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In this paper, we present a new multi-objective optimization approach for segmentation of Magnetic Resonance Imaging (MRI) of the human brain. The proposed algorithm not only takes advantages but also solves major drawbacks of two well-known complementary techniques, called fuzzy entropy clustering method and region-based active contour method, using multi-objective particle swarm optimization (MOPSO) approach. In order to obtain accurate segmentation results, firstly, two fitness functions with independent characteristics, compactness and separation, are derived from kernelized fuzzy entropy clustering with local spatial information and bias correction (KFECSB) and a novel adaptive energy weight combined with global and local fitting energy active contour (AWGLAC) model. Then, they are simultaneously optimized to finally produce a set of non-dominated solutions, from which L 2 -metric method is used to select the best trade-off solution. Our algorithm is both verified and compared with other state-of-the-art methods using simulated MR images and real MR images from the McConnell Brain Imaging Center (BrainWeb) and the Internet Brain Segmentation Repository (IBSR), respectively. The experimental results demonstrate that the proposed technique achieves superior segmentation performance in terms of accuracy and robustness.

Introduction

Image segmentation is the process of partitioning an image space into nonoverlapped meaningful homogeneous regions or objects, according to given quan-titative criteria: gray level, color, texture or combination of them [START_REF] Gonzalez | Digital image processing[END_REF]. For medical image analysis, the success of an image analysis system depends heavily on the quality of segmentation. We can find it in many real-life applications, for instance, in neurodegenerative disorders such as Alzheimer disease, in movement disorders such as Parkinson or Parkinson related syndrome, in congential brain malformations or perinatal brain damage, or in post-traumatic syndrome. However, the input MR brain images, which contain complex structures, are inherently noisy and often corrupted by intensity non-uniformity (INU) artifact due to various factors such as partial variations in illumination or radio frequency coil in image acquisition devices [START_REF] Simmons | Sources of intensity nonuniformity in spin echo images at 1.5 T[END_REF]. As a result, the automatic and accurate segmentation of MR images into different tissue classes, especially gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), remains a difficult task.

In order to achieve accurate segmented results, many segmentation techniques have been developed over many years and reported in the literature [START_REF] Clarke | MRI segmentation: methods and applications[END_REF][START_REF] Gordillo | State of the art survey on MRI brain tumor segmentation[END_REF][START_REF] Dora | State-of-the-art methods for brain tissue segmentation: A review[END_REF]. Their categorization is based on goals and specific aspects of data processing involved. Among those, fuzzy clustering and region-based active contours have been proved as the effective methods to produce segmented images. However, in both approaches, the image segmentation problem is formulated as an optimization problem, in which the energy fitting functions are non-convex and non-unique in nature and may have several local minimum points [START_REF] Le Thi | Fuzzy clustering based on non-convex optimisation approaches using difference of convex (DC) functions algorithms[END_REF][START_REF] Brown | Completely convex formulation of the Chan-Vese image segmentation model[END_REF]. Therefore, besides dealing with the presence of noise and INU artifact, these methods suffer from the problem of getting trapped into the first local minimum they encounter when using the gradient descent search method [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF].

Fuzzy clustering approach is one of the most widely used and studied methods in image segmentation because of its simplicity and applicability [START_REF] Pham | Adaptive fuzzy segmentation of magnetic resonance images[END_REF]. To cope with its challenges, many advanced methods have been proposed [START_REF] Suckling | A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images[END_REF][START_REF] Sikka | A fully automated algorithm under modified FCM framework for improved brain MR image segmentation[END_REF][START_REF] Elazab | Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernelbased fuzzy C-means clustering[END_REF][START_REF] Namburu | Soft fuzzy rough set-based MR brain image segmentation[END_REF][START_REF] Lei | Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[END_REF]. For instance, Namburu et al. [START_REF] Namburu | Soft fuzzy rough set-based MR brain image segmentation[END_REF] proposed a hybrid segmentation algorithm based on soft sets, namely soft fuzzy rough c-means, to extract the regions of gray matter, white matter and cerebrospinal fluid from MR brain image with bias field correction. Recently, we proposed a method [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF] to handle the problem of trapping into local minimum and to overcome the presence of noise and INU artifact. The proposed method uses particle swarm optimization (PSO) algorithm and takes into account local partial information and bias field correction in kernelization. On the other side, the region-based active contour methods also have been extensively employed in medical image segmentation [START_REF] Vovk | A review of methods for correction of intensity inhomogeneity in MRI[END_REF][START_REF] Jayadevappa | Medical image segmentation algorithms using deformable models: a review[END_REF]. For example, in [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF][START_REF] Liu | Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method[END_REF][START_REF] Li | Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation[END_REF][START_REF] Huang | An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation[END_REF][START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF], several methods have been proposed to overcome the problem of noise and INU artifact in segmentation of MR images. In [START_REF] Mandal | Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach[END_REF], to avoid convergence to local minima in Chan-Vese (C-V) [START_REF] Chan | Active contours without edges[END_REF] model, the authors used the PSO algorithm to minimize the fitting energy function. These algorithms can produce promising segmentation results, but they only treat the image segmentation problem with a single criterion, which is insufficient for dealing with the different properties of the images. In other words, using the single objective is only dedicated to exploring a subset of search space and cannot model all the geometric properties of segmentation solution. Simultaneous optimization of multiple segmentation criteria will help developers to cope with several characteristics of partitioning, lead to higher quality solutions and increase the robustness towards the different data properties. Motivated by this, in the present work, we propose a new method that integrates the advantages of both methods, and at the same time, solves their current limitations by using multi-objective particle swarm optimization approach based on novel fitness functions.

The formulation of image segmentation problem posed as one of multiobjective optimization (MOO) problems and solved by metaheuristics has been successfully used [START_REF] Bong | Multi-objective nature-inspired clustering and classification techniques for image segmentation[END_REF]. Mukhopadhyay et al. [START_REF] Mukhopadhyay | Multiobjective genetic clustering with ensemble among Pareto front solutions: Application to MRI brain image segmentation[END_REF][START_REF] Mukhopadhyay | A multiobjective approach to MR brain image segmentation[END_REF] proposed methods using cluster validity measures or their variants as objective functions and genetic algorithms (GA) as the underlying multi-objective framework. These methods have an advantage that they can automatically evolve the number of clusters/regions. In the same direction [START_REF] Zhao | A multiobjective spatial fuzzy clustering algorithm for image segmentation[END_REF][START_REF] Abdelaziz | Multiobjective fuzzy clustering with coalition formation: the case of brain image processing[END_REF], the authors introduced the non-local spatial information derived from the image into fitness functions and the Shapley value concept in selecting the best solution, respectively, to improve the segmentation results. Saha and Bandyopadhyay [START_REF] Saha | Automatic MR brain image segmentation using a multiseed based multiobjective clustering approach[END_REF] proposed a method that uses the archived multi-objective simulated annealing (AMOSA) to simultaneously optimize two cluster validity indices, XB-index and Sym-index, for segmentation of MR brain images. In [START_REF] Zhang | Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D[END_REF], to achieve a trade-off between preserving image details and restraining noise for image segmentation, the multi-objective evolutionary algorithm with decomposition (MOEA/D) is used to optimize FCM objective function and the other objective function designed by local information to restrain noise. In [START_REF] Benaichouche | Multiobjective improved spatial fuzzy c-means clustering for image segmentation combining Pareto-optimal clusters[END_REF], Benaichouche et al. used a MOPSO algorithm to optimize two complementary criteria, which are based on the spatial fuzzy c-means (FCM) clustering measure and its following results. Here, instead of choosing the final solution in a set of Pareto front solutions, they proposed a method that combines all solutions to get a better segmentation.

Choosing appropriate criteria to produce better segmentation results is a key problem in image segmentation. The previous works mentioned above only consider cluster validity indices or their variants as objective functions. To the best of our knowledge, most recent works do not take into account the benefit of a criterion that comes from the other approaches like such active contours implemented in level set framework. In addition, PSO is a population-based stochastic optimization technique regarded as a global search strategy, originally introduced by Kennedy and Eberhart [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF]. Compared with other metaheuristic algorithms such as GA, PSO has the advantages of simplicity, few parameter configurations, global exploration, adapted ability to some complex and continuous variable problems, and fast convergence. With the study of the MOPSO algorithms for problems of data clustering in general, several works have been proposed [START_REF] Abubaker | Automatic clustering using multiobjective particle swarm and simulated annealing[END_REF][START_REF] Gong | Improved multi-objective clustering algorithm using particle swarm optimization[END_REF]. However, applying these algorithms to MOO clustering of image segmentation, particularly segmentation of MR brain images, needs to be further explored [START_REF] Bong | Multi-objective nature-inspired clustering and classification techniques for image segmentation[END_REF].

To achieve more accurate results, we propose in this paper a new method for brain MRI image segmentation, which takes advantages of both fuzzy clustering and region-based active contour methods, and simultaneously solves their main problems: (i) sensitivity to noise and INU artifact; (ii) trapping into lo-cal minima and dependency on initialization. Segmentation is solved within a MOO process using an improved variant of the MOPSO algorithms based on two independent objective functions and a decision maker. The first one is kernelized fuzzy entropy clustering with local spatial information and bias correction, which is taken from our previous work [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF]. The second criterion is the adaptive energy weight global and local fitting energy active contour (AWGLAC) model, which is a novel model designed by using region-based active contour models with an adaptive mechanism for energy elements. Moreover, in both objective functions, the local spatial information and the bias correction are taken into account to cope with noise and INU artifact. The proposed MOPSO algorithm is a variant of the MOPSO algorithm introduced by Sierra and Coello [START_REF] Sierra | Improving PSO-based multi-objective optimization using crowding, mutation and -dominance[END_REF] with advanced concepts in updating control parameters, and selections of the personal best and global best proposed in [START_REF] Gong | Improved multi-objective clustering algorithm using particle swarm optimization[END_REF][START_REF] Branke | About selecting the personal best in multiobjective particle swarm optimization[END_REF][START_REF] Zhang | Multi-objective particle swarm optimization approach for cost-based feature selection in classification[END_REF] to improve the search ability and quality of solutions. The output is a set of non-dominated Pareto optimal solutions, from which the L 2 -metric method is used to select the final one [START_REF] Padhye | Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches[END_REF]. To validate the effectiveness of the proposed algorithm, we evaluate it on both simulated and real MR images from BrainWeb [START_REF] Kwan | MRI simulation-based evaluation of image-processing and classification methods[END_REF] and IBSR database1 , respectively. The results are reported and compared with other recent segmentation methods in the literature.

The rest of the paper is organized as follows. The problem formulation is described in Section 2. The MOPSO fundamental and advanced concepts to improve the search ability and the quality of solutions are presented in Section 3. The description of the proposed method, using MOPSO approach and decisionmaking process for MR brain image segmentation is given in Section 4. The performance of our method is evaluated and compared with a set of algorithms from the literature in Section 5. Finally, in Section 7, we draw the conclusion of this work.

Problem formulation 2.1. Image model and problem formulation

There are several models of MR image formation in the literature [START_REF] Vovk | A review of methods for correction of intensity inhomogeneity in MRI[END_REF]. Generally, they are based on assumptions that intensity inhomogeneity varies slowly over the entire image domain that otherwise would be constant for the same tissue type. In addition, the intensity inhomogeneity can be in multiplicative or additive types. Here, the multiplicative model is used since it is consistent with the inhomogeneous sensitivity of the reception coil. Noise in the image can be approximated by Gaussian probability distribution and is independent of the intensity inhomogeneity field. Furthermore, Huang and Zeng [START_REF] Huang | An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation[END_REF] also assume that there is a difference between the measured image and the traditionally approximated models in the local region. The difference is also independent of the intensity inhomogeneity and noise. Accordingly, an acquired MR image can be modelled as:

(I j ) N = I t j N (b j ) N + (d j ) N + (n j ) N (1) 
where I j is the measured intensity of the j th MR pixel; I t j is the true intensity value approximated by a constant x c i for all pixel in the i th tissue; b j is the unknown smoothly varying bias field, d j is the local difference between the measured image and the traditionally approximated model, n j is an additive zero-mean Gaussian noise with relatively small variance at the j th pixel, and N is the number of pixels in the MR image.

