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Abstract 23 

This paper provides new estimates for the Representative Elementary Area (REA) sizes of the 24 

following two shales that are actively being studied in the framework of deep disposal of 25 

radioactive waste: Callovo-Oxfordian (COx) claystone from the Meuse/Haute-Marne 26 

underground research laboratory (Eastern France) and Toarcian argillite from the experimental 27 

station of Tournemire (Southern France). The REA sizes, named LREA, were obtained from two 28 

mineral maps following the classic “counting box” (CB) method and a statistical approach that 29 

introduces the concept of a “statistical” REA. Following this approach, a “statistical” REA is 30 

related not only to the microstructure and the properties of each of the components but, above 31 

all, to a given precision in the estimation of the effective property depending on the number of 32 

realizations that one is ready to generate. The probabilistic concept of realization is here, from 33 

a practical viewpoint, a subdomain of a mineral map in which the apparent morphological or 34 

mechanical properties have to be calculated. In this study, the apparent elastic moduli of the 35 

subdomain have been estimated using two micromechanical models. The first 36 

micromechanical model consisted of an inclusion-based model for which spherical nonclay 37 

grain is embedded in a clay matrix in which the values of its transverse isotropic stiffness tensor 38 

have been taken from literature. The second micromechanical model was an isotropic 39 

inclusion-based model for which a spherical nonclay grain is embedded in a clay matrix; the 40 

elastic moduli values have been inverted by a Monte-Carlo approach from the engineering 41 

moduli of both shales under study. Our calculations have shown the following results: (i) the 42 

statistical morphological LREA considering the surface clay fraction are of the same order of 43 

magnitude as those measured in other shales and those obtained by the simple CB method, 44 

with  relative error values between 5 and 10%, (ii) the mechanical LREA values associated with 45 

the bulk modulus and shear modulus are significantly greater than that of the morphological 46 

LREA, and (iii) the mechanical LREA estimates of the shear modulus are greater than that of the 47 



bulk modulus. Moreover, our study highlights that these qualitative results do not depend on 48 

the chosen micromechanical models and, thus, would be independent of the underlying 49 

anisotropic nature of shale.  50 

Keywords: microstructure, shales, clay-rocks, anisotropy, clay, elastic properties. 51 

Short title: Mechanical REA of shales inferred by micromechanics. 52 

 53 

Highlights 54 

• New estimates for the REA sizes of COx claystone and Tournemire argillite. 55 

• Mechanical REA size is greater than morphological REA size. 56 

• REA sizes of Tournemire argillite are greater than those of the COx map. 57 

• REA sizes of shear modulus are greater than those of the bulk modulus. 58 

• These results do not depend on the chosen micromechanical models.  59 

60 



1. Introduction 61 

Clay rocks, often called shales, are being studied as potential host rocks for high-level 62 

radioactive waste repositories in several industrial countries (e.g., ANDRA, 2005; Pusch, 2006) 63 

and form the main geological caps of many hydrocarbon reservoirs (e.g., Aplin and Larter, 64 

2005). Organic-rich clay rocks are considered to be the key petroleum source rocks for the 65 

coming decades (e.g., Klaver et al., 2015). These geological formations are highly 66 

heterogeneous at multiple scales, but a major proportion of the literature agrees that the 67 

following relevant microstructural levels must be considered (e.g., Bennett et al., 1991; 68 

Jakobsen et al., 2003; Ulm et al., 2005; Ortega et al. 2007; 2009; Bobko and Ulm, 2008; Loucks 69 

et al., 2012; Cariou et al., 2013; Keller, 2015) (Figure 1):  70 

• Level 0 is the scale of elementary clay layers. 71 

• Level 1 is the scale for which the elementary clay layers are packed together to 72 

form clay particles. 73 

• Level 2 is the submicrometer scale, often called the “microscopic” scale of 74 

porous clay composites constituted in a mixture of clay particles or aggregates.  75 

• Level 3, often called the “mesoscopic” scale in geosciences, is the scale where 76 

the characteristic size is in the submillimeter range. At this scale, the rock is 77 

considered to be a porous clay matrix mixed with a population of nonclayey 78 

grains (mainly quartz, carbonates and pyrite). This is the scale of the mineral 79 

maps used in this work.  80 

• Level 4 is a lamina type that is associated with an alternation of clay-rich layers 81 

and non–clayey materials (mainly quartz and carbonates). 82 

With regards to the complexity of this hierarchical organization, the prediction of the 83 

engineering properties of shale from its microstructure is clearly a challenging task. In the 84 

following work, we will focus on the mesoscopic scale for which numerous theoretical studies 85 



have been devoted to the calculations of the engineering or effective properties (e.g., Jakobsen 86 

et al., 2003; Levin and Markov, 2005; Ulm et al., 2005; Giraud et al., 2007a, 2007b; Ortega et 87 

al. 2007; 2009; Cariou et al., 2013; Cosenza et al., 2015a,b). This mesoscopic scale is often 88 

considered the key scale for modeling the mechanical and transport behaviors of clay rocks 89 

involved in high-level radioactive waste repositories (Abou-Chakra Guéry et al., 2010; Robinet 90 

et al., 2007; 2012; Cariou et al., 2013). These effective properties, which are inferred by 91 

numerical upscaling techniques or by homogenization theories, are used as inputs for numerical 92 

codes, often based on the finite elements method, for engineering purpose. 93 

All the upscaling or homogenization approaches used to estimate these effective 94 

properties are based on the paramount concept of the Representative Elementary Volume 95 

(REV), which is required to “separate” the following two space scales: the scale of 96 

heterogeneity, i.e., nonclayey grains (or rigid inclusions) in our case, and the scale of 97 

engineering for which clay rock is viewed as a continuum of homogeneous medium. Thus, the 98 

REV is usually considered as a volume of heterogeneous material that is sufficiently large to 99 

be statistically representative of the rock, i.e., to include a relevant sampling of all the 100 

microstructural heterogeneities existing in the rock at the scale of interest (here, the mesoscopic 101 

scale) (e.g., Kanit et al., 2003; Zhang et al., 2017). At the same time, the REV has to be small 102 

enough, compared to the scale of the macroscopic geotechnical systems of study, “so that it 103 

may be considered as infinitesimal in the mathematical treatment” (Biot, 1941).  104 

To our knowledge, the approaches used to estimate the size of a REV, named hereafter 105 

LREV, can be divided for the sake of simplicity into two groups that introduce the probabilistic 106 

concept of realization; here, a realization is any representation of the microstructure considered 107 

with a given size and a given fraction of heterogeneities. The first approach or group of 108 

approaches aims at using statistical parameters, e.g., mean, standard deviation or covariance, of 109 

a given geometrical or physical property (e.g., porosity, fraction of a given mineralogical phase, 110 



mechanical property, etc.) calculated over a significantly large set of realizations to 111 

quantitatively describe the heterogeneous structure of the material of interest (Torquato and 112 

Stell, 1982; Zhang et al., 2000; Kameda et al., 2006; Houben et al. 2014; Klaver et al., 2015; 113 

Fauchille et al., 2018). Following these approaches, REV is defined as the elementary volume 114 

below which the property of interest varies significantly across the scale. Among these 115 

approaches, the “counting box” method and the covariance or the two-point probability function 116 

are likely the most popular and have been recently applied to 2D images acquired on shale 117 

samples (i.e., Pasidonia shale, Germany, Klaver et al., 2015; Callovo-Oxfordian argillites, 118 

France, Song et al., 2015; Opalinus clay, Switzerland, Keller et al., 2013; Houben et al. 2014; 119 

Bakken shale, United States of America, Liu and Ostadhassan, 2017; and Bowland shale, 120 

United Kingdom, Fauchille et al., 2018). It should be noted that most of these works have been 121 

performed on 2D images and, thus, provided estimations of the Elementary Representative Area 122 

(REA) size, hereafter named LREA.  123 

This first group of approaches is often referred to as “deterministic” approaches 124 

(Rolland du Roscoat, et al., 2007; Khdir et al., 2012), in contrast with a second group of 125 

approaches that explicitly introduce the concept of the “statistical” REV. Following Kanit et al. 126 

(2003) and Jeulin et al. (2004), a “statistical” REV is related not only to the microstructure and 127 

the physical properties of each components but, above all, to a given precision in the estimation 128 

of the effective property depending on the number of realizations “that one is ready to generate” 129 

