
HAL Id: hal-03485811
https://hal.science/hal-03485811v1

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence analysis of an asynchronous peer-to-peer
market with communication delays

Alyssia Dong, Thomas Baroche, Roman Le Goff Latimier, H. Ben Ahmed

To cite this version:
Alyssia Dong, Thomas Baroche, Roman Le Goff Latimier, H. Ben Ahmed. Convergence analysis
of an asynchronous peer-to-peer market with communication delays. Sustainable Energy, Grids and
Networks, 2021, 26, pp.100475. �10.1016/J.SEGAN.2021.100475�. �hal-03485811�

https://hal.science/hal-03485811v1
https://hal.archives-ouvertes.fr


Convergence analysis of an asynchronous peer-to-peer market with communication delays

Alyssia Dong, Thomas Baroche, Roman Le Goff Latimier, Hamid Ben Ahmed

ENS Rennes, France

Abstract

With the growing number of distributed energy resources, the number of agents partaking in an electricity market is also bound
to increase, which highlights the need of a scalable algorithm to clear the market. The interest towards distributed economic
dispatch algorithms has grown in the last years as they were found to be scalable, unlike their centralized counterpart. However,
these algorithms rely on communication between computational agents during the resolution of the problem. In the case where
those computational agents are located far away from each other, the resolution may be impacted by the various hazards that can
occur in the communication network. The asynchronous resolution of the algorithm provides a solution to the large variations in
communication delays as it allows the agents to carry on with their computation despite not having received every messages from
their market partners. This paper focuses on a peer-to-peer market clearing algorithm based on the alternating direction method of
multipliers (ADMM) and its asynchronous version. Two communication delay models are introduced in order to study the effect of
communication on the convergence of the synchronous and asynchronous versions of the algorithm. In a 110 agent testcase study,
we show that the asynchronous resolution can speed up convergence by 40%, while also being more robust to delay variations.

Keywords: Peer-to-peer market, Asynchronous resolution, ADMM, Communication delays

1. Introduction

As the power network includes more and more distributed
energy resources such as renewables, the number of produc-
ers participating in the electricity market significantly increases.
This market consists of an agreement upon the amount of power
that each agent, producer or consumer, will respectively deliver
to or withdraw from the grid at a given horizon in the future.
This economic dispatch problem can be extended by taking into
account various degrees of physical constraints, as with the op-
timal power flow (OPF) problem [1].

Nowadays the market clearing mechanism is being solved as
close as 15 minutes before the power delivery [2]. However,
because the proportion of highly uncertain renewable energy is
bound to increase significantly in the future, it may be interest-
ing to push the market clearing closer to the delivery time in
order to be more precise with the production forecasting. In-
deed, reducing the production forecast error helps minimizing
the power reserves set aside to compensate for these errors. It
also reduces the risks of blackout of the power system. Hence,
it becomes necessary to speed up, scale and strengthen the pro-
cess of market clearing in order to solve the energy dispatch
problem within a timely manner.

Although the market clearing is historically centralized, it
can also be distributed or fully decentralized. In the distributed
case, a central agent gather information from all market partic-
ipants whereas in the fully decentralized case, there is no cen-
tral agent and the participants communicate directly with each
other. The interest for a fully decentralized peer-to-peer mar-
ket has increased throughout the years as demonstrated by the
research and development projects listed in [3], including, but

not limited to, the Enerchain1 project, a peer-to-peer platform
allowing trading at different scales, from the wholesale market
in Europe to local community exchanges, and the Energy Col-
lective2 project in Denmark, which investigates market designs
for local energy communities. Indeed, peer-to-peer markets al-
low heterogeneous preferences, which gives flexibility on the
choice of the trading partners, as well as direct communication
between partners to speed up the trading process and ensure
prompt transmission of energy [4]. The decentralization of the
market clearing problem makes it much more scalable while
introducing information exchanges between market agents [5].

In comparison to the distributed approach, the peer-to-peer
market resolution needs much more message exchanges to ar-
rive to completion, since instead of having to send one mes-
sage to an unique central agent, each market participant has
to send and receive messages directly to and from their com-
mercial partners. Considering that in theory the peer-to-peer
market will include hundreds or thousands of participants, the
problem of idle time between each iteration presents an added
challenge regarding the overall convergence time of the algo-
rithm. In particular, communication hazards can have a bigger
impact on the resolution. Provided that the communication pro-
tocol does not allow any message loss, the main drawback to
distributed and decentralized market resolution lies within the
variations in computation and communication delays. Indeed,
the algorithms require that all agents compute and communi-
cate their results to the other agents at each iteration. The late
arrival of only one message will slow down the iteration for

1https://enerchain.ponton.de/
2http://the-energy-collective-project.com/

Preprint submitted to Sustainable Energy, Grids and Networks August 25, 2021



the entire market. Hence, despite the inherent scalability of the
distributed and decentralized algorithms, their resolution time
are very sensitive to delay variations, be it from computational
delays or communication delays.

We will be focusing in this article on a peer-to-peer mar-
ket clearing algorithm, using the alternating direction method
of multipliers (ADMM), based on [6], in which all agents
communicate to each other via a network protocol that pro-
vides ordered, lossless, bi-directional connections such as the
Transmission Control Protocol/Internet Protocol (TCP/IP), and
where computation delays are neglected. In order to make the
convergence time of the resolution less sensitive to the various
communication delays, we will propose an asynchronous reso-
lution of the peer-to-peer algorithm in which the various agents
perform their calculations asynchronously. A simple parametric
communication delay model is introduced in order to analyze
the impact of the communication network over the convergence
time of this asynchronous market clearing algorithm.

We will start in section 2 by presenting the state of the art
concerning distributed and decentralized asynchronous algo-
rithms used for power networks. Then, in section 3, we will
present the synchronous market clearing algorithm, before in-
troducing the asynchronous version in section 4. The simula-
tion framework for the new algorithm will be presented in sec-
tion 5, while the related results will be explained in section 6.

2. Related work

The distributed resolution of an algorithm to solve power net-
work based problems like OPF, constrained economic dispatch
or phase estimation has been widely studied [7, 8, 9], including
with ADMM based algorithms [10].

These algorithms are meant to be distributed over several
computational agents that communicate with each other at ev-
ery iteration. The speed up resulting from the distribution of
the problem is limited by agents with longer computation and
communication delays. This is why the asynchronous versions
of these algorithms are introduced. The difference between the
synchronous and asynchronous versions lies in the idle time be-
tween each iteration of the algorithm. In the synchronous ver-
sion, an agent has to wait for the arrival of the messages of all
its neighbors, whereas in the asynchronous version the agent is
allowed to carry on with the next iteration after only receiving
partial information.

The asynchronous distributed algorithms were first studied
from a computer science approach, as the ADMM consensus
algorithm is widely used in machine learning applications. In
[11, 12] the asynchronous character of the resolution is per-
formed by choosing for each iteration an agent at random. This
agent is then the only one updating its local problem for the it-
eration considered. In [13, 14], a central master agent collects
information from the distributed workers in an asynchronous
way, meaning that it does not wait for the results of every work-
ers. The master launches its computation after receiving a mini-
mum number of updates and with a bounded delay condition i.e.
each variable information used by the master must be at most
τ iterations old. Given this bounded delay condition, the proof

of convergence of the asynchronous algorithm is provided in
[13]. In [15], the algorithm is distributed block-wise with sev-
eral servers and workers. The asynchrony comes from the fact
that the consensus variable is updated incrementally at each re-
ception of a worker’s update. The workers use the latest ver-
sion of the consensus variable that they have received. In
[16, 17], the problem becomes totally decentralized. In both
papers, the asynchronism comes from a given bounded delay,
and it is shown that it allows to significantly improve the total
convergence time. However, the final objective function dif-
fers from the synchronous solution. Also, the communication
delays are either empirical or drawn randomly from a uniform
distribution, so there is no added communication delay com-
ing from a designated model introduced in these papers, which
seems reasonable given that the calculation times are predomi-
nant over the communication times in computer science.

In a power network context, the distributed agents are not lo-
cated on the same machine, so the communication hazards can
affect the algorithm’s ability to run smoothly. There have been
several studies of asynchronous algorithm applied to power net-
works. In [18], the mode estimation problem, which consists of
the estimation of the phase and frequency oscillations in the
various nodes of the power network, is solved by a distributed
asynchronous ADMM with bounded delay thresholds for the
central agent and the local agents. They used the same ad-
vanced communication delay model as [19], and found out that
the convergence error was not monotonous anymore as more
asynchrony was added.

