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VPN++: Rethinking Video-Pose embeddings for
understanding Activities of Daily Living

Srijan Das, Rui Dai, Di Yang, Francois Bremond

Abstract—Many attempts have been made towards combining RGB and 3D poses for the recognition of Activities of Daily Living
(ADL). ADL may look very similar and often necessitate to model fine-grained details to distinguish them. Because the recent 3D
ConvNets are too rigid to capture the subtle visual patterns across an action, this research direction is dominated by methods
combining RGB and 3D Poses. But the cost of computing 3D poses from RGB stream is high in the absence of appropriate sensors.
This limits the usage of aforementioned approaches in real-world applications requiring low latency. Then, how to best take advantage
of 3D Poses for recognizing ADL?
To this end, we propose an extension of a pose driven attention mechanism: Video-Pose Network (VPN), exploring two distinct
directions. One is to transfer the Pose knowledge into RGB through a feature-level distillation and the other towards mimicking pose
driven attention through an attention-level distillation. Finally, these two approaches are integrated into a single model, we call VPN++.
We show that VPN++ is not only effective but also provides a high speed up and high resilience to noisy Poses. VPN++, with or without
3D Poses, outperforms the representative baselines on 4 public datasets. Code is available at
https://github.com/srijandas07/vpnplusplus.

Index Terms—trimmed videos, pose, activities of daily living, embedding, attention.
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1 INTRODUCTION

L EARNING representations for human actions, taking into
account only the RGB modality is not sufficient. As a

consequence, a large corpus of research studies has been
focusing on multi-modal action recognition. The most pop-
ular and effective method is the two-stream approach [1],
[2], [3] where one stream models appearance by taking RGB
frames and the other stream models short-term motion by
taking optical flow frames. However, this method is effective
on videos obtained from web [4], [5], [6] where the human
actions have prominent motion patterns. But what about
Activities of Daily Living (ADL) where actions have subtle
motion and often pertain to have similar spatio-temporal
patterns?

Activities of Daily Living (ADL) may look simple but
their recognition is often more challenging than activities
present in sport, movie or Youtube videos. ADL often have
very low inter-class variance making the task of discriminat-
ing them from one another very challenging. The challenges
characterizing ADL are illustrated in fig 1: (i) short and
subtle actions like pouring water and pouring grain while
making coffee ; (ii) actions exhibiting similar visual patterns
while differing in motion patterns like rubbing hands and
clapping; and finally, (iii) actions observed from different
camera views. In the recent literature, the main focus is the
recognition of actions from internet videos [3], [9], [10], [11],
[12] and very few studies have attempted to recognize ADL
in indoor scenarios [13], [14], [15]. For instance, state-of-the-
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Fig. 1: Illustration of the challenges in Activities of Daily
Living: fine-grained actions (top), actions with similar visual
pattern (middle) and actions viewed from different cameras
(below).

art 3D convolutional networks like I3D [3] pre-trained on
huge video datasets [4], [5], [6] have successfully boosted the
recognition of actions from internet videos. But, these net-
works with similar spatio-temporal kernels applied across
the whole space-time volume cannot address the complex
challenges exhibited by ADL. Attention mechanisms have
thus been proposed on top of these 3D convolutional net-
works to guide them along the regions of interest of the
targeted actions [9], [12], [13].
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Fig. 2: Accuracy vs Time plot on Toyota Smarthome dataset
for RGB and Pose modalities. 3D Poses are estimated
using LCRNet++ [7] followed by Videopose3D [8]. Early
fusion indicates concatenation of features at the last layer
before prediction whereas Late fusion indicates averaging
the prediction from both modalities. Our proposed models
(marked with bounding box): VPN-F, VPN-A and VPN++
mimicking Pose stream, outperforms all other RGB and
Pose combining strategies, while being significantly faster.
Late fusion of the distilled models with Pose stream further
boosts the classification accuracy, but at the price of the
model efficiency. Note that the model with input modalities
denoted by RGB (+Poses) have been trained with RGB and
Poses but do not require Poses at inference time.

Towards another approach, recent studies [15], [16], [17]
have shown that human 3D poses provide a strong clue for
understanding human-centric patterns in videos. Of course
the use of 3D poses for human action analysis depends
on (i) the availability of good quality 3D poses and (ii)
architectures processing them. Thanks to algorithms like
LCRNet++ [7] and VideoPose3D [8], high quality 3D poses
can be obtained from RGB without the requirement of depth
sensors. Similarly, the advancement of Graph based CNN
architectures [18], [19], [20], [21] that take into account the
human joint configurations have greatly impacted the skele-
ton based action recognition. Since skeleton based action
recognition does not leverage the appearance information
in videos, combining 3D poses and RGB is the need of the
hour as studied in [14], [22], [23], [24], [25], [26], [27], [28].

The most common strategy for combining RGB stream
and 3D poses includes (i) feature or score level fusion [22],
[23], [24], [25]. As these modalities are heterogeneous, they
must be processed by different kinds of network to show
their effectiveness. This limits their performance in simple
multi-modal fusion strategy [22], [23], [29]. Therefore, an-
other approach adopted in recent days includes (ii) pose
driven attention mechanisms [14], [26], [27], [28]. However,
these methods have improved the action recognition perfor-
mance but they do not take into account the alignment of the
RGB cues and the corresponding 3D poses. Therefore, we
proposed a spatial embedding to project the visual features
and the 3D poses in the same referential in [30].

Further, this embedding is accompanied by an attention

network to recognize a large variety of human actions.
Thus, VPN consists of a spatial embedding and an attention
network. It exhibits the following properties through its
modules: (i) a spatial embedding learns an accurate video-
pose embedding to enforce the relationships between the
visual content and 3D poses, (ii) an attention network learns
the attention weights with a tight spatio-temporal coupling
for better modulating the RGB feature map, (iii) the atten-
tion network takes the spatial layout of the human body
into account by processing the 3D poses through Graph
Convolutional Networks (GCNs).

VPN to some extent overcomes the challenge of combin-
ing two modalities that are not only semantically different
but also processed through heterogeneous networks. To
go beyond these approaches, we study novel manners to
combine efficiently RGB and 3D Poses. In particular, we aim
at relaxing the need of high quality 3D poses, which are not
always available. In Figure 2, we provide a plot of action
classification accuracy vs average inference time on Toyota
Smarthome [15] dataset. From the plot, we observe that fea-
ture level fusion (Early Fusion) performs worse since such
fusion mechanisms are often prone to over-fitting [31] owing
to an increase in the number of parameters of the network.
Besides, Pose driven attention mechanism [30] yields high
classification accuracy compared to RGB [3] and Poses [20]
individually or their score level fusion (Late Fusion). But
these RGB+Poses based methods are significantly slower
than the RGB ones.