(Jeulin et al., 2004). Consequently, in comparison with the aforementioned approaches, the 130 

“statistical” LREV depends explicitly on an additional parameter, i.e., the precision desired for 131 

the estimate of the effective property and reached for a given number of realizations. 132 

Consequently, the estimate of the “statistical” LREV cannot be unique without any associated 133 

precision and number of realizations. This statistical approach has been recently applied to 134 



Opalinus clay samples taken from the Mont Terriç rock laboratory in Switzerland (Houben et 135 

al., 2014; Keller, 2015; 2016a,b).  136 

In summary, this brief review shows that a large variety of methods used to infer LREV 137 

or LREA estimates with regard to shale exist, and these estimates concern mainly the 138 

petrographical or mineralogical parameters of the porosity and mineral phases. Most of them 139 

have been obtained by deterministic approaches, e.g., the counting box method and dispersion 140 

method based on the standard deviation calculations. Moreover, to our knowledge, estimates of 141 

the mechanical LREV/LREA of shales are very scarce; one recent and single work was performed 142 

on Opalinus clay by Keller (2016a,b), and it focused on the dynamic elastic moduli.  143 

The objective of this paper is thus twofold. First, we would like to provide new estimates 144 

of LREA obtained from two mineral maps (Jorand, 2006; Fauchille, 2015) acquired from two 145 

shales extensively studied in the framework of the deep disposal of radioactive waste, as 146 

follows: Callovo-Oxfordian (COx) claystone from the Meuse/Haute-Marne underground 147 

research laboratory (Eastern France) and Toarcian argillite from the experimental station of 148 

Tournemire (Southern France). These estimates have been obtained by the classical counting 149 

box method and the statistical approach promoted by Kanit et al. (2003; 2006) and Jeulin et al. 150 

(2004). Second, we would like to quantify the statistical mechanical LREA of COx claystone and 151 

Tournemire argillites by focusing on static elastic parameters for further engineering purposes. 152 

These mechanical LREA are inferred by using micromechanical approaches, one of which 153 

implicitly accounts for the transverse isotropic nature of shale.  154 

2. Mineral maps 155 

The LREA estimates calculated in this study have been obtained from two mineral maps 156 

acquired following the methodologies described below.  157 

The first mineral map, hereafter called the COx map, has been made from a sample 158 

taken from the Callovo-Oxfordian (COx) claystone, which is under extensive study at the 159 



Meuse/Haute-Marne Underground Research Laboratory (MHM-URL) (Eastern France). The 160 

thickness of this formation is 130 m and its age is 150-160 My; the formation is located 420-161 

550 m below the surface, in the eastern part of the Paris Basin (Andra, 2005). The Callovo-162 

Oxfordian formation contains mainly 25 to 65 wt.% clay minerals, with 20-42 wt.% carbonates 163 

(calcite, dolomite, ankerite) and 15-31 wt.% quartz and feldspars (Andra, 2005). Considering 164 

nonclay minerals, feldspars contents are negligible regardless to quartz. Among carbonates, 165 

siderite and dolomite are negligible regardless to calcite. Thus, quartz and calcite will be the 166 

only nonclay minerals considered in the following.  167 

This mineral map was prepared from a drill-core, denoted as EST05-709 (-492.2 m) and 168 

extracted from the Andra EST205 borehole (Jorand, 2006; Conil et al., 2018). It was obtained 169 

at a micrometer spatial resolution from an advanced image processing of a chemical elements 170 

map that was acquired through the use of a Cameca SX100 electron probe microanalyzer (Prêt, 171 

2003). This electron microanalyzer provides quantitative concentration maps of 14 chemical 172 

elements (Al, Na, K, Ca, Si, Mg, Ti, Fe, S, Ba, Zr, P, Zn, Sr) on a 3 x 0.5 mm2 area with a 173 

spatial resolution of 2 µm/pixel. The image processing of these maps is based on mineral 174 

thresholding methods that accommodate mixtures and solid solutions. For details, the reader is 175 

referred to Prêt (2003) and Prêt et al. (2010a,b). In our case, this methodology allows for the 176 

spatial location of 16 different minerals, including the following three different clay minerals: 177 

illite-smectite mixed layers, kaolinite and chlorite.  178 

The geometrical and mineralogical features of the COx map are given in Table 1. The 179 

surface fractions of the clay matrix, calcite and quartz are 50.4%, 25.0% and 13.8%, 180 

respectively. Note that the largest side (1563 pixels, 3072 µm) and the smallest side (250 pixels, 181 

500 µm) are perpendicular and parallel to the bedding, respectively.  182 

The second mineral map, hereafter called the Toar map, has been extracted form a large 183 

mosaic acquired from a nonimpregnated and dried Tournemire clay rock sample (Fauchille et 184 



al., 2014; Fauchille, 2015). The Tournemire clay rock sample studied has been sampled in the 185 

horizontal and cylindrical borehole FD90 in the 1996 East gallery of the Tournemire 186 

Underground Research Laboratory (URL) of the French Institute for Radioprotection and 187 

Nuclear Safety (IRSN). The sample was located at a depth between 4.20 to 4.40 meters far from 188 

the gallery wall, outside the so-called Excavation Damaged Zone. The Tournemire URL is 189 

located in a Mesozoic basin on the southern border of the Massif Central (Aveyron, France), in 190 

the subhorizontal consolidated argillaceous Toarcian formation (200 meters thick) and marly 191 

layers of the Domerian age (50 meters thick). The sample comes from the upper Toarcian 192 

formation, whose mineralogical composition shows that clay minerals represent nearly 25-70 193 

wt% of the rock with illite (10-40 wt%) and illite/smectite mixed-layer minerals (5-25 wt%), 194 

kaolinite (10-35 wt%) and chlorite (1-5 wt%). The Tournemire clay rock also contains 10-40 195 

wt% of carbonates, 10-30 wt% of quartz, 2-7 wt% of sulfides and less than 2 wt% of feldspars 196 

(Cabrera et al., 2001). Similarly to COx map, quartz and calcite are the dominant nonclay 197 

minerals and will be the only nonclay minerals to be considered.  198 

The mosaic of interest (7.1 x 5.2 mm², 11302 x 8355 pixels) has been built from one 199 

hundred and fifty three back-scattered electron images (spatial resolution of 0.625 µm.pixel-1) 200 

acquired by Scanning Electron Microscopy (SEM, JEOL JSM 56000LV with an acceleration 201 

voltage of 15 kV, a probe current of 5 nA, a working distance of 16.3 mm, a magnification of 202 

x200, and a dwell time of 128 µs per pixel). On the mosaic of images, the clay-matrix, 203 

carbonates, quartz, sulfides and macropores were differentiated by the MicroPhaseMap© 204 

software developed at the IC2MP laboratory in Poitiers, allowing the boundary between the 205 

clay matrix and nonclay grains to be determined (Prêt et al., 2010a,b). The mineral map used 206 

in this study concerns an extraction (4000x4000pixels) of the most homogeneous part of the 207 

mosaic in order to respect at best the statistical homogeneity assumed in all the further LREA 208 

calculations. The geometrical and mineralogical features of this map are also given in Table 1. 209 



Extractions of both maps are given in Figures 2 and 3. Note that both maps were 210 

prepared from a polished thin section in a plane perpendicular to the stratigraphic plane. The x- 211 

direction indicated in Figures 2 and 3 is parallel to the bedding planes, whereas the z-direction 212 

is perpendicular to the bedding. 213 

The results of these image analyses are given in numerical files in which the location 214 

and mineral code of each pixel of the mineral maps are indicated. These numerical files are the 215 

input files for the LREA estimate calculations that are presented in the next section.  216 

3. Methodologies used to infer the REA size 217 

3.1 Counting box method 218 

The counting box method, which is likely the most popular to infer LREA, starts from a 219 

given subdomain or box in the digitalized image. Then, the mean of a surface property (surface 220 

mineral contents, surface porosity, physical property, etc.) is calculated within increasing 221 

subdomains, often called boxes, until the actual image size is reached (Houben et al., 2014; 222 