The optimal power flow problem is also solved with asyn-
chronous algorithms in [19, 20, 21, 22]. In [20], the gen-
eral non-linear constrained optimization problem (AC-OPF)
is solved with asynchronous ADMM in a completely decen-
tralized manner. The iterations threshold comes from the num-
ber of messages that an agent receives, and the communica-
tion delays are randomly generated within a range. The AC-
OPF is also solved in [21] using an asynchronous Lagrangian
relaxation method. The global market is split into several lo-
cal markets that communicate asynchronously with each other.
The order of the messages correspond mostly to the difference
of computation delays of the agents. The convergence rate of
the asynchronous algorithm is higher than the synchronous one
if there is a significant difference in computation speed of the
agents. [19] also tackles the OPF problem in a distributed ap-
proach with a limited coordination of neighboring nodes. They
used an advanced communication delay model and tested sev-
eral delay-robust strategies to improve their results. The best
strategy they found consisted of estimating the missing infor-
mation due to the asynchronous threshold with a weighted auto-
regressive model.

The linear approximation of the aforementioned AC-OPF
(DC-OPF) was asynchronously solved in [22] in a totally de-
centralized manner for microgrid applications. They made the
agents randomly skip some iterations and found out that the
more iterations they skipped, the farther from the optimal solu-
tion their results were compared to the synchronous algorithm.

An asynchronous version of the peer-to-peer economic
dispatch problem is studied in [23] using both consen-

2



sus+innovation and ADMM. Computation and communication
delays are randomly sampled from a random variable. They
found out the asynchronous version took longer to converge as
oscillations appeared during the resolution.

The communication delay models in the presented related
works are varied. Because asynchronous consensus algorithms
were first studied from a computer science approach, the com-
munication delays were considered uniformly across all work-
ers. Indeed, the distributed workers are either on the same com-
puter using message passing interface (MPI) to communicate
or are located within the same communication sub-network.
Thus, simple communication models such as a fixed probabil-
ity to arrive at each iteration [14, 15] or a probability to lose the
message [17] were used. Some even used empirical commu-
nication delays as they directly implemented their algorithms
on hardware [13, 16]. Extending the asynchronous algorithms
to power network related problems, some papers have chosen
to keep using simple communication delay models: [20] sam-
ples a delay from a uniform distribution and [21] uses a unique
fixed delay of 10 ms and relies on the empirical computation
delay differences. However, considering the application of dis-
tributed algorithm to power network where the computational
agents might not be located in the same areas, these aforemen-
tioned communication delays might be limited in regards to real
world application. Hence, some papers have used more com-
plex communication delay models as in [23] using an exponen-
tial distribution, or in [15, 18] using an advanced delay model
for wide area communication. These models account for larger
communication delays being sampled more frequently, as ex-
perienced in real world application.

This article is a continuation of the work presented in this
section in which it presents an asynchronous decentralized al-
gorithm used to solve a power network dispatch problem. We
particularly focused on extending the communication model by
using a communication delay model which depends on the ge-
ographical location of the market participating agents. We first
had to try several configurations of the asynchronous algorithm
to find the one which leads to the right solution. Then, we em-
pirically showed that the asynchronous version of the algorithm
allowed for up to a 40% convergence time saving, while also
making it more robust to communication delays variations.

3. Peer-to-peer electricity market algorithm

The classical algorithm used in this paper performs an eco-
nomic dispatch between all participating agents. Each agent
negotiates contracts to trade power with other agents, its com-
mercial or trading partners. The sum of all trades of one partic-
ular agent represents the power that this agent will produce or
consume.

One of the benefits of using trades, besides enabling a fully
decentralized economic dispatch, is the possibility to add pref-
erences to promote or penalize certain exchanges. For example,
a consumer can choose to favor renewables producers even if
their price is a bit higher than that of a traditional producer. In
[6], the tariffs are used to favor exchanges within a region, thus
avoiding congestion of weak power lines between regions.

3.1. Optimization problem

The economic dispatch of the market is solved by finding the
solution to the following optimization problem:

minimize
[pi]i∈Ω

∑
i∈Ω

fi(pi) (1a)

subject to
∑
i∈Ω

pi = 0 (1b)

pi ≤ pi ≤ pi i ∈ Ω (1c)

where:

• pi represents the power exchanged by agent i, counted as
positive if actually produced by the agent and negative if
consumed,

• the cost functions fi(.) are convex functions representing
the production/consumption costs of agent i,

• pi and pi are limits for production or consumption of agent
i.

Equation (1b) represents the global power balance in the net-
work, and equation (1c) sets the physical limits of produc-
tion/consumption of the agents.

The scope of this contribution is to focus on the impact of
the communication network. Therefore for the sake of clarity
when interpreting the outcomes, we chose to focus on the sim-
plest problem of economic dispatch. On the basis on the here
presented results, we could apply the principles presented in
this paper to an OPF problem in future work.

Trades are introduced to describe the commercial exchanges
between agents. Let ωi be the set of trading partners of agent
i. If we consider agents to be either electricity producer or con-
sumer, then we can assume that a producer will only have con-
sumers as trading partners, and vice versa. The case where a
producer purchases power from another producer to increase
its capacity is not covered in this paper. Furthermore, if j ∈ ωi,
i.e j is one of i’s trading partner, then i ∈ ω j.

The trade between agent i and its trading partner agent j is
noted as ti j, and it indicates which proportion of the power pi is
dedicated to agent j ∈ ωi.

pi =
∑
j∈ωi

ti j (2)

The balance equation (1b) is fulfilled when there is a trade
reciprocity for each trade:

ti j = −t ji i ∈ Ω j ∈ ωi (3)

i.e. when agent i sells a quantity ti j to agent j, then agent j
buys the same quantity from agent i. Each trade exchange then
assures the power balance. If j < ωi, then we set ti j = t ji = 0.

3.2. Strict convexification

The problem becomes non strictly convex with respect to the
variables (ti j)(i, j)∈Ω2 because there can be multiple combinations

3



that are solution to the minimization problem (1). A regulariza-
tion term is added in the cost function (4a) so as to make the
problem strictly convex with respect to the trade variables.

minimize
∑
i∈Ω

 fi(pi) + γ
∑
j∈ωi

ti j
2

 (4a)

subject to ti j = −t ji i ∈ Ω j ∈ ωi (4b)

pi =
∑
j∈ωi

ti j i ∈ Ω (4c)

pi ≤ pi ≤ pi i ∈ Ω (4d)

This added term resembles the one in [6] in as it represents
an added cost attributed to the bilateral trade ti j. In this paper,
this added cost enforces a more uniform distribution of trades
for a given power production or consumption. Hence, it de-
ters the market agents to buy large power quantities at a low
cost. In a circumstance where the market agents do not have
any limitations on their market partners, it prevents the arbi-
trage phenomenon where they buy large quantities to then sell
at a higher price. We can refer to the added term in (4a) as an
arbitrage penalty. We will show in section 6.1 how to properly
set the arbitrage penalty factor γ.

3.3. Local algorithm

The distribution of problem (4) is done via the ADMM
method, and detailed in [6]. The resolution of the problem is
done iteratively in a fully decentralized way. Each agent i com-
putes the following iterations:

(pi, ti)k+1 = arg min
(pi,ti)

fi(pi) + . . . (5a)

∑
j∈ωi

γ ti j
2 +

ρ

2

 tk
i j − tk

ji

2
− ti j +

λk
i j

ρ

2
s.t. pi =

∑
j∈ωi

ti j

pi ≤ pi ≤ pi

λk+1
i j = λk

i j − ρ
tk+1
i j + tk+1

ji

2
j ∈ ωi (5b)

with k being the global iteration number, ρ being the penalty
factor of the algorithm, and λi j being the dual variable asso-
ciated with the element i j of the trade’s reciprocity constraint
(4b).

Note that (5b) can be written as:

λk
i j = λk−1

i j − ρ
tk
i j + tk

ji

2
j ∈ ωi k ≥ 1 (6)

Thus, the process performed by each agent is presented in
Algorithm 1.

