

Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata

Milena Santos Dória, Meg Silva Guedes, Edson Mario de Andrade Silva, Tahise Magalhães de Oliveira, Carlos Priminho Pirovani, Katia Cristina Kupper, Marinês Bastianel, Fabienne Micheli

▶ To cite this version:

Milena Santos Dória, Meg Silva Guedes, Edson Mario de Andrade Silva, Tahise Magalhães de Oliveira, Carlos Priminho Pirovani, et al.. Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata. International Journal of Biological Macromolecules, 2019, 136, pp.410 - 423. 10.1016/j.ijbiomac.2019.06.069. hal-03485689

HAL Id: hal-03485689 https://hal.science/hal-03485689

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S014181301933853X Manuscript_5a605d230c173a950afae190819f4a51

Comparative proteomics of two citrus varieties in response to infection by the fungus *Alternaria alternata*

Milena Santos Dória¹; Meg Silva Guedes¹; Edson Mario de Andrade Silva¹; Tahise
Magalhães de Oliveira¹; Carlos Priminho Pirovani¹; Katia Cristina Kupper²; Marinês
Bastianel²; Fabienne Micheli^{1,3,*}.

6

7 ¹ Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC),

8 BA, Brazil.

9 ² Centro de Citricultura "Sylvio Moreira" – Instituto Agronômico de Campinas (IAC) SP,
10 Brasil.

³ CIRAD, UMR AGAP, F-34398 Montpellier, France

12 *Corresponding author: Fabienne Micheli. E-mail: fabienne.micheli@cirad.fr

13

14 Short title: Proteomics of citrus–*Alternaria alternata* interaction

15 Abbreviations: 2-DE: bi-dimensional electrophoresis; ABS: Alternaria brown spot; hai:

16 hours after inoculation; APX: ascorbate peroxidase; GST: glutathione S-transferase; PCA:

17 principal component analysis; ROS: reactive oxygen species; SOD: superoxide dismutase.

18

19 Abstract

Alternaria brown spot (ABS) is a disease caused by the necrotrophic fungus *Alternaria alternata*, which induces necrotic lesions on fruits and young leaves due to the production of the host-specific ACT toxin by the fungus. To better understand the citrus–*A. alternata* interaction and to identify putative resistance proteins, as well as the receptor of the ACT toxin, citrus plants susceptible ('Minneola' mandarin) and resistant ('Clemenules' tangor) to 25 A. alternata, infected or not (control) with the pathogen were analyzed by proteomics. Protein 26 changes were observed between citrus genotypes after infection, and 150 candidate proteins 27 were obtained. A general scheme of the metabolic processes involved in susceptible and 28 resistant citrus-A. alternata interactions was designed. Susceptible plants presented a high 29 level of proteins involved in stress response at the final stages of the infection, whereas 30 resistant plants presented high level of ROS proteins, metabolic proteins, and proteins 31 involved in the immune system process. Proteins like ferredoxin and cyclophilin are specific 32 to the susceptible variety and may be good candidates as fungal effector-interacting proteins. 33 This is the first citrus-A. alternata proteomics analysis, which has allowed a better 34 understanding of the molecular bases of the citrus response to ABS disease.

35

36 Keywords: 'Minneola', 'Clemenules', mass spectrometry.

1. Introduction

37

38

39 Citrus cultivation is one of the pillars of the Brazilian agricultural economy; about 60% of the 40 orange juice consumed in the world comes from Brazilian orchards [1]. In 2013, Brazil 41 exported about 1 million tons of orange juice representing about 434 million dollars [1]. In 42 compensation, the production of fruits in natura destined for exportation is still low; in 2013, 43 Brazil only exported about 24,000 tons of citrus in natura (including mandarins and oranges), 44 representing about 10 million dollars [1]. The segment of agribusiness related to fruit 45 production for *in natura* consumption could be greatly improved by investing in the 46 production of fruits with aggregate characteristics in relation to quality such as intense reddish 47 orange coloration, seedlessness, balanced sweetness/acidity, ease of peeling, and absence of 48 spots on skin, particularly in the case of mandarins [2].