To this end, we explore the concept of knowledge dis-
tillation to infuse pose stream into RGB stream. Towards
this objective, we propose two levels of distillation - one
taking an approach of feature level fusion and the other one
benefiting from attention mechanism. First, we aim at trans-
ferring feature-level knowledge from Pose to RGB stream
to learn discriminative representation for recognizing ac-
tions, we call this feature-level distillation model VPN-F.
To learn VPN-F, we use contrastive learning for distilling
the knowledge from Pose stream to RGB. Besides avoiding
the computation of poses at inference time, VPN-F learns
to maximize the salient information from both streams
towards action recognition. Second, we mimic pose driven
attention network as in VPN through RGB stream. This
is performed by adding a self-attention block in the RGB
stream that hallucinates attention weights learned through
3D poses for the task of action recognition. We call this
attention-level distillation model VPN-A. As an end result,
VPN-A learns to provide pose driven attention weights
which not only improve the action classification accuracy
but also eliminate the requirement of poses at inference
time. Finally, we integrate both levels of distillation into
a single model called VPN++. Our experiments confirm
that VPN++ is 160 times faster than the state-of-the-art
methods without compromising effectiveness in real-world
scenarios as illustrated in fig. 2. We also show that VPN++
via distillation when combined with 3D Poses, if available,
outperforms the state-of-the-art results on 4 public datasets.
Thus, to sum up, by infusing Poses into RGB using distilla-
tion, we provide a choice of highly effective models to the
community that can be leveraged based on their needs like
low latency, low sensitivity towards noisy Poses, or none.
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2 RELATED WORK

Significant improvement has been made in the action recog-
nition domain after the advancement of 3D CNN [32].
Carreira and Zisserman [3] proposed a 3D CNN based fully
convolutional network namely I3D which is pre-trained on
huge datasets like Kinetics [5] to capture discriminative
spatio-temporal patterns within an action. With the suc-
cess of I3D, holistic methods like Pseudo 3D CNN [33],
Separable 3D CNN [34], slow-fast network [10], channel-
separated CNN [35], and X3D [36] have been fabricated
for generic video datasets like Kinetics [5], UCF-101 [4] and
HMDB [6]. But these networks with similar kernels applied
across the whole space-time volume of a video, are too
rigid to capture salient features for subtle patterns in ADL.
Recently several attention mechanisms have been proposed
on top of the aforementioned 3D ConvNets to extract salient
spatio-temporal patterns. For instance, Wang et al. [9] have
proposed a non-local module on top of I3D which computes
the attention of each pixel as a weighted sum of the features
of all pixels in the space-time volume. But this module
relies too much on the appearance of the actions, i.e., pixel
position within the space-time volume. As a consequence,
this module though effective for the classification of actions
in internet videos, fails to disambiguate ADL with similar
motion and fails to address view-invariant challenges.

On the other hand, temporal evolution of 3D poses has
been leveraged through sequential networks like LSTM and
GRU for skeleton based action recognition [37], [38], [39].
Taking a step ahead, LSTMs have also been used for spatial
and temporal attention mechanisms to focus on the salient
human joints and key temporal frames [40]. Another frame-
work represents 3D poses as pseudo images to leverage the
successful image classification CNNs for action classifica-
tion [41], [42]. Moreover, skeleton based action recognition
has made significant improvements with the advancement
of Graph Convolutional Networks (GCNs) [18], [19], [20],
[21]. The key idea is to feed a graph representation of a
skeleton frame in these networks which are optimized for
the task of action classification. These graph based methods
make use of the spatial topology of the human body joints
and thus are more effective than recurrent networks [16],
[38]. However, the skeleton based action recognition lacks
in encoding the appearance information which is critical for
ADL, such as in human-object interactions.
Combining modalities: Combining the advantages of priv-
ileged modalities in order to make use of their comple-
mentary discriminative power has been exploited widely
in action recognition domain. Two-stream architectures [1],
[2], [3] that learn separate features from optical flow and
RGB modalities, outperform single modality approaches.
Towards this direction, Ryoo et al. [43], [44] have proposed
a Neural Search Architecture (NAS) to combine both RGB
and Optical flow streams. In contrast to these methods, two
complementary strategies are adopted to combine RGB and
pose modalities. One is fusion of both modalities in feature
space [22], [23], [24], [25]. However, these modalities are
heterogeneous and must be processed by different kinds
of network to show their effectiveness. Combining these
heterogeneous features from different modalities through
feature/score fusion introduce noise resulting in a down-

graded action recognition performance [45]. The second is
pose driven attention mechanisms to guide the RGB cues for
action recognition as in [15], [26], [27], [28]. In [14], [26], [27],
the pose driven attention networks implemented through
LSTMs, focus on the salient image features and the key
frames. Then, with the success of 3D CNNs, 3D poses have
been exploited to compute the attention weights of a spatio-
temporal feature map. Das et al. [28] have proposed a spatial
attention mechanism on top of 3D ConvNets to weight the
pertinent human body parts relevant for an action. Then,
authors in [15] have proposed a more general spatial and
temporal attention mechanism in a dissociated manner. But
these methods have the following drawbacks: (i) there is no
accurate correspondence between the 3D poses and the RGB
cues in the process of computing the attention weights [14],
[15], [26], [27], [28]; (ii) the attention sub-networks [14], [15],
[26], [27], [28] neglect the topology of the human body while
computing the attention weights; (iii) the attention weights
in [15], [28] provide identical spatial attention along the
video. As a result, action pairs with similar appearance like
jumping and hopping are mis-classified. Therefore in [30],
we proposed a new spatial embedding to enforce the cor-
respondences between RGB and 3D poses which has been
missing in the state-of-the-art methods. The embedding is
built upon an end-to-end learnable attention network. The
attention network considers the human topology to better
activate the relevant body joints for computing the attention
weights. To the best of our knowledge, none of the previous
action recognition methods have combined human topology
with RGB cues. In addition, the proposed attention network
couples the spatial and temporal attention weights in order
to provide spatial attention weights varying along time.

However, all the above approaches including VPN rely
on the availability of 3D Poses, which not only escalates
the model inference time but also increases their sensitivity
towards Pose quality. Therefore, we use the concept of
distillation that not only learns discriminative video-pose
representations for understanding actions but also relaxes
the demand for Poses at inference time. Consequently, we
adopt both strategies to enforce RGB stream to (i) mimic
pose stream features, and (ii) emulate pose-driven attention
mechanism.
Distillation: Many approaches have exploited the concept
of distillation for cross-modal knowledge transfer [29], [46],
[47], [48], [49], [50], [51]. Towards action recognition, Garcia
et al. [49] proposed a distillation framework consisting of
teacher-student networks that hallucinates depth features
from RGB features. This distillation is performed via logits
as well as by matching feature maps of RGB and depth net-
works. Similarly, distillation approaches dynamically lever-
aging complementary information across several modalities
have been proposed in [29], [51]. Crasto et al. [50] proposed
MARS to train a RGB stream with standard cross-entropy
loss along with mimicking the features learned by an optical
flow stream. This mimicking is accomplished by a distilla-
tion loss that minimizes the euclidean distance between the
learned features across both streams.

Thus, many distillation methods have been studied in
the action recognition domain with OF and RGB, but not
with RGB and Poses. Infusing Poses into RGB stream
through distillation is not straightforward and includes
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two main challenges: (i) 2D RGB images with appearance
information and 3D Poses with geometric details are fed
to the teacher-student heterogeneous networks, limiting the
knowledge transfer between them due to their asymmetric
dimensionality; (ii) the teacher network, i.e. the Pose stream
is not consistently effective on the entire data distribution.
In fact, the Pose stream carries irrelevant features for actions
that are discriminated using their appearance information.
Therefore, we propose to minimize the distance between
the features learned by RGB & Poses while learning dis-
criminative representation in the RGB feature space. To-
wards another approach with an effective teacher network,
we perform online distillation (via collaborative learning)
to transfer pose driven attention knowledge learned from
VPN [30] to RGB stream. Distillation methods like [52],
[53] are close to our approaches, however they are specific
for image domain applications. In contrast, the extension
of VPN: VPN++ is dedicated for combining cross-modal
information pertaining to video domain applications. The
feature-level and attention-level distillation mechanisms to
infuse Poses into RGB stream through cross-modal knowl-
edge distillation provide a practical model for combining
RGB and 3D Poses.