Algorithm 1 Synchronous Algorithm : Agent i local process

procedure SynchronousAgentProcess(t0
i , λ

0
i )

ti ← t0
i . Initialization

λi ← λ
0
i

k ← 0
send t0

i j to all j ∈ ωi

repeat . Proceed until convergence
receive tk

ji from all j ∈ ωi

if k ≥ 1 then
update λk

i with (6)
end if
update tk+1

i with (5a)
send updated tk+1

i j to all j ∈ ωi

k ← k + 1
until local residual ≤ ε

end procedure

3.4. Residuals
The convergence of the algorithm is characterized by primal

and dual residuals. Local residuals are defined for each agent i
by:

rk
i =

∑
j∈ωi

(tk
i j + tk

ji)
2 (7a)

sk+1
i =

∑
j∈ωi

(tk+1
i j − tk

i j)
2 (7b)

The primal residual ri reflects the equilibrium of the agent
i’s trades with its trading partners: the quantity of energy that
agent i buys from agent j must correspond to the quantity of
energy that agent j sells to the agent i. Thus, rk

i −−−−→k→∞
0.

The dual residual si is a measure of the variation rate of
the trades offered by agent i from one iteration to the next.
When the algorithm converges, there are no more variations:
sk

i −−−−→k→∞
0.

Global residuals are defined by:

rk =
∑
i∈Ω

rk
i (8a)

sk =
∑
i∈Ω

sk
i (8b)

For the sake of simplicity, we can determine the convergence of
the algorithm with the primal global residual (8a) only. We con-
sider that the algorithm has converged at iteration kconv when:

rkconv ≤ ε (9)

with ε depending on the agents physical limits:

ε = ε2
rel ·

∑
i∈Ω

max(pi
2, pi

2) (10)

This expression of ε takes into account the squared value of
the maximum produced or consumed power in the market. It
introduces the relative value εrel which lets us compare the con-
vergence of different testcases.

4



3.5. Limits of the synchronous algorithm

We can observe in Algorithm 1 that at the beginning of ev-
ery iteration, every agent stays inactive because it has to wait
for all of its partners’ messages before continuing iteration cal-
culations. The various communication hazards therefore have
a direct effect on the course of the algorithm resolution. The
communication protocol used is assumed to take into account
message loss and corrupted messages, such as the TCP pro-
tocol, which re-send messages when it realizes that they have
been lost. A lost or corrupted message then simply leads to a
longer communication delay.

If we consider even one communication channel with a high
failure rate, then the majority of the waiting time for the entire
market would have been spent waiting only for the last message
passing through that channel. The more agents that participate
in the peer-to-peer market, the longer the expected time of each
iteration will be. It means that in terms of overall execution
time, this algorithm is not scalable, even though in theory it is
completely scalable thanks to the ADMM distribution in op-
erational context. For example, let us consider the 110 agents
testcase used in 5.4. For each iteration, 4800 messages in to-
tal are sent on the communication network. A 0.1 % loss rate
leads to 4.8 lost messages on average per iteration. Using the
TCP timeout-based retransmission, the sender re-sends a mes-
sage after a delay a bit larger than the average round time trip
if it does not receive acknowledgment of this message from the
receiver. Thus, assuming that the second message does not get
lost, the total communication delay for sending one message
is going to be on average 3 times what the average commu-
nication delay is. Because during an iteration all message ex-
changes are done in parallel, the longest communication delay
will be 3 times slower. Thus, on average, the synchronous al-
gorithm will be 3 times slower to reach convergence than in the
case where no messages are lost. The asynchronous algorithm
allows the agents to cut this excess idle time by not waiting for
all messages to arrive.

This is why we are studying the asynchronous version of the
aforementioned algorithm in this paper. The next section will
present the principles of asynchrony and the different strategies
that can be applied.

Another way to speed up the resolution that is not considered
here is to partition the market into regions instead of having
each market participant solve its own problem. This reduces
the number of exchanges during the resolution, thus limiting
the added communication delays discussed above. As demon-
strated in [24] for an OPF problem, a spectral clustering based
method can be used to find the optimal partition of the problem
in order to speed up the convergence. This partition relies on
the computational and physical coupling between nodes. For an
economic dispatch problem, the market agents can be grouped
into connected communities [25] with agents who share the
same economic interests. These communities, however, may
not be optimally partitioned to speed up the convergence time
since the computational and physical coupling is a priori not
correlated to the economic interests.

4. Asynchronous peer-to-peer algorithm

4.1. Principle of an asynchronous algorithm

The basic principle behind what is referred to as an asyn-
chronous algorithm is that the computations do not take into
account all the information at every iteration.

i

j

m

tij0 tij1 tij2 tij3

tji0 tji1 tji2 tji3 time

i

j

m

tij0

tim0 tim1 tim2

tji0

tmi0

tji1 tji2

tmi1 tmi2

time

Synchronous

Asynchronous

tij1 tij2

tmi0 tmi1 tmi2

tim0 tim1 tim2

Figure 1: Message exchanges diagram in a three agents market : i, j and m,
where ωi = { j,m} and ω j = ωm = {i}, in the synchronous and the asynchronous
cases. The diagonal arrows represent the message exchanges over time and
the colored rectangles represent the processing time of a local iteration. The
asynchronous case here consists of agent i only waiting for one message instead
of two before performing its calculations.

In the asynchronous version of our algorithm, local agent i
does not have to wait for each of his trading partners update
message before proceeding to its calculation, which then re-
duces the delays of each iteration. Figure 1 represents the mes-
sage exchanges over time in the synchronous and asynchronous
cases for a three agent market. In the asynchronous case, the
frequency of agent j’s calculations doubles compared to the
synchronous version.

However the lack of information that arises from the asyn-
chronism makes the algorithm slower to converge in terms of
number of iterations, that is to say it needs more communica-
tion. Therefore, a balance must be found between asynchro-
nism and number of exchanged messages.

4.2. Test of the various strategies of the asynchronous algo-
rithm

Because every agent is now advancing at its own pace, a
global iteration counter k is no longer relevant in an asyn-
chronous resolution. We define the local iteration counter ki

that corresponds to agent i number of computations. In addi-
tion, many resolution schemes are possible because we now
dissociate the trade update and the price update of Algorithm
1. We introduce a linkwise iteration counter ki j which indicates
the number of updates the trade ti j has been through. Likewise,

5



we introduce the counter li j for the number of updates of the
dual variable λi j. Let us note Φ

ki
i the subset of ωi from which

agent i received updates at the beginning of iteration ki.
The asynchronous versions of equations (5) are then given by

the following equations:

(pi, ti)∗ = arg min
(pi,ti)

fi(pi) + . . . (11a)

∑
j∈ωi

γ ti j
2 +

ρ

2

 tki j

i j − tk ji

ji

2
− ti j +

λ
li j

i j

ρ


2

s.t. pi =
∑
j∈ωi

ti j

pi ≤ pi ≤ pi

λi j
∗ = λ

li j

i j − ρ
tki j+1
i j + tk ji+1

ji

2
j ∈ ωi (11b)

We observe in (11a) that the whole vector ti can possibly be
updated. Two strategies can be implemented: only update the
variables ti j such that j ∈ Φ

ki
i (partial trades update), or up-

date all ti j for j ∈ ωi (total trades update). Likewise, the same
kind of choice can be made for the dual variable λi j : partial
or total prices update. All these possibilities have been tested
empirically and compared in Table 1. While some configura-
tions have converged to a solution, there is only one configu-
ration which reached the optimal solution of problem 4: the
partial trades and partial prices update configuration. We will
be focusing on this configuration for the rest of the manuscript.
This configuration has been tested on several IEEE testcases
and reached convergence with the condition of bounded com-
munication delays. The obtained results are equal to the syn-
chronous version of the algorithm, which we can consider op-
timal since the objective function is convex. While we do not
provide a mathematical proof of convergence for this particu-
lar asynchronous algorithm, a proof of convergence for a dis-
tributed asynchronous consensus ADMM problem is provided
in [13], given a bounded delay condition. Another proof of con-
vergence is provided in [17] for a decentralized relaxed ADMM
asynchronous algorithm, following the assumption that every
message has a non zero probability to arrive to destination at
each iteration and that those probabilities are mutually indepen-
dent over time. Let us note that in our case, the communication
models presented in 5.2 respect the bounded delay condition,
but that the order of exchanged messages can not ensure the
independence of the random variables describing the arrival of
messages.

Table 1: Asynchronous algorithm configurations under partial communication

Partial trades update Total trades update

Partial prices update
Convergence : yes Convergence : yes
Optimality : yes Optimality : no

Total prices update
Convergence : no Convergence : yes
Optimality : no Optimality : no

It follows that the linkwise iteration counters for the trades
and for the dual variables are equal ki j = li j and that they are
increased when j ∈ Φ

ki
i .