49 Despite the prominent position of Brazil regarding the citrus culture, orchards suffer the 50 influence of biotic and abiotic factors limiting the production and, in some cases, causing 51 severe damage responsible for the destruction of entire plantations [3]. Among the biotic 52 stresses, Alternaria brown spot (ABS)-a disease caused by the tangerine pathotype of the 53 necrotrophic fungus Alternaria alternata (Fr.) Keissl.-highly prejudices Brazilian mandarin 54 orchards [4]. ABS induces necrotic lesions (small brown or black spots) on fruits and young 55 leaves, defoliation, and fruit drop in susceptible citrus genotypes [5, 6]. These symptoms are 56 due to the production of the ACT toxin by the fungus: this host-specific toxin is released 57 during the germination of the conidia, rapidly affecting the plasma membrane integrity of the 58 cells in the susceptible hosts [5, 6]. Indirect evidence suggests the existence of a toxin 59 receptor in susceptible citrus genotypes [6-8].

60 Recently, it has been shown that the inheritance of ABS resistance is controlled by a 61 single recessive locus (ABSr) located near the centromere of the chromosome III [8-10]. The 62 fine mapping of this region allowed the identification of possible candidate resistance genes 63 [6]. As a complementary approach to identifying the possible receptor to the ACT toxin as 64 well as to confirm the resistance proteins, but also to understand the overall cascades involved 65 in citrus plant resistance versus susceptibility to A. alternata, a proteomics approach was 66 used. Proteomics provides information regarding protein expression during the plant-67 pathogen interaction such as the identification of which proteins are translated during the 68 infection process, as well as identification of the signaling mechanisms triggered by the plant 69 when subjected to infection [11]. Here, we report the first proteomic analysis of the 70 interaction between citrus and A. alternata, with the aim of a better understanding of the 71 molecular bases of the citrus response to ABS disease.

73 **2. Materials and Methods**

74 **2.1 Plant materials**

The experiments were conducted using 'Clemenules' (*Citrus clementina* Hort. ex Tan) and 'Minneola' (*Citrus paradisi* Macf. x *Citrus tangerina Tan*) citrus plants that are resistant and susceptible to *Alternaria alternata*, respectively [8]. Plant material cultivation and inoculation procedures were performed in the Centro de Citricultura "Sylvio Moreira" – IAC (Cordeirópolis, SP, Brazil). Citrus plants (clones) were grown in a greenhouse for 2 months; at this stage the plantlets were pruned to induce new shoots. Finally, the inoculation was performed in 3-month-old plants.

82 2.2 Obtaining and inoculation of Alternaria alternata

83 The inoculation was performed with the A. alternata mandarin pathotype AT4303 previously 84 obtained from plants severely infected [12, 13]. For the collection of A. alternata, 10 ml of 85 sterile water was added to the colonies of the fungus. The conidia were separated from the 86 mycelium by dismantling and then filtered using sterile gauze. The suspension was 87 centrifuged twice for 20 min at 12,000 g. The concentration of the conidia in the suspension 88 was determined by counting under a light microscope and a hemocytometer. The suspension 89 was adjusted to 1×10^4 conidia/ml. One drop of suspension was incubated on a microscope 90 slide for 18 h in a humid chamber to check the conidia viability. Then the mycelium of the 91 fungus was cultivated in potato-dextrose-agar medium for 7 days at 26°C and photoperiod of 92 12:12 h. The inoculation of the plants with A. alternata was made in young leaves, spraying 5 ml of the spore solution (10^5 spores/ml) on each leaf [14]. Control plants were submitted to 93 94 inoculation using distillated water instead of spore suspension. Five inoculated and 5 control 95 plants were used in our experiment. From them, leaves were harvested 6 h after inoculation 96 (hai) and 12 hai according to previous experiments describing the earlier steps of fungus 97 infection [13]. For each genotype, for each plant (inoculated and control) and at each
98 harvesting time, 5 leaves were collected (1 sample = 5 leaves from 1 plant). The samples from
99 the 5 plants (inoculated vs. control) were pooled for further experiments. Pooling samples
100 before molecular analysis has the advantage of reducing the variation caused by biological
101 replication and sample handling [15]. Samples were frozen in liquid nitrogen, lyophilized, and
102 kept at room temperature until use.

103 **2.3 Protein extraction**

104 Inoculated and control samples from each harvesting time were macerated in liquid nitrogen 105 until a fine powder was obtained. Proteins were extracted from 0.4 g of powder as previously 106 described [16]. Briefly, this procedure was based on the use of phenol and dense SDS, as well 107 as successive washings in acetone/TCA mixture associated with sonication steps. The proteins 108 were dissolved in rehydration buffer (7 M urea, 2 M thiourea, 4% CHAPS, 5 mM 109 tributylphosphine, and 0.5% IPG buffer) and stored at -20°C until used. Proteins from each 110 extract were quantified using a 2-D Quant Kit (GE Healthcare - Brazil) according to the 111 manufacturer's recommendations.