3 VIDEO-POSE EMBEDDING MODELS

In this section, we first detail our previously proposed
Video-Pose Network (VPN), followed by an elaborate de-
scription of the video-pose embedding models through dis-
tillation. We aim at building a video-pose network VPN++
which benefits from two levels of distillation - (i) feature-
level, and (ii) attention-level. At training time, the inputs
to these models are RGB videos along with their corre-
sponding 3D poses. These 3D poses could be obtained either
from Kinect sensors using [54] or from RGB images using
pose estimation algorithms like LCRNet++ [7] and Video-
Pose3D [8]. The RGB images and the 3D Poses are processed
by a video backbone and a pose backbone respectively. In
this work, the video backbones are usually 3D CNNs that
take as input a stack of human cropped images from a
video clip to compute the spatio-temporal representation
of the clip. On the other hand, the Pose backbones are
spatio-temporal Graph Convolutional Networks that take
a stack of 3D Poses as a graphical input to model actions.
At inference time, traditional VPN requires both RGB and
3D Poses to predict the actions. In contrast, VPN++ requires
only the RGB videos at inference time to predict the action
classes.

3.1 Background: VPN

VPN can be thought as a layer which can be placed on top
of any 3D convolutional backbone. VPN takes as input a
3D feature map (f ∈ Rc×t×m×n) and its corresponding 3D
poses (P ) to perform two functionalities as shown in fig. 3.
First, to provide an accurate alignment of the human joints
with the feature map f . Second, to compute a modulated
feature map (f ′) which is further classified for action recog-
nition. The modulated feature map (f ′) is weighted along
space and time as per its relevance. VPN exploits the highly
informative 3D pose information to transform the visual

feature map f and finally, compute the attention weights.
This network has two major components: (I) an attention
network and (II) a spatial embedding.

3.1.1 Attention Network
The attention network consists of a Pose Backbone and
a spatio-temporal Coupler (STC). The input poses along
the video are processed in a Pose Backbone as shown in
fig 3. The pose based inputs of VPN are the 3D human
joint coordinates P ∈ R3×J×tp stacked along tp temporal
dimension, where J is the number of skeleton joints. The
Pose Backbone processes these 3D poses to compute pose
features h∗ which are used further in the attention network
for computing the spatio-temporal attention weights.
Next, the attention network in VPN learns the spatio-
temporal attention weights A from the output of Pose
Backbone in two steps as illustrated in fig. 4. In the first
step, m×n dimensional spatial and t dimensional temporal
attention weights are classically trained as in [40] to get the
most important body parts and key frames for an action.
This learning of spatial and temporal attention weights
takes place in two streams (z1 and z2) consisting of dense
layers each followed by relevant activations. In the second
step, joint spatio-temporal attention weights are computed
by performing a Hadamard product on the spatial and
temporal attention weights. In order to perform this matrix
multiplication, the spatial and temporal attention weights
are inflated by duplicating the same attention weights in
temporal and spatial dimension respectively.
This two-step attention learning process enables the atten-
tion network to compute spatio-temporal attention weights
in which the spatial saliency varies with time. The obtained
attention weights are crucial to disambiguate actions with
similar appearance as they may have dissimilar motion
over time. Finally, the spatio-temporal attention weights
A ∈ Rt×m×n are linearly multiplied with the input video
feature map f , followed by a residual connection with the
original feature map f to output the modulated feature map
f ′. The residual connection enables the network to retain the
properties of the original visual features.

3.1.2 Spatial Embedding of RGB and Pose
The objective of the embedding model is to provide tight
correspondences between both pose and RGB modalities
used in VPN. The state-of-the-art methods [15], [28] attempt
to provide the attention weights on the RGB feature map
using 3D pose information without projecting them into the
same 3D referential. The mapping with the pose is only done
by cropping the person within the input RGB images. The
spatial attention computed through the 3D joint coordinates
does not correspond to the part of the image (no pixel to
pixel correspondence), although it is crucial for recognizing
fine-grained actions. To correlate both modalities, an embed-
ding technique inspired from image captioning task [55],
[56] is used to build an accurate RGB-Pose embedding in
order to enable the poses to represent the visual content of
the actions.
Thus, the embedding is performed by propagating a nor-
malized euclidean loss between the visual features and a
spatial attention vector (z1 obtained from STC). Both the
visual feature and spatial attention vectors are obtained by
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Fig. 3: VPN takes as input RGB images with their corresponding 3D poses. The RGB images are processed by a visual
backbone which generates a spatio-temporal feature map (f ). The proposed VPN takes as input the feature map (f ) and
the 3D poses (P ). VPN consists of two components: an attention network and a spatial embedding (SE). The attention
network further consists of a Pose Backbone and STC (spatio-temporal Coupler). VPN computes a modulated feature map
f ′. This modulated feature map f ′ is then used for classification.

Fig. 4: STC: spatio-temporal Coupler to generate spatio-
temporal attention weights A from the latent pose based
feature h∗.

linear projection of the video content f and the 3D poses
into a common dimensional embedding space.

Finally, VPN is plugged into the 3D ConvNet for an
end-to-end training with a regularized loss L which is a
convex combination of entropy loss, embedding loss and an
attention regularization loss (refer to [30] for details).

Aiming at learning similar video-pose embeddings by
hallucinating discriminative pose-level features, we propose
an extension of VPN, namely VPN++. VPN++ effectively
makes use of the pose features at training time and elim-
inates its reliance over Poses at inference time. In fig. 5,
we provide a schematic diagram of VPN and our proposed
distillation models to illustrate the disparities among them.
VPN++ with only feature-level distillation is denoted as
VPN-F and VPN++ with only attention-level distillation is
denoted as VPN-A. Below, we elaborate the two levels of
distillation in VPN++.

3.2 VPN-F (Feature-level distillation)

VPN++ involves knowledge distillation among modalities
and thus, we have a teacher-student structure. This is re-
ferred to as the feature-level distillation in our model to
infuse Pose stream into RGB stream. This is an attempt
analogous to the spatial embedding in VPN. In order to
perform this distillation, the Pose stream is considered as
the Teacher Network TF , whereas the RGB stream as the
Student Network S . But unlike previous teacher-student
networks [29], [49], here the teacher network occasionally
provides irrelevant features, especially for actions where
appearance information is important. For instance, using
only Poses cannot discriminate actions like wearing a shoe
or taking off a shoe but they can provide salient information
about the localization of the action. For disambiguating
these actions with similar appearance, we have to go be-
yond just mimicking the Pose stream to capture discrim-
inative information. Consequently, we use the concept of
contrastive learning to learn a representation for which the
positive pairs are close to each other and negative pairs are
pushed apart in some metric space. Most related to our
work, Contrastive Representation Distillation [52] (CRD)
involves learning an unsupervised representation through
knowledge distillation followed by a downstream training
on the same set of training samples. In contrast, we focus
specifically on video domain (with RGB and 3D poses)
and formulate a supervised training strategy. This strategy
includes jointly optimizing the student network with the
class labels Ŷ in addition to distilling the knowledge from
Pose stream to RGB. This enables the actions with similar
appearance to move apart in the feature space due to their
dissimilar distillation through pose embeddings. We call the
model with only this feature-level distillation as VPN-F.
At training time, we learn the VPN-F representation in two
steps. Let Vi be a video (stack of RGB frames) and Pi be the
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Fig. 6: (A) The positive & negative video-pose pairs (at the left) are input to the teacher-student network. (B) VPN-F: VPN++
distillation model with only feature-level distillation. Here, the Pose Teacher network is pre-trained for action classification.
Supervised Contrastive Distillation (SCD) is applied between the RGB and Pose features. (C) VPN-A: VPN++ distillation
model with only attention-level distillation. Here, the teacher VPN* is the video-pose network [30] without the spatial
embedding (SE). Also, AT and TA(Vi, Pi) can be referred to as the attention weights (A) and modulated feature map (f ′)
of VPN (see fig. 3). Teacher network VPN* is trained collaboratively with the student RGB backbone.

corresponding 3D Poses for the ith sample in the training
set. In the first step, the teacher network T is trained with
the 3D poses for classifying Vi into C action classes and its
weights are then frozen.