In this work, we consider (1) as a decomposition of the MR image into four components: I t j N , (b j ) N , (d j ) N , and (n j ) N . From this, we formulate the image segmentation problem as a MMO problem and a decision-making process of finding optimal values of these components with a view of an image as a function I : Ω → on a continuous domain Ω.

Note that through the assumption of dependence between four components is not always satisfied, it is essential to examine our segmentation problem ushered in a computationally tractable form.

Goal and proposed solution

The objective is to segment the MR image in an unsupervised way with accurate results. To achieve this, the problem of MR image segmentation is formulated within a MOPSO framework and a decision-making process to simultaneously estimate the true image with several segments and the bias field. The MOO approach to the problem is motivated by seeking two important properties in segmented images: compactness and separation, from two complementary approaches named fuzzy clustering and region-based active contours. Particularly, the first fitness function, which is taken from our previous work [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF], called kernelized fuzzy entropy clustering with local spatial information and bias correction, will have the purpose of minimizing the variation or scattering of the data within a particular tissue (compactness). In addition, the second fitness function is a novel one developed by combining local and global region-based active contour models with adaptive weight energy mechanism named adaptive energy weight local and global fitting energy active contour model. These objective will try to isolate the clusters/regions from each other (separation). Furthermore, the local spatial information and the bias correction are considered in both fitness functions to deal with noise and INU artifact. The output of the MOO algorithm is a set of non-dominated Pareto optimal solutions, in which certain solution is not possible to improve one objective without worsening another.Then, the L 2 -metric method is used to find final one with the best trade-off between the two objectives.

3. Multi-objective particle swarm optimization algorithm 3.1. Basic principles of PSO Kennedy and Eberhart [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF] originally proposed the PSO algorithm, which is inspired by social behaviour of bird flocking and fish schooling, for optimization problem. Similar to other evolutionary algorithms such as GA, PSO is a population based stochastic optimization algorithm and regarded as a global search strategy. However, many studies show that traditional PSO algorithms may easily be trapped into local suboptimal solutions. Several approaches [START_REF] Zhang | Alcoholism detection by medical robots based on hu moment invariants and predator-prey adaptive-inertia chaotic particle swarm optimization[END_REF][START_REF] Zhang | Multivariate approach for alzheimer's disease detection using stationary wavelet entropy and predator-prey particle swarm optimization[END_REF] in literature have been proposed to overcome the problem. In PSO, each individual, which is considered as a potential solution to the optimization problem, (called particle) of a given population (called swarm) can profit from the previous experiences of all other individuals from the same population. Through the search process in the solution space, each particle will adjust its velocity and position according to its own flying experiences as well as from the others in the swarm.

Let us consider a swarm of size N p. Each particle containing L elements, denoted by i, has a position vector X i = (x i1 , x i2 , . . . , x iL ) and a velocity vector V i = (v i1 , v i2 , . . . , v iL ), its own best position pBest found so far, and interacts with neighbouring particles through the best position gBest discovered in the neighbourhood so far. The position optimality is measured by means of one or more fitness functions defined in relation to the optimization problem. At iteration k th in the search process, each particle is moved according to equations (2) and (3):

V i (k + 1) = wV i (k) + c 1 r 1 [pBest (k) -X i (k)] + c 2 r 2 [gBest (k) -X i (k)] (2) X i (k + 1) = X i (k) + V i (k + 1) (3) 
where r 1 and r 2 are random variables, uniformly distributed in [0, 1] to provide stochastic weighting of the different components participating in the velocity. c 1 and c 2 are acceleration coefficients that scale the influence of the 'cognitive' and 'social' components, respectively, and w is inertia weight. There are two basic criteria for assessing the performance of PSO algorithm, namely, the convergence and the ability to find global optima. To optimize both criteria, keeping balance between global exploration and local exploitation is crucial.

Multi-objective particle swarm optimization algorithm

From a mathematical viewpoint, a general MOO problem can be formulated as follows:

minimize: F(x) = (f 1 (x), f 2 (x), . . . , f m (x)) T subject to g j (x) ≥ 0, j = 1, • • • , J h k (x) = 0, k = 1, • • • , K (4) 
where J and K are the numbers of inequality and equality constraints, respectively. x = (x 1 , x 2 , . . . , x L ) is a L-dimensional candidate solution in search space Ω. The mapping function Φ : Ω → m defines m objective functions (f i (x), i = 1, ..., m) and m is called the objective space. The solving of a MOO problem relies on a crucial concept, which is that of dominance. A decision vector x p = (x p1 , x p2 , . . . , x pL ) is said to strictly dominate another decision vector x q = (x q1 , x q2 , . . . , x qL ), donated by x p ≺ x q . If the following conditions are met, one can say that x p dominates x q or x p is better than x q : ∀i : f i (x p ) ≤ f i (x q ) and ∃j : f j (x p ) < f j (x q )

(5

)
where i = 1, ..., m; j = 1, ..., m. In MOO, when a solution is not dominated by any others, it is referred to as a Pareto optimal solution. The latter is said to be non-dominated, and the set of all non-dominated solutions forms the Pareto front of optimal solutions. In MOO, each particle can have several non-dominant pBest. The swarm can also have several non-dominant gBest. As a result, extending PSO to MOO problems raises three fundamental questions [START_REF] Reyes-Sierra | Multi-objective particle swarm optimizers: A survey of the state-of-the-art[END_REF]:

(i 1 ) How to select the pBest for each particle and the gBest for the swarm to give preference to non-dominated solutions ?

(i 2 ) How to retain the non-dominated solutions found during the search process so that the solutions are non-dominated with respect to all the past populations, not only to the current one ?

(i 3 ) How to maintain diversity in the swarm in order to avoid convergence towards a single solution ?

For the image segmentation problem, several MOPSO-based approaches have been proposed in the literature [START_REF] Benaichouche | Multiobjective improved spatial fuzzy c-means clustering for image segmentation combining Pareto-optimal clusters[END_REF][START_REF] Paoli | Clustering of hyperspectral images based on multiobjective particle swarm optimization[END_REF][START_REF] Arulraj | Multicriteria image thresholding based on multiobjective particle swarm optimization[END_REF]. However, previous studies have some limitations. Firstly, they do not take into account the distribution of solutions in the Pareto front, which have a unique feature in multi-objective clustering problems, to select the gBest [START_REF] Gong | Improved multi-objective clustering algorithm using particle swarm optimization[END_REF]. Secondly, the pBest is given by comparing the present solution with the current pBest, and it replaces the pBest only if it dominates that solution, which may cause a lack of diversity of the algorithm. In addition, the flight parameters (w, c 1 , and c 2 ) are fixed, which comes from an experimentally exhausted process.

In this work, the approach proposed by Sierra and Coello [START_REF] Sierra | Improving PSO-based multi-objective optimization using crowding, mutation and -dominance[END_REF] is considered as a basic MOPSO algorithm to develop. To improve the convergence and maintain diversity of the non-dominated solutions, we utilize the state of the art in MOPSO developments, particularly in the selection of gBest, pBest, and updating flight parameters. The procedure of improved MOPSO algorithm is summarized in Algorithm 2.

Note that, the crowding distance is calculated by using the procedure proposed by Kalyanmoy Deb et al. [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF], which is described in Algorithm 1.

Here, gA(i) m refers to the m th objective function value of the i th individual in the global archive gA(t) and parameters f max m and f min m are the maximum and minimum values of the m th objective function, respectively.

Furthermore, the hypercubes in this work are currently built using an adaptive grid [START_REF] Knowles | Approximating the nondominated front using the pareto archived evolution strategy[END_REF]. At each iteration, the objective space is divided using a grid so that the crowding of the solutions is measured using the crowding distance in the objective space within the grid. As a result, solutions at the highly populated cells can be removed or replaced to reduce computational overhead and overcome the problem of size limitation of the storing archives.

Global best selection mechanism

The selection of gBest is based on "leader selection strategy of whole process proposed by Gong et al. [START_REF] Gong | Improved multi-objective clustering algorithm using particle swarm optimization[END_REF], which makes MOPSO algorithm avoid trapping 

7 for i = 2 to (l -1) do 8 Dist[i] = Dist[i] + (gA(i + 1) m -gA(i -1) m )/(f max m -f min m );
in local optimum by considering the distribution of the Pareto set. The gBest is selected among the leftmost, rightmost, and middle solutions in the current Pareto front with certain selection probability (higher for the middle one, and smaller for the others). In their works, the middle solution is selected as follows:

f it s = arg    min    m j=1 f ij       , with i = 1, • • • , N r ; j = 1, • • • , m. (6) 
where N r and m are the numbers of non-dominated solutions and fitness functions, respectively. f ij is the objective function value of the j th fitness function of the i th solution after normalization. However, in our work, to enhance the trade-off property of the middle solution among the others, we select the middle one as follows:

f it s = arg    min    m j=1 f 2 ij       , with i = 1, • • • , N r ; j = 1, • • • , m. (7)
Note that, for the problem with two fitness functions, the middle solution, actually, is the closest one to the ideal solution which simultaneously has minimum fitness values. To examine the impact and efficiency of this mechanism, we did a comparison with the original one (applying roulette wheel selection to choose one hypercube among those having more than one particle, then, randomly selecting a particle in the hypercube and considering it as the global best) in the MOPSO algorithm proposed by Coello et al [START_REF] Sierra | Improving PSO-based multi-objective optimization using crowding, mutation and -dominance[END_REF] in terms of DICE coefficient. The two mechanisms were tested on simulated MR images (slices 75, 85, 95, 105, 115 with 9% noise and 40% INU artifact downloaded from BrainWeb). From Table 1 and Figure 1, it can be seen that the proposed strategy generally provides better segmentation results, which are about 0.39% in terms of DICE coefficient in average.

Personal best selection mechanism

In this paper, the "Diversity" strategy proposed by Branke and Mostaghim is used because of its improvement ability in maintaining diversity for MOPSO algorithm [START_REF] Branke | About selecting the personal best in multiobjective particle swarm optimization[END_REF]. The pBest is stored in personal archive and updated in each generation. Among all the pBest solutions visited in the past, the one which has the largest minimum crowding distance to any others, is selected. In other words, one selects the most isolated solution from the others as the current pBest to force the particle to explore the regions which are far from those in the population.

Flight parameter mechanism

To have a better global exploration of the search space, most of existing works on MOPSO show that (w, c 1 ) parameters should be large and c 2 should be small in the beginning stage of iterations. Then, towards the end of the algorithm, to promote a better local exploitation, (w, c 1 ) parameters should be small and c 2 should be large. In this work, the law of updating flight parameters (w, c 1 , and c 2 ) is adopted from Zhang et al.'s work [START_REF] Zhang | Multi-objective particle swarm optimization approach for cost-based feature selection in classification[END_REF], in which the w is fixed (equal to 0.4) and the (c 1 , c 2 ) are modified as follows:

c 1 (k + 1) = 2.5 -2. (k/K max ) , c 2 (k + 1) = 0.5 + 2. (k/K max ) (8) 
where k and K max are, respectively, the iteration numbers starting from one and maximum number of allowable iterations. Update the contents in the hypercubes as detailed in [START_REF] Sierra | Improving PSO-based multi-objective optimization using crowding, mutation and -dominance[END_REF] until the stopping criteria are met

Proposed method

This section describes the proposed image segmentation method, which is based on iMOPSO approach and a decision-making process. Two fitness functions are used, KFECSB and AWGLAC. The results of the iMOPSO algorithm is a set of Pareto solutions. In other words, the iMOPSO algorithm provides solutions such that each one cannot be estimated as better compared to the others. To find the final solution, the L 2 -metric method is used as a decision-making process to select one among the others in the Pareto set. The technique is illustrated below in detail.