112 **2.4 2-DE approach**

113 Proteins (500 µg) were resuspended in the rehydration buffer (described above) containing 114 DTT (50 mmol.L-1) and 0.5% ampholytes pH 3-10 NL (nonlinear; Amersham Biosciences). 115 Protein samples were applied on 13 cm gel strips with 3-10NL immobilized pH gradient 116 (IPG-immobilized pH gradient) and then submitted to an EthanIPGphor III Isoelectric Focal 117 Unit. The second dimension was performed on 12.5% polyacrylamide gel in a Hoefer SE 600 118 Ruby vertical electrophoresis system (Amersham Bioscience). After electrophoresis, the 119 polyacrylamide gels were placed in fixation buffer (40% ethanol and 10% acetic acid) for 20 120 min, and then stained for 7 days with colloidal Coomassie blue (8% ammonium sulfate, 0.8%

phosphoric acid, 0.08% G-250 Coomassie blue, and 20% methanol) [17]. Discoloration was obtained by transferring and keeping the gels in distilled water under gentle agitation until removal of the nonspecific staining. Then the gels were kept in acetic acid at 7% until analysis. For each treatment three gels were obtained (experimental replicates).

125 **2.5 Image acquisition and statistical analysis**

126 The gels were scanned with a LabScanner (Amersham Bioscience), and the images analyzed 127 with an ImageMaster 2D Platinum 7.0 (GE Healthcare) to identify and quantify each spot, 128 considering their area and intensity. Each data spot was transformed into a volume value 129 (volume%) by the software; this volume corresponded to protein accumulation. In addition, 130 for each treatment, a reference gel of the experimental triplicates was established. By 131 comparison between treatments, the software allowed the identification of exclusive spots 132 (i.e., present only in one treatment) as well as the relative and possibly differential spots 133 between treatments (corresponding to differentially expressed proteins). PCA of differentially 134 expressed proteins was conducted using the "vegan" package in R version 3.1.0. PCA results 135 were represented as graphs, showing a variation among individuals (treatments), considering 136 the variables (proteins) that exhibited the highest expression located in the same area of the 137 graph.

138 **2.6 Hierarchical clustering analysis**

Clustering was performed using the Heatmap function of the Complex-Heatmap library in the Bioconducter package in the R program [17]. The matrix was built with normalized, logtransformed ratio values for each spot obtained by the analysis with the ImageMaster 2D Platinum 7.0 software. Euclidean distance was used to calculate the distance or dissimilarity between conditions, and the Complete Link plugin of Cluster 3.0 was used for clustering.

144 **2.7 Mass spectrometry and protein identification**

145 The exclusive and differential spots selected for protein identification by mass spectrometry 146 were excised from the 2-D gel and subjected to tryptic digestion as previously described [18]. 147 The sample containing the proteolytic digestion was fractionated by phase-reversed 148 chromatography on nanoAcquity UPLC coupled to a Q-Tof micro mass spectrometer 149 (Waters) as previously described [19]. The obtained spectra were analyzed using the 150 ProteinLynx v2.3 software and compared with the NCBI non-redundant database, setting the 151 taxonomy parameter to green plants, and with the SWISSPROT database setting the 152 parameter to Citrus sinensis. The protein identification was obtained using the MASCOT 153 MS/MS IonSearch (www.matrixscience.com) with the following parameters: trypsin enzyme 154 digestion, 1-cleavage site lost, cysteinecarbamidomethylation (Cys) as fixed modification and 155 as methionine oxidation (Met) modification, error tolerance of 30 ppm, tolerance for mass 156 error equal to 0.3 Da, and 0.1 Da for the error of the fragmented ions. The protein 157 categorizations according to their ontology and biological functions were performed using 158 BLAST2GO (www.blast2go.com).