In the second step, our goal is to learn a latent space
where semantically related RGB frames and Poses are close
to each other and far away otherwise. We achieve this by
imposing a supervised contrastive distillation (SCD) loss
between the teacher and the student at the feature level
as illustrated in fig. 6 (B). Inspired from audio-video [57]
and text-video analysis [58], we assign a set of candidate
positive pairs (Vi, Pi), thus the RGB frames and 3D Poses
are extracted from the same video labeled action Ck ∈ C.
On the other hand, the negative pairs are some randomly
associated data (Vi, Pj) where Pj is randomly chosen from
the subset C \ Ck as shown in fig. 6 (A).
For distillation, the SCD loss is imposed between the fea-
tures at the output of the layer immediately before the
final fully-connected layer of the teacher network and the
features of the visual embedding obtained from the RGB
student network. This visual embedding EF (Vi) is a linear
projection of fS , where spatio-temporal feature map fS is
computed by the RGB backbone S(Vi). We denote the fea-

tures from the teacher network as TF (Pj). We maximize the
mutual information between Pose teacher and RGB student
representations by jointly optimizing the student network
at the same time as we learn a video-pose embedding
[TF (Pj), EF (Vi)]. Thus, our distillation loss over a batch of
data (B) is formulated as the log likelihood of the data under
this model:

LSCD =
1

|B − N|
∑
i

log[TF (Pi), EF (Vi)]+∑
j 6=i

log(1− [TF (Pj), EF (Vi)])

where [TF (Pj), EF (Vi)] =
eTF (Pj)

ᵀEF (Vi)

eTF (Pj)ᵀEF (Vi) +M

(1)

Here, [TF (Pj), EF (Vi)] → (0, 1) corresponds to the video-
pose embedding and constantM is determined by the ratio
of the number of negatives N to the cardinality of the
dataset. Thus for the positive pairs, LSCD enforces the video
student representation EF (Vi) to project along the Pose
teacher representation TF (Pi). Conversely for the negative
pairs, the student representation is projected perpendicular
to the teacher representation in feature space. This feature
modulation (at student network) due to the distillation loss
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is accompanied by cross-entropy loss LSC to optimize the
RGB student network for predicting the action labels YS .
This joint optimization induces a selective infusion of the
pose features in the RGB space with respect to the action
class. Note that the student network is always fed with the
ground-truth Ŷ corresponding to the RGB input. So, a video
sample with corresponding ground-truth is repeated twice
in a mini-batch while training VPN-F with SCD loss.

3.3 VPN-A (Attention-level distillation)

Next, we aim at learning RGB representation benefiting
from attention mechanism. Attention mechanisms focusing
on salient image region across time have become instrumen-
tal for discriminative visual representation. For RGB based
ADL recognition, VPN [30] has shown that pose driven at-
tention mechanism is more accurate and effective compared
to the ones using self-attention mechanisms through RGB
itself. Therefore, we develop a second-level of distillation
for transferring pose driven attention knowledge to RGB
stream. For the sake of simplicity, we first explain the model
with only attention-level distillation, dubbed as VPN-A. For
this distillation, we chose our Video-Pose Network [30] as
a Teacher network TA. This Video-Pose Network (VPN*)
is implemented following [30] with no spatial embedding
since we find that the feature-level distillation could hal-
lucinate the features learned through spatial embedding in
VPN. The student network S is a video backbone, similar to
the one used in VPN-F.
The challenge is to transfer the knowledge of attention
weights learned by the teacher to the RGB student network.
Therefore, a self-attention block similar to [9] is invoked
in the RGB based network which could learn the attention
weights from the teacher. However, a feature-level distil-
lation in this case does not activate the relevant neurons
at the student network. We empirically support this claim
in the experimental analysis. Moreover, learning attention
weights is an evolutionary mechanism where a model learns
the salient regions in the spatio-temporal space with every
batch of iteration over the training data. So, for this level
of distillation, we opt for online distillation, where the
teacher VPN* and the student RGB backbone along with the
self-attention block collaboratively optimize their respective
entropy loss as illustrated in fig. 6 (C). Such a distillation
encourages the RGB student to produce similar attention
weights as the VPN* teacher, intuitively paying attention to
similar parts of the video as the teacher.
VPN-A is trained in a single step. On one hand, VPN*
teacher network is trained with action labels to learn pose
driven attention weights AT to modulate its RGB feature
map. Note that these attention weights corresponds to A
from STC of VPN discussed in section 3.1. On the other
hand, the student network intakes only the RGB frames.
The self-attention block projects the RGB feature fS to a
query (Q) and memory (key and value, K & V ) embedding
using linear projections (1×1×1 Conv), where typically the
query and keys are of lower dimension (see fig. 7 for a zoom
into the self-attention block). The output for the query, i.e.
the modulated feature map f ′S , is computed as an attention
weighted sum of values V , with the attention weights AS
obtained from the product of the query Q with keys K . The
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Fig. 7: VPN++: The proposed distillation model when both
VPN-F and VPN-A are integrated into a single model.
The student network consists of a RGB backbone and a
self-attention bock. At training, the model is trained in a
contrastive manner for the feature-level distillation, and col-
laborative manner for the attention-level distillation. Note
that Video-Pose attention model VPN* does not have the
spatial embedding module.

attention weights AS have to be learned from the evolution
of 3D Poses. So, we invoke a distillation loss between the
self-attention and VPN attention weights (AS & AT ). The
distillation loss is a classical Mean Squared Error (MSE)
loss between the attention weight embeddings (EA(AS) &
A+
T ) from the teacher-student network. The projection of the

attention weights (AS &AT ) is necessary since they differ in
terms of their dimensionality. This projection is performed
by linearly transforming them into the same dimension and
further normalizing them throughL-2 norm. The distillation
loss LD is formulated as

LD = ||A+
T − EA(AS)||2 (2)

The VPN* backbone, i.e. TA(Vi, Pi) classifies its modulated
feature map using the entropy loss LTC between the true
class labels Ŷ and the predicted class labels YT . Besides,
the modulated feature map f ′S at the student network is
classified simultaneously using the entropy loss LSC between
the same true class labels and the predicted class labels YS .

3.4 VPN++: Integrating VPN-F & VPN-A

Finally, we aim at learning a unified RGB representation
that can emulate both Pose based features and pose driven
attention weights. This objective also encourages the model
to jointly optimize the two levels of distillation loss along
with the cross entropy loss to learn the class labels. Thus,
we integrate the two levels of distillation into a single model
- we call VPN++. The training methodology of VPN++
involves contrastive learning for the feature-level distillation
and collaborative learning for the attention-level distillation.
In fig. 7, we show the VPN++ model with two levels of
distillation. Here the RGB student network includes the
RGB backbone and the self-attention block whereas there
are two teacher networks - a pre-trained Pose backbone for
infusing the pose features to the RGB stream, and VPN*
for transferring the pose driven attention knowledge to
the self-attention block of the student network. In order
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to incorporate the contrastive and collaborative learning
strategies both in the same model, a batch of samples with
(positive, negative) pairs for the feature-level distillation
and (positive, positive) pairs for the attention-level distilla-
tion is fed to the model. Note that the Pose teacher network
for feature-level distillation is frozen.
Thus, the RGB student network is jointly optimized with
the following linear combination of the distillation losses
and the entropy losses:

L = LSC(YS , Ŷ ) + LTC(YT , Ŷ )− αLSCD + βLD (3)

where α and β are the weighting factors of the distillation
losses. Thus, VPN++ not only learns to distill the pose
knowledge into RGB but also learn discriminative repre-
sentation through pose driven attention distillation. While
testing VPN++ (the RGB student network), we only use RGB
frames as input to compute the action class scores, avoiding
the requirement of 3D Poses.