Another constraint makes the algorithm perform better: Φ
ki
i

is set in a way that the received trade update message t ji is as-
sociated to the tradewise iteration k ji = ki j. If a message is re-
ceived where k ji > ki j, it is stored in memory and will be taken
into account in the next iteration when k ji = ki j. The resulting
equations are then given as follows:

λ
ki j

i j = λ
ki j−1
i j − ρ

tki j

i j + tk ji

ji

2
j ∈ Φ

ki
i ki j ≥ 1 (12a)

(pi, ti)∗ = arg min
(pi,ti)

fi(pi) + . . . (12b)

∑
j∈ωi

γ ti j
2 +

ρ

2

 tki j

i j − tk ji

ji

2
− ti j +

λ
ki j

i j

ρ


2

s.t. pi =
∑
j∈ωi

ti j

pi ≤ pi ≤ pi

tki j+1
i j = t∗i j j ∈ Φ

ki
i (12c)

and the asynchronous version of the algorithm is given in Al-
gorithm 2.

Algorithm 2 Asynchronous Algorithm : Agent i local process

procedure AsynchrounousAgentProcess(t0
i , λ

0
i )

ti ← t0
i . Initialization

λi ← λ
0
i

ki j ← 0 for j ∈ ωi

ki ← 0
send t0

i j to j ∈ ωi

repeat . Proceed until convergence
receive tk ji

ji from j ∈ Φ
ki
i such as k ji = ki j

update λi j with (12a) for j ∈ Φ
ki
i if ki j ≥ 1

update ti with (12b-12c)
send updated tki j+1

i j to j ∈ Φ
ki
i

ki j ← ki j + 1 for j ∈ Φ
ki
i

ki ← ki + 1
until local residual ≤ ε

end procedure

4.3. Determination of the set Φ
ki
i

The order of arrival of the messages sent by agents j ∈ ωi to
agent i defines the set Φ

ki
i . In the synchronous algorithm, Φ

ki
i =

ωi therefore agent i must wait for the messages coming from all
of its partners in order to proceed to the next iteration, which
results in long idle times waiting only for a few messages, thus
delaying the entire market.

In the asynchronous version, we have to determine the set Φ
ki
i

for each of agent i iteration ki. In related works, the set is either
determined by:

6



• the arrival of messages within a given delay between each
local iteration ki [18, 19],

• the arrival of a given number of messages since the previ-
ous iteration [20],

• the first condition to be fulfilled between both of the above
[16, 14],

• a probability that the message arrive to the agent [17, 13].

The first three points aforementioned necessitates a commu-
nication delay model while the last one is more simple to im-
plement.

Let j ∈ ωi and let us note Xki
ji the random boolean variable

describing if j ∈ Φ
ki
i , i.e. if the message t ji sent by j arrived to

agent i to be processed during its iteration ki. Thus:

Φ
ki
i =

{
j ∈ ωi | Xki

ji = 1
}

(13)

The proof of convergence of the asynchronous algorithm in
[13], where there is a central master agent M that collects the
workers variables, requires all the random variables XkM

jM to be
independent and identically distributed. Which means that at
each of the master iteration kM , all the workers updates have
the same chance to be processed by the master.

This condition might be correct in the case of parallel com-
puting where the communication takes place on a local network
(as with MPI communication), but it is limited when it comes
to communication between agents that are located far away (for
example if they are not part of the same local network). In fact,
the order of arrival of the various messages and their delays de-
pends on the communication network, which cannot be prop-
erly modeled by a random variable such as Xki

ji . If two agents
are really close to one another compared to the rest of their
trading partners, then they will have a lot more updates on their
common trade.

In [15] however, the convergence is proved with the as-
sumption of bounded delays for each link. We will introduce a
communication delay model that respects this assumption.

The iteration trigger chosen in this study is the number of
messages arrived since last iteration. The messages that arrive
after the trigger (i.e. during the computation) are kept in a local
buffer and considered as received messages for the next itera-
tion.

We can note that this choice of trigger makes the random
variable Xki

ji dependent from the other variables Xki
j′i with j′ ∈

ωi\{ j} because the chance that a message sent from agent j to
i arrives in time to participate in iteration ki depends on the
number of messages that agent i already received since its last
iteration. It also needs a communication delay model in order
to compute the order of arrival of the messages.

Let us note Ntrig,i the number of messages received by agent i
that triggers the calculations of the iteration. Given that agent i
has |ωi| trading partners which it communicates with, and that
it only counts messages that have k ji = ki j, there can only be
one message per partner, thus Ntrig,i ≤ |ωi| messages.

The case where Ntrig,i = |ωi| for all i ∈ Ω refers to the syn-
chronous algorithm.

Considering one market Ω, it would be inconceivable to
study all possibilities of Ntrig,i for each i ∈ Ω for combinato-
rial considerations. We therefore set a ratio δ ∈ [ 0, 1] such that:

Ntrig,i = dδ · |ωi|e i ∈ Ω (14)

with d·e being the ceiling function. The ceiling function has
been preferred over the floor function so that Ntrig,i is at least
equal to 1. For example, if agent i has a total of 100 partners,
δ = 0.1 would set Ntrig,i to 10 messages. The case δ = 1 cor-
responds to the synchronous resolution as Ntrig,i = d|ωi|e = |ωi|.
We will refer to δ as the asynchronism parameter.

5. Simulation framework

5.1. Simulation environment

The simulation of the optimization problem resolution given
all the exchanged messages was implemented in the Julia lan-
guage. The package SimJulia was used as a discrete-event sim-
ulation environment, whereas the sub-problems given by (12b)
were solved by the package OSQP, which stands for opera-
tor splitting quadratic program. This package solves convex
quadratic problems [26].

The use of Julia, which is a just-in-time compiled program-
ming language, made the final code efficient and fast enough
that it allowed the computation of many market resolutions in a
short amount of time, as is necessary when realizing a Monte-
Carlo simulation. The calculations were performed with a In-
tel Core i7-8850H CPU@2.60GHz and each simulation took 5
seconds on average to compute with the 110 agents testcase pre-
sented in 5.4, and the gaussian communication model presented
in 5.2.

The values of the variables during the resolution are saved at
a given sampling frequency. This allows post-processing calcu-
lations.

5.2. Communication delay models

Among all the communication hazards, we only take into ac-
count communication delays in this paper. Indeed, we can as-
sume that the communication protocol that is used handles re-
transmission and error-detection, as with the TCP/IP protocol.
Thus, communication hazards such as packet loss or corruption
results in the application layer as an added delay.

We introduce two stochastic communication delay models:
a gaussian based model and a more advanced model which
presents a distribution that fits real Internet communication de-
lays. Our models are very simple and only depend on three
parameters, which allows us to have a better interpretation of
the results based on these parameters.

Let di j be the distance between agents i and j. This distance
is not directly associated with physical distance, but more with
distance in terms of the communication network (e.g. num-
ber of routers that the message go through). The first commu-
nication delay model consists of a random gaussian variable,

7



presented in (15), which represents the communication delay
between agents i and j.

∆T ∗i j ∼ N
(
αDi j + β, σi j

)
(15)

The gaussian model was chosen for its simplicity and sam-
pling speed.

• The mean of the communication delay E[ ∆T ∗i j] = αDi j +

β takes into account the distance Di j but also a constant
minimum delay β. If α = 0, then all communication delays
have the same mean value.

• The standard deviation is proportional to the mean com-
munication delay. Let us set the parameter σ ∈ [ 0, 1]
such that when σ = 1, then 3σi j = E[ ∆T ∗i j] . Thus :
σi j = σ

3 E[ ∆T ∗i j] .

Because the presented gaussian variable can be negative, the
real random variable considered for communication delay is
∆Ti j = max(∆T ∗i j, 0).

The proposed communication delay model takes into account
the global communication network state:

• network congestion is associated to the linear delay pa-
rameter α;

• whereas the minimum communication delay is associated
to the constant delay parameter β;

• finally, added communication delays due to packet retrans-
mission can be seen as the stochastic delay parameter σ,
but it appears that the gaussian model is quite limited in
that regard.