159 **2.8 Interaction network analysis**

160 The protein-protein interaction network was carried out using the publicly available program 161 STRING 9.05 (http://string-db.org/). The protein list was compared with the Arabidopsis 162 thaliana STRING database that included the physical and functional relationships of protein 163 molecules supported by associations derived from 8 pieces of evidence: neighborhood in the 164 genome, fusions, co-expression, gene co-occurrence across genome, 165 experimental/biochemical data, databases (associated in curated databases), text mining (co-166 mentioned in PubMed abstracts) and homology. The following parameters were used: no 167 more than 50 interactions and a high confidence score (0.700). The matrices of networks

168 extracted from STRING were submitted to a merge in Cytoscape software (2.8.3). The 169 interaction file extracted from Cytoscape was used for centrality analysis (betweenness and 170 degree) in the Igraph package in R. The betweenness analysis was done with the Betweenness 171 function (parameters: rede, v = V [rede], directed = FALSE, weights = NULL, nobigint = 172 TRUE, normalized = FALSE), and degree analysis was done with the Degree function 173 (parameters: rede, v = V [rede], loops = TRUE, normalized = FALSE).

174

175 **3. Results**

176 **3.1** Analysis of protein profile in response to fungus infection and functional 177 classification

178 The protein profile of both varieties is presented in Fig. 1. In the 'Minneola' variety 179 (susceptible to A. alternata), a total of 450 spots in the non-infected sample (MNI) were found 180 (Fig. 1A), whereas 350 and 457 spots were observed in the 'Minneola' variety 6 hai (MI6AI) 181 (Fig. 1B) and 12 hai (MI12AI) (Fig. 1C), respectively. A total of 211 spots had a differential 182 accumulation level between the three conditions (Additional File 1: Table S1). A total of 365 183 spots (Fig. 1D) was detected on the non-infected 'Clemenules' (CNI) 2-D gel, whereas 455 and 420 spots were detected in the 'Clemenules' infected - 6 hai (CI6AI) and in the 184 185 'Clemenules' infected - 12 hai (CI12AI) 2-D gels, respectively (Fig. 1D and 1F). The 186 treatments were compared and 150 spots with a significant differential expression level ($P \leq$ 187 0.005) were found. From them, 102 were identified through mass spectrometry (Additional 188 File 1: Table S2). The identified proteins were separated according to the biological processes 189 in which they are involved (Fig. 2). The proteins of the 'Minneola' variety were distributed in 190 6 categories (Fig. 2A) and those of the 'Clemenules' variety in 9 categories according to 191 biological processes (Fig. 2B). Six categories were common to both varieties: metabolic 192 process (33% e 26%), cellular process (26% e 26%), single-organism process (23% e 22%), 193 response to stress (10% e 11%), biological regulation (5% e 5%), and localization (3% e 2%). 194 Three categories were exclusive to 'Clemenules': developmental process (2%), detoxification 195 (5%) and immune system process (1%). Most of the proteins distributed in the categories 196 mentioned above were upregulated for both 'Clemenules' and 'Minneola' (Fig. 2C). Eighty-197 four percent of all the proteins identified as being involved with the metabolic process were 198 upregulated, and 81% of proteins related to response to stress presented an increase of 199 regulation. As well as these two biological processes, the proteins related to other processes 200 increased the level of regulation.

201

202 3.2 Metabolic process

203 In general, for 'Minneola', 122 proteins related to metabolic process were identified. Among 204 them, 41 are common to the three conditions and have differential expression level, 26 are 205 exclusive to 'Minneola' 6 hai, and 55 are exclusive to 'Minneola' 12 hai. Among the proteins, 206 NADP-dependent D-sorbitol-6-phosphate dehydrogenase-like (spot 82), caffeic acid 3-O-207 methyltransferase-like (spot 239), probable NADPH dehydrogenase (quinone) FQR1-like 1 208 (spot 247), proteasome subunit alpha type-4 (spot 254), and protein USF (spot 52) were 209 significantly up-regulated on the 'Minneola' 12 hai. The proteins 40S ribosomal S12 (spot 8), 210 glutamate-1-semialdehyde chloroplastic (spot 98), aspartate aminotransferase glutamate (spot 211 115), and malate dehydrogenase (spot 238) were regulated mainly on the treatment infected 212 after 12 hai. A total of 65 proteins involved with cell metabolism was identified in 213 'Clemenules.' Among them, 32 were differentially expressed between the three conditions, 8 214 were exclusive to 'Clemenules' 6 hai and 25 were exclusive to 'Clemenules' 12 hai. Of the 215 differentially expressed proteins, 49 were significantly up-regulated and 16 were down-216 regulated. The expression of protein fructose-bisphosphate (spot 410) was significantly downregulated because the level of expression reduced comparing 'Clemenules' control and
'Clemenules' 12 hai. Malate dehydrogenase (spot 235) was up-regulated in 'Clemenules' 6
hai but presented a reduction in 'Clemenules' 12 hai. Peroxiredoxin (spot 124) decreased
from control to 'Clemenules' 6 hai and increased again in 'Clemenules' 12 hai. Superoxide
dismutase (SOD) protein (spot 120; Additional File 1: Table S2) showed increased expression
in both infection conditions.