4 EXPERIMENTS

We evaluate the effectiveness of VPN++ and its cor-
responding components for action classification on four
datasets popular for ADL: a real-world dataset - Toyota-
Smarthome [15], a large scale human activity dataset - NTU
RGB+D-60 [16], the super-set of NTU-60 dataset - NTU
RGB+D-120 [17], and a relatively small scale human-object
interaction dataset - Northwestern-UCLA [59].
Toyota-Smarthome (Smarthome or SH) is a recent ADL
dataset recorded in an apartment where 18 older subjects
carry out tasks of daily living during a day. The dataset
contains 16.1k video clips, 7 different camera views and
31 complex activities performed in a natural way without
strong prior instructions. This dataset provides RGB data
and 3D skeletons which are extracted from LCRNet [7].
For evaluation on this dataset, we follow cross-subject (CS)
and cross-view (CV2) protocols proposed in [15]. We ignore
protocol CV1 due to limited training samples.
NTU RGB+D (NTU-60 & NTU-120): NTU-60 is acquired
with a Kinect v2 camera and consists of 56880 video samples
with 60 activity classes. The activities were performed by 40
subjects and recorded from 80 viewpoints. For each frame,
the dataset provides RGB, depth and a 25-joint skeleton of
each subject in the frame. For evaluation, we follow the two
protocols proposed in [16]: cross-subject (CS) and cross-view
(CV). NTU-120 is a super-set of NTU-60 adding a lot of new
similar actions. NTU-120 dataset contains 114k video clips of
106 distinct subjects performing 120 actions in a laboratory
environment with 155 camera views. For evaluation, we
follow a cross-subject (CS1) protocol and a cross-setting
(CS2) protocol proposed in [17].
Northwestern-UCLA Multiview activity 3D Dataset (N-
UCLA) is acquired simultaneously by three Kinect v1 cam-
eras. The dataset consists of 1194 video samples with 10
activity classes. The activities were performed by 10 sub-
jects, and recorded from three viewpoints. We performed
experiments on N-UCLA using the cross-view (CV) protocol
proposed in [59]: we trained our model on samples from
two camera views and tested on the samples from the
remaining view. For instance, the notation V 3

1,2 indicates that
we trained on samples from view 1 and 2, and tested on
samples from view 3.
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Fig. 8: Accuracy of VPN-F (on left) and VPN-A (on right)
for different values of α & β respectively on Smarthome
(CS) and NTU-60 (CS) datasets.

4.1 Implementation details

For the input at training time, the 3D Poses are provided
for NTU and N-UCLA dataset. For Smarthome dataset, two
sets of 3D Poses, namely old and new Poses, are provided
which are eventually extracted from RGB. Note that the new
3D Poses are of higher quality compared to the older ones.
For VPN++, the Teacher network for feature-level distilla-
tion is AGCN-J [20] Pose backbone. Thus, we follow the pre-
processing step on the 3D Poses as in [20]. For attention-level
distillation, the Teacher Network (VPN*) is adapted with a
2 layer AGCN as Pose backbone and no spatial embedding.
The Student network is I3D [3] RGB backbone pre-trained
on ImageNet [60] and Kinetics-400 [5]. It takes 64 RGB
frames as input. The self-attention block is implemented
with an additional Non-Local block [9] placed on top of the
I3D (Mixed_5c layer).
Training. For training the teacher networks of VPN++ with
categorical cross entropy loss, we follow the steps as in [20]
and [30]. For training the student network, a dropout [61]
of 0.3 and a softmax layer are added at the end of the self-
attention block for class prediction. VPN++ is trained with
a 4-GPU machine where each GPU has 4 video clips in a
mini-batch. It is trained with SGD optimizer having initial
learning rate of 0.01, momentum of 0.9, and a weight decay
rate of 0.1 after every 10 epochs. While training VPN++, we
chose α = β = 50. For feature-level distillation, each batch
consists of 8 positives and 8 negatives.
Inference. At test time, we perform fully convolutional in-
ference in space as in [9]. The final classification is obtained
by max-pooling the softmax scores.

4.2 Hyper-parameter sensitivity

VPN-F and VPN-A distillation models are trained by a
linear combination of two losses: cross-entropy loss between
the logits and the ground-truth targets, and the distillation
loss between the video-pose features. In fig. 8, we report the
accuracy of VPN-F and VPN-A on Smarthome and NTU-
60 datasets using different values of α and β respectively.
We observe that a non-zero value of α or β increases the
action classification accuracy compared to the baseline RGB
stream. This shows the importance of the distillation from
Pose stream to RGB in both models. We also observe that
by increasing the weighting factor of the distillation loss, we
reach a peak accuracy for α = β = 50 as shown in fig. 8. This
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Loss SH NTU-60 NTU-60
(CS) (CS) (CV)

MSE [50] 61.8 89.1 92.4
CRD [52] 64.7 90.1 93.1
SCD 67.1 90.8 93.8

TABLE 1: Ablation for choice of distillation loss in VPN-F.

Model Poses SH NTU-60 NTU-60
(CS) (CS) (CV)

I3D w/o attention (backbone) × 53.4 85.5 87.3
I3D w NL attention (self-attn) × 53.6 88.4 87.1
I3D w pose attention (VPN) X 65.2 93.5 96.2

TABLE 2: Impact of pose driven attention (VPN) compared
to RGB based Non Local (NL) attention mechanism.

shows that our distillation models effectively leverage both
RGB and Pose streams to classify the action when combined
in a strategic manner. Further increase in the values of α or β
influences the distillation loss to dominate the student RGB
network while training. This causes the resultant student
network to mimic the Pose stream rather than exploiting
both streams.
For SCD loss, the choice of number of negatives for each
positive input (video-pose pair) is flexible. Conventionally,
more negatives for each Positive in contrastive learning
yields higher accuracy. This observation is not noted in
our case due to a supervised strategy of using the con-
trastive loss. Thus, we take one negative for each positive
to train VPN-F. We utilize the above observation for hyper-
parameters while training VPN++.

4.3 Ablation studies
In this section, we analyze the impact of proposed distilla-
tion methods w.r.t. previous methods. We also quantify the
robustness of VPN-F and VPN-A.
Which loss is better for feature-level distillation? In this
ablation study (Table 1), we compare different distillation
losses for transferring knowledge from pose features to
RGB features. The training strategy for all these losses are
different but are applied between the video-pose features
TF (Pj) and EF (Vi). The mechanism of learning visual rep-
resentation with the concept of contrastive learning between
the positive and negative samples (CRD [52] and SCD)
outperform the classical way to distillate knowledge using
MSE loss [50]. We also note that our SCD outperforms
CRD significantly on Smarthome, whereas the margin of
improvement on NTU is comparatively low. This indicates
that CRD is effective for scenarios where high quality Poses
are available and SCD is consistently effective even for low
quality Poses.
Why do we need to emulate pose driven attention? We
know that attention mechanisms are crucial for understand-
ing ADL [15]. But attention weights obtained using RGB
based self-attention mechanism like Non-Local blocks [9]
rely too much on variation of intensities in spatio-temporal
feature maps, hence lacks semantics. In contrast, 3D poses
capture the semantics in the videos and significantly im-
prove the action recognition performance as shown in Ta-
ble 2. Our VPN with pose driven attention significantly im-
proves the action classification accuracy by relatively 20.8%

Loss & distillation Collaborative SH NTU-60 NTU-60
strategies learning (CS) (CS) (CV)
SCD (feature level) × 55.7 89.1 91.5
SCD (feature level) X 51.1 87.1 89.5
SCD (attention weights) × 54.2 88.9 91.4
SCD (attention weights) X 53.1 87.4 90.6
MSE (attention weights) × 61.1 89.1 92.4
MSE (attention weights) X 62.1 90.0 93.1

TABLE 3: Comparison of VPN-A with other strategies to
distill pose driven attention.