Klaver et al., 2015). The characteristic size LREA is considered to be reached when the mean of 223 

the considered property does not evolve significantly with the increasing size of boxes. This 224 

procedure can be repeated for several starting subdomains to make sure that the inferred LREA 225 

is statistically representative of the whole image. This first method will be named hereafter the 226 

classical counting box (CB) method. 227 

Regarding the use of square domains in the CB method, the COx and the Toar maps 228 

have been divided into six and four nonoverlapping square areas, respectively, following the 229 

partitioning given in Figure 4. These nonoverlapping areas, named Ai (i=1,..,6 for COx map; 230 

i=1,..,4 for Toar map), are associated with the starting of the subdomains, which are defined 231 

and discriminated by the coordinates of their center Ci (i=1,..,6 for COx map; i=1,..,4 for Toar 232 

map) (Figure 4). Note that the origin, i.e., x=0, z=0 of the system of coordinates is located in 233 

the top left corner of both maps (Figures 2, 3 and 4).  234 



The particular partitioning displayed in Figure 4 is due to two reasons. First, the shape 235 

of the COx map is elongated following the z-axis and the center of the initial box could not be 236 

located only at the center of this map to investigate the whole map. Second, it was interesting 237 

from a statistical viewpoint to compare the LREA estimates calculated at different areas with a 238 

comparable surface and, thus, to check the statistical homogeneity of each map. Note that the 239 

number of pixels of each area is sufficient to apply the deterministic CB approach.  240 

3.2 “Statistical” Elementary Representative Area (REA) 241 

Kanit et al. (2003; 2006) and Jeulin et al. (2004) extended the classic definition of REV 242 

by explicitly integrating the concept of “desired precision” into the calculated effective 243 

property. Following their approach, the effective physical properties of heterogeneous materials 244 

can be determined not only by one single numerical simulation on a large volume (greater than 245 

the REV) of the microstructure but also as the mean value of apparent properties calculated on 246 

volumes smaller than the REV, provided than a sufficient number of realizations of the 247 

microstructure are considered (e.g., Rolland du Roscoat et al., 2007). Therefore, the “statistical” 248 

REV introduced in this manner is not unique; it is defined as a function of the physical 249 

properties of each component, the microstructure, the desired precision and the number of 250 

realizations. This methodology was used to determine the “statistical” REVs of mechanical and 251 

thermal properties of specific random microstructures (Kanit et al., 2003; Pelissou et al., 2009) 252 

and of real microstructures of clay rock (Houben et al., 2014; Keller, 2015; 2016a,b). In our 253 

study, we will focus on elastic moduli of shale considered as a transverse isotropic rock.  254 

The determination of “statistical” REVs is obtained following a two-step procedure. In 255 

the first step, the paramount concept of this approach, the integral range A3 (or A2 by considering 256 

a 2D image) has to be evaluated.  257 

3.2.1 Determination of integral range  258 



Considering a 2D microstructure, the integral range A2, which depends on the studied 259 

property, is directly related to the scatter (the dispersion) in apparent properties calculated from 260 

several realizations n of the microstructure of fixed size S. The integral range gives information 261 

on the area size of the microstructure, for which the property measured in this area has a 262 

convenient statistical representativity (e.g., Matheron, 1971; Lantuéjoul, 1991).  263 

For an ergodic, stationary random function Z(x), and for a large specimen (S>>A2), the 264 

integral range A2 can be obtained by the following expression (appendix; see also Lantuéjoul, 265 

1991; Kanit et al. 2003; 2006 and Jeulin et al., 2004) as follows: 266 

������ = ��� ���                                                                                                                                    �1� 267 

where ������ is the variance of the mean value �̅ over the surface S and ��� is the point 268 

variance of Z(x). Equation (1) is valid for additive properties (e.g., surface fraction or mass 269 

density) and, thus, can be rewritten as follows when the surface clay fraction, namely, ϕ, is 270 

considered:  271 

�
� ��� = ���1 − ��� ���                                                                                                                       �2� 272 

where the variance ���  is ���1 − ���. As the composition of a physical property Z(x) 273 

(e.g., elastic moduli in our case) in the change of scale is not additive, the latter relation (2) is 274 

no more valid, and Kanit et al. (2003) proposed the following modified version:  275 

������ = ��� ���� ��                                                                                                                            �3� 276 

where α is an exponent that has to be determined. In the case of a two-phase material 277 

with the physical property Z1 for phase 1 and Z2 for phase 2, the point variance of the random 278 

variable Z is as follows (Kanit et al. 2003; and Jeulin et al., 2004): 279 

��� = ��1 − �� � �� − �� ��                                                                                                          �4� 280 

where P is the volume fraction of phase 1 or phase 2. In practice, phase 1 and phase 2 281 

are the clay matrix and nonclay inclusions, respectively. In this study, this means that properties 282 



Z1 and Z2 are the elastic modulus, either the bulk modulus or shear modulus, of the nonclay 283 

inclusions and clay matrix, respectively.  284 

As illustrated further, in both cases, i.e., considering the clay fraction ϕ (equation 2) and 285 

a chosen physical property Z (equation 3), the integral range A2 is obtained by fitting from the 286 

graph of the function �
� ��� or ������. In our case, let us recall that Z is an elastic modulus, 287 

either the bulk modulus or shear modulus, the variance ������ of which is calculated on the 288 

partitions of the mineral map in subdomains of a given area S. The value of Z for a given 289 

subdomain of area S is obtained from the micromechanical approaches presented in the 290 

following section 3.2.2.   291 

3.2.1 Determination of the REA size 292 

In a second step, the determination of the integral range allows the calculation of the 293 

precision desired to estimate the size LREA. In the theory of samples, the absolute error εabs and 294 

the relative error εrel of the mean effective value �̅ obtained with n independent realizations of 295 

area S are deduced from the interval of confidence as follows (e.g., Jeulin et al., 2004):  296 

���� = 2 �����
√�                                                                                                                                    �5� 297 

� !" = �����̅ = 2 �����
�̅√�                                                                                                                       �6� 298 

Thus, the REA area, SREA, can now be defined as the area for which n realization (n=1 299 

for instance) is required to estimate the mean effective property �̅ with a given relative error 300 

(εrel=5% for instance) provided that the function ����� is known.  301 

For instance, if Z is the surface clay fraction named ϕ, the parameter SREA, estimated 302 

with a given relative error εrel and a given number of realization n, can be obtained by combining 303 

equations (6) and (2), as follows, provided that the mean effective property �� is known:  304 

�$%& = '$%&� = 4�1 − ������ � !"�  ��                                                                                                               �7� 305 



In the same way, if Z is now a physical property, the corresponding parameter SREA, 306 

estimated with a given relative error εrel and a given number of realization n, can be deduced 307 

by combining equations (3), (4), (5) and (6), as follows, provided that the mean effective 308 

property �̅ is known: 309 

�$%& = '$%&� = )4��1 − ��
� � !"�

��� − ����
 �̅� *�/� ��                                                                            �8�  310 

At this stage, two remarks have to be formulated. First, the integral range A2 in both 311 

equations (7) and (8) are not a priori similar. The integral range A2 depends on the property 312 

under study, i.e., ϕ or Z, and has to be evaluated separately. Second, this approach assumes that 313 

the mean effective properties ��  and �̅  are known a priori. In practice, the latter are calculated 314 

on macroscopic areas supposed to be much greater than the area of the REA.  315 

In summary, a “statistical” REV is therefore determined with the following algorithm 316 

(Kanit et al., 2003): 317 

i) Consider different realizations of the microstructure, i.e., different partitions of 318 

the mineral map in subdomains of a given area S. 319 

ii) Calculate the mean and the variance of the property of interest of the whole set 320 

of partitions under consideration; the graph of the function �
� ��� or ������ is 321 

thus obtained. 322 

iii) Estimate the integral range A2 from the previous graph, equation (2) or equation 323 