Preprocessing

In this stage, there are two issues that are considered. The first one is skull stripping and the second is image enhancement.

Skull stripping is crucial to study neuroimaging data. Several existing techniques, such as Brain Extraction Tool (BET), Brain Surface Extractor (BSE), ANALYZE 4.0 (The Biomedical Imaging Resource at Mayo Clinic, Rochester, MN) and modified Region Growing tool (mRG), have been proposed to remove the skull and the background region from MRI [START_REF] Lee | Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error[END_REF]. In our work, the skull stripping algorithm, which is based on brain anatomy and image intensity, is illustrated in Figure 2. First of all, the histogram of a given image is shown, from which a proper threshold is selected to get a binary image. Then, imfill operation is used to clean the binary image. By utilizing the solidity property and using morphological operations, the skull and brain regions are identified. Finally, the skull-stripped image is obtained by masking the original image with the brain region mask above. In addition, image enhancement is an essential step used in most applications of image analysis. Usually, brain images do not have good contrast and are corrupted by noise. To reduce the effect of these artifacts, in this work, the non-local algorithm for image denoising proposed by Antoni Buades et al. [START_REF] Buades | A non-local algorithm for image denoising[END_REF] was used. This algorithm not only decreases the noise in the image but also improves the local contrast of the image.

Particle representation

In this work, the particles are made up of real numbers which represent the coordinates of the cluster/region centers in the range of pixel values in the image. For N p solutions with L distinct centers, there are in total (N p .L) optimization variables that need to be encoded. For instance, the position of i th solution in the population is encoded as: X i = (x i1 , x i2 , . . . , x iL ). Here, x iq (q = 1, • • • , L) represents the q th cluster centre among L centres of the i th solution. In this way, the centers, X = x c q L , are obtained by decoding X i .

Segmentation criteria

The performance of a segmentation algorithm critically depends upon the criteria it tries to optimize simultaneously. We propose to jointly optimize two independent fitness functions to obtain both the complementary properties of segmented images: compactness and separation, simultaneously dealing with noise and INU artifact.

KFECSB

The first objective function is the kernelized fuzzy entropy clustering with local spatial information and bias correction (KFECSB), taken from our previous work [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF]. As brain MR images can be corrupted by different artifacts, a pixel at the boundary of two or more regions can easily induce classification errors under the greyness ambiguity or geometric blur that reduces the sharpness of the objects contours in the image. By using the fuzzy concept to consider each pixel belonging to several regions with different degrees, we can manage and overcome these difficulties more efficiently. Based on the assumptions in 2.1, we assume that the difference between a measured image and the approximated model in the local region is equal to zero. Let I = (I 1 , I 2 , . . . , I N ) be an image with N pixels, where I j represents the intensity value of j th pixel, the cost function is given by:

F KFECSB (X, B, U) = L i=1 N j=1 u ij (1 -K(I j , x c i b j )) + 1 ϑ L i=1 N j=1 u ij log (u ij ) + η L i=1 N j=1 u ij 1 -K(I j , x c i b j ) (9) 
Satisfying the following conditions:

U ∈    u ij ∈ [0, 1] L i=1 u ij = 1, ∀j and 0 < N j=1 u ij , ∀i    ( 10 
)
where X = (x c i ) L (with 1 < L < N ), U = (u ij ) L×N and B = (b j ) N are the set of L cluster prototypes, the partition matrix and the bias field estimation, respectively. I = I j N is the median of the image I with window of size 3 × 3. K (•, •) is the Gaussian kernel function, which is calculated by using Eq. ( 11)

K(I j , x c i b j ) = e -||Ij -x c i bj || 2 /σ 2 (11) 
with

σ 2 = λ N N j=1 ||I j -I mean || 2 and I mean = 1 N N j=1 I j . ( 12 
)
where λ is a constant fixed empirically. By using the Lagrange multiplier method, the updates of the cluster centers, X = (x c i ) L , and the membership degrees, U = (u ij ) L×N , are presented in Eqs. ( 13) and ( 14), respectively:

x c i = N j=1 u ij I j .K(I j , x c i b j ) + η.I j .K(I j , x c i b j ) N j=1 b j u ij K(I j , x c i b j ) + η.K(I j , x c i b j ) (13) 
u -1 ij = L r=1 exp 1 ϑ (1 -K(I j , x c r b j )) + η. 1 -K(I j , x c r b j ) exp 1 ϑ (1 -K(I j , x c i b j )) + η. 1 -K(I j , x c i b j ) (14) 
The bias field estimation of B = (b j ) N , based on Li et al.'s work [START_REF] Li | Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation[END_REF], is computed by using partition matrix, U = (u ij ) L×N , and cluster centres, X = (x c i ) L , as follows:

B =      L i=1 G × I N j=1 x c i u ij   -1   G × G T N j=1 (x c i ) 2 u ij      T G (15) 
where G = (g 1 , g 2 , . . . , g H ) T is a set of 12 2D orthogonal three order Legendre polynomial functions.

AWGLAC

The second objective function is the adaptive energy weight combined with global and local fitting energy active contour models (AWGLAC). For MR brain images, there are more than two regions in a single slice, so we focus on the multiphase approach (3 or 4 regions) in this paper.

Chan and Vese proposed a multiphase model (MC-V) [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF], called global fitting energy (GFE), which is used to extract 2 n objects with n level set functions. For L = 4 phases, let Φ = (φ 1 , φ 2 ) be a vector level set function, and C = (C 1 , C 2 ) be a set of closed curves expressed by the zero level set functions φ i . {C 1 :

φ 1 = 0} ∪ {C 2 : φ 2 = 0} partitions an image into four regions Ω = (Ω 1 , Ω 2 , Ω 3 , Ω 4 ),
where the image domain Ω = ∪ L i=1 Ω i and Ω i ∩ Ω j = for i = j, with their average values X = (x c i ) L . In the level set framework [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF], for the given image I(x) with point x ∈ Ω, the energy functional of Φ can be formulated as:

F GFE (Φ, X) = L i=1 λ i Ω |I(x) -x c i | 2 M i (Φ(x))dx + νL(Φ) (16) 
where λ i is positive constant which defines the weight of a term in the energy functional. ν is positive constant fixed empirically. M i (Φ) is membership function representing the region

Ω i : M 1 (Φ) = H (φ 1 ).H (φ 2 ), M 2 (Φ) = H (φ 1 ).(1- H (φ 2 )), M 3 (Φ) = (1-H (φ 1 )).H (φ 2 ), and M 4 (Φ) = (1-H (φ 1 )).(1-H (φ 2 ))
, where H (s) = 1 2 (1 + 2 π arctan( s )) with positive constant , is a smooth version of Heaviside function. L(Φ) is a regularization term that computes the arc length of the zero level set contours of Φ and serves to smooth them during evolution, defined as follows:

L(Φ) = Ω |∇H (φ 1 (x))|dx + Ω |∇H (φ 2 (x))|dx (17) 
By minimizing Eq. ( 16) with respect to X and Φ, the segmented image is obtained as follows:

I seg = L i=1 x c i M i (Φ) (18) 
Li et al. [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF] pointed out that the energy weight parameters (λ i ) in the energy functional ( 16) are important and impact on the segmentation accuracy, especially when the areas of the objects and background are significantly different. They argue that each object should have the same contribution to the energy functional [START_REF] Vovk | A review of methods for correction of intensity inhomogeneity in MRI[END_REF] and it would not be dependent on the others. Hence, to cope with this problem, the authors proposed adaptive energy weight functions to configure (λ i ) as illustrated below:

λ (k) i = f i (Φ (k) ) = size(I) Area(Ω (k) i ) = N Area(Ω (k) i ) (19) 
with Area(Ω

(k) i ) = Ω M i (Φ (k) (x))dx where λ (k) i , Area(Ω (k)
i ), and Φ (k) (x) are the energy weight, the area, and level set functions in the k th iteration of the i th region.

It is clear that the energy functional [START_REF] Vovk | A review of methods for correction of intensity inhomogeneity in MRI[END_REF] does not take into account local partial information and thus is unable to deal with INU artifact. Inspired from the work of Li et al. [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF], Huang and Zeng [START_REF] Huang | An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation[END_REF] proposed the model which is better in approximating the measured image and simultaneously solves the problem of intensity inhomogeneity by incorporating the local difference information between the acquired image and Li et al.'s estimate. The model based on local partial information of the image (called local fitting energy (LFE)) is given by:

F LFE (Φ, X, B, D) = νL(Φ) + µP(Φ) + Ω L i=1 β i Ω K σ (y -x)|I(x) -b(y)x c i -d(y)| 2 M i (Φ(x))dx dy (20) 
where X = (x c i ) L , B = (b j ) N , and D = (d j ) N are the set of L mean intensity values, bias field estimation and the local difference, respectively. β i is positive constant which defines the weight of different terms in the local energy functional. K σ (y -x) is a Gaussian kernel function (viewed as the weight at point y in local region of x) with window of size (4w + 1) × (4w + 1) and standard deviation σ, which is larger than w. µ is positive constant fixed empirically. P(Φ) is a regularization term proposed by Li et al. [START_REF] Li | Level set evolution without reinitialization: a new variational formulation[END_REF] to eliminate the re-initialization step, which is defined as follows:

P(Φ) = 1 2 Ω (|∇φ 1 (x)| -1) 2 dx + 1 2 Ω (|∇φ 2 (x)| -1) 2 dx (21) 
Minimizing Eq. ( 20) with respect to X, Φ, B, and D, the segmented image is obtained by using Eq. ( 18)

By using local partial information, the work of Huang and Zeng is able to provide desirable segmentation results even in the presence of INU artifact. However, to some extent, the model is sensitive to initialization and hard to handle with the presence of noise. To solve this issue, several works [START_REF] Liu | Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method[END_REF][START_REF] Wang | Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[END_REF][START_REF] Wang | An efficient local chan-vese model for image segmentation[END_REF][START_REF] Zhao | Adaptive active contour model driven by global and local intensity fitting energy for image segmentation[END_REF] have been proposed by using the approach that consists in combining the global and local fitting energy functions. While the global information is used to improve the robustness in terms of noise and initialization (sometimes, it also maintains the boundary details [START_REF] Wang | An efficient local chan-vese model for image segmentation[END_REF]), the local information is considered to deal with INU artifact occurred in the given image. However, even most of the previous works assume that the energy weights associated with each region are fixed (equal to 1), this is not true as pointed out by Li et al. [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF]. Moreover, tuning simultaneously several parameters in the combining models is a tedious work.

In this work, with the same approach, which uses both the global and local fitting energy functions, we propose a novel region-based active contour model with adaptive weights described as follows:

F AWGLAC (Φ, X, B, D) = ω. L i=1 λ i Ω |I(x) -x c i | 2 M i (Φ(x))dx + R(Φ) + (1 -ω). Ω L i=1 β i Ω K σ (y -x)|I(x) -b(y)x c i -d(y)| 2 M i (Φ(x))dx dy (22) 
where ω = ( 1 2π ) 2 .(1 -h mean ) is a constant defined by the input image, which controls the influence of the GFE force and LFE force. Here, h mean is the average of the local entropy with window of size 9 × 9 centered on each pixel in the whole image, which reflects the degree of the intensity inhomogeneous [START_REF] Zhao | Adaptive active contour model driven by global and local intensity fitting energy for image segmentation[END_REF]. It is clear from the energy functional ( 22) that, when the presence of INU artifact (h mean ) in the given image is higher, the LFE force will be increased to deal with it. R(Φ) = νL(Φ) + µP(Φ) is the combination of the regularization term and arc length term. The energy weight parameters (λ i , β i ) are adaptively adjusted as follows:

λ (k) i = f g i (Φ) = ρ. min{Area(Ω (k) i )} Area(Ω (k) i ) (23) β (k) i = f l i (Φ) = ζ. Area(Ω (k) i ) min{Area(Ω (k) i )} , with i = 1, • • • , L. (24) 
where (ρ, ζ) are scale parameters determined by experiments and Area(Ω

(k)
i ) is defined as in [START_REF] Liu | Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method[END_REF].

