in which the values of its transverse isotropic stiffness tensor have been taken from literature. The second micromechanical model was an isotropic inclusion-based model for which spherical nonclay grain is embedded in a clay matrix; the elastic moduli values have been inverted by a Monte-Carlo approach from the macroscopic engineering moduli measured on both shales under study. The calculations performed following this statistical approach have shown the following results:

• The morphological LREA estimates inferred for the statistical approach are of the same order of magnitude as those found in the literature and obtained by the classic CB method by considering the values of the relative errors, i.e., between 5 and 10%.

• For any micromechanical model and any elastic modulus under consideration, the mechanical LREA is significantly greater than morphological LREA. Our study confirms that the concept of LREA fundamentally depends on the property of interest.

• The mechanical LREA estimates of the Toar map are greater than those of the COx map. This is also the case for the morphological LREA estimates inferred for a low relative error of 5%.

• All things being equal, the mechanical LREA estimates of shear modulus are greater than those of the bulk modulus Moreover, our study highlights two additional aspects. First, all the outcomes provided by this work show that these previous qualitative results do not depend on the chosen micromechanical models and, thus, would be ultimately independent of the underlying anisotropic nature of the shale. Second, a combined use of the simple CB method with a calculation of the integral range following this statistical approach strongly brings into question the statistical homogeneity of the Toar map. Consequently, this result suggests that this coupled approach would be a simple and efficient way to check a posteriori the statistical homogeneity of the maps and images under study, which is scarcely ensured in practice. The application and validation of such a coupled approach on other mineral maps is obviously one natural perspective of this work.

Finally, this work strongly suggests the need for further investigations in two directions.

First, this work has considered the definitions of REA or REV initially established on homogeneous and isotropic media, but one may wonder if these definitions are still valid or can be refined for strongly anisotropic media made of anisotropic components. Second, our approach has highlighted the crucial role of the anisotropic mechanical properties of the clay matrix. The accurate measurements of these mechanical parameters are still a challenging area of experimental research.

Appendix. The integral range

Here, we borrow definitions and notations from Lantuéjoul (1991). Let us consider (i) a domain of area S that is sufficiently large to ensure that the properties of interest may be estimated with good precision (note that the following concepts are defined in 2D but their generalization in 3D is straightforward), and (ii) a stationary random function a Z∈$ c with mean µ and variance σ 2 = , which are both unknown. In the context of randomness, the average value of Z, named ̅ , over the area S can be evaluated by the following estimator:

= 1 d a -a 1 e
and the variance of this estimator, namely, , is given by the following:

= 1 d d f g -a -a-g 2 e e
where f g -a is the autocovariance function of the stationary random function Z(x) expressed by the following:

C(y-x)= C(h)= E{[Z(x)-E(Z)] [Z(x+h)-E(Z)]} (A3)

In other words, the statistical property defined by equation (A2) can be seen as the variance of the average value ̅ , which is in fact the effective property to be determined. As explained further, this statistical property is directly linked to the concept of the integral range. The next step requires the definition of the ergodicity assumption, as follows: a random function Z is ergodic if variance tends toward 0 when the size of the domain S becomes infinite, as follows:

lim e→W = 0 4
The concept of the integral range, namely, A2, is then introduced to define the rate of decrease of this variance at large distances, i.e., in large areas, as follows:

= lim e→W 5

This quantity does not always exist. When it does exist, it is nonnegative. If A <+ ∞, for large S, then:

≈ 6

Now we return to the problem met in practice. Suppose that the domain S can be decomposed into a union of disjoint subdomains, s1, …, sk, all of the same shape and of the same size s. In each subdomain si, the average value taken by Z(x) over si is as follows:

m / = 1 m d a -a 7 G
where s denotes the area of si. The "dispersion variance" of the Z(si) is now defined as follows:

n m| = p q 1 r st m / - u S /v w 8
or n m| = m -Suppose now that the integral range is finite and nonzero and that the area s is very large compared to A2. In this case, the approximation formula (A6) is valid and then equation (A9) can be rewritten as follows:

n m| ≈ 1 m - 1 10 
Now if S has been divided into a large number of subdomains, then 1/S can be considered as negligible compared to 1/s and therefore:

n m| ≈ m 11
Thus, the dispersion variance is inversely proportional to the area of the subdomains, s. From a practical viewpoint, it is this dispersion variance that is calculated to obtain an estimation of A2 by a fitting procedure.
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 2 Figure 2. Extraction of the mineral COx map used in this work (modified from Cosenza et al., 2015a).
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 3 Figure 3. Extraction of the mineral Toar map used in this work (modified from Fauchille, 2015).
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 4 Figure 4. A. Partitioning of the COx map only used for the counting box method. B. Partitioning of the Toar map used for the counting box method. In both cases, the direction of bedding is indicated.
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 5 Figure 5 Estimation of the Representative Elementary Area (REA) size of mineral maps by counting box method. Evolution of mean clay fraction with increasing subdomain size (box) and for different starting domains. The coordinates of starting domains are given in the captions boxes (see the origin of the system of Cartesian coordinates in Figures 2 and 3). a. COx map. The x-coordinates of the starting domains is 250 µm. The horizontal dashed lines indicate the range of mean clay fraction corresponding to 1 ± z XYZ with z XYZ =0.504 (50.4%) and ε=0.1(10%) b. Toar map. The horizontal dashed lines indicate the range [62.9-76.9%] corresponding to 1 ± z [\ with z [\ =0.699 (69.9%) and ε=0.1(10%).
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 6 Figure 6. Evolution of the mean clay fraction and related standard deviation versus the subdomain size for both maps.
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 78 Figure 7. Determination of the "morphological" integral range A2. Evolution of the pseudovariance of the clay fraction, i.e., Variance ( { (1-{ )) as a function of 1/S, where S is the box size area. A linear fit is indicated by a bold line. a. COx map. b. Toar map.Figure8. REA size, LREA (µm), as a function of error (%) for one realization (n=1) for both mineral maps.
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 9 Figure 9. Mean value and dispersion (standard deviation) of the apparent elastic moduli as a function of the subdomain size L in the case of the anisotropic model and isotropic model. a: COx map. b: Toar map.
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 10 Figure 10. Determination of the "mechanical" integral range A2. Evolution of the variance of the elastic modulus of the anisotropic and isotropic models as a function of the subdomain area. Power fits are also indicated to calculate the integral range values. a. COx map. b. Toar map.
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 11 Figure 11. Mechanical REA size, LREA (µm), as a function of error (%) for one realization (n=1). Both elastic moduli, i.e., the bulk modulus and shear modulus; both micromechanical models, i.e., the anisotropic model and isotropic model, are considered. a. COx map. b. Toar map.
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 12 Figure 12. Zoom of the evolutions of the pseudo-variance of clay fraction i.e., Variance( { (1-{ )) as a function of subdomain area of both maps. R 2 values of both fits are also given.

  Figure 2. Extraction of the mineral COx map used in this work (modified from Jorand, 2006).
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 3 Figure 3. The mineral Toar map used in this work (modified from Fauchille, 2015).

  Figure 4. A. Partitioning of the COx map only used for counting box method. B. Partitioning

  Table2). Whereas in the second case (ε=0.05), the mean values of the LREA estimates of the COx map and Toar map are much higher, i.e., 234 µm and 441 µm, respectively. This scatter in the LREA estimates can also be evidenced by a calculation of the standard deviation of the LREA estimates associated with nonoverlapping areas (Table4). Considering the COx map, the standard deviation values of the LREA estimates increase from 108 µm (ε=0.1) up to 143 µm (ε=0.05). The standard deviation values of the LREA estimates of the Toar map increase from 72 µm (ε=0.1) up to 267 µm (ε=0.05) (Table

Table 4 indicate that the LREA values are dispersed and decreasing functions of the chosen error or threshold values ε. Indeed, in the first case (ε=0.1), the mean values of the LREA estimates of the COx map and Toar map are 173 µm and 129 µm, respectively (

Table 1 .

 1 Geometrical and mineralogical features of both mineral maps used in this work.

	Map	Resolution	Total number	Dimensions	Dimensions	Clay minerals	Quartz (%)	Calcite (%)
		(µm)	of pixels	(pixels)	(µm)	(%)		
	COx	2	384 000	250 x 1536	500 x 3072	50.4	13.8	25.0
	Toar	0.625	16 10 6	4000 x 4000	2500 x 2500	69.9	13.2	14.1

Table 2 .