Combining strategy Le Test SH NTU-60 NTU-60
time (s) CS CS CV

VPN-F (1st) + VPN-A (2nd) × 0.4 62.3 90.5 93.2
VPN-A (1st) + VPN-F (2nd) × 0.4 63.9 90.6 93.4

VPN-F + VPN-A (Late Fusion) × 0.7 68.7 91.7 94.8
VPN++ (multi-teacher) X 0.4 68.9 91.9 94.8
VPN++ (multi-teacher) × 0.4 69.0 91.9 94.9

TABLE 4: Comparison of different strategies to combine
VPN-F & VPN-A. Le represents the spatial embedding in
VPN* (teacher of VPN-A).

on Smarthome dataset. It is worth noting that the improve-
ment is significant for Smarthome compared to NTU-60 as
it contains many fine-grained actions with videos captured
by fixed cameras in an unconstrained Field of View. Thus,
enforcing the embedding loss enhances the spatial precision
during inference. Therefore, we chose to mimic pose driven
attention for a second-level of distillation in VPN++.
Which loss is better for attention-level distillation? For
VPN-A, we propose to distill knowledge at attention-level
than at feature-level due to its more effectiveness as sup-
ported by the experiments in Table 3. Note that the feature-
level distillation in the former experiment is performed
between the output of the modulated feature map of VPN*,
i.e. TA(Vi, Pi) and the modulated feature map of the student
network f ′S . We investigate the effectiveness of collabora-
tive training the teacher-student network for transferring
attention-level features. In these experiments in Table 3,
the VPN* teacher network is pre-trained and frozen when
collaborative training is not performed. We also compare the
performance of supervised contrastive distillation loss (most
effective loss in Table 1) with MSE loss at attention-level.
However, MSE loss with collaborative training strategy to
distill attention weights from VPN* Teacher network to
RGB based Non-Local student network outperforms the
baselines by up to 7.9% on Smarthome dataset. This shows
that reducing MSE between the attention weights of video
and pose embeddings is a better strategy to distill attention
weights than contrastive learning. This is coherent with the
fact that distillation of attention weights do not correspond
to positives and negatives w.r.t. video samples whereas
distillation at feature level represents entities that could
have positives and negatives.
How to combine VPN-F & VPN-A? In Table 4, we observe
a performance drop when both the training strategies of
VPN-F & VPN-A are combined in a sequential manner, one
after the other. The cause for this performance drop is the
difficulty for the second distillation to significantly modify
the RGB feature map (at student’s network) once the first
distillation has modified it. In contrast to these fusion strate-
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Stream SH NTU-60 NTU-60 NTU-120 NTU-120 N-UCLA
(CS) (CS) (CV) (CS1) (CS2) (V 3

1,2)
l1: RGB 53.4 85.5 87.3 77.0 80.1 86.0
l2: 3D Poses 51.5 85.8 93.8 79.6 81.1 78.2
l1 + l2 (Late Fusion) 63.0 87.7 94.8 81.1 83.3 87.1
l1 + l2 (attention) 65.2 93.5 96.2 86.3 87.8 93.5

O
ur

s

VPN-F 67.1 90.8 93.8 85.1 87.6 89.1
VPN-A 62.1 90.0 93.1 85.2 88.0 88.2
VPN++ 69.0 91.9 94.9 86.7 89.3 91.9
VPN++ + 3D Poses 71.0 94.9 98.1 90.7 92.5 93.5

TABLE 5: Top-1 accuracy of RGB, 3D Poses, VPN-F, VPN-A,
and VPN++ on 4 datasets.

Dataset Pose AGCN-J VPN VPN++
Quality [20] [30]

SH (CS) Medium 54.0 65.2 69.0
SH (CS) Low 49.1 62.1 66.8

NTU-60 (CS) High 85.8 93.5 91.9
NTU-60 (CS) Low 44.4 90.1 91.3

TABLE 6: Performance of several methods with different
levels of pose quality.

gies, the score level fusion of both student networks sig-
nificantly outperforms the above two end-to-end strategies.
Similar improvement is noted for our multi-teacher network
trained with contrastive and collaborative strategy. Due
to the lower final model complexity and lower inference
time, the multi-teacher network is superior than the one
with late fusion. This performance improvement highlights
the complementary optimizations which are well preserved
while training jointly in a single model in VPN++. Finally,
we also observe that spatial embedding in the teacher net-
work of attention-level distillation do not contribute to the
classification accuracy and hence can be ignored. This shows
that the feature-level distillation could hallucinate the pose
features performed by the spatial embedding in VPN.
Comparison of distilled models with RGB & Pose streams.
In Table 5, we compare our distillation models - VPN-F
& VPN-A with uni-modal models and their combinations.
RGB and 3D Poses are modeled using I3D [3] and AGCN-
J [20] networks. Following the state-of-the-art trends, RGB
and Poses are combined using score level fusion (Late Fu-
sion) and attention mechanism (VPN). Both VPN-F & VPN-
A significantly outperform the individual modalities. VPN-
F with contrastive distillation outperforms the late fusion
strategy of combining RGB and Poses on all the datasets
except NTU-60 (CV protocol). This exception is coming
from the high action classification performance (93.8%) with
view-invariant 3D poses for cross-view protocol of NTU-60,
where high quality 3D Poses are available. On the other
hand, VPN-A is an attention based model and requires
subsequently large amount of data for learning salient atten-
tion weights. This is corroborated by its lower classification
accuracy for NTU-60 in contrast to NTU-120 (up to 0.4%
higher than even VPN-F) where the number of training
samples is two times that of NTU-60. The combination of
VPN-F & VPN-A in VPN++ further boosts the classification
accuracy by up to 2.8% relatively on Smarthome. Further
improvement in action classification when combined with
3D Poses indicates that our distilled models still lacks