In section 6.4, we chose to compare the gaussian delay model
with a more advanced model ∆T ′i j, inspired by [18, 19], which
has a long tail distribution that showcases longer delays at a
higher probability. This model features four parameters which
take into account the Internet traffic delays as well as the routers
processing delays. The probability density function (PDF) φ(t)
of the end-to-end communication delay is given as follows:

φ(t) = p′ φ2(t) + (1 − p′) φ1(t) ∗ φ2(t), t ≥ 0 (16)

where φ1(t) is the PDF of the Internet traffic delay, φ2(t) is
the PDF of the router processing delay and φ1(t) ∗ φ2(t) =∫ t

0 φ2(u)φ1(t−u)du. Here, p′ is the probability of open period of
the path with no Internet traffic, it is set to p′ = 0.58 for all com-
munication links in the market, following the numerical value
of [18]. The Internet traffic delay is approximated by a gaus-
sian PDF with expected value µ′ and variance σ′2. The router
processing delay is modeled by an alternating renewal process
with exponential closure period when the Internet traffic is on,
with the PDF φ2(t) = λ′ e−λ

′t where λ′−1 represents the mean
length of the closure period.

For comparison purposes, the parameters (λ′, µ′, σ′) are
tuned to fit the mean value and variance of the gaussian com-
munication delay model for each communication link:

(λ′i j, µ
′
i j, σ

′
i j) = arg min

(λ′, µ′, σ′)

(
αDi j + β − E

[
∆T ′i j(λ

′, µ′, σ′)
])2

+
(
σ2

i j − V
[
∆T ′i j(λ

′, µ′, σ′)
])2

(17)

Finally, the delays are sampled with an inverse transform
sampling method, using the cumulative distribution function
given in [18]. It takes on average 130 ns to sample a delay with
the gaussian model, whereas it takes on average 30 µs to sample
a delay with the advanced model, which makes the simulation
about 200 times slower. We will investigate in what extent the
gaussian model can be a simpler yet representative alternative
to the advanced model regarding the convergence time of the
algorithm.

5.3. Computation delays

We consider in this article that the computation delays are
negligible compared to the communication delays. Indeed, af-
ter a short survey of ping requests to various servers, we can
approximate the order of magnitude of the end-to-end Inter-
net communication delay from 10 ms to 100 ms. However, the
measured computation delays at each iteration for the testcase
presented in section 5.4 are at most equal to a few millisec-
onds for the agents with the most trading partners, and equal to
0.2 ms for the other agents. For simplicity sake, we decided to
neglect the computation delays, but it would be interesting to
study their influence on the convergence time when the com-
putation delays and the communication delays share the same
order of magnitude.

5.4. Testcase presentation

The testcase used in this article is composed of 110 agents
including 30 producers and 80 consumers. Their parameters
were randomly generated and are given in the appendix. In this
testcase, the set of trading partners ωi of each consumer i is
equal to the set of all producers. Therefore, every producer’s
set of trading partners is equal to the set of all consumers. Each
agent is given a randomly generated 2D location. The distance
di j between agents i and j is then computed as the euclidean
distance between both agents’ locations. The ADMM penalty
factor is set to ρ = 10.

5.5. Convergence requirement

We consider that the algorithm has reached convergence
when the primal residual invalidates the relation given by (9),
with ε2

rel = 10−9. The values of the problem’s variables at con-
vergence are noted p∗i and t∗i j.

6. Simulation results

6.1. Influence of the arbitrage penalty factor γ

We will illustrate the role of the arbitrage penalty term in
(4a). Let us first set the arbitrage penalty factor γ to zero. As

8



explained in 3.2, when γ = 0, the problem (4) is not strictly con-
vex with respect to the trade variables ti j, whereas it is strictly
convex with respect to the power variables pi. This results in
solutions that are distinct from one another when the problem
is solved synchronously or asynchronously. Yet, we need all
solutions to be equal in order to compare the performances of
the algorithm.

At convergence, the power variables are all very close to the
synchronous solution (δ = 1) for any value of the asynchronism
parameter δ. However, the trade variables are different, as illus-
trated in Table 2. This table shows the power variable value of
agent 32 and its first four trade variables for two values of δ.
As we can see, the power variable is equal for all values of δ,
whereas the trade variables are different from one another.

Table 2: Values of the optimization variables at convergence for various values
of δ, γ = 0 and εrel = 10−12

Optimization variable Value for δ = 1 δ = 0.7 δ = 0.2

p32 -44.03 -44.03 -44.03
t32,1 -1.58 -1.69 -1.73
t32,2 -1.73 -1.94 -1.72
t32,3 -1.44 -1.31 -1.31
t32,4 -0.52 -0.10 -0.00

The initial problem (1) is effectively solved by the peer-to-
peer algorithm, be it synchronous or asynchronous. However,
we want the trade solutions to be equal for any value of δ.

−160k

−120k

−80k

100μ 0.001 0.01 0.1 1 10

0

0.1

0.2

δ = 0.2

δ = 0.5

δ = 0.7

δ = 0.8

δ = 1.0

γ

Global cost value C δ 

Trades comparison v δ 

Figure 2: Global cost value at convergence and tradewise distance vδ from the
synchronous solution as a function of the arbitrage penalty factor γ (log scale).

Let’s set the synchronous solution as reference for compari-
son : p∗i,δ=1and t∗i j,δ=1 for i ∈ Ω and j ∈ ωi. Two quantities are
plotted in Figure 2 as a function of the arbitrage penalty factor
γ:

• the global cost value at optimum

Cδ =
∑
i∈Ω

fi(p∗i,δ) (18)

• the normalized tradewise difference between the syn-
chronous solution and other asynchronous solutions

vδ = v
(
T∗δ,T

∗
δ=1

)
=

∑
i∈Ω

∑
j∈ωi
|t∗i j,δ − t∗i j,δ=1|∑

i∈Ω
∑

j∈ωi
|t∗i j,δ=1|

(19)

We observe in Figure 2 that the optimal cost value is al-
ways equal to the synchronous solution whatever the value of
δ, which is expected considering that all power variables pi are
equal. The tradewise difference decreases towards zero along
with γ increasing, which means the trades solutions ti j tends
to be equal. However, the global cost increases with γ which
means the optimal solution is different from the case where
γ = 0.

Table 3: Global cost increase compared to the case γ = 0 and the associated
normalized tradewise difference

γ Global cost increase Tradewise difference

0 0 21%
1.0 +8% 0.4%
9.0 +48% 0.03%

This figure can help us pick which γ value lets us have
the smallest tradewise difference v

(
T∗δ,T

∗
δ=1

)
for all δ, without

modifying the optimal cost value too much. For the following
results, the γ variable will be set to 1.0. This value allows to
have a maximum normalized tradewise difference v0.2 = 0.4%
for a 8% increase in the global cost compared to the case γ = 0,
as shown in Table 3.

6.2. Influence of the communication network state on the
global convergence time

The state of the communication network is modeled by the
parameters linear and constant delay parameters α and β in Eq.
(15). As communication delays increase, the convergence time
of the algorithm increases too.

Figure 3 shows the influence of the linear and constant delay
parameters α and β on the convergence time for different values
of the asynchronism parameter δ, in the deterministic case i.e.
σ = 0, and with the arbitrage penalty factor set to γ = 1.0.
As we can see in all four figures, the convergence time varies
almost linearly with α and β.

Table 4 presents the median values of the gradient of the con-
vergence time (CT) with respect to α and β. We can observe in
the fourth column that the ratio between the derivatives is ap-
proximately equal to 1 except when the asynchronism param-
eter δ = 1.0. This shows that both parameters α and β have
the same impact on the convergence time of the algorithm for
the asynchronous resolutions. However, for the synchronous

9



10 20 30
0

10

20

30

α

β

δ = 0.2

10 20 30
0

10

20

30

α

β

δ = 0.6

10 20 30
0

10

20

30

α

β

δ = 0.8

10 20 30
0

10

20

30

α

β

δ = 1.0

Figure 3: Convergence time (in time units) as a function of the communication
network parameters α and β for several values of the asynchronism parameter
δ. Fixed parameters : γ = 1.0 and σ = 0.

Table 4: Gradient of the convergence time with respect to the parameters α and
β

Asynchronism ∂CT
∂α

(∗) ∂CT
∂β

(∗) ∂CT
∂α

/
∂CT
∂βparameter δ

1.0 80.0 33.3 2.40
0.8 60.0 53.3 1.13
0.6 53.3 46.7 1.14
0.4 46.7 40.0 1.17
0.2 40.0 40.0 1.00

(∗)Median value over all points.

resolution, there is a greater impact of the parameter α which
makes the synchronous algorithm more sensitive to markets
where communication delays are varied.

In the next section, we will study the influence of the asyn-
chronism parameter δ on the convergence time.