With the definition of the energy weight parameters as in [START_REF] Mandal | Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach[END_REF][START_REF] Chan | Active contours without edges[END_REF], it is obvious that each object fairly contributes in the energy functional (controlled by λ (k) i ) in the whole image. On the other hand, in local area the difference among regions is enhanced (controlled by β (k) i ). Hence, in this way, by minimizing Eq. ( 22), we can obtain a better result of image segmentation.

Using the gradient descent method, the solution of (Φ, X, B, D) when we minimize Eq. ( 22) with respect to each of its variables, given the others in previous iteration, is achieved as follows.

For fixed B, D, and Φ, the optimal X = (x c i ) L that minimizes [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF], is given by:

x c i = ω.λ i Ω I(x)M i (Φ)dx + (1 -ω).β i Ω (K σ * B)(I(x) -D)M i (Φ)dx ω.λ i Ω M i (Φ)dx + (1 -ω).β i Ω (K σ * B 2 )M i (Φ)dx (25) 
Keeping X, B, and D fixed, and minimizing the energy functional F AWGLAC in [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF] with respect to Φ, we can deduce the associated Euler-Lagrange equations for Φ. By introducing an artificial time variable t ≥ 0, the gradient flow equation for updating Φ is as follows:

∂φ (k) l ∂t = - L i=1 ∂M i (Φ (k) ) ∂φ (k) l .e (k) i (26) 
+ ν.δ (φ

(k) l )div ∇φ (k) l |∇φ (k) l | + µ. ∇ 2 φ (k) l -div ∇φ (k) l |∇φ (k) l | φ (k+1) l = φ (k) l + t ∂φ (k) l ∂t (27) 
with the initial and Neumann boundary conditions are defined by:

φ l (x, 0) = φ (0) l (x), x ∈ Ω (28) ∂φ (k) l ∂n = 0, x ∈ ∂Ω (29) 
where l = 1, 2, and φ 

(k) l ): δ (s) = H '(s) = 1 π 2 +s 2 . e (k) i
is a function defined as follows:

e (k) i = (1-ω) Ω β (k) i K σ (y -x)|I(x)-b(y)x c i -d(y)| 2 dy +ωλ (k) i |I(x)-x c i | 2 (30) 
Similarly, we obtain the optimal B and D as follows:

B = K σ * ((I -D). L i=1 x c i .M i (Φ)) K σ * L i=1 (x c i ) 2 .M i (Φ) (31) 
D = K σ * L i=1 (I -x c i .B)M i (Φ) K σ * L i=1 M i (Φ) (32) 
where ' * ' is the convolution operator.

To verify the effectiveness of the proposed model ( 22), we segment MR images using the PSO-based framework proposed by Mandal et al. [START_REF] Mandal | Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach[END_REF], that we extended for multiphase case with the same termination conditions introduced in [START_REF] Wang | An efficient local chan-vese model for image segmentation[END_REF], for three fitness functions: [START_REF] Vovk | A review of methods for correction of intensity inhomogeneity in MRI[END_REF], [START_REF] Li | Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation[END_REF], and [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF], with default settings as in the literature. As a simple example, Figure 4 shows the segmentation results for the different fitness functions when segmenting T1-weighted image (slice 97) with noise level of 9% and intensity inhomogeneity of 40%. It is clear that when using the energy functional [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF] as a fitness function of the image segmentation problem, we can obtain superior results compared to the counterparts. 

The optimum search process

In our work, the iMOPSO algorithm illustrated in Section 3 is used to find a set of Pareto solutions by minimizing the two fitness functions F KFECSB and F AWGLAC . The MOO framework for the image segmentation problem is summarized in Algorithm 3.

In the initialization, the population (X i ) Np is generated randomly. Each individual X i = (x i1 , x i2 , . . . , x iL ) is a L-dimension decision vector (with L = 3 or 4), where L is the number of cluster centroids. And then, the initial level set function associated with the solution Φ (0) is configured by following some steps. First, the elements of the decision vector are sorted in ascending order, (x i1 , x i2 , . . . , x i4 ). Next, the Φ (0) is determined as explained bellow:

If the number of regions is three (L = 3), where M 1 (Φ) = H (φ 1 ).H (φ 2 ), M 2 (Φ) = H (φ 1 ).(1-H (φ 2 )), and M 3 (Φ) = 1-H (φ 1 ), the Φ (0) are initialized as:

φ (0) 1 = α.sign(I > x i1 ) and φ (0) 2 = α.sign(I > x i2 ) (33) 
If the number of regions is four (L = 4), the Φ (0) are initialized as:

φ (0) 1 = α.sign(I < x i3 ) and φ (0) 2 = α.sign((I > x i2 ) ∪ (I < x i4 )) ( 34 
)
where α is a constant, we set equal to 2, and I is the input image.

To make sure that all particles are moving within the search space, the boundary conditions for their velocities and positions (V i , X i ) are limited as follows:

v ij (k + 1) =      v max , if v ij (k + 1) > v max v min , if v ij (k + 1) < v min + v ij (k + 1) , otherwise (35) 
x ij (k + 1) =      x max , if x ij (k + 1) > x max x min , if x ij (k + 1) < x min + x ij (k + 1) , otherwise (36) 
where v min and v max are the smallest and largest allowable step sizes in any dimension (v min = -v max = -1 is set in this paper); and {x min , x max } are the bounds of the search space in each dimension. Actually, they are the minimum and maximum of the intensity value of the input image.

Furthermore, to provide a flexible choice for user and a resource for further post-processing stage, maintaining the external archive gA(t), where stores non-dominated solutions, includes both output information for fuzzy entropy clustering (U, B fc ) and region-based active contour (Φ, B ac ) methods. However, in this work we get segmented images by using the output of fuzzy entropy clustering method.

The terminating condition in Algorithm 3 is the maximum number of iterations. When (k > K max ) is reached, the algorithm is immediately stopped. After getting a Pareto set, one solution must be selected, and consequently, we are facing a multi-criteria decision making (MCDM) problem. We also know that these solutions share the property of improving the value of one objective function but leading to a degradation of the other one. Hence, a decision is required to make a trade-off while giving a choice. Several methods have been proposed to determine which solution in the Pareto set should be chosen [START_REF] Padhye | Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches[END_REF][START_REF] Wang | Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization[END_REF]. Here, we use a distance-based technique, called L 2 -metric method, proposed by Padhye et al. [START_REF] Padhye | Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches[END_REF]. The L 2 -metric method is based on the selection of the alternative that is the closest to the ideal solution. Specifically, first, each objective is normalized between [0, 1]. Then, the ideal point (solution) is constructed, which is the intersection point of lines passing through the top right and bottom left solutions of the Pareto front (Figure 5). Euclidean distance (L 2 ) of each point in non-dominated set is calculated from the ideal point and the one which has the smallest Euclidean distance will be chosen.

Decision making

Note that, since experimental results for each fitness function (PSO-KFECSB and PSO-AWGLAC) as listed in Appendix B and Appendix C are comparable, the importance of each objective is evaluated equally (w f e = w ac = 1). However, for a certain image (if we know which one is better than the other), we can provide weights for each objective function when calculating the Euclidean distance, as follows:

EuclideanDist = w f e .norm(F KFECSB ) 2 + w ac .norm(F AWGLAC ) 2 (37) 
where w f e and w ac define the importance of the two objective functions, respectively.

Experimental results

Experimental setup

In this section, we empirically evaluate the performance of the proposed method. Particularly, the aim is to address the possibility of the proposed algorithm to effectively improve the performance in segmentation of MR brain images. To validate the effectiveness of our framework, the results are examined both qualitatively and quantitatively, and compared with those obtained from fivesix state-of-the-art algorithms and a PSO based algorithm with the second objective function [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF]. They are current variants of FCM, named adaptively regularized kernel-based fuzzy C-means clustering (ARKFCM) [START_REF] Elazab | Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernelbased fuzzy C-means clustering[END_REF] and FCM algorithm based on morphological reconstruction and membership filtering (FR-FCM) [START_REF] Lei | Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[END_REF], and the multiplicative intrinsic component optimization (MICO) [START_REF] Li | Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation[END_REF] and the well-known region-based level set method, called LIC [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF]. Additionally, the well-known region-based level set method, called LIC [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF], and the metaheuristic multilevel threshold with Markov random field (PSO-MRF) [START_REF] Krishnan | Segmentation of brain regions by integrating meta heuristic multilevel threshold with markov random field[END_REF], the PSO based on global and local region-based active contour (PSO-AWGLAC) and our previous work, called PSO-KFECSB algorithm [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF], are used. These references can be consulted to seeThe algorithms' parameters setting is specified in Appendix A. All of the algorithms are implemented in MATLAB 2014b and executed with a computer with Intel Core i7 1.8 GHz CPU, 8G RAM using Microsoft Windows 10.

Furthermore, from recommendations in similar context in the literature [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF][START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF] and the "trial-and-error" method with experiments around those parameter values, we sorted out parameter values for the proposed algorithm as follows: swarm size N p = 30, external archive of non-dominated solutions size N r = 30, number of grids per dimension N g = 10, maximum number of iterations K max = 200 (180 for real MR images), and selection probabilities for the leftmost, rightmost, and middle solutions: 15%, 15%, and 70%, respectively. For the first fitness function [START_REF] Pham | Adaptive fuzzy segmentation of magnetic resonance images[END_REF], F KFECSB , the values of (ϑ, η, and λ) are 10, 2.5, and 1/9 [START_REF] Pham | Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[END_REF], respectively. For the second fitness function [START_REF] Li | Adaptive energy weight based active contour model for robust medical image segmentation[END_REF], F AWGLAC , unless otherwise specified, we set = 3, σ = 5, α = 2, t = 1, and µ = 1, as common values in the literature. Note that, due to the nature of active contour models, the weighting coefficients ν, ρ, and ζ are differently set for each type of image. The effect of the arc length parameter ν was useful and briefly discussed in [START_REF] Li | Minimization of region-scalable fitting energy for image segmentation[END_REF][START_REF] Lankton | Localizing region-based active contours[END_REF]. In addition, depending on the level of noise and INU artifact, one can increase the value of ρ (for high level of intensity inhomogeneity), or ζ (for high level of noise), and vice versa.

Algorithm 3: iMOPSO-Based Image segmentation algorithm

Initialization: Read the input image and determine the range of search space [x min , x max ]; set the number of regions: L; set the number of iterations: k = 1 and K max ; initialize population: (X i ) Np ; initialize level set functions: (φ

(0) 1 , φ (0) 
2 ), for each particles; initialize flight parameters: {w, c 1 , c 2 }; set up parameters for the two fitness functions (F KFECSB and F AWGLAC as introduced in Eqs. ( 9) and ( 22 Evaluate fitness values for the F KFECSB as following steps:

5.1

Estimate kernel distance K by using Eq. ( 11)

5.2

Estimate the partition matrix U by using Eq. ( 14)

5.3

Estimate the bias field correction B fc by using Eq. ( 15)

5.4

Calculate the fitness values by using Eq. ( 9)

6
Evaluate fitness values for the F AWGLAC according to following steps:

6.1
Estimate the mean intensity value, x ac i , using Eq. ( 25)

6.2
Evolve the level set functions Φ by using Eq. ( 27)

6.3
Update energy weights (λ i , β i ) by using Eqs. ( 23) and ( 24)

6.4
Estimate the bias field correction B ac by using Eq. (31)

6.5

Estimate the difference D by using Eq. (32)

6.6

Calculate the fitness values by using Eq. ( 22)

7
Update and store non-dominated solutions in pA(t) and gA(t)

8
Maintain gA(t) using crowding distance technique 9

Update the contents in the hypercubes until the stopping criteria are met

Datasets

The MR images used in this study include both T1-weighted simulated and real 2D MRI brain images. For simulated MR images, they are downloaded from a well-known database: the BrainWeb from a McConnell Brain Imaging Center [START_REF] Kwan | MRI simulation-based evaluation of image-processing and classification methods[END_REF]. The size of the synthetic images is 181 x 217 and that of the voxels is 1 x 1 mm2 . On the other hand, real images are taken in the 20 normal MR brain data sets provided by the Center for Morphometric Analysis at Massachusetts General Hospital, which are available at 2 . The size of the images is 135 x 142 and that of the voxels is 1.171751 x 1.171751 mm 2 .