 2 Input data for the calculations of apparent elastic properties of both shales under study.

		Macroscopic	Non-clay phase	Clay phase
		(reference) shale	Isotropic elastic	Transverse isotropic
	Shale	elastic modulus	modulus	(undrained) modulus
		(GPa)	Weighted average	(GPa) c
			(GPa) b	
		Bulk modulus a	Bulk modulus	C11= 14.3
	Callovo-Oxfordian	11.5	56.3	C12=4.6
	claystone	Shear modulus a	Shear modulus	C13=2.7
		5.3	38.5	C33=8.9
				C44=2.8
		Bulk modulus d	Bulk modulus	C11= 14.3
	Tournemire argillite	9.2	53.9	C12=4.6
		Shear modulus d	Shear modulus	C13=2.7
		6.5	37.5	C33=8.9
				C44=2.8

a ANDRA (2009) (undrained Poisson ratio: v u =0.3) b Table

1 and Mavko

et al. (2009) c Ulm et al. (2005); Cosenza et al. (2015b)

d

[START_REF] Niandou | Laboratory investigation of the mechanical behaviour of Tournemire shale[END_REF] 

Table 3 .

 3 Inverted values of isotropic moduli of clay phase by Monte Carle procedure (isotropic model).

		Clay phase	Relative	difference
	Shale	Inverted isotropic	between reference value
		modulus (GPa)	and calculated value from
			inverted clay phase moduli
			(%)
		Bulk modulus	Bulk modulus
	Callovo-Oxfordian	5.0	0.3
	claystone	Shear modulus	Shear modulus
		1.6	1.4
		Bulk modulus	Bulk modulus
	Tournemire argillite	5.3	1.6
		Shear modulus	Shear modulus
		3.7	0.1

Table 4 .

 4 REA estimates obtained by counting box method.St. Dev.: 1.6St. Dev.: 108.0 St. Dev.: 142.6 

	Map	Area	Center of area	Asymptotic	REA estimate	REA estimate
		(Ai)	(Ci)	value ( W %	(LREA) (µm) ε=0.1 (10%)	(LREA) (µm) ε=0.05 (5%)
		A1	C1 (x=250µm, z=250µm)	49.0	262	314
		A2	C2 (x=250µm, z=750µm)	48.6	322	438
	COx	A3	C3 (x=250µm, z=1250µm)	49.4	128	170
		A4	C4 (x=250µm, z=1750µm)	51.6	72	86
		A5	C5 (x=250µm, z=2250µm)	52.4	202	310
		A6	C6 (x=250µm, z=2500µm)	51.5	50	86
				Mean: 51.5	Mean: 172.7	Mean: 234.0
		A1	C1 (x=625µm, z=625µm)	71.4	163	179
		A2	C2 (x=1250µm, z=625µm)	68.5	71	749
	Toar	A3	C3 (x=625µm, z=1250µm)	70.2	214	260
		A4	C4 (x=1250µm, z=1250µm)	69.1	68	576
				Mean: 69.8	Mean: 129.0	Mean: 441.0
				St. Dev.: 1.3 St. Dev.: 71.8	St. Dev.: 267.4

Table 5 .

 5 Morphological REA size estimates by statistical approach (n=1; error ranging between 5 and 10%). The results of inverse regression and integral range are also given.

		Statistical morphological REA
	Shale	Regression	Integral range	REA size estimates
	Callovo-Oxfordian claystone Tournemire argillite	1 -1 -R 2 = 0.96 = 106.6 = 1 -R 2 = 0.36 = 703	A2 106.6 703	(µm) ( ∈ t5,10u% 205-410 345-696

Table 6 .

 6 Recapitulation of mechanical REA size estimates by statistical approach (n=1; error ranging between 5 and 10%).

					Statistical mechanical REA		
			Anisotropic model			Isotropic model
	Shale	Bulk modulus	Shear modulus	Bulk modulus	Shear modulus
		Integral range	REA size	Integral range	REA size	Integral range	REA size	Integral range	REA size
		A2	estimates	A2	estimates	A2	estimates	A2	estimates
			(µm) ∈ t5,10u%		(µm) ∈ t5,10u%		(µm) ∈ t5,10u%		(µm) ∈ t5,10u%
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of the Toar map used for counting box method. In both cases, the direction of bedding is indicated. Figure 5. Estimation of the Representative Elementary Area (REA) size of mineral maps by counting box method. Evolution of mean clay fraction with increasing subdomain size (box) and for different starting domains. The coordinates of starting domains are given in the captions boxes (see the origin of the system of Cartesian coordinates in Figures 2 and3).