(3) (in the later, the exponent α has to be evaluated as well).  324 

iv) Define the precision εrel and the number of realization n to estimate the effective 325 

property of interest and calculate the LREA with equation (7) or equation (8). The 326 

value of the effective property, ��  or �̅  in equation (7) or equation (8), is 327 

independently estimated.  328 

 329 



3.3.2 Calculations of apparent elastic properties  330 

As mentioned previously, the calculation of the integral range A2 associated with a given 331 

mechanical property requires the values of the average and the variance of the mechanical 332 

property calculated over a set of subdomains of the map of interest (step ii). This means that 333 

the mechanical property under study has to be calculated in each subdomain of size S of the 334 

map partition. The apparent mechanical property associated with a given subdomain has been 335 

estimated in this work by two micromechanical approaches.  336 

Anisotropic model 337 

Following the first micromechanical approach, hereafter called the anisotropic model, 338 

the transverse isotropic nature of shale is implicitly taken into account. This anisotropic model 339 

is itself achieved in two steps. In a first step, the apparent anisotropic stiffness tensor in the 340 

subdomain of interest is calculated by an inclusion-based model, i.e., a nonclay spherical grain 341 

embedded in a clay transverse isotropic matrix following a differential effective medium 342 

(DEM) scheme (e.g., Cosenza et al., 2015b). The latter scheme is widely and successfully used 343 

in rock physics to model the elastic wave velocities of numerous rocks (e.g., Hornby et al., 344 

1994; Markov et al., 2005). 345 

The DEM scheme consists of iteratively adding spherical inclusions with diluted 346 

concentration into the current effective medium determined in the previous step. At the initial 347 

stage, a material with elastic moduli CM is considered as the initial host material. A dilute 348 

concentration of spherical inclusions is then added into this initial host; the effective tensor of 349 

this new composite can be calculated without considering the interactions between the 350 

inclusions. The construction process continues as follows: (a) at each stage, the embedded 351 

spherical inclusions are scattered in diluted concentration and (b) the required volume fraction 352 

of inclusions is satisfied. At a given step, indexed i, the small increment of stiffness due to the 353 

addition of a small fraction of inclusions, dfI is given by the following:  354 



-./�0 = -121 − 12 3.2 − ./�04: 61 + 89: 3.2 − ./�04:                                                                       �9� 355 

This increment -./�0
 must be added to the apparent tensor ./�0

 obtained in the previous 356 

step. Note that the bold capital letters refer here to fourth-order tensors. In our case, the stiffness 357 

tensors CI and CM are the stiffness tensor of the isotropic nonclay sphere and the stiffness tensor 358 

of the transverse isotropic clay matrix, respectively. The Hill’s tensor Pi is a function of ./�0
 359 

and the Eshelby’s tensor, which depends on the chosen inclusion-based model, as follows: 360 

8/ = </: 3./�04=�                                                                                                                                 �10� 361 

The expressions of components of the Hill’s tensor for a spherical inclusion in a 362 

transversely isotropic medium have been taken form Withers (1989) and Giraud et al. (2007a,b).  363 

In a second step, the apparent tensor .�0 obtained by DEM is isotropized following the 364 

classical decomposition, as follows:  365 

.�0,/� = 3@/�A + 2B/�C                                                                                                                     �11� 366 

with 367 

@/� = .DEF,GH
I = A∷.EF

I   ; B/� = .KEF,GH
�L = C∷.EF

�L        (12) 368 

.M�0,/� = �
I .//NN�0,/�

; .O�0,/� = ./N/N�0 − �
I .//NN�0,/�

 (summation on repeated indices i,j)   (13) 369 

and four-rank tensors J and K obey the following algebraic properties: 370 

J : J=J   ;  K : K=K   ;  K : J =J :K=0        (14) 371 

With  372 

R/NS" = �
I T/N TS"    ; U/NS" = �

� �T/S TN" + T/" TNS � ; @/NS" = U/NS" − R/NS"    (15) 373 

This “isotropization” process of apparent stiffness tensor .�0 is due to two reasons. The 374 

first reason is theoretical. The original methodology described in Kanit et al. (2003; 2006) and 375 

Jeulin et al. (2004) involves the isotropic physical properties in equations (3), (4) and (8). We 376 

do not know to what extent this methodology can be generalized to anisotropic media, i.e., to 377 



mixtures of anisotropic constituents. In other words, this generalization to anisotropic media 378 

has to be proven and its demonstration is beyond the scope of this work. Moreover, it should 379 

be noted that despite this “isotropization” process, the calculation of the apparent stiffness 380 

tensor of shale is impacted by that of the anisotropic stiffness tensor of the clay matrix and, 381 

thus, implicitly depends on the anisotropic nature of rock. The second reason is methodological. 382 

This “isotropization” allows the following results to be directly compared to those obtained by 383 

a pure isotropic model presented further, since both models provide apparent moduli with the 384 

same physical meaning.  385 

Equations (11) to (15) allow the extraction of the apparent isotropized bulk modulus, 386 

Kis and the apparent isotropized shear modulus µis, which are used to infer the statistical 387 

mechanical REA sizes (i.e., using equation (8)). However, the calculations of Kis and µis and, 388 

thus, the .�0 components require input data, which are the components of the stiffness tensors 389 

CI and CM.  390 

The components of stiffness tensor CI correspond to the elastic moduli of nonclay grains 391 

(quartz and calcite) whose values have been taken from Mavko et al. (2009). In our calculations, 392 

the isotropic elastic moduli of the nonclay phase, i.e., the bulk and shear modulus, are the 393 

weighted averages of those of quartz and calcite, where the weights are the gravimetric contents 394 

of each phase, as indicated in Table 2. In fact, the pure calcite and quartz phases are anisotropic 395 

minerals (e.g., Mavko et al., 2009); their isotropized equivalent elastic properties considered 396 

here correspond to random distributions in the orientation and the space of calcite and quartz 397 

inclusions (e.g., Ulm et al., 2005; Giraud et al., 2007b).  398 

The elastic moduli of the clay matrix are more difficult to estimate, because the clay 399 

phase is also a heterogeneous composite composed of aggregates of clay layers, pores filled 400 

with interstitial fluids and, likely, fine nonclay minerals (Figure 1). Consequently, in practice, 401 

the elasticity of the clay phase is complex, which makes it difficult to quantitatively characterize 402 



in an experimental viewpoint, and, thus, is poorly constrained in our context. To our knowledge, 403 

the most relevant range of transverse-isotropic elastic properties of a clay matrix at the 404 

mesoscopic scale has been obtained by Ulm et al. (2005), who used an experimental 405 

micromechanics approach by combining nanoindentation measurements with the 406 

microporoelasticity theory. These authors have proposed quantitative estimations of elastic 407 

moduli, which resulted from the inversion of nanoindentation measurements obtained on three 408 

different shale materials at spatial scales of 10-7 to 10-5 m, which correspond to that of our 409 

mineral maps (Ulm et al., 2005; Cosenza et al., 2015b). In our calculations, only the lower 410 

bound of the range proposed by Ulm et al., (2005) has been considered (Table 2). Indeed, the 411 

values of transverse isotropic moduli considered in Table 2 provided mean values of apparent 412 

elastic moduli that are the closest to the reference macroscopic elastic moduli measured in both 413 

shales under study. Higher values of clay elastic moduli would have led to much higher values 414 

of apparent moduli that are significantly higher than the experimental elastic moduli measured 415 

on both shales.  416 

Isotropic model 417 

In the second micromechanical approach used in this work, hereafter called the isotropic 418 

model, the elastic properties of the clay matrix, KM and µM, were not given a priori. They have 419 

been inverted following a Monte-Carlo procedure to overcome the paramount difficulty of 420 

quantitatively characterizing the clay phase elasticity. This inversion procedure has considered 421 

the following as input data: the weighted averages of quartz and calcite, the elastic properties 422 

of both shales and the reference macroscopic elastic properties, which are all given in Table 2. 423 

It was based on a simple micromechanical model, i.e., an inclusion-based model consisting of 424 

an isotropic sphere embedded in an isotropic matrix. This isotropic inclusion-based model 425 

corresponded again to a DEM approach, which is expressed by the following coupled 426 

differential equations (e.g., Christensen, 2012):  427 



-@�0 = -121 − 12  @2 − @�0
1 + @2 − @�0@�0 + 4/3B�0

                                                                                                 �16� 428 

-B�0 = -121 − 12   15�1 − V�0��B�0 − B2�
7 − 5V�0 + 2�4 − 5V�0� B2B�0

                                                                             �17�  429 

with 430 

V�0 = 3@�0 − 2B�0
2�3@�0 + B�0�                                                                                                                        �18� 431 

The Monte-Carlo procedure consisted of 10000 random trials of clay matrix moduli 432 

ranging between 0 GPa and the reference macroscopic values given in the first column in Table 433 