Note that several image modalities used in medical imaging, such as Roentgen rays (X-Rays), Magnetic Resonance Imaging (MRI), Ultrasound (US), Computed Tomography (CT) and Positron Emission Tomography (PET), each with its own advantages and disadvantages, have appeared over the years. This study focused on images produced by structural imaging techniques and satisfied assumptions mentioned in Section 2.1. As a result, images produced by the other techniques, functional imaging [START_REF] Foster | A review on segmentation of positron emission tomography images[END_REF], such as PET, may not be suitable for our method.

Performance measures

Since the ground truth images are available in the datasets, for comparing quantitatively the performance, five performance meassures are considered, which are: the Dice Similarity Coefficient (DICE), the Hausdorff distance (HD), the Jaccard index (JAC), the Accuracy (AC) and the Sensitivity (SI) [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF][START_REF] Beauchemin | On the Hausdorff distance used for the evaluation of segmentation results[END_REF][START_REF] Jaccard | The distribution of the flora in the alpine zone[END_REF][START_REF] Taha | Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool[END_REF]. These are defined below.

Dice coefficient

The Dice coefficient [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] (DICE) is an overlap-based metric which directly compares a segmented image (I seg ) with a ground truth image (I tr ) by measuring similarity between them. This metric is one of the most used measures in validating medical volume segmentations. Given an input image with N pixels I = (I 1 , I 2 , . . . , I N ), and its two partitions, I seg = (I seg1 , I seg2 , • • • , I segN ) (the segmented image) and I tr = (I tr1 , I tr2 , • • • , I trN ) (the ground truth image), there are four common cardinalities that reflect the overlap between the two partitions, namely the true positives (TP), the false positives (FP), the true negatives (TN), and the false negatives(FN). Then, the pair-wise overlap of the repeated segmentations is calculated using the DICE, which is defined by:

DICE (I seg , I tr ) = 2.|I seg I tr | |I seg | + |I tr | = 2.TP 2.TP + FP + FN (38)

Hausdorff distance

The Hausdorff distance [START_REF] Beauchemin | On the Hausdorff distance used for the evaluation of segmentation results[END_REF] (HD) is a distance-based metric which measures the dissimilarity between the segmented image (I seg ) and the ground truth image (I tr ). This is also a widely used metric, defined as follows:

HD (I seg , I tr ) = max {h (I seg , I tr ) , h (I seg , I tr )} [START_REF] Padhye | Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches[END_REF] where h (I seg , I tr ) is called the directed Hausdorff distance given by:

h (I seg , I tr ) = max Isegi∈Iseg min Itri∈Itr I segi -I tri ( 40 
)
where I segi -I tri is the Euclidean distance between the intensity values of the I segi pixel and the I tri pixel in the segmented and ground truth images, respectively.

Jaccard index

This is an overlap-based metric which directly compares a segmented image (I seg ) with a ground truth image (I tr ) by measuring similarity between them. A higher value indicates a better result. The Jaccard index is defined as follows:

JAC (I seg , I tr ) = |I seg I tr | |I seg I tr | = TP TP + FP + FN (41) 
From Eqs. ( 38) and ( 41), we can see that: DICE = 2.JAC/(1 + JAC) and JAC = DICE/(2 -DICE) for any input. That means that both metrics measure the same aspects and provide the same system ranking.

Accuracy

This criterion determines how much the segmentation algorithm results match with the ground truth. It is defined as below: AC (I seg , I tr ) = TP + TN TP + TN + FP + FN (42)

Sensitivity

This criterion indicates true positivity and it is the probability that a pixel in segmented image belongs to a particular region. Definition of the criterion is given below: SI (I seg , I tr ) = TP TP + FN (43)

Simulated MR brain images

In this section, simulated MR brain images from the BrainWeb are used for the purpose of performance evaluation. Each image is segmented into four regions: cerebro spinal fluid (CSF), gray matter (GM), white matter (WM), Figure 6 shows the qualitative results of the segmentation of a T1-weighted image (slice 80) provided by different algorithms. This figure reveals that though the PSO-KFECSB, FRFCM and the proposed algorithm, among the existing methods, yield positive outcomes, those from the multi-objective approach are the best ones, reserving the correct details of the image in specific. Figure 9 shows the qualitative results of the segmentation of five T1-weighted images (slices: 75, 80, 85, 95, 105, 115). In spite of artifact existence, it can be seen that the proposed algorithm achieves a high performance when segmenting simulated MR brain images. Hence, it can be concluded that our proposed algorithm provides qualitatively satisfactory results. Table 3 shows the average values of the Dice coefficient and Hausdorff distancefive metrics of sixeight competing algorithms: ARKFCM, FRFCM, MICO, LIC, PSO-MRF, PSO-KFECSB, PSO-AWGLAC, and the proposed algorithm. Note that the details for numerical values when segmenting different images by using different algorithms are reported in Appendix B. As can be seen from Table 3, when segmenting images with high levels of noise and INU artifact, the proposed method generally gives the best scores, except for CSF segmenting scores in terms of Hausdorff distance. Even though the scores for CSF are not the best, its values are comparable to the best one. Furthermore, Figure 78show the values of Dice coefficient (DICE) and Hausdorff distance (HD) in range of the obtained values for total segmented image using eight competing algorithms, respectively. It can be seen that our method performs better than the other ones for simulated brain MRI segmentation. Thus, the proposed algorithm provides more accurate and stable segmentation results than the counterparts when dealing with noise and intensity inhomogeneity problems. Figure 10 shows the qualitative results of the segmentation by the competing algorithms. Taking a look at the results in this figure, it is clear that our proposed algorithm provides superior results, compared to others. Even though the PSO-KFECSB, PSO-AWGLAC, MICO, and LIC algorithms can provide a reasonable WM segmentation, they have difficulty to cope with smooth transient areas in the image. Figure 13 shows qualitative results of the segmentation of five images (Z planes 24, 28, 32, 36, and 40) provided by the proposed algorithm. This figure shows that the proposed method has identified the tissues of the real MR images reasonably well.

Table 4 shows the average values of the Dice coefficient and the Hausdorff distancefive metrics when segmenting real MR brain images (Z planes 24, 28, 32, 34, 36, and 40) by different algorithms. These results show that the proposed method outperforms the ARKFCM, FRFCM, MICO, LIC, PSO-MRF, PSO-KFECSB, and PSO-AWGLAC algorithms. In addition, Figure 11 the values of Dice coefficient (DICE) and Hausdorff distance (HD), respectively, in range of the obtained values for total segmented image using eight competing algorithms. Again, the results presented here show the efficiency of the proposed approach and also demonstrate its superiority over the counterparts. weights directly determine the accuracy of the proposed model, hence they indirectly define the quality of the proposed method. However, as pointed out in the section 4.3.2, when the intensity inhomogeneity in the input image is severe, such as for real MR images in the IBSR database, the correctness of the proposed region-based active contour model relies on the LFE force. In such case, we should choose a higher value for (ζ); otherwise, the GFE force may cause the deformable curves falling into fake edges. For images with minor inhomogeneity and high level of noise, such as simulated MR images examined in section 5.4, the influence of the GFE force in the model should be increased.

In this situation, we can use a smaller value for (ζ) and a higher value for (ρ).

In the experiment, we need to select appropriate values for (ρ, ζ) according to the degree of INU artifact and noise existing in input images.

Complexity analysis

The proposed method benefits both advantages of fuzzy entropy clustering and region-based active contour approaches to satisfy multiple requirements of image segmentation problem. In addition, using multiobjective particle swarm optimization algorithm to avoid the dependence on initial labelling is also taken into account. To analyse the complexity of the proposed algorithm, we calculated the running time when segmenting brain MR images. Both simulated and real brain MR image datasets are involved in experiments. Since the eventual computational cost will be the multiplication of cost for each iteration and the number of iterations for convergence, the average time cost of each iteration is recorded. The mean and standard deviation of the time cost of our algorithm (Intel Core i7 1.8 GHz CPU, 8G RAM and Matlab 2014b) are listed in Table 5. 

Conclusion

In this paper, we have proposed a new method, which is based on multi-objective optimization approach, for the segmentation of MR brain images. In the proposed method, an improved MOPSO algorithm, which takes advantages of the states-of-the-art developments in multiobjective clustering by using MOPSO method, is used to optimize two independent and complementary properties (compactness and separation) in segmented images. While the compactness is characterized by the first fitness function, called kernelized fuzzy entropy clustering with local spatial information and bias correction, the second property is represented by a novel region-based active contour model, called adaptive energy weight global and local fitting energy active contour model. The result of the optimization process is a set of Pareto-optimal solutions. By using the L 2 -metric method, the best trade-off solution is found and considered as the final result. In this way, the major drawbacks in fuzzy clustering and active contour methods (such as the sensitivity to noise, the INU artifact, the possibility to be trapped into the first local minimum they encounter when using the gradient descent search method), have been partially solved. Therefore, the algorithm can produce better segmentation results. To confirm the effectiveness of the proposed method, it has been examined on both simulated and real MR images, then compared to five recent segmentation methods in the literature.

The experimental results show that our method can produce better segmentation results and is more robust against high levels of noise and INU artifact contained in input images. In particular, not only the visual segmentation is more accurate than others but also the quantitative results of segmentation show the better scores compared to the counterparts. However, in this method, the computational cost is high (using multiple convolution operations), and two parameters (ρ, ζ) are set based on the experiments. In the short term, the perspective for developing this work can be: (1) refining the two objective functions used for segmentation so as to reduce computational cost; (2) using an integrative approach combining the results of all solutions of the Pareto front instead of selecting the best estimated solution in this front. 

Algorithm 1 : 2 foreach solution (i) do 3 Set 4 foreach objective (m) do 5 Sort objective values; 6 Assign Dist[ 1 ]

 1234561 Crowding distance procedure 1 crowdingDist (gA(t)) inputs : The non-dominated solutions with size l in the gA(t) output: The distance corresponded to each solution, Dist Dist[i] = 0; = Dist[l] = ∞;

Figure 1 :

 1 Figure 1: Qualitative segmentation results using the proposed method with both T1-weighted skull brain image and skull-stripped brain image (slice 80 with 9% noise and 40% INU artifact).

Figure 2 :

 2 Figure 2: Skull stripping procedure.

Figure 3

 3 Figure3shows an example of segmentation results when applying the proposed method to segment brain MR image both with and without skull (slice 80 in BrainWeb dataset with 9% noise and 40% INU artifact). It is noticeable that the proposed method provides better qualitative segmentation results in case of the skull-stripped image. To clarify this issue, three different unsupervised criteria: Levine Nazif, Rosenberger Type I and Borsotti Q[START_REF] Chabrier | Unsupervised evaluation of image segmentation application to multi-spectral images[END_REF][START_REF] Chabrier | Unsupervised performance evaluation of image segmentation[END_REF][START_REF] Borsotti | Quantitative evaluation of color image segmentation results[END_REF], were used for a quantitative performance evaluation. Table 2 also illustrates that better segmentation results can be achieved with input image without skull.