6.3. Influence of the asynchronism parameter δ on the global
convergence time and on the number of exchanged mes-
sages

From this point forward, we will consider that the parameters
of the communication model (α, β) are equal to fixed values
(α0, β0), and we will study the influence of the asynchronism
parameter δ and of the stochastic parameter σ on the algorithm
for both the gaussian and the advanced delay model presented
in 5.2.

The chosen simulation parameters are (α0, β0) = ( 5.0, 1.0)
which gives an average communication delay between all

(a) Normalized average convergence time E(ct(δ, σ)) as a function of δ

(b) Boxplot of the centered normalized convergence time ct′(δ, σ)

Figure 4: Values of the convergence time as a function of the asynchronism
parameter δ for several values of σ, using the gaussian communication delay
model. Figure (a) represents the average value of ct(δ, σ) while figure (b) rep-
resents the quartiles of ct′(δ, σ).

agents of α0 · 1 + β0 = 6 time units = 60 ms. We set the
time unit to 10 ms, which corresponds to the lower order of
magnitude of the end-to-end Internet communication delay, as
shown in section 5.3. The fact that σ is no longer equal to
0 means that the simulation becomes stochastic with regards
to communication delays. Therefore, we need to compute
several simulations for a given σ and study the statistics of
the results, as we would in a Monte-Carlo simulation. The
number of draws for each parameter group value is Ndraws = 50.

Let us set as reference the convergence time of the syn-
chronous and deterministic resolution of the peer-to-peer mar-
ket. The normalized convergence time is a stochastic variable
defined in Eq. (20) and its centered version is defined in Eq.
(21).

ct(δ, σ) =
CT(δ, σ)

CT(δ = 1, σ = 0)
(20)

ct′(δ, σ) = ct(δ, σ) − E [ct(δ, σ)] (21)

The reference convergence time value is equal to CT(δ =

1, σ = 0) = 440 time units = 4, 4 s. Given that the average
communication delay is equal to 60 ms and that the computa-
tion delays have been neglected, it takes approximately 73 ex-
changes between agents before convergence of the algorithm.

We focus at first on the gaussian communication delay
model. The average value of ct(δ, σ) is plotted as a function
of δ in Figure 4a for several values of σ. The box plot of the
centered variable ct′(δ, σ) is shown in Figure 4b.

10



Several remarks can be made from Figure 4:

• E(ct) is strictly increasing with the asynchronism parame-
ter δ, except in the synchronous case δ = 1.

• E(ct) < 1 for δ ≤ 0.8, which means that the asynchronous
cases are faster at reaching convergence compared to the
synchronous algorithm. However, E(ct) > 1 for δ ≥ 0.9,
which means that the synchronous case is faster. This can
be explained by the fact that when δ ≥ 0.9, the waiting
time of each agent is almost as long as in the synchronous
case, but they have to compute more iterations in order to
compensate for the lack of information.

• E[ct(δ = 0, σ = 0)] ' 60% resulting in a 40% speedup
against the synchronous reference case is obtained for the
smallest possible δ, which corresponds to Ntrig,i = 1 for all
i ∈ Ω. As soon as an agent receives a message, it proceeds
to make an update and send back the computed value to
the original sender.

• For a given δ,E(ct) increases with the stochastic parameter
σ, i.e. the variations of the communication delays.

• The box plot in Figure 4b shows that the normalized con-
vergence time dispersion gets smaller when δ gets smaller.
This implies that the convergence time becomes more pre-
dictable when the algorithm gets more asynchronous, and
that it is less affected by the variations in communication
delays.

6.4. Comparison of the gaussian and the advanced communi-
cation delay models

The communication delay model that has been used in sec-
tion 6.3 was the gaussian model, which is faster to compute
than the more realistic model presented in section 5.2. In this
section, we want to compare the convergence time results and
discuss the advantages and drawbacks of both the gaussian and
the more advanced models.

To do so, the stochastic delay parameter is set to σ = 0.2. As
described earlier, the model parameters are chosen so that the
expected value and the variance of both models match. The av-
erage values of the normalized convergence time are displayed
in Table 5 for various values of the asynchronous parameter δ.
First we observe that the convergence time is greatly underesti-
mated when using the gaussian model instead of the advanced
one for the synchronous version (δ = 1). This can be explained
by the fact that the advanced model has a long tail distribution,
which means that longer delays have more chance to be sam-
pled than with the gaussian model. This slows down the syn-
chronous resolution since the agents have to wait for every mes-
sages to arrive before they can resume their computation. This
does not affect as much the asynchronous resolution, hence we
do not see a big discrepancy in convergence time when using
the gaussian or the advanced model.

Figure 5 represents a boxplot of the centered normalized con-
vergence time ct′(δ, σ = 0.2), comparing both communication
delay models. The same comments as for Table 5 can be made

Table 5: Average normalized convergence time comparison between both com-
munication delay models, at a fixed stochastic delay parameter σ = 0.2.

δ Gaussian model Advanced model
E [ct] E [ct]

0.2 0.588 0.593
0.6 0.714 0.722
1.0 1.348 1.015

Figure 5: Boxplot of the centered normalized convergence time ct′(δ, σ = 0.2)
comparing the gaussian and the advanced delay models.

here: the use of the gaussian model gives similar results as the
advanced model for the asynchronous algorithm, however it un-
derestimates the dispersion of the convergence time for the syn-
chronous algorithm.

In conclusion, the gaussian communication delay model is a
good alternative to the more advanced model when simulating
the asynchronous resolution of the algorithm. However, it un-
derestimates both the average value and the dispersion of the
convergence time of the synchronous resolution. For the rest of
this article, the gaussian model will be used but we must keep
in mind that the more realistic convergence time of the syn-
chronous resolution is going to be larger than approximated by
the gaussian model.

6.5. Influence of the asynchrony on the number of exchanged
messages

We showed in Figure 4 that the more asynchrony the bet-
ter in terms of convergence time. However, this decrease in
convergence time is traded off against an increased number of
exchanged messages.

Let us set the reference number of exchanged messages as
before:

n(δ, σ) =
Nmes(δ, σ)

Nmes(δ = 1, σ = 0)
(22)

with Nmes being the number of exchanged messages to achieve
convergence, and Nmes(δ = 1, σ = 0) = 158 400 messages,
which corresponds to an average of 66 messages per commer-
cial link. The number of exchanged messages may be smaller
considering other stopping criteria as in [27].

We present in Figure 6 the normalized number of exchanged
messages as a function of δ. The gain in convergence time is

11



0.6 0.8 1 1.2 1.4

1

1.1

1.2

1.3

1.4

σ = 0.00

σ = 0.33

σ = 0.67

σ = 1.00

Normalized convergence time

N
or

m
al

iz
ed

 n
um

be
r o

f m
es

sa
ge

s

Figure 6: Normalized number of messages to complete the optimization
n(δ, σ), as a function of the normalized convergence time ct(δ, σ), and for sev-
eral values of the stochastic parameter σ.

achieved at the expense of an increase of communication ex-
changes. There is a balance to find between the number of mes-
sages and the convergence time. Moreover, the number of mes-
sages increases when the global convergence time decreases,
thus resulting in a higher network congestion that might in-
crease the communication delays.

Figure 6 also shows that the stochastic parameter σ, which
represents the variations of communication delays, does not af-
fect significantly the number of exchanged messages for a given
convergence time.

6.6. Influence of distance on the tradewise final convergence
Up to this point we have studied the effect of the communi-

cation network state on the global convergence time. We are
going to study the local, trade by trade, algorithm progress at
the time of convergence.

For every agent i ∈ Ω and every partners j ∈ ωi, the tradewise
primal residual (TR) is computed at the time of convergence:

TR(i, j) =
(
tki,conv

i, j + tk j,conv

j,i

)2
(23)

We can note that it corresponds to a single term in the equation
(7a). The various values of TR(i, j) are shown in Figure 7 as
a function of the normalized distance di j between the agents i
and j:

di j =
Di j

maxi′, j′ Di′ j′
(24)

with Di j as introduced in Eq. (15).
In the case δ = 1.0, i.e. the synchronous case, the distance

between agents has no impact on the tradewise residuals at con-
vergence because whatever the communication delays, agents
take into account everyone of their trading partners at every it-
eration.

In the case δ = 0.1, we can see that the agents that are located
closer to each other could communicate back and forth more
frequently, thus reducing their local residuals faster. We can
also notice that the dispersion of the tradewise residuals has
greatly increased.