in terms of mimicking the Pose stream. However, their
superior performances compared to all prior techniques
of combining RGB and 3D Poses show the discriminative
representation learned by our VPN++.
What happens when the Pose quality degrades? As shown
in fig. 2, VPN++ does not require Poses at test time which
substantially reduces the model inference time. Thus, the
bad quality of Poses at inference time does not hamper
the performance of these models. But what if the Poses are
shoddy for the entire data distribution (even at training)? In
Table 6, we dig deeper into this problem by investigating the
influence of Pose quality on the performance for different
models. First, we describe the experimental setup to obtain
the different levels of Pose quality.
NTU-60 dataset was recorded in a laboratory, so we can
have hight-quality 3D Poses captured by the Microsoft
Kinect v2 sensor. For low-quality 3D Poses, we down-
scaled the original videos by reducing their resolution to
320 × 180 and randomly invoke partial occlusions to fab-
ricate the dataset similar to real-world settings. Then, we
extract the 3D Poses using LCRNet++ [7]. In Smarthome,
Poses are obtained from RGB rather than using depth-
map. For medium-quality 3D Poses, we apply Selective
Spatio-Temporal Aggregation based Pose Refinement Sys-
tem (SSTA-PRS) [62] which aims at improving the perfor-
mance of pose estimation by integrating the advantages of
several state-of-the-art pose estimation systems (eg. LCR-
Net++ [7], OpenPose [63] and AlphaPose [64]) to extract 2D
Poses. Then, we apply VideoPose3D [8] to obtain 3D Poses
over 2D Poses. For the low-quality 3D Poses, we only use
LCRNet++ [7].
The two baselines compared with VPN++ in Table 6 include
skeleton based model: AGCN-J [20] and RGB+Pose based
attention model: VPN. We observe that VPN++ is less sensi-
tive to the quality of Poses with a deterioration of classifica-
tion accuracy by 3.1% and 0.6% on Smarthome and NTU-
60 respectively compared to the baselines (4.7% & 3.6%
for VPN and 9% & 48.2% for AGCN-J). This experiment
shows that the quality of Poses highly impacts skeleton
based action recognition, whereas our distillation model
VPN++ outperforms even VPN without the requirement of
Poses at inference. The tolerance of VPN++ to noisy Poses
is due to the selective distillation of Pose features within the
video-pose embedding of the distillation mechanisms. For
instance, the degraded Poses contingent upon occlusions,
low subject resolution, or other real world scenarios pro-
vide ambiguous features pertaining to actions. Thanks to
the distillation mechanisms, we can filter the appropriate
pose based features while infusing knowledge into the RGB
stream.

5 QUALITATIVE VISUALIZATION

In fig. 9, we present a visualization of class activation maps
of RGB, VPN-F, VPN-A, and VPN++ using Grad-CAM [65].
These maps enable us to visualize discriminative regions
specific to each action class. VPN-F, for actions like reach
into pocket, VPN-A for actions like clean dishes, and both
VPN-F & VPN-A for actions with subtle motion like stirring,
focus sharply around the hands grasping objects providing
contextual information worth modeling the actions. The ac-
tivation map of RGB stream either focuses only on irrelevant
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Fig. 9: Qualitative visualization of class activation maps of
RGB, VPN-F, VPN-A, and VPN++ using Grad-CAM [65].
The red bounding box refers to the precised Region of
Interest relevant to classifying the action.
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Fig. 10: Action classification accuracy (in %) of top-10 actions
(a) for which Pose stream outperforms RGB stream, and (b)
which are mis-classified by both RGB and Poses.

motion patterns (see fig. 9). Moreover, the class activation
maps obtained for VPN++ select the ones (VPN-F or VPN-
A) that is effective for an action class. Thus, our combining
strategy of the two levels of distillation in VPN++ can
take advantage of the complementary features learned via
both distillation mechanisms. This qualitative visualization
shows that our distillation mechanisms learn discriminative
representation that exploits the contextual information in
the scene which is crucial for ADL.

6 QUANTITATIVE ANALYSIS

In this section, we present an analysis of Top-10 class-
wise performance of an RGB based approach, a Pose based
approach, & our distillation model VPN++ (see fig. 10).
First, (a) we present the performance of Top 10 actions
for which Poses outperform RGB. VPN++ outperforms
the Pose stream for all these actions which shows that
our model not only learns Pose based features but also
learns an augmented representation from the Pose teacher
network. Second, (b) we present the performance of Top

Methods Pose RGB Att CS CV2
DT [66] × X × 41.9 23.7
I3D [3] × X × 53.4 45.1
I3D+NL [9] × X X 53.6 43.9
AssembleNet++ [44] × X X 63.6 -

O
ld

Po
se

s LSTM [67] X × × 42.5 17.2
P-I3D [28] X X X 54.2 50.3
Separable STA [15] X X X 54.2 50.3
VPN [30] X X X 60.8 53.5
VPN++ ◦ X X 66.8 53.6

N
ew

Po
se

s 2s-AGCN [20] X × × 57.1 49.7
VPN [30] X X X 65.2 54.1
VPN++ ◦ X X 69.0 54.9
VPN++ + 3D Poses X X X 71.0 58.1

TABLE 7: Results on Smarthome dataset with cross-subject
(CS) and cross-view (CV2) settings (accuracies in %); Att
indicates attention mechanism, ◦ indicates that the modality
has been used only in training.

Methods Pose RGB Att CS CV
2s-AGCN [20] X × × 88.5 95.1
DGNN [19] X × × 89.9 96.1
MS-G3D Net [68] X × × 91.5 96.2
PEM [69] X X × 91.7 95.2

I3
D

Separable STA [15] X X X 92.2 94.6
P-I3D [28] X X X 93.0 95.4
VPN [30] X X X 93.5 96.2
VPN++ ◦ X X 91.9 94.9
VPN++ + 3D Poses X X X 94.9 98.1

R
N

X
3D

VPN (RNX3D101) [30] X X X 95.5 98.0
RNX3D101+MS-AAGCN [21] X X × 96.1 99.0
VPN++ ◦ X X 93.5 96.1
VPN++ + 3D Poses X X X 96.6 99.1

TABLE 8: Results on NTU-60 dataset with cross-subject (CS)
and cross-view (CV) settings (accuracies in %).

10 actions mis-classified by both RGB and Pose streams.
Interestingly, VPN++ improves the performance of RGB
stream for actions which are mostly mis-classified owing
to two challenges - (i) similarity in appearance like taking off
a shoe (+5%) or wearing a shoe, clapping (+4%) or rubbing two
hands, and (ii) subtle motion while performing the actions
like reading (+13%), writing (+1%), and headache (+2%). Thus,
VPN++ confirms empirically its potential to mitigate the
drawbacks of SoA approaches by effectively providing an
appropriate combination of the modalities (RGB and Poses)
through distillation.

7 COMPARISON TO THE THE STATE-OF-THE-ART

We compare VPN++ to the State-of-the-Art (SoA) on
Smarthome, NTU-60, NTU-120, and N-UCLA in Tables 7,
8, 9, and 10.

For smarthome dataset, we present the SoA categorized
into RGB and RGB+Pose based methods in Table 7. We
provide the evaluation results on old Poses and new Poses
(referred to as low & medium levels of Pose quality in
Table 6). VPN++ outperforms all the SoA methods by up
to 9.8% & 5.8% relatively with old and new Poses respec-
tively. This significant improvement on this dataset can be
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Methods Pose RGB Att CS1 CS2

2s-Att LSTM [70] X × X 61.2 63.3
Multi-Task CNN [71] X × × 62.2 61.8
PEM [69] X × X 64.6 66.9
2s-AGCN [20] X × X 82.9 84.9
MS-G3D Net [68] X × × 86.9 88.4
Two-streams [1] × X × 58.5 54.8
I3D∗ [3] × X × 77.0 80.1
Two-streams + ST-LSTM [17] X X × 61.2 63.1
Separable STA∗ [15] X X X 83.8 82.5
VPN [30] X X X 86.3 87.8
VPN++ ◦ X X 86.7 89.3
VPN++ + 3D Poses X X X 90.7 92.5

TABLE 9: Results on NTU-120 dataset with cross-subject
(CS1) and cross-setup (CS2) settings (accuracies in %); Att
indicates attention mechanism.