2. The maximum relative difference between the reference macroscopic value and the 434 

calculated macroscopic value by our inverse procedure was less than 2% (Table 3). This 435 

difference was considered acceptable with regard to the high uncertainty associated with the 436 

quantification of clay matrix elastic moduli.  437 

4. Results and Discussion 438 

4.1 Counting box REA sizes versus Statistical morphological REA sizes 439 

REA sizes inferred by the counting box method 440 

Figures 5 and 6 display the evolutions of the clay fraction calculated on increasing box 441 

sizes L considering the different starting domains of the COx map and Toar map, respectively. 442 

Both figures confirm that the calculated clay fraction is a decreasing function of L and 443 

converges to a value, hereafter referred to as the parameter �W, which is very close to the mean 444 

clay fraction obtained on the whole map (Table 1). 445 

Considering the COx map (Figure 5a.), the six curves associated with six starting 446 

domains converge to �Wvalues in the range [48.6-52.4%], including the mean clay fraction 447 

�XYZ of 50.4% calculated on the whole map (Table 1). The difference between these asymptotic 448 

values, �W, and the mean clay fraction �XYZ is less than 4%. In the same way, in Figure 5b, the 449 



four curves associated with the Toar map converge to �W values in the range [68.5-71.4%], 450 

which also include the mean clay fraction �[\�  of 69.9% calculated for the whole map (Table 451 

1). The difference between the �Wvalues and �[\�  is less than 2.5%. 452 

Below 100µm and 200µm for COx and Toar maps respectively, the curves obtained for 453 

the different subdomains presents non correlated and high frequency evolutions. Such a 454 

behavior is associated to the occurrence of a few grains with such a large size (Robinet, 2008; 455 

Fauchille, 2015) and that large enough box size including several grains should be used to 456 

estimate a meaningful REA (Gaboreau et al 2016). For larger box size than 100µm and 200µm 457 

for COx and Toar maps respectively, the gap between the curves decreases progressively with 458 

low frequency variations. Meaningful REA corresponding to mesoscopic scale (level 3 in 459 

Figure 1) could be estimated with an improved accuracy when the box size increases. The 460 

careful observation of both maps reveals that grain size is larger for Toar than for COx (compare 461 

calcite grains in Figure 2 and carbonates grains in Figure 3), somehow explaining why a larger 462 

box size is needed for Toar map to reach a REA as illustrated below (Figures 5a and 5b).  463 

The REA size, i.e., LREA, of both maps has been estimated in two steps (Table 4). In the 464 

first step, the REA sizes have been calculated for each of the nonoverlapping areas of both maps 465 

(6 areas for the COx map and 4 areas for the Toar map) and for two errors or threshold values, 466 

i.e., ε= 0.1 (10%) and ε= 0.05 (5%). For each area, the LREA parameter has been identified as 467 

the lowest box size L for which the calculated mean clay fraction was significantly similar to 468 

that of the whole map (�XYZ or �[\� �, with a maximum error of ε. In a second step, the 469 

average overall LREA estimates of all nonoverlapping areas have been calculated for each map. 470 

The calculated mean LREA for a given map has been considered as the LREA of the latter.  471 

Our results given in Table 4 indicate that the LREA values are dispersed and decreasing 472 

functions of the chosen error or threshold values ε. Indeed, in the first case (ε=0.1), the mean 473 

values of the LREA estimates of the COx map and Toar map are 173 µm and 129 µm, respectively 474 



(Table 2). Whereas in the second case (ε=0.05), the mean values of the LREA estimates of the 475 

COx map and Toar map are much higher, i.e., 234 µm and 441 µm, respectively.  476 

This scatter in the LREA estimates can also be evidenced by a calculation of the standard 477 

deviation of the LREA estimates associated with nonoverlapping areas (Table 4). Considering the 478 

COx map, the standard deviation values of the LREA estimates increase from 108 µm (ε=0.1) up 479 

to 143 µm (ε=0.05). The standard deviation values of the LREA estimates of the Toar map 480 

increase from 72 µm (ε=0.1) up to 267 µm (ε=0.05) (Table 4).  481 

This scatter questions the statistical homogeneity of both maps and could be explained 482 

by a small but significant evolution of the microstructure in the x direction and/or in the z 483 

direction (i.e., with depth); this is shown in (a), where the �W, estimates of the COx map, 484 

globally increase with depth, and by (b), where the �W estimates of the Toar map, decrease in 485 

the x direction (Table 4).  486 

However, the order of magnitude of all these estimates is comparable to the results from 487 

other shales obtained also by the CB method (Opalinus clay: 180-250 µm, Houben et al., 2014; 488 

Posidonia shale and Whitby shale: 200 µm, Houben et al., 2016; Bowland shale: 380 µm, Ma 489 

et al., 2016; Bakken shale: 176 µm, Liu and Ostadhassan, 2017).  490 

Statistical morphological REA sizes 491 

Figure 6 displays the mean values of the surface clay fraction �� and their corresponding 492 

standard deviation values, all calculated on sets of map partitions in subdomains of size L 493 

ranging from 6 to 140 µm (COx map) and from 6.25 to 250 µm (Toar map). Note that these 494 

sets of map partitions do not correspond to the partitions Ai indicated in Figure 4, which have 495 

only been used for the CB method. All estimates of the statistical REA sizes in the following 496 

have been obtained by considering the whole maps. 497 



Figure 6 suggests the following two comments. First, whatever the subdomain size, the 498 

mean values of the surface clay fraction (50.5% for COx map and 69.9% for Toar map) are 499 

very close to that of the whole map (�XYZ or �[\� �. For large subdomain sizes, these mean 500 

values are almost equal to �XYZ or �[\� . Second, the dispersion of the results characterized 501 

by their standard deviation decreases with increasing the subdomain size and tends to a plateau 502 

for L values approximately equal to 100 µm and 140 µm, considering the COx map and the 503 

Toar map, respectively (Figure 6). Both trends are similar to those already observed for other 504 

materials, considering other microstructural properties (porosity and specific surface area) 505 

(Zhang et al., 2000; Kanit et al., 2003, 2006).  506 

The decrease in dispersion with L for both maps evidenced in Figure 6 is also illustrated 507 

in Figure 7, which displays the evolution of the pseudovariance �
� ���/����1 − ���� as a 508 

function of the subdomains area S (i.e., L2). In Figure 7, a 1/S fit for a large S by the least-square 509 

method is also indicated to obtain values of the integral range A2 (equation (2)) required to 510 

calculate estimates of the REA size, LREA, for both maps (equation (7)).The results of the fits 511 

for both maps and the LREA estimates considering one realization (n=1) and a range of error [5-512 

10%] are given in Table 5. This table shows two results.  513 

First, the LREA estimates in Table 5 are rather close to those obtained by the CB method 514 

with similar values of errors, i.e., between 5 and 10% (Table 4). Indeed, in the case of the COx 515 

map, the statistical REA size, LREA, is in the range of [205-410 µm], whereas LREA, estimated 516 

by CB method is in the range of [50-438 µm] (Table 4). In the case of the Toar map, the 517 

statistical LREA estimates are in the range of [345-696 µm], whereas the LREA estimates by the 518 

CB method are in the range of [68-749 µm]. However, the comparison between these two types 519 

of estimate is no more relevant for smaller errors ε since the LREA estimate inferred by the 520 

statistical method drastically increases as a function of 1/ε (see equation (10)).  521 



Second, whatever the ε value, these results demonstrate that the REA size of the 522 

Callovo-Oxfordian claystone is lower than that of the Tournemire argillite. The REA size 523 

estimates of the COx map are in the range of [205-410 µm], whereas those of the Toar map are 524 

in the range of [345-696 µm]. This hierarchy has also been observed in Table 4 following the 525 

CB method applied with a ε value of 5%.  526 

Figure 8 displays the values of the statistical morphological REA size, LREA, as a 527 

function of error ε (%) for one realization (n=1) for both mineral maps. The gray area in Figure 528 

8 indicates the LREA estimates for errors in the range of [0.1-10%]. Figure 8 shows that the LREA 529 

estimates of the COx map are always lower than those of the Toar map, regardless of the ε 530 

values. 531 

4.2 Statistical morphological REA sizes versus Statistical mechanical REA sizes 532 

Figures 9a and 9b display the evolution of the mean values of the mechanical moduli 533 