Figure 3 :

 3 Figure 3: Qualitative segmentation results using the proposed method with both T1-weighted skull brain image and skull-stripped brain image (slice 80 with 9% noise and 40% INU artifact).

l

  (x) is the initial level set l th function. n denotes the exterior normal to the boundary ∂Ω. t is time step. δ (φ (k) l ) is the Dirac delta function, which is the derivative of H (φ

Figure 4 :

 4 Figure 4: Segmentation results of a simulated MR brain image (slice 97) by the different objective functions: (a) the original image after skull tripping; (b) the ground truth image; (c) the segmented result with the energy functional (16); (d) the segmented result with the energy functional (20); (e) the output using the proposed objective function.

Figure 5 :

 5 Figure 5: L 2 -metric method for selecting final solution in a typical Pareto front: results for a real MR image (slice 35) using the proposed MOPSO approach.

Figure 6 :

 6 Figure 6: Qualitative segmentation results of a simulated MR brain image (slice 80) with 9% noise and 40% INU artifact provided by the competing algorithms:(a) original image; (b) original image after skull stripping; (c) ground truth images; (d) ARKFCM results; (e) FRFCM results; (f) MICO results; (g) LIC results; (h) PSO-MRF results; (i) PSO-KFECSB results; (j) PSO-AWGLAC results; (k) the proposed method results.

Figure 7 :

 7 Figure 7: Average values in terms of DICE coefficient on simulated MR brain images (slices 75, 80, 85, 95, 105, 115) using different algorithms. and the background. The rest of parameters is a set of the weighting coefficients (ν = 0.00015 * 255 2 , ρ = 9, and ζ = 0.1).To establish the performance of the proposed algorithm with respect to noise and INU artifact, experiments have been performed by considering images con-

Figure 8 :

 8 Figure 8: Average values in terms of HD distance on simulated MR brain images (slices 75, 80, 85, 95, 105, 115) using different algorithms.

Figure 9 :

 9 Figure 9: Qualitative segmentation results of simulated MR brain images (slices 75, 85, 95, 105, 115) provided by the proposed algorithm versus the ground truth images.

5. 5 .

 5 Real MR brain imagesWe have also examined the ability of the proposed method when segmenting real MR images from Internet Brain Segmentation Repository (IBSR) database (the 20 normal T1-weighted MR brain images, which have a high level of intensity inhomogeneity, in the 4 th volume). Each image is segmented into three regions: cerebro spinal fluid (CSF), gray matter (GM) and white matter (WM). The background pixels are ignored in the computation. The rest of parameters is a set of the weighting coefficients (ν = 0.003 * 255 2 , ρ = 0.4, and ζ = 1.65).

Figure 10 :

 10 Figure 10: Qualitative segmentation results of real MR brain image (Z plane 34 in the 4 th volume) provided by the competing algorithms:(a) original image; (b) original image after skull stripping; (c) ground truth images; (d) ARKFCM results; (e) FRFCM results; (f) MICO results; (g) LIC results; (h) PSO-MRF results; (i) PSO-KFECSB results; (j) PSO-AWGLAC results; (k) the proposed method results.

  Figure10shows the qualitative results of the segmentation by the competing algorithms. Taking a look at the results in this figure, it is clear that our proposed algorithm provides superior results, compared to others. Even though the PSO-KFECSB, PSO-AWGLAC, MICO, and LIC algorithms can provide a reasonable WM segmentation, they have difficulty to cope with smooth transient areas in the image. Figure13shows qualitative results of the segmentation of five images (Z planes 24, 28, 32, 36, and 40) provided by the proposed algorithm. This figure shows that the proposed method has identified the tissues of the real MR images reasonably well.Table4shows the average values of the Dice coefficient and the Hausdorff distancefive metrics when segmenting real MR brain images (Z planes24, 28, 32, 34, 36, and 40) by different algorithms. These results show that the proposed method outperforms the ARKFCM, FRFCM, MICO, LIC, PSO-MRF, PSO-KFECSB, and PSO-AWGLAC algorithms. In addition, Figure11and 12 show

Figure 11 :

 11 Figure 11: Average values in terms of DICE coefficient on real MR brain images (slices 24, 28, 32, 34, 36, and 20) using different algorithms.

Figure 12 :

 12 Figure 12: Average values in terms of HD distance on real MR brain images (slices 24, 28, 32, 34, 36, and 20) using different algorithms.

  In this paper, there are two constant parameters (ρ, ζ) which control the effect of the GFE force and LFE force in the second objective function. These scale

Figure 13 :

 13 Figure 13: Qualitative segmentation results of real MR brain images (Z planes 24, 28, 32, 36, 40 in the 4 th volume) by the proposed algorithm versus the ground truth images.

Table 1 :

 1 The average values in terms of DICE coefficient obtained when doing simulated MR image segmentation by using different strategies for selecting the global best.

	Strategies	75	85	Slices 95	105	115	Average
	The original 0.9425 0.9410 0.9583 0.9684 0.9688	0.9558
	Proposed	0.9459 0.9479 0.9610 0.9725 0.9714	0.9597

Table 2

 2 

also illustrates that better segmentation results can be achieved with input image without skull.

Table 2 :

 2 Quantitative segmentation results in terms of unsupervised criteria of the proposed method on slice 80 in simulated MR image dataset.

	Types of images	Unsupervised criteria Levine Nazif Rosenberger Type I Borsotti Q
	With skull	0.5643	0.5728	0.0504
	Without skull	0.5911	0.6010	0.0448

Table 3 :

 3 Average values in terms of five criteria (DICE, HD, JAC, AC, SI) on simulated MR brain images using different algorithms.

	Methods	Regions	DICE	Performance Criteria HD JAC AC	SI
		CSF	0.9242	202.3333	0.8714	0.8770	0.9407
	ARKFCM	GM WM	0.8842 0.9451	126.5000 108.3333	0.7993 0.8963	0.8389 0.9251	0.8722 0.9299
		Total	0.9062	80.5000	0.8373	0.9322	0.8932
		CSF	0.9776	479.8333	0.9563	0.9607	0.9741
	FRFCM	GM WM	0.9241 0.9493	124.6667 210.1667	0.8589 0.9038	0.8974 0.9324	0.9289 0.9495
		Total	0.9415	81.0000	0.8901	0.9582	0.9402
		CSF	0.9792	184.5000 0.9593	0.9638	0.9826 *
	MICO	GM WM	0.8828 0.9041	180.1667 187.6667	0.7904 0.8250	0.8392 0.8729	0.8723 0.9135
		Total	0.9187	162.5000	0.8502	0.9420	0.9227
		CSF	0.9828 195.1667	0.9661 0.9697 0.9748
	LIC	GM WM	0.8875 0.9018	172.6667 182.6667	0.7983 0.8214	0.8443 0.8728	0.8658 0.9324
		Total	0.9201	151.6667	0.8529	0.9428	0.9161
		CSF	0.9658	214.0000	0.9350	0.9403	0.9800
	PSO-MRF	GM WM	0.9163 0.9425	145.8333 136.8333	0.8460 0.8915	0.8863 0.9231	0.9092 0.9409
		Total	0.9242	122.0000	0.8601	0.9438	0.9346
		CSF	0.9797	224.0000	0.9634	0.9635	0.9691
	PSO-KFECSB	GM WM	0.9414 114.0000 0.9641 78.1667	0.8924 0.9203 0.9308 0.9522	0.9424 0.9694
		Total	0.9543	64.6667	0.9171	0.9664	0.9544
		CSF	0.9545	380.1667	0.9141	0.9157	0.9161
	PSO-AWGLAC	GM WM	0.9112 0.9360	180.1667 204.5000	0.8384 0.8819	0.8762 0.9159	0.9068 0.9571
		Total	0.9147	167.0000	0.8442	0.9351	0.8826
		CSF	0.9819	234.5000	0.9645	0.9678	0.9719
	Proposed	GM WM	0.9412 0.9654 76.0000 105.5000 0.8890 0.9331 0.9539 0.9704 0.9208 0.9467
		Total	0.9575 53.3333	0.9187 0.9695 0.9551

* 

The bold numerical values indicate the best performance.

Table 4 :

 4 Average values in terms of five criteria (DICE, HD, JAC, AC, SI) on real MR brain images using different algorithms.

	Methods	Regions	DICE	Performance Criteria HD JAC AC	SI
		CSF	0.9574	1878.5000	0.9206	0.9221	0.9938
	ARKFCM	GM WM	0.8496 0.8915	166.6667 315.1667	0.7425 0.8077	0.7879 0.8437	0.8059 0.9122
		Total	0.9387	59.6667	0.8888	0.9467	0.9510
		CSF	0.9921	1877.8333	0.9843	0.9845	0.9904
	FRFCM	GM WM	0.8594 0.8646	156.6667 175.0000	0.7559 0.7649	0.8008 0.8114	0.8094 0.9228
		Total	0.9383	98.3333	0.8865	0.9446	0.9378
		CSF	0.9715	1977.0000	0.9447	0.9457	0.9974 *
	MICO	GM WM	0.8709 0.9014	143.1667 129.3333	0.7721 0.8217	0.8160 0.8586	0.8163 0.9429
		Total	0.9454	49.1667	0.8978	0.9508	0.9549
		CSF	0.9936 1745.5000 0.9878 0.9884 0.9931
	LIC	GM WM	0.8760 0.8775	147.3333 143.5000	0.7805 0.7837	0.8215 0.8300	0.8159 0.9456
		Total	0.9442	69.3333	0.8953	0.9488	0.9403
		CSF	0.9147	2011.6667	0.8431	0.8460	0.9970
	PSO-MRF	GM WM	0.8216 0.9026	177.6667 423.0000	0.6986 0.8254	0.7450 0.8550	0.7669 0.8991
		Total	0.9376	46.8333	0.8843	0.9449	0.9586
		CSF	0.9932	1873.1667	0.9865	0.9867	0.9927
	PSO-KFECSB	GM WM	0.8902 0.8982	146.0000 121.1667	0.8027 0.8161	0.8453 0.8557	0.8428 0.9519
		Total	0.9499	50.3333	0.9054	0.9542	0.9504
		CSF	0.9931	2011.6667	0.9857	0.9862	0.9915
	PSO-AWGLAC	GM WM	0.8853 0.8938	147.8333 168.1667	0.7961 0.8086	0.8411 0.8476	0.8397 0.9486
		Total	0.9485	59.1667	0.9025	0.9526	0.9495
		CSF	0.9931	1873.1667	0.9863	0.9865	0.9931
	Proposed	GM WM	0.8996 145.1667 0.9103 119.1667	0.8181 0.8609 0.8620 0.8362 0.8713 0.9530
		Total	0.9540 48.1667	0.9126 0.9580 0.9560

* 

The bold numerical values indicate the best performance.

Table 5 :

 5 Mean ± standard deviation of time cost of the proposed algorithm.

	Dimension Dataset Number of images Image size Time/iteration (s)
	2D	BrainWeb IBSR	10 10	181 x 217 135 x 142	4.76 ± 0.15 2.12 ± 0.06

Table B .

 B 1: Average values of criteria on slice 75 using different algorithms. Table B.2: Average values of criteria on slice 80 using different algorithms. Table B.3: Average values of criteria on slice 85 using different algorithms. Table B.4: Average values of criteria on slice 95 using different algorithms. Table B.5: Average values of criteria on slice 105 using different algorithms. Table B.6: Average values of criteria on slice 115 using different algorithms. Table C.1: Average values of criteria on slice 24 using different algorithms. Table C.2: Average values of criteria on slice 28 using different algorithms. Table C.3: Average values of criteria on slice 32 using different algorithms. Table C.4: Average values of criteria on slice 34 using different algorithms. Table C.5: Average values of criteria on slice 36 using different algorithms. Table C.6: Average values of criteria on slice 40 using different algorithms.

	Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods Slice Methods	Regions Regions Regions Regions Regions Regions Regions Regions Regions Regions Regions Regions	Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC Performance Criteria DICE HD JAC AC	SI SI SI SI SI SI SI SI SI SI SI SI
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9851 130 0.9707 0.9742 0.9864 0.8024 226 0.6701 0.6825 0.855 0.8091 170 0.6794 0.6892 0.8629 0.9869 338 0.9741 0.9773 0.9865 0.9751 129 0.9606 0.9632 0.9689 0.9865 221 0.9735 0.9758 0.9847 0.9874 1480 0.9752 0.9753 0.9825 0.917 1557 0.8468 0.8497 0.9941 0.927 2385 0.864 0.8668 0.9966 0.9238 2313 0.8585 0.8617 0.9976 0.9943 2176 0.9887 0.9888 0.9969 0.9951 1360 0.9904 0.9904 0.995
	75 80 85 95 105 115 24 28 32 34 36 40	ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM ARKFCM	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.9128 73 0.9321 88 0.7865 72 0.9341 145 0.8763 0.9061 0.9051 0.8396 0.8868 0.9162 0.8728 0.9114 0.9289 0.6481 0.7058 0.7252 0.7909 125 0.6541 0.7037 0.7368 0.9259 106 0.862 0.8969 0.8891 0.9413 272 0.8892 0.9165 0.9551 0.9569 74 0.9175 0.9447 0.9487 0.9434 101 0.8928 0.9202 0.9498 0.9571 121 0.9177 0.9428 0.9466 0.9301 116 0.8717 0.9003 0.9503 0.9645 116 0.9315 0.9487 0.961 0.8028 338 0.6706 0.7274 0.7615 0.799 260 0.6653 0.7428 0.8447 0.8055 313 0.6744 0.7197 0.7573 0.8675 626 0.7661 0.8103 0.8606 0.8146 149 0.6872 0.7399 0.7532 0.8923 410 0.8056 0.8395 0.9099 0.8274 97 0.7056 0.7553 0.7682 0.9139 289 0.8415 0.8661 0.9234 0.9063 50 0.8286 0.8724 0.8768 0.9256 72 0.8616 0.8821 0.9584 0.941 53 0.8886 0.9128 0.9183 0.9508 234 0.9063 0.9216 0.9759
			Total Total Total Total Total Total Total Total Total Total Total Total	0.9269 68 0.812 60 0.8203 73 0.9514 65 0.964 101 0.9305 0.972 0.8639 0.951 0.6835 0.8669 0.7748 0.9287 0.6954 0.8703 0.7841 0.9073 0.965 0.9575 0.9649 0.9624 116 0.9433 0.9682 0.9494 0.8941 125 0.8085 0.9131 0.8857 0.925 50 0.8605 0.9351 0.9452 0.9304 61 0.8698 0.9382 0.953 0.944 40 0.894 0.9476 0.9651 0.9662 50 0.9346 0.9659 0.9728 0.9723 32 0.9653 0.98 0.9841
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9777 389 0.9564 0.9611 0.9742 0.9719 580 0.9454 0.9516 0.9628 0.9762 442 0.9536 0.9588 0.9732 0.9809 338 0.9626 0.9669 0.9765 0.9785 421 0.9579 0.9613 0.9826 0.9804 709 0.9616 0.9646 0.9752 0.9864 1480 0.9732 0.9733 0.9805 0.9911 1557 0.9825 0.9827 0.9871 0.9926 2329 0.9854 0.9857 0.9914 0.9935 2313 0.9871 0.9873 0.9932 0.9942 2228 0.9886 0.9887 0.9962 0.9945 1360 0.9891 0.9892 0.9939
	75 80 85 95 105 115 24 28 32 34 36 40	FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM FRFCM	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.9089 90 0.9316 90 0.9075 153 0.8307 0.8828 0.9035 0.833 0.881 0.9063 0.8721 0.9117 0.9371 0.9425 225 0.8913 0.9217 0.9548 0.9197 106 0.8513 0.895 0.9238 0.947 130 0.8994 0.9294 0.9473 0.9392 281 0.8854 0.9132 0.9499 0.9556 74 0.9151 0.9433 0.9522 0.9377 40 0.8827 0.912 0.9426 0.9562 477 0.9161 0.9416 0.9449 0.9314 78 0.8704 0.9003 0.9472 0.9629 265 0.9285 0.9464 0.9607 0.8 338 0.6667 0.7204 0.7512 0.792 233 0.6557 0.7362 0.8456 0.8392 338 0.7229 0.7685 0.7899 0.8335 292 0.7146 0.7774 0.8889 0.839 85 0.7227 0.7746 0.777 0.8463 125 0.7336 0.7841 0.921 0.856 61 0.7482 0.7965 0.797 0.8675 85 0.766 0.8064 0.9387 0.8864 73 0.7961 0.8405 0.8337 0.9025 81 0.8224 0.8499 0.9651 0.9356 45 0.879 0.9042 0.9077 0.9458 234 0.8972 0.9141 0.9772
			Total Total Total Total Total Total Total Total Total Total Total Total	0.9218 90 0.9238 153 0.8584 0.9485 0.9208 0.855 0.9473 0.9201 0.9306 85 0.8703 0.9522 0.9311 0.9472 50 0.8997 0.9618 0.9498 0.9583 40 0.92 0.9675 0.9572 0.9675 68 0.937 0.9719 0.962 0.8931 233 0.8068 0.9119 0.8812 0.9254 116 0.8612 0.9335 0.9178 0.9307 85 0.8704 0.937 0.9305 0.9445 61 0.8949 0.9471 0.9474 0.9599 61 0.9229 0.9595 0.967 0.9759 34 0.9625 0.9784 0.9827
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9819 212 0.9645 0.9687 0.9869 0.9761 140 0.9534 0.9594 0.9793 0.9769 169 0.9549 0.9603 0.9729 0.9837 181 0.9681 0.972 0.9857 0.9786 200 0.9581 0.9617 0.9875 0.9779 205 0.9568 0.9605 0.983 0.9696 2098 0.941 0.9421 0.9972 0.9558 1557 0.9153 0.917 0.9948 0.9738 2385 0.9489 0.9499 0.997 0.9809 2234 0.9626 0.9634 0.9975 0.9851 2228 0.9707 0.9713 0.9985 0.9636 1360 0.9298 0.9305 0.9996
	75 80 85 95 105 115 24 28 32 34 36 40	MICO MICO MICO MICO MICO MICO MICO MICO MICO MICO MICO MICO	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.8756 170 0.7788 0.8362 0.8661 0.8959 170 0.8114 0.8659 0.9041 0.8622 85 0.7578 0.8221 0.8429 0.8955 208 0.8108 0.8593 0.9173 0.8782 125 0.7829 0.8376 0.8647 0.9061 98 0.8283 0.8765 0.9197 0.8876 272 0.7979 0.8389 0.8945 0.8968 221 0.813 0.8681 0.8935 0.8978 260 0.8146 0.853 0.8858 0.9133 260 0.8405 0.8863 0.9177 0.8952 169 0.8103 0.8475 0.8797 0.9167 169 0.8462 0.8814 0.9284 0.8518 313 0.7419 0.792 0.7971 0.8674 137 0.7658 0.8281 0.9041 0.8416 338 0.7265 0.7728 0.7947 0.8804 104 0.7865 0.8339 0.9007 0.864 70 0.7605 0.8125 0.8111 0.8987 80 0.8161 0.853 0.9423 0.8843 40 0.7927 0.8376 0.8279 0.912 90 0.8382 0.8689 0.9654 0.8721 45 0.7732 0.8163 0.8045 0.8949 100 0.8099 0.8397 0.967 0.9116 53 0.8376 0.865 0.8624 0.9547 265 0.9134 0.9277 0.9776
			Total Total Total Total Total Total Total Total Total Total Total Total	0.9015 170 0.8208 0.9341 0.9053 0.8967 65 0.8128 0.9308 0.902 0.9062 90 0.8285 0.9358 0.9122 0.9161 221 0.8452 0.9396 0.9226 0.9398 260 0.8864 0.9532 0.9416 0.9516 169 0.9077 0.9585 0.9525 0.9149 52 0.8432 0.9312 0.9201 0.9315 80 0.8718 0.9401 0.9425 0.9403 70 0.8874 0.9465 0.952 0.9535 32 0.9111 0.9559 0.963 0.956 25 0.9157 0.9556 0.965 0.9762 36 0.9573 0.9755 0.9865
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9835 160 0.9676 0.9712 0.9774 0.9789 89 0.9586 0.9636 0.9684 0.9801 328 0.9609 0.9653 0.9729 0.9853 340 0.9711 0.9745 0.9774 0.9839 109 0.9683 0.9707 0.977 0.9849 145 0.9703 0.9726 0.9756 0.9887 1480 0.9777 0.9779 0.9837 0.9945 1105 0.9892 0.9894 0.9905 0.9942 2340 0.9885 0.9887 0.9946 0.995 2234 0.9901 0.9903 0.9958 0.9948 2176 0.9897 0.9899 0.9965 0.9942 1138 0.9914 0.9944 0.9975
	75 80 85 95 105 115 24 28 32 34 36 40	LIC LIC LIC LIC LIC LIC LIC LIC LIC LIC LIC LIC	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.8695 170 0.7691 0.8255 0.8481 0.8827 170 0.79 0.8522 0.911 0.8608 72 0.7556 0.8194 0.8372 0.8889 208 0.8 0.8528 0.9267 0.8748 125 0.7774 0.8314 0.8537 0.8965 100 0.8125 0.8665 0.9283 0.9024 272 0.8222 0.8564 0.8856 0.9066 221 0.8292 0.8842 0.9319 0.9065 244 0.8291 0.8637 0.8824 0.9129 244 0.8397 0.8886 0.9412 0.9107 153 0.8361 0.8691 0.8879 0.923 153 0.8571 0.8926 0.955 0.8265 338 0.7044 0.7473 0.7496 0.8079 137 0.6777 0.7622 0.8875 0.8679 338 0.7667 0.8069 0.8059 0.8588 116 0.7526 0.8133 0.9276 0.8716 80 0.7724 0.8219 0.8141 0.8805 80 0.7865 0.8305 0.9482 0.8771 41 0.7811 0.8256 0.8139 0.8858 130 0.795 0.8335 0.9611 0.8949 34 0.8098 0.8523 0.8412 0.9095 100 0.8341 0.8608 0.9735 0.918 53 0.8484 0.875 0.8708 0.9226 298 0.8563 0.8799 0.9756
			Total Total Total Total Total Total Total Total Total Total Total Total	0.8961 170 0.8118 0.9298 0.8923 0.8956 50 0.811 0.9296 0.8947 0.9035 72 0.824 0.9334 0.9022 0.925 221 0.8605 0.9454 0.92 0.943 244 0.8922 0.9553 0.9346 0.9571 153 0.9178 0.963 0.9525 0.9019 113 0.8213 0.9179 0.8765 0.9344 116 0.8768 0.9412 0.9228 0.9409 80 0.8883 0.9464 0.943 0.95 41 0.9048 0.9523 0.9528 0.9621 32 0.927 0.9617 0.9692 0.9761 34 0.9535 0.973 0.9772
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9776 200 0.9562 0.9616 0.9922 0.974 74 0.9493 0.9563 0.9888 0.9739 226 0.9492 0.9557 0.9905 0.9836 130 0.9679 0.972 0.992 0.977 169 0.9551 0.9592 0.9954 0.9084 485 0.8322 0.8367 0.9208 0.8903 2098 0.8023 0.8062 0.9957 0.9106 1557 0.8359 0.8392 0.9947 0.9192 2385 0.8505 0.8536 0.9969 0.9246 2313 0.8598 0.863 0.9976 0.9231 2228 0.8573 0.8598 0.9982 0.9206 1489 0.8529 0.8542 0.9991