(a) δ = 0.1

(b) δ = 1.0

Figure 7: Values of the tradewise primal residuals TR(i, j) for i ∈ Ω and j ∈ ωi
at the time of convergence as a function of the normalized distance between
agents di j. The blue lines represent the 25%, 50% and 75% quantiles.

Because we consider the global convergence as presented in
Eq. (9), the fact that the closer agents’ residuals are small al-
lows for the global algorithm to converge sooner, despite the
furthest agents’ residuals being higher than in the synchronous
case. This shows that a stopping criteria as in [27] could stop
exchanges between closely located agents, thus diminishing the
total number of messages.

From a market perspective, the participation of an agent to
the market could take into account communication delays cri-
teria.

7. Conclusion and future work

The asynchronous version of the peer-to-peer market clear-
ing algorithm presented some challenges concerning the vari-
ables’ updates, and the non-strictly convex formulation, that
were discussed in this paper. We showed that a strictly con-
vex formulation was necessary in order to obtain identical re-
sults in the asynchronous formulation as in the synchronous
one. A simple gaussian communication delay model has been
proposed and used to compare the performance of the asyn-
chronous algorithm to its synchronous version. This model
follows the assumption of bounded delays for each communi-
cation link. A more realistic communication model has also
been used to assess the limits of the gaussian model. The gaus-
sian model provides good estimation of the convergence time
for the asynchronous version of the algorithm, however it is
slightly more optimistic regarding the convergence time of the

12



synchronous algorithm. The asynchronous algorithm converges
towards the optimal solution, and it does so faster than the syn-
chronous algorithm. It has been shown that the gain in conver-
gence time was due to the frequent communications between
agents that are close in regards to the communication network.
This gain in time is made at the expense of the number of mes-
sages exchanged.

A few points of the proposed algorithm deserve further in-
spections. This algorithm may be implemented on hardware
with actual communication between agents. This will add real
computation and processing delays, which can be used to jus-
tify, or not, the negligible computation delays assumption made
in this paper. Thanks to the asynchronous algorithm, the com-
putation can continue even if one agent is disconnected from
the communication network. It can be interesting to demon-
strate how to handle such a disconnection in a safe way using
the hardware implementation. Also, the arbitrage penalty term
may be replaced as in [6] with different tariffs for each trades
in order to give preference to some exchanges over other ones.
As explained in the introduction, the aim of our proposed asyn-
chronous algorithm is to reduce convergence time in order to
get closer to real-time market resolution. The natural continu-
ation of this work would then be to implement a time varying
optimization with a warm-starting strategy. Another continua-
tion of this work would be to find the conditions relative to the
communication network to allow or not allow a new agent to
enter the peer-to-peer market, i.e. to prevent a slow down of the
market resolution.

References

[1] P. Panciatici, M. C. Campi, S. Garatti, S. H. Low, D. K. Molzahn, A. X.
Sun, L. Wehenkel, Advanced optimization methods for power systems,
in: Proceedings - 2014 Power Systems Computation Conference, PSCC
2014, Institute of Electrical and Electronics Engineers Inc., 2014.

[2] L. Baringo, M. Rahimiyan, Virtual power plants, in: Virtual Power Plants
and Electricity Markets, Springer, 2020, pp. 1–7.

[3] T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, E. Sorin, Peer-to-peer
and community-based markets: A comprehensive review, Renewable and
Sustainable Energy Reviews 104 (2019) 367–378.

[4] O. Jogunola, A. Ikpehai, K. Anoh, B. Adebisi, M. Hammoudeh, S.-
Y. Son, G. Harris, State-Of-The-Art and Prospects for Peer-To-Peer
Transaction-Based Energy System, Energies 10 (2017) 2106.

[5] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, J. Lavaei, A Survey of Distributed Optimization and Control
Algorithms for Electric Power Systems, 2017.

[6] T. Baroche, P. Pinson, R. Le Goff Latimier, H. Ben Ahmed, Exogenous
Cost Allocation in Peer-to-Peer Electricity Markets, IEEE Transactions
on Power Systems 34 (2019) 2553–2564.

[7] F. F. Wu, P. Varaiya, Coordinated multilateral trades for electric power
networks: Theory and implementation, International Journal of Electrical
Power and Energy Systems 21 (1999) 75–102.

[8] H. Pourbabak, Q. Alsafasfeh, W. Su, Fully Distributed AC Optimal Power
Flow, IEEE Access 7 (2019) 97594–97603.

[9] B. H. Kim, R. Baldick, A comparison of distributed optimal power flow
algorithms, IEEE Transactions on Power Systems 15 (2000) 599–604.

[10] T. Erseghe, Distributed optimal power flow using ADMM, IEEE Trans-
actions on Power Systems 29 (2014) 2370–2380.

[11] F. Iutzeler, P. Bianchi, P. Ciblat, W. Hachem, Asynchronous distributed
optimization using a randomized alternating direction method of multi-
pliers, in: Proceedings of the IEEE Conference on Decision and Control.

[12] A. Abboud, Distributed optimization in large interconnected systems us-
ing ADMM, Ph.D. thesis, Université Paris-Saclay, 2016.

[13] R. Zhang, J. T. Kwok, Asynchronous distributed ADMM for consensus
optimization, 31st International Conference on Machine Learning, ICML
2014 5 (2014) 3689–3697.

[14] T. H. Chang, M. Hong, W. C. Liao, X. Wang, Asynchronous Distributed
ADMM for Large-Scale Optimization - Part I: Algorithm and Conver-
gence Analysis, IEEE Transactions on Signal Processing 64 (2016) 3118–
3130.

[15] R. Zhu, D. Niu, Z. Li, A Block-wise, Asynchronous and Distributed
ADMM Algorithm for General Form Consensus Optimization, arXiv
preprint arXiv:1802.08882 (2018).

[16] J. Zhang, Asynchronous decentralized consensus ADMM for distributed
machine learning, in: 2019 International Conference on High Perfor-
mance Big Data and Intelligent Systems, HPBD and IS 2019, Institute of
Electrical and Electronics Engineers Inc., 2019, pp. 22–28.

[17] N. Bastianello, R. Carli, L. Schenato, M. Todescato, Asynchronous dis-
tributed optimization over lossy networks via relaxed admm: Stability and
linear convergence, IEEE Transactions on Automatic Control (2020).

[18] J. Zhang, S. Nabavi, A. Chakrabortty, Y. Xin, ADMM Optimization
Strategies for Wide-Area Oscillation Monitoring in Power Systems un-
der Asynchronous Communication Delays, IEEE Transactions on Smart
Grid 7 (2016) 2123–2133.

[19] J. Xu, H. Sun, C. J. Dent, ADMM-based Distributed OPF Problem
Meets Stochastic Communication Delay, IEEE Transactions on Smart
Grid (2018).

[20] J. Guo, G. Hug, O. Tonguz, Impact of communication delay on asyn-
chronous distributed optimal power flow using ADMM, in: 2017 IEEE
International Conference on Smart Grid Communications, SmartGrid-
Comm 2017.

[21] A. Huang, S. K. Joo, K. B. Song, J. H. Kim, K. Lee, Asynchronous
decentralized method for interconnected electricity markets, International
Journal of Electrical Power and Energy Systems 30 (2008) 283–290.

[22] M. H. Ullah, J. D. Park, Distributed Energy Optimization in MAS-based
Microgrids using Asynchronous ADMM, in: 2019 IEEE Power and
Energy Society Innovative Smart Grid Technologies Conference, ISGT
2019, Institute of Electrical and Electronics Engineers Inc., 2019.

[23] F. Moret, T. Baroche, E. Sorin, P. Pinson, Negotiation algorithms for peer-
to-peer electricity markets: Computational properties, in: 20th Power
Systems Computation Conference, PSCC 2018, Institute of Electrical and
Electronics Engineers Inc., 2018.

[24] J. Guo, G. Hug, O. K. Tonguz, Intelligent Partitioning in Distributed
Optimization of Electric Power Systems, IEEE Transactions on Smart
Grid 7 (2016) 1249–1258.

[25] T. Baroche, F. Moret, P. Pinson, Prosumer markets: A unified formu-
lation, in: 2019 IEEE Milan PowerTech, PowerTech 2019, Institute of
Electrical and Electronics Engineers Inc., 2019.

[26] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd, OSQP: An Op-
erator Splitting Solver for Quadratic Programs, Technical Report, 2020.

[27] R. Le Goff Latimier, T. Baroche, H. Ben Ahmed, Mitigation of com-
munication costs in peer-to-peer electricity markets, 2019 IEEE Milan
PowerTech, PowerTech 2019 (2019).