(bulk modulus and shear modulus) considering both the anisotropic and isotropic models as a 534 

function of the size L of subdomains S. These figures confirm two trends previously observed 535 

in Figure 6. First, the mean values @_ and `̅ tend rapidly towards plateaus which are close to the 536 

reference values for large S. These asymptotic values depend on the micromechanical model, 537 

i.e., the anisotropic or isotropic model used to calculate the mean values @_ and `̅. Second, the 538 

dispersion of the results decreases again with an increasing subdomain size. In addition, Figures 539 

9a and 9b show that whatever the micromechanical used, the mean values @_ and their associated 540 

dispersion (through standard deviation values) are always greater than the mean values `̅ and 541 

its associated dispersion.  542 

The decrease in dispersion with L for both maps evidenced in Figures 9a and 9b can 543 

also be illustrated in Figures 10a and 10b, which display the evolutions of the variance of elastic 544 

moduli as a function of the subdomains area S (i.e., L2). Figures 10a and 10b also show that the 545 

power fit introduced by equation (3) is a relevant model to quantitatively describe these 546 



dispersion evolutions and, hence, to determine the integral range; the calculated regression 547 

coefficient R2 values are all greater than 0.99. For each map, the parameters of these fits, 548 

especially the exponents are very close (COx map: 0.89 to 0.896 for the bulk modulus and 0.983 549 

to 1.026 to the shear modulus; Toar map: 0.83 for the bulk modulus and 0.813 to 0.824 to the 550 

shear modulus), which illustrates the fact that the calculated variances are of the same order of 551 

magnitude for any micromechanical model and any elastic modulus under study. Moreover, 552 

Figure 10b shows that the variances of the elastic moduli of the Toar map are almost 553 

independent of the chosen micromechanical model.  554 

Figures 11a and 11b show the mechanical LREA values inferred from the calculations of 555 

integral range values obtained from Figures 10a and 10b and equation (8). These figures 556 

highlight at least three results. First, in the case of both mineral maps under study, these figures 557 

show that for any micromechanical model and any elastic modulus under consideration, the 558 

mechanical LREA is significantly greater than morphological LREA (compare Figures 11a and 11b 559 

to Figure 8). The concept of LREA fundamentally depends on the property of interest. Second, 560 

all things being equal, the mechanical LREA estimates of the COx map are lower than those of 561 

the Toar map (see also Table 6). This hierarchy previously observed for the morphological LREA 562 

estimates (see Figure 8) is retrieved when the mechanical properties are considered. Third, for 563 

any mineral map and any micromechanical model, the LREA estimates of the bulk modulus are 564 

lower than those of the shear modulus (Table 6). However, this difference between both 565 

estimates is more tenuous in the case of the Toar map for which LREA estimates for a given ε 566 

value can be considered as similar and insensitive to the chosen micromechanical models in a 567 

first order approach (Table 6). 568 

4.3 Impacts of anisotropy and heterogeneity at the map scale 569 

The calculations of different LREA in this study are based on equations (7) and (8), which 570 

a priori assume an isotropy of mechanical properties of interest. In this framework, the well-571 



known anisotropic nature of shale raises a difficulty that has been bypassed here by 572 

“isotropizing” the transverse isotropic stiffness tensor of the clay matrix. Moreover, to study 573 

the impact of this underlying anisotropy introduced in this manner, a pure isotropic 574 

micromechanical model has been introduced for comparison purposes. Thus, the main objective 575 

associated with the introduction of an implicit anisotropic model and a pure isotropic model 576 

was to address the following question: what is the impact of the underlying mechanical 577 

anisotropy of shale on its LREA estimates?  578 

All the outcomes provided by this work show that the following qualitative results do 579 

not depend finally on the chosen micromechanical models and, thus, would be independent of 580 

the underlying anisotropic nature of shale. These outcomes are as follows: (i) The mechanical 581 

LREA estimates are greater than the morphological ones; (ii) The mechanical LREA estimates of 582 

the Toar map are greater than those of the COx map; and (iii) The mechanical LREA estimates 583 

of the apparent shear modulus are greater than those of the bulk modulus.  584 

The second underlying assumption used in this work is the statistical homogeneity of 585 

both mineral maps, meaning, from a statistical viewpoint, that the stationarity assumption of 586 

the properties of interest is satisfied on both maps (see appendix and Lantuéjoul, 1991; 587 

Torquato, 2013). Let us recall that the stationary assumption means here that the statistical 588 

properties implied in our calculations are invariant by translation, i.e., they do not depend on 589 

the absolution position in the mineral maps. In our case, the LREA estimated by the CB method 590 

strongly depends on the starting domain chosen in the mineral maps, as shown by the high 591 

values of standard deviation of the calculated mean LREA values (Table 4). This strong spatial 592 

variability of the LREA estimate is a serious indication that the stationarity assumption would not 593 

be fulfilled. This indication seems to be confirmed at least for the Toar map by the statistical 594 

approach promoted in this study. Figure 12 clearly shows that the 1/S fit associated with 595 

equation (2) is finally in poor agreement with the calculated pseudovariance of the clay fraction 596 



used to calculate the integral range A2 (coefficient of determination R2 equal to 0.36). 597 

According to Lantuéjoul (1991), a poor agreement between equation (2) and the measurements 598 

would indicate that the image under study would not satisfy the stationary assumption. This 599 

result suggests that a combined use of the simple CB method and a calculation of the integral 600 

range following the statistical approach applied here would be a simple and efficient way to 601 

check a posteriori the statistical homogeneity of the maps and images under study at the 602 

mesoscopic scale, which is scarcely ensured in practice. This suggestion and these results have 603 

to be obviously verified on other mineral maps.  604 

5. Concluding remarks 605 

The main objective of this work was to provide new estimates of REA sizes of the 606 

following two shales actively studied in the framework of the deep disposal of radioactive 607 

waste: Callovo-Oxfordian (COx) claystone from the Meuse/Haute-Marne underground 608 

research laboratory (Eastern France) and Toarcian argillite from the experimental station of 609 

Tournemire (Southern France). The LREA estimates obtained from two mineral maps at a 610 

mesoscopic scale have been calculated by the classic counting box (CB) method and a 611 

statistical approach that introduces the concept of a “statistical” REA. Following this approach, 612 

a “statistical” REA is related not only to the microstructure and the properties of each of the 613 

components but, above all, to a given precision in the estimation of the effective property 614 

depending on the number of realizations “that one is ready to generate” (Jeulin et al., 2004). 615 

The probabilistic concept of realization here is any representation or observation of the 616 

microstructure considered with a given size and a given fraction of heterogeneities, i.e., in our 617 

case, from a practical viewpoint, a subdomain of a given area of a mineral map. This statistical 618 

approach requires the calculations of the apparent elastic moduli in this subdomain or in the 619 

set of subdomains, which have been achieved here by using two micromechanical models. The 620 

first micromechanical model consisted of an anisotropic inclusion-based model for which 621 



spherical nonclay grain is embedded in a clay matrix, in which the values of its transverse 622 

isotropic stiffness tensor have been taken from literature. The second micromechanical model 623 

was an isotropic inclusion-based model for which spherical nonclay grain is embedded in a 624 

clay matrix; the elastic moduli values have been inverted by a Monte-Carlo approach from the 625 

macroscopic engineering moduli measured on both shales under study. The calculations 626 

performed following this statistical approach have shown the following results:  627 

• The morphological LREA estimates inferred for the statistical approach are of the 628 

same order of magnitude as those found in the literature and obtained by the 629 

classic CB method by considering the values of the relative errors, i.e., between 630 

5 and 10%. 631 

• For any micromechanical model and any elastic modulus under consideration, 632 

the mechanical LREA is significantly greater than morphological LREA. Our study 633 

confirms that the concept of LREA fundamentally depends on the property of 634 

interest. 635 

• The mechanical LREA estimates of the Toar map are greater than those of the COx 636 

map. This is also the case for the morphological LREA estimates inferred for a 637 

low relative error of 5%. 638 

• All things being equal, the mechanical LREA estimates of shear modulus are 639 

greater than those of the bulk modulus 640 

Moreover, our study highlights two additional aspects. First, all the outcomes provided 641 

by this work show that these previous qualitative results do not depend on the chosen 642 

micromechanical models and, thus, would be ultimately independent of the underlying 643 

anisotropic nature of the shale. Second, a combined use of the simple CB method with a 644 

calculation of the integral range following this statistical approach strongly brings into question 645 

the statistical homogeneity of the Toar map. Consequently, this result suggests that this coupled 646 



approach would be a simple and efficient way to check a posteriori the statistical homogeneity 647 

of the maps and images under study, which is scarcely ensured in practice. The application and 648 

validation of such a coupled approach on other mineral maps is obviously one natural 649 

perspective of this work.  650 

Finally, this work strongly suggests the need for further investigations in two directions. 651 