Methods Data Att V 3
1,2

HPM+TM [72] Depth × 91.9
Ensemble TS-LSTM [73] Pose × 89.2
SGN [74] Pose × 92.5
NKTM [75] RGB × 85.6
I3D∗ [3] RGB × 86.0
Glimpse Cloud [14] RGB+ Pose X 90.1
Separable STA [15] RGB+Pose X 92.4
P-I3D [28] RGB+Pose X 93.1
Global Model [76] RGB+Pose X 93.5
VPN [30] RGB+Pose X 93.5
VPN++ RGB+ Pose X 91.9
VPN++ + 3D Poses RGB+Pose X 93.5

TABLE 10: Results on N-UCLA dataset with cross-view V 3
1,2

settings (accuracies in %); Pose indicate its usage only in
the training phase.

explained by the video-pose embedding infused through
our two levels of distillation for combining RGB & Poses,
which in turn handles the challenge of low camera fram-
ing [15]. As discussed earlier, often low quality Poses are
obtained in real-world scenarios with occlusions and low
subject resolution. Thanks to the distillation mechanisms,
it encourages the classification model to selectively infuse
the relevant Pose information into the RGB stream. by pro-
viding a discriminative video-pose embedding. For NTU-
60 dataset, VPN++ achieves accuracy close to the methods
requiring Poses at test time whereas for NTU-120, VPN++
outperforms the later. We observe that the skeleton based
action recognition methods perform better compared to the
RGB based methods on NTU dataset. But this is due to
the high quality of Poses (with no occlusion) which makes
the dataset apt for Pose only methods. On the contrary, in
real-world dataset like Smarthome (see Table 7), the Pose
only methods substantially under-perform compared to the
RGB based methods. Another limitation of Pose only meth-
ods includes their lack of appearance encoding. However,
VPN++ when combined with 3D Poses outperforms SoA on
both NTU datasets. We confirm the robustness of VPN++ by
evaluating it with 3D ResNext-101 [34] as a video backbone

on NTU-60. Similar observations can also be done on N-
UCLA dataset in Table 10 hinting that VPN++ generalizes
over small scale datasets too.

Settings Model Choice Dataset Inference # Acc.
Criterion time Param. (in %)

Baseline (RGB) I3D [3] SH 0.3s 12M 53.4
Baseline (Pose) 2s-AGCN [20] SH 64s 3.5M 57.1

SoA VPN SH 65s 24M 65.2
A (↓) or B (↓) VPN++ SH 0.4s 14M 69.0
B (↑) or C (↓) VPN++ + Poses SH 64.4s 17.5M 71.0
B (↓) or C (↓) VPN-F SH 0.3s 12M 67.1

A (↓), C (↓), D (↑) VPN++ NTU-120 0.35s 14M 86.7
A (↓), C (↓), D (↓) VPN-F NTU-60 0.28s 12M 90.8

TABLE 11: Choice of models to the practitioners. ↑ indicates
High and ↓ indicates Low with (A) inference time, (B)
quality of poses, (C) model size, and (D) amount of training
data. Accuracy is provided for different Datasets.

8 DISCUSSION

In this paper, we extend our previous framework Video-
Pose network (VPN) to explore new mechanisms for com-
bining video and Poses in order to classify action. Conse-
quently, we have proposed two levels of distillation that
can be adapted to different real-world application settings
for recognizing actions. We summarize in table 11, the ap-
propriate choice of distillation model or fusion mechanisms
that could be exploited based on the requirements of a
practitioner. Along with providing the appropriate choice
of models, we also present the inference time, number of
parameters of the resultant model, and action classification
accuracy on relevant datasets. The choice of a model is based
on factors (i.e. application requirements or network settings)
concerning its applicability like (A) inference time, (B) qual-
ity of poses, (C) model size, and (D) amount of training
data. From this experimental analysis, we conclude that our
variants of distillation model (i.e., VPN++ and VPN-F) are
useful when the end-user wants real-time predictions (e.g.,
low inference time), whereas the late fusion of VPN++ and
Poses is preferred for offline action recognition. We notice
that VPN-F is an effective model if further speed-up is
required compared to VPN++ under the constraints of bad
quality of Poses or less available training data. Interestingly,
these lighter models are more accurate than models with
similar training modalities [14], [15], [28], [30], [76].

9 SCOPE BEYOND RGB AND POSES

In this section, we go beyond utilizing video-pose embed-
ding by combining video with other modalities like Optical
Flow through distillation. To this end, we investigate the
applicability of using the distillation mechanisms involved
in VPN++ for combining RGB and Optical Flow (OF). In
our experiments, following the attempts towards distillation
at feature space level [50], we use supervised contrastive
distillation loss (SCD) between the features of RGB and OF
streams. We dub this new Flow Augmented RGB stream as
VFN++. Note that the Flow backbone for this experiment is
an I3D flow stream. Experimentally, we find that attention
level distillation is not effective while using optical flow
as a Teacher. This might be due to high dimensionality
of the flow features that hampers the attention network
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Stream SH NTU-60 NTU-60
(CS) (CS) (CV)

RGB 53.4 85.5 87.3
OF 51.8 85.7 92.8
RGB + OF 57.3 87.1 93.6
MARS + RGB [50] 58.1 88.2 92.9
VFN++ 59.0 90.1 93.4
VFN++ + OF 66.4 94.6 97.2

TABLE 12: Effectiveness of Video-Flow Network++
(VFN++) representation using our SCD loss.

Fusion SH NTU-60 NTU-60
(CS) (CS) (CV)

RGB + OF + 3D Poses 64.4 90.2 95.9
VPN++ 69.0 91.9 94.9
VPFN++ 69.7 92.1 95.5
VPFN++ + 3D Poses 71.7 95.1 98.2
VPFN++ + 3D Poses + OF 72.9 96.7 99.1

TABLE 13: Combination of RGB, 3D Poses and Flow modal-
ities into a single model. Here VPFN++ is VPN++ + VFN++.

to learn relevant attention weights. Moreover, the flow
features are not view-adaptive and do not consider the
human anatomy while learning the attention weights. We
present a comparative study with VFN++ in Table 12. We
observe that VFN++ outperforms MARS+RGB due to the
supervised contrastive learning mechanism. On availabil-
ity of OF at inference time, the performance shoots up
significantly. However this accuracy is lower than the one
obtained with 3D Poses, substantiating that 3D Poses are
superior than OF for ADL with subtle actions. In Table 13,
we take a step forward towards combining VPN++ and
VFN++. We call this resultant model Video-Pose-Flow Net-
work++ (VPFN++). The combination is performed by the
late fusion of VPN++ and VFN++ prediction scores. The
minor performance improvement (+0.7% for Smarthome &
+0.4% for NTU-60) in VPFN++ compared to our distillation
model (VPN++) is attributed to OF distillation. So, for ADL,
OF does not contribute much when 3D Poses are already
well infused in RGB. With availability of Poses and OF at
test time, VPFN++ + 3D Poses + OF supersedes the SoA
models. Thus, our proposed framework could be extended
for combining privileged modalities which is a possible
perspective of this work. However, it is to be introspected
that the appropriate distillation mechanism may depend on
the given modalities.

10 CONCLUSION
In this paper, we have extended our proposed video-
pose embedding for video understanding and presented
a different perspective for combining RGB and 3D Poses
through knowledge distillation. In an attempt to rethink
combining RGB and Poses via feature fusion and atten-
tion mechanism, we propose two levels of distillation by
infusing Poses at training time - feature-level and attention-
level. Consequently, VPN++ does not rely anymore on the
availability of 3D poses at inference time resulting in high
speed up and high resiliency to noisy Poses. In addition

to this, VPN++ learns a discriminative representation for
classifying ADL. We show that VPN++ when combined
with 3D Poses, if available, outperforms the state-of-the-
art methods on 4 ADL datasets. Then, we study different
strategies of combining modalities for video understanding
which could be exploited by the community based on their
needs.
Preliminary results show also that VPN++ can be extended
to optical flow. Future work will explore towards an end-to-
end framework, infusing several modalities simultaneously
into a RGB stream.
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