Appendix A. Coefficients of the market agents

The following table contains numerical data of the market
agents, including the cost function coefficients as in (A.1) and
the agent location used in (A.2).

fi(pi) = 2 · ai · p2
i + bi · pi (A.1)

Di j =

√
(locx,i − locx, j)2 + (locy,i − locy, j)2 (A.2)

13



i type ai bi pi pi locx, i locy, i i type ai bi pi pi locx, i locy, i
¤/kWh2 ¤/kWh kWh kWh ¤/kWh2 ¤/kWh kWh kWh

1 prod 0.0351 29.0 0 775 0,6626 1,2592 56 cons 0.0266 66.0 -1354 0 0,3644 0,0367
2 prod 0.0369 21.0 0 218 1,7075 0,5162 57 cons 0.0360 56.0 -467 0 1,6157 0,4855
3 prod 0.0367 29.0 0 823 0,1216 0,1727 58 cons 0.0388 55.0 -1475 0 0,0552 1,7017
4 prod 0.0347 38.0 0 1084 1,4693 1,1295 59 cons 0.0288 65.0 -1014 0 1,6899 0,6204
5 prod 0.0468 28.0 0 1081 1,2986 1,0040 60 cons 0.0274 66.0 -686 0 0,0102 1,5741
6 prod 0.0408 22.0 0 531 1,3640 0,5622 61 cons 0.0327 65.0 -164 0 1,7724 1,9118
7 prod 0.0346 29.0 0 261 0,9894 1,4688 62 cons 0.0414 81.0 -1183 0 0,4273 1,0198
8 prod 0.0403 9.0 0 900 0,3764 1,0746 63 cons 0.0245 55.0 -150 0 1,7541 1,1871
9 prod 0.0389 38.0 0 614 0,7723 0,4762 64 cons 0.0399 72.0 -1451 0 1,1051 0,8164

10 prod 0.0276 20.0 0 944 1,5919 1,9355 65 cons 0.0423 67.0 -1117 0 1,0255 1,1618
11 prod 0.0420 37.0 0 862 0,9101 0,5004 66 cons 0.0407 86.0 -753 0 0,0936 0,9535
12 prod 0.0321 31.0 0 562 1,3604 0,7221 67 cons 0.0318 81.0 -1368 0 0,6410 0,3118
13 prod 0.0360 23.0 0 929 1,7322 1,0304 68 cons 0.0248 75.0 -622 0 1,5136 1,0441
14 prod 0.0340 29.0 0 216 0,0253 1,8086 69 cons 0.0217 80.0 -472 0 0,3570 0,9966
15 prod 0.0356 32.0 0 251 0,2816 1,6919 70 cons 0.0297 70.0 -309 0 0,2856 0,7119
16 prod 0.0356 23.0 0 657 0,6980 1,8583 71 cons 0.0271 78.0 -409 0 0,7836 1,9152
17 prod 0.0247 34.0 0 70 0,6941 0,8823 72 cons 0.0375 73.0 -725 0 0,4933 0,8265
18 prod 0.0393 33.0 0 682 0,5370 1,6745 73 cons 0.0357 67.0 -868 0 1,8410 1,4669
19 prod 0.0353 29.0 0 514 0,9865 0,7615 74 cons 0.0341 72.0 -1027 0 0,5387 0,3468
20 prod 0.0395 12.0 0 386 1,9675 1,6190 75 cons 0.0236 60.0 -383 0 0,6470 1,2834
21 prod 0.0319 35.0 0 234 1,6393 1,8427 76 cons 0.0353 82.0 -660 0 0,1992 1,2598
22 prod 0.0314 20.0 0 100 0,6857 0,6969 77 cons 0.0359 76.0 -1420 0 1,1034 1,0929
23 prod 0.0296 37.0 0 445 1,7328 1,7711 78 cons 0.0309 65.0 -643 0 1,7707 1,2576
24 prod 0.0405 21.0 0 777 1,1198 0,8357 79 cons 0.0350 76.0 -1289 0 1,2828 1,0441
25 prod 0.0283 20.0 0 891 1,9156 0,8871 80 cons 0.0246 74.0 -937 0 0,0559 0,7919
26 prod 0.0492 33.0 0 757 1,1352 1,8558 81 cons 0.0341 80.0 -554 0 0,8907 0,5754
27 prod 0.0378 30.0 0 268 0,5235 1,9296 82 cons 0.0289 68.0 -592 0 1,9098 1,0736
28 prod 0.0480 28.0 0 578 0,2445 0,1685 83 cons 0.0410 49.0 -574 0 1,8727 0,5556
29 prod 0.0323 16.0 0 58 1,8959 1,1172 84 cons 0.0380 63.0 -470 0 0,9654 0,5558
30 prod 0.0371 14.0 0 1001 0,4950 1,8816 85 cons 0.0403 83.0 -683 0 1,2576 0,3562
31 cons 0.0390 74.0 -516 0 1,2932 0,1227 86 cons 0.0267 83.0 -10 0 0,1726 0,1066
32 cons 0.0429 66.0 -126 0 1,5768 0,2463 87 cons 0.0343 75.0 -375 0 0,6618 0,2125
33 cons 0.0407 76.0 -1463 0 0,4958 0,0629 88 cons 0.0375 88.0 -239 0 1,7992 0,8815
34 cons 0.0402 65.0 -1479 0 0,3429 1,0859 89 cons 0.0399 65.0 -1372 0 0,3684 0,1629
35 cons 0.0386 77.0 -834 0 0,2645 1,7631 90 cons 0.0393 73.0 -695 0 1,4312 1,6920
36 cons 0.0395 64.0 -765 0 0,0456 1,7721 91 cons 0.0375 53.0 -514 0 0,1660 0,4220
37 cons 0.0361 79.0 -1174 0 0,2507 1,0795 92 cons 0.0301 61.0 -1371 0 1,2704 1,1081
38 cons 0.0467 57.0 -181 0 1,6926 1,3312 93 cons 0.0301 70.0 -299 0 1,7400 0,0339
39 cons 0.0384 61.0 -1160 0 1,3496 1,1711 94 cons 0.0321 73.0 -586 0 1,8077 1,7412
40 cons 0.0241 56.0 -310 0 0,5308 0,8472 95 cons 0.0339 59.0 -1059 0 1,4840 0,6716
41 cons 0.0418 39.0 -1344 0 1,1601 1,2888 96 cons 0.0206 81.0 -293 0 0,6072 1,5895
42 cons 0.0425 70.0 -107 0 1,6866 0,7416 97 cons 0.0345 76.0 -794 0 1,4344 1,6162
43 cons 0.0370 77.0 -623 0 1,8418 1,2733 98 cons 0.0373 52.0 -946 0 0,2828 1,2928
44 cons 0.0330 66.0 -322 0 0,1251 1,1921 99 cons 0.0449 68.0 -522 0 0,6294 0,3967
45 cons 0.0348 54.0 -723 0 1,5502 0,3717 100 cons 0.0403 81.0 -1473 0 1,0658 1,2635
46 cons 0.0295 66.0 -1182 0 0,6214 0,7634 101 cons 0.0240 57.0 -1488 0 1,4196 1,8454
47 cons 0.0243 53.0 -249 0 0,6575 0,8622 102 cons 0.0404 62.0 -491 0 0,4892 0,5767
48 cons 0.0537 73.0 -44 0 0,0781 1,0403 103 cons 0.0428 65.0 -1031 0 0,7602 1,4163
49 cons 0.0355 69.0 -860 0 0,8139 1,3018 104 cons 0.0303 61.0 -121 0 1,2965 0,4389
50 cons 0.0326 69.0 -1394 0 0,4410 0,7359 105 cons 0.0438 69.0 -764 0 1,1921 1,8002
51 cons 0.0382 85.0 -8 0 1,7540 0,3778 106 cons 0.0341 54.0 -1191 0 0,7341 0,0059
52 cons 0.0416 50.0 -1021 0 1,9288 1,2116 107 cons 0.0351 76.0 -1487 0 1,8821 1,7931
53 cons 0.0424 70.0 -99 0 1,2611 1,5065 108 cons 0.0381 61.0 -476 0 1,6693 0,7555
54 cons 0.0402 80.0 -960 0 1,7170 1,3035 109 cons 0.0398 60.0 -1091 0 1,6574 1,8177
55 cons 0.0334 67.0 -117 0 0,1476 0,7530 110 cons 0.0308 76.0 -1035 0 1,4468 0,1260

14