First, this work has considered the definitions of REA or REV initially established on 652 

homogeneous and isotropic media, but one may wonder if these definitions are still valid or can 653 

be refined for strongly anisotropic media made of anisotropic components. Second, our 654 

approach has highlighted the crucial role of the anisotropic mechanical properties of the clay 655 

matrix. The accurate measurements of these mechanical parameters are still a challenging area 656 

of experimental research.   657 

Appendix. The integral range 658 

Here, we borrow definitions and notations from Lantuéjoul (1991). Let us consider (i) a domain 659 

of area S that is sufficiently large to ensure that the properties of interest may be estimated with 660 

good precision (note that the following concepts are defined in 2D but their generalization in 661 

3D is straightforward), and (ii) a stationary random function ���a��Z∈$c with mean µ and 662 

variance σ2=���, which are both unknown. In the context of randomness, the average value of 663 

Z, named �̅, over the area S can be evaluated by the following estimator:  664 

���� = 1� d ��a�-a                                                                                                                           ��1�e  665 

and the variance of this estimator, namely, ������, is given by the following: 666 

������ = 1�� d d f�g − a�-a-g                                                                                                      ��2�
ee

 667 

where f�g − a� is the autocovariance function of the stationary random function Z(x) 668 

expressed by the following:  669 



C(y-x)= C(h)= E{[Z(x)-E(Z)] [Z(x+h)-E(Z)]}                                                                        (A3) 670 

In other words, the statistical property ������ defined by equation (A2) can be seen as the 671 

variance of the average value �̅���, which is in fact the effective property to be determined. As 672 

explained further, this statistical property ������ is directly linked to the concept of the integral 673 

range. The next step requires the definition of the ergodicity assumption, as follows: a random 674 

function Z is ergodic if variance ������ tends toward 0 when the size of the domain S becomes 675 

infinite, as follows:  676 

lime→W ������ = 0                                                                                                                                     ��4� 677 

The concept of the integral range, namely, A2, is then introduced to define the rate of decrease 678 

of this variance at large distances, i.e., in large areas, as follows: 679 

�� = lime→W � ������
���                                                                                                                                ��5� 680 

This quantity does not always exist. When it does exist, it is nonnegative. If A <+ ∞, for large 681 

S, then:  682 

������ ≈ ��� ���                                                                                                                                     ��6� 683 

Now we return to the problem met in practice. Suppose that the domain S can be decomposed 684 

into a union of disjoint subdomains, s1, …, sk, all of the same shape and of the same size s. In 685 

each subdomain si, the average value taken by Z(x) over si is as follows:  686 

��m/� = 1m d ��a�-a                                                                                                                         ��7��G
 687 

where s denotes the area of si. The “dispersion variance” of the Z(si) is now defined as follows: 688 

n��m|�� = p q1r st��m/� − ����u�
S

/v�
w                                                                                             ��8� 689 

or 690 

n��m|�� = ����m� − ������                                                                                                                ��9� 691 



Suppose now that the integral range is finite and nonzero and that the area s is very large 692 

compared to A2. In this case, the approximation formula (A6) is valid and then equation (A9) 693 

can be rewritten as follows: 694 

n��m|�� ≈  ��� �� �1m − 1��                                                                                                            ��10� 695 

Now if S has been divided into a large number of subdomains, then 1/S can be considered as 696 

negligible compared to 1/s and therefore: 697 

n��m|�� ≈ ��� ��m                                                                                                                             ��11�  698 

Thus, the dispersion variance is inversely proportional to the area of the subdomains, s. From a 699 

practical viewpoint, it is this dispersion variance that is calculated to obtain an estimation of A2 700 

by a fitting procedure.  701 
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Table 1. Geometrical and mineralogical features of both mineral maps used in this work. 888 

Table 2. Input data for the calculations of apparent elastic properties of both shales under study.  889 

Table 3. Inverted values of isotropic moduli of the clay phase by the Monte Carle procedure 890 

(isotropic model). 891 

Table 4. REA estimates obtained from the counting box method.  892 

Table 5. Morphological REA size estimates by statistical approach (n=1; error ranging between 893 

5 and 10%). The results of inverse regression and integral range are also given.  894 

Table 6. Recapitulation of mechanical REA size estimates by statistical approach (n=1; error 895 

ranging between 5 and 10%).  896 

 897 

Figure captions 898 

Figure 1. Microstructure of clay-rocks at various scales (modified from Ulm et al. 2005; Sarout 899 

and Guéguen, 2008; Cosenza et al., 2015a). 900 

Figure 2. Extraction of the mineral COx map used in this work (modified from Cosenza et al., 901 

2015a). 902 

Figure 3. Extraction of the mineral Toar map used in this work (modified from Fauchille, 2015). 903 

Figure 4. A. Partitioning of the COx map only used for the counting box method. B. Partitioning 904 

of the Toar map used for the counting box method. In both cases, the direction of 905 

bedding is indicated.  906 

Figure 5 Estimation of the Representative Elementary Area (REA) size of mineral maps by 907 

counting box method. Evolution of mean clay fraction with increasing subdomain size 908 

(box) and for different starting domains. The coordinates of starting domains are given 909 

in the captions boxes (see the origin of the system of Cartesian coordinates in Figures 2 910 

and 3).  911 

a. COx map. The x-coordinates of the starting domains is 250 µm. The horizontal dashed 912 

lines indicate the range of mean clay fraction corresponding to �1 ± ��zXYZ with 913 

zXYZ=0.504 (50.4%) and ε=0.1(10%) 914 

b. Toar map. The horizontal dashed lines indicate the range [62.9-76.9%] corresponding 915 

to �1 ± ��z[\�  with z[\� =0.699 (69.9%) and ε=0.1(10%). 916 

Figure 6. Evolution of the mean clay fraction and related standard deviation versus the 917 

subdomain size for both maps.  918 



Figure 7. Determination of the “morphological” integral range A2. Evolution of the 919 

pseudovariance of the clay fraction, i.e., Variance (��� {(1-��� {)) as a function of 1/S, 920 

where S is the box size area. A linear fit is indicated by a bold line. a. COx map. b. Toar 921 

map.  922 

Figure 8. REA size, LREA (µm), as a function of error (%) for one realization (n=1) for both 923 

mineral maps. 924 

Figure 9. Mean value and dispersion (standard deviation) of the apparent elastic moduli as a 925 

function of the subdomain size L in the case of the anisotropic model and isotropic 926 

model. a: COx map. b: Toar map.  927 

Figure 10. Determination of the “mechanical” integral range A2. Evolution of the variance of 928 

the elastic modulus of the anisotropic and isotropic models as a function of the 929 

subdomain area. Power fits are also indicated to calculate the integral range values. a. 930 

COx map. b. Toar map.  931 

Figure 11. Mechanical REA size, LREA (µm), as a function of error (%) for one realization (n=1). 932 

Both elastic moduli, i.e., the bulk modulus and shear modulus; both micromechanical 933 

models, i.e., the anisotropic model and isotropic model, are considered. a. COx map. b. 934 

Toar map.  935 

Figure 12. Zoom of the evolutions of the pseudo-variance of clay fraction i.e., Variance(��� {(1-936 

��� {)) as a function of subdomain area of both maps. R2 values of both fits are also 937 

given.  938 

 939 



 940 

Table 1. Geometrical and mineralogical features of both mineral maps used in this work. 941 

Map Resolution 

(µm) 

Total number 

of pixels 

Dimensions 

(pixels) 

Dimensions 

(µm) 

Clay minerals 

(%) 

Quartz (%) Calcite (%) 