	75 80 85 95 105 115 24 28 32 34 36 40	PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF PSO-MRF	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.896 0.9226 117 0.8563 0.8994 0.9225 117 0.8116 0.8631 0.8871 0.8976 61 0.8143 0.8685 0.8811 0.9346 89 0.8773 0.9107 0.9434 0.9039 113 0.8246 0.8727 0.8965 0.9386 82 0.8843 0.9179 0.9369 0.9323 272 0.8732 0.9027 0.937 0.9491 221 0.9032 0.9348 0.9429 0.9278 196 0.8654 0.8971 0.9227 0.951 196 0.9067 0.9348 0.9408 0.94 116 0.8869 0.9134 0.9307 0.9591 116 0.9214 0.941 0.9588 0.7688 373 0.6244 0.6773 0.7231 0.8357 661 0.7179 0.7708 0.8088 0.8006 313 0.6675 0.7136 0.755 0.8668 776 0.765 0.8074 0.8515 0.8099 157 0.6806 0.7334 0.7489 0.8933 449 0.8073 0.8399 0.9038 0.8267 97 0.7046 0.7546 0.7684 0.9126 289 0.8392 0.8639 0.9216 0.8461 41 0.7333 0.7821 0.7901 0.9422 178 0.8907 0.9055 0.9446 0.8772 85 0.7813 0.8088 0.8161 0.9648 185 0.932 0.9423 0.9641
			Total Total Total Total Total Total Total Total Total Total Total Total	0.9176 117 0.8478 0.9451 0.9257 0.922 41 0.8552 0.9479 0.9314 0.9256 68 0.8615 0.9493 0.936 0.9468 221 0.8989 0.9618 0.9558 0.9591 196 0.9214 0.9684 0.9655 0.8738 89 0.7759 0.89 0.8929 0.8939 65 0.8082 0.9165 0.9247 0.9245 53 0.8597 0.9348 0.9461 0.9301 61 0.8693 0.938 0.954 0.9437 40 0.8934 0.9473 0.9647 0.9574 37 0.9182 0.9575 0.9724 0.9761 25 0.9572 0.9755 0.9899
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9859 167 0.9723 0.9751 0.9811 0.9801 145 0.9618 0.9654 0.9749 0.9733 328 0.9621 0.9608 0.9719 0.9774 353 0.9645 0.9676 0.9703 0.984 130 0.9644 0.9648 0.9713 0.9775 221 0.9553 0.9475 0.9453 0.9884 1480 0.9771 0.9773 0.9841 0.9932 1525 0.9866 0.9868 0.9899 0.9928 2385 0.9858 0.9861 0.9935 0.9939 2313 0.9879 0.9881 0.9949 0.9947 2176 0.9895 0.9897 0.9972 0.9959 1360 0.9919 0.9919 0.9965
	75 80 85 95 105 115 24 28 32 34 36 40	PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB PSO-KFECSB	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.9359 65 0.9543 81 0.9334 61 0.9607 81 0.9362 125 0.88 0.8796 0.9162 0.9328 0.9127 0.941 0.9588 0.8752 0.916 0.9326 0.9244 0.9461 0.9658 0.9162 0.9356 0.9613 91 0.9255 0.9486 0.9666 0.9523 272 0.9102 0.9322 0.9569 0.9693 67 0.9405 0.9611 0.9745 0.9529 82 0.9103 0.9321 0.9464 0.9693 120 0.9405 0.9599 0.9764 0.9377 79 0.8989 0.9091 0.9502 0.9695 29 0.9409 0.9564 0.9742 0.8494 338 0.7383 0.7907 0.8015 0.8485 90 0.7368 0.8068 0.9008 0.8871 338 0.7972 0.8393 0.8429 0.8878 82 0.7983 0.8487 0.9376 0.8863 72 0.7958 0.8446 0.8386 0.8994 72 0.8172 0.8556 0.9552 0.9009 41 0.8197 0.8629 0.854 0.9147 85 0.8428 0.8731 0.9696 0.8995 34 0.8174 0.859 0.847 0.9143 100 0.8422 0.8679 0.9759 0.9177 53 0.848 0.875 0.8729 0.9242 298 0.8591 0.882 0.9723
			Total Total Total Total Total Total Total Total Total Total Total Total	0.945 0.9456 52 67 0.946 61 0.9606 47 0.9625 82 0.9658 79 0.912 58 0.9428 68 0.9468 72 0.9584 41 0.9634 34 0.9762 29	0.8957 0.9631 0.9462 0.8968 0.9633 0.946 0.8975 0.9629 0.9487 0.924 0.9712 0.9624 0.9456 0.9686 0.9609 0.9428 0.9692 0.9622 0.8383 0.9277 0.9023 0.8918 0.9491 0.9376 0.899 0.9519 0.9507 0.9201 0.9604 0.9636 0.9295 0.9631 0.9708 0.9536 0.9731 0.9776
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9854 373 0.9712 0.9744 0.9768 0.9209 305 0.8535 0.8536 0.8536 0.9802 260 0.9613 0.9653 0.9663 0.9273 421 0.8646 0.8646 0.8646 0.9493 585 0.9035 0.9035 0.9035 0.964 337 0.9305 0.9329 0.9317 0.985 2098 0.9702 0.9703 0.9838 0.9927 1557 0.9845 0.9857 0.9879 0.9961 2385 0.9923 0.9925 0.9942 0.9959 2313 0.9918 0.9919 0.9932 0.9941 2228 0.9843 0.9844 0.9957 0.995 1489 0.9911 0.9921 0.9944
	75 80 85 95 105 115 24 28 32 34 36 40	PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC PSO-AWGLAC	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.9202 170 0.8522 0.897 0.9417 170 0.8899 0.9242 0.9408 0.9291 0.9186 85 0.8495 0.8979 0.9231 0.9517 218 0.9078 0.9339 0.96 0.9235 125 0.858 0.9008 0.9347 0.9557 173 0.9153 0.9412 0.9596 0.9402 272 0.8872 0.9142 0.9463 0.9598 221 0.9228 0.9493 0.9684 0.923 260 0.857 0.8905 0.9207 0.9511 260 0.9068 0.937 0.9732 0.8415 169 0.7264 0.7567 0.7871 0.8562 185 0.7485 0.8096 0.9405 0.8497 338 0.7495 0.8057 0.8203 0.8593 157 0.7546 0.8116 0.9002 0.8847 338 0.7914 0.8401 0.8431 0.8902 106 0.8013 0.8511 0.9316 0.8799 72 0.7856 0.8354 0.8303 0.889 157 0.8001 0.8414 0.9491 0.8961 49 0.8119 0.856 0.848 0.9073 145 0.8303 0.8628 0.967 0.8914 37 0.804 0.8471 0.8368 0.9033 130 0.8237 0.8518 0.9711 0.9097 53 0.8344 0.862 0.8598 0.9138 314 0.8414 0.867 0.9728
			Total Total Total Total Total Total Total Total Total Total Total Total	0.9344 170 0.8769 0.9558 0.9323 0.8631 73 0.7592 0.8995 0.7978 0.9399 109 0.8867 0.9585 0.9375 0.8829 221 0.7903 0.9085 0.8229 0.9305 260 0.87 0.9436 0.8931 0.9372 169 0.8819 0.9446 0.912 0.9133 98 0.8375 0.9274 0.9097 0.9411 68 0.8911 0.9484 0.9386 0.9441 68 0.8942 0.9494 0.9467 0.9566 49 0.9169 0.9587 0.9604 0.9612 32 0.9253 0.9608 0.9672 0.9744 40 0.9502 0.9711 0.9743
			CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF CSF	0.9859 153 0.9723 0.9754 0.9814 0.9806 136 0.9619 0.9668 0.9758 0.9833 333 0.9671 0.9709 0.9788 0.9875 353 0.9755 0.9784 0.9808 0.9842 128 0.9689 0.9711 0.9715 0.9698 304 0.9414 0.9441 0.9428 0.9887 1480 0.9777 0.9779 0.9849 0.9932 1525 0.9866 0.9868 0.9899 0.9921 2385 0.9844 0.9846 0.9945 0.9936 2313 0.9873 0.9875 0.9951 0.9949 2176 0.9898 0.99 0.9972 0.996 1360 0.992 0.9921 0.9971
	75 80 85 95 105 115 24 28 32 34 36 40	Proposed Proposed Proposed Proposed Proposed Proposed Proposed Proposed Proposed Proposed Proposed Proposed	GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM GM WM	0.9365 65 0.9551 80 0.9338 61 0.963 81 0.9387 125 0.8845 0.9201 0.9446 0.8805 0.9171 0.9347 0.914 0.9421 0.9623 0.8759 0.9169 0.9371 0.9287 0.9491 0.9649 0.9646 89 0.9316 0.9528 0.9656 0.9532 272 0.9106 0.9328 0.9582 0.9695 64 0.9408 0.9614 0.9748 0.9531 36 0.9104 0.9334 0.9531 0.9694 113 0.9407 0.9601 0.9799 0.9317 74 0.8721 0.9044 0.9522 0.9707 29 0.943 0.9579 0.9751 0.8658 338 0.7633 0.8197 0.8432 0.8752 90 0.7781 0.8364 0.9017 0.8887 338 0.7997 0.842 0.8469 0.8902 82 0.8021 0.8515 0.9374 0.8926 65 0.8061 0.8545 0.8506 0.9082 65 0.8319 0.8672 0.9558 0.9208 41 0.8533 0.8925 0.8883 0.9364 85 0.8804 0.9037 0.9733 0.9068 36 0.8295 0.8733 0.8598 0.922 100 0.8554 0.8789 0.9767 0.9226 53 0.8564 0.8833 0.8832 0.93 293 0.8692 0.8903 0.973
			Total Total Total Total Total Total Total Total Total Total Total Total	0.9459 61 0.9462 58 0.9479 50 0.961 41 0.9725 36 0.9714 74 0.9211 50 0.9435 68 0.9497 65 0.9663 41 0.9657 36 0.9774 29	0.8974 0.9636 0.9451 0.8979 0.9637 0.9453 0.9009 0.9641 0.9489 0.9249 0.9718 0.9629 0.9465 0.9785 0.9662 0.9444 0.9753 0.9623 0.8538 0.9357 0.9182 0.8931 0.9498 0.939 0.9042 0.9545 0.9548 0.9348 0.9679 0.9717 0.9338 0.9654 0.9732 0.9558 0.9745 0.9793
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Appendix A. Parameter setting for compared algorithms

The parameters for the compared algorithms are default values taken from their works as listed below. 

PSO-AWGLAC

All the experiments are conducted with: number of clusters 4 (or 3 for real MR images), the population size P = 100, swarm size N = 40, constraints of the velocities [-1, 1], maximum number of iterations k max = 100, the number of non-significant improvements k stop = 10, the time step ∆t = 0.1, µ = 1, weight of length term ν = 0.003 * 255 2 , ε = 3, Gaussian parameter σ = 4, and scale parameters (ρ, ζ) are (1/1.9, 1.9) (or (1/0.9, 0.9) for real MR images).

Appendix B. Average values in terms of criteria on simulated MR brain images using different algorithms.

The experimental results for several T1-weighted slices downloaded from the BrainWeb (with 9% noise and 40% INU artifact).

Appendix C. Average values in terms of criteria on real MR brain images using different algorithms.

The experimental results for several T1-weighted slices (in 20 normal MR brain dataset) provided by the Center for Morphometric Analysis at Massachusetts General Hospital, which are available at 3 .

The graphical abstract illustrates multiple steps of the proposed method.