COx 2 384 000 250 x 1536 500 x 3072 50.4 13.8 25.0 

Toar 0.625 16 106 4000 x 4000 2500 x 2500 69.9 13.2 14.1 

 942 

 943 

 944 



Table 2. Input data for the calculations of apparent elastic properties of both shales under study.  945 

 

 

Shale 

 

Macroscopic 

(reference) shale 

elastic modulus 

(GPa) 

Non-clay phase 

Isotropic elastic 

modulus 

Weighted average 

(GPa)b 

Clay phase 

Transverse isotropic 

(undrained) modulus 

(GPa)c 

 

Callovo-Oxfordian 

claystone 

Bulk modulusa 

11.5 

Shear modulusa 

5.3 

Bulk modulus 

56.3 

Shear modulus 

38.5 

C11= 14.3 

C12=4.6 

C13=2.7 

C33=8.9 

C44=2.8 

 

Tournemire argillite 

Bulk modulusd 

9.2 

Shear modulusd 

6.5 

Bulk modulus 

53.9 

Shear modulus 

37.5 

C11= 14.3 

C12=4.6 

C13=2.7 

C33=8.9 

C44=2.8 

aANDRA (2009) (undrained Poisson ratio: vu=0.3) 946 

bTable 1 and Mavko et al. (2009) 947 

cUlm et al. (2005); Cosenza et al. (2015b) 948 

dNiandou et al. (1997) 949 

 950 

Table 3. Inverted values of isotropic moduli of clay phase by Monte Carle procedure (isotropic 951 

model). 952 

 

Shale 

 

Clay phase 

Inverted isotropic 

modulus (GPa) 

Relative difference 

between reference value 

and calculated value from 

inverted clay phase moduli 

(%) 

 

Callovo-Oxfordian 

claystone 

Bulk modulus 

5.0 

Shear modulus 

1.6 

Bulk modulus 

0.3 

Shear modulus 

1.4 

 

Tournemire argillite 

Bulk modulus 

5.3 

Shear modulus 

3.7 

Bulk modulus 

1.6 

Shear modulus 

0.1 

 953 

  954 



Table 4. REA estimates obtained by counting box method.  955 

 956 

Map Area 

(Ai) 

Center of area 

(Ci) 

Asymptotic 

value 

(�W� �%� 

REA estimate 

(LREA) (µm) 

ε=0.1 (10%) 

REA estimate 

(LREA) (µm) 

ε=0.05 (5%) 

 

 

COx 

A1 C1 (x=250µm, z=250µm) 49.0 262 314 

A2 C2 (x=250µm, z=750µm) 48.6 322 438 

A3 C3 (x=250µm, z=1250µm) 49.4 128 170 

A4 C4 (x=250µm, z=1750µm) 51.6 72 86 

A5 C5 (x=250µm, z=2250µm) 52.4 202 310 

A6 C6 (x=250µm, z=2500µm) 51.5 50 86 

  Mean: 51.5 Mean: 172.7 Mean: 234.0 

  St. Dev.: 1.6 St. Dev.: 108.0 St. Dev.: 142.6 

 

 

Toar 

A1 C1 (x=625µm, z=625µm) 71.4 163 179 

A2 C2 (x=1250µm, z=625µm) 68.5 71 749 

A3 C3 (x=625µm, z=1250µm) 70.2 214 260 

A4 C4 (x=1250µm, z=1250µm) 69.1 68 576 

  Mean: 69.8 Mean: 129.0 Mean: 441.0 

  St. Dev.: 1.3 St. Dev.: 71.8 St. Dev.: 267.4 

 957 



Table 5. Morphological REA size estimates by statistical approach (n=1; error ranging between 5 and 10%). The results of inverse regression and 958 

integral range are also given.  959 

 

Shale 

Statistical morphological REA 

Regression �
����
���1 − ��� = ���  

Integral range 

A2 

REA size estimates 

(µm) 
(� ∈ t5,10u%� 

 

Callovo-Oxfordian 

claystone 

�
����
���1 − ��� = 106.6�  

R2= 0.96 

106.6 205-410 

Tournemire argillite �
����
���1 − ��� = 703�  

R2= 0.36 

703 345-696 

 960 

Table 6. Recapitulation of mechanical REA size estimates by statistical approach (n=1; error ranging between 5 and 10%).  961 

 

 

Shale 

Statistical mechanical REA 

Anisotropic model Isotropic model 

Bulk modulus Shear modulus Bulk modulus Shear modulus 

Integral range 

A2 

REA size 

estimates 

(µm) � ∈ t5,10u% 

Integral range 

A2 

REA size 

estimates 

(µm) � ∈ t5,10u% 

Integral range 

A2 

REA size 

estimates 

(µm) � ∈ t5,10u% 

Integral range 

A2 

REA size 

estimates 

(µm) � ∈ t5,10u% 

Callovo-

Oxfordian 

claystone 

 

27.5 

 

353-765 

 

27.7 

 

574-1251 

 

28.2 

 

253-512 

 

29.4 

 

338-664 

Tournemire 

argillite 

 

37.4 

 

743-1759 

 

37.9 

 

748-1772 

 

38.4 

 

687-1594 

 

38.3 

 

720-1688 

 962 



Figure 1. Microstructure of clay-rocks at various scales (modified from Ulm et al. 2005; Sarout 963 

and Guéguen, 2008; Cosenza et al., 2015a). 964 

 965 

 966 

  967 



 968 

 969 

Figure 2. Extraction of the mineral COx map used in this work (modified from Jorand, 2006). 970 

 971 

 972 

Figure 3. The mineral Toar map used in this work (modified from Fauchille, 2015). 973 

  974 



 975 

 976 

Figure 4. A. Partitioning of the COx map only used for counting box method. B. Partitioning 977 

of the Toar map used for counting box method. In both cases, the direction of bedding 978 

is indicated.  979 

 980 

  981 



 982 

 983 

Figure 5. Estimation of the Representative Elementary Area (REA) size of mineral maps by 984 

counting box method. Evolution of mean clay fraction with increasing subdomain size 985 

(box) and for different starting domains. The coordinates of starting domains are given 986 

in the captions boxes (see the origin of the system of Cartesian coordinates in Figures 2 987 

and 3).  988 
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a. COx map. The x-coordinates of the starting domains is 250 µm. The horizontal dashed lines 989 

indicate the range of mean clay fraction corresponding to �1 ± ��zXYZ with zXYZ=0.504 990 

(50.4%) and ε=0.1(10%). 991 

b. Toar map. The horizontal dashed lines indicate the range [62.9-76.9%] corresponding to 992 �1 ± ��z[\�  with z[\� =0.699 (69.9%) and ε=0.1(10%). 993 
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 996 

Figure 6. Evolution of the mean clay fraction and related standard deviation versus the 997 

subdomain size L for both maps.  998 
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 1000 

 1001 

Figure 7. Determination of the “morphological” integral range A2. Evolution of the pseudovariance of 1002 

the clay fraction, i.e., Variance (��� {(1-��� {)) as a function of 1/S, where S is the box size area. 1003 

A linear fit is indicated by a bold line. a. COx map. b. Toar map.  1004 
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 1006 

Figure 8. Morphological REA size, LREA (µm) as a function of error (%) for one realization 1007 

(n=1) for both mineral maps.  1008 
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 1010 

 1011 

Figure 9. Mean value and dispersion (standard deviation) of the apparent elastic moduli as a 1012 

function of the subdomain size L in the case of the anisotropic model and isotropic 1013 

model. a: COx map. b: Toar map.  1014 
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 1016 

Figure 10. Determination of the “mechanical” integral range A2. Evolution of the variance of the elastic 1017 

modulus of the anisotropic and isotropic models as a function of the subdomain area. Power fits 1018 

are also indicated to calculate the integral range values. a. COx map. b. Toar map.  1019 
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 1021 

 1022 

 1023 

Figure 11. Mechanical REA size, LREA (µm), as a function of error (%) for one realization (n=1). Both 1024 

elastic moduli, i.e., the bulk modulus and shear modulus; both micromechanical models, i.e., 1025 

the anisotropic model and isotropic model, are considered. a. COx map. b. Toar map.  1026 
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  1027 

Figure 12. Zoom of the evolutions of the pseudo-variance of clay fraction i.e., Variance(��� {(1-1028 

��� {)) as a function of subdomain area of both maps. R2 values of both fits are also 1029 

given.  1030 
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