223

224 **3.3 Cellular process**

225 The 'Minneola' variety presented 96 proteins related to cellular process. Among them, 32 226 were differentially expressed, 17 were exclusive to 'Minneola' 6 hai treatment, and 47 were 227 exclusive to 'Minneola' 12 hai. In this category, 78 proteins were significantly up-regulated 228 and 18 were down-regulated. Among the up-regulated proteins, cyclophilin (spot 171) had an 229 expression level that doubled in the two infection conditions ('Minneola' 6 hai and 230 'Minneola' 12 hai) compared to 'Minneola' control. Phosphomannomutase (spot 253) and 231 oxygen-evolving enhancer (spot 255) proteins maintained a constant level of expression 232 between the control and infected conditions after 6 hai and increased after 12 hai (1X to 253 233 and 2X to 255, respectively). 'Clemenules' variety showed 65 proteins related to this process 234 (we can highlight the spots 37, 92, 110, 124, 139, 187, 300, 409, 410, and others). In this case, 235 36 were common to all conditions and presented differential accumulation level. Eight were 236 exclusive to 'Clemenules' 6 hai, and 21 were exclusive to the 'Clemenules' 12 hai treatment. 237 Of the total of these proteins identified, 52 were up-regulated and 13 were down-regulated.

238

3.4 Response to stress

Forty-eight proteins related to defense and stress responses were identified in this work. In 'Minneola' 35 proteins were identified, and 29 were identified in 'Clemenules.' Most of these 242 proteins were up-regulated for both varieties. 'Minneola' presented 8 proteins with difference 243 in the accumulation, 8 were exclusive to 'Minneola' 6 hai treatment, and 19 were exclusive to 244 'Minneola' 12 hai. Among these proteins, we can cite that T23e23.17 (spot 576) was 245 exclusive to the infected sample, that ferredoxin (spot 84) increased the accumulation 6 hai 246 and 12 hai in 'Minneola', and that peroxiredoxin (spot 317) was identified only in 'Minneola 247 12 hai. Another protein exclusive to 'Minneola' 12 hai was the universal stress A-like protein 248 (spot 330). In 'Clemenules', of the 29 proteins identified, 19 presented differential 249 accumulation, 2 were exclusive to 'Clemenules' 6 hai, and 8 were exclusive to 'Clemenules' 250 12 hai. A heat shock protein 90 (spot 471) was down-regulated in infected sample and 251 glutathione S-transferase (GST) DHAR2 (spot 439; Table 2) was up-regulated on 252 'Clemenules' 6 hai but was not identified in 'Clemenules' 12 hai.

253

254 **3.5 Biological regulation**

255 The proteins related to this function were identified in 'Minneola' and in 'Clemenules'. In 256 'Minneola', only the infected samples presented proteins involved with this function. Four 257 proteins were exclusive to 'Minneola' 6 hai and 14 were exclusive to 'Minneola' 12 hai. For 258 'Clemenules' 13 proteins related to this process were identified, and 7 presented differential accumulation (spots 92, 139, 300, 314, 316, 379 and 407); of these, the 20 kDa chaperonin 259 260 (spot 139; Table 2) protein increased the accumulation in 'Clemenules' 6 hai but was reduced 261 in 'Clemenules' 12 hai, the 26S protease regulatory (spot 316; Additional File 1: Table S2) 262 protein presented a reduction on the accumulation in 'Clemenules' 6 hai but increased in 263 'Clemenules' 12 hai, and the GTP-binding nuclear protein (spot 407; Table 2) doubled the 264 accumulation in 'Clemenules' 6 hai but was repressed in 'Clemenules' 12 hai.

265

266 **3.6 Detoxification**

Proteins related to the detoxification process were detected and identified in the susceptible and resistant varieties. Of the proteins identified in 'Clemenules', 10 presented differential accumulation and only 2 proteins were unique to the 'Clemenules' 12 hai. Here SOD (spot 120), 2-Cys peroxiredoxin (spots 119, 124, and 236 are isoforms), and peroxidase (spot 237) can be cited. Of all the proteins related to this process identified in this work, only one presented reduction on the accumulation.

273

274 **3.7 PCA and hierarchical clustering analysis**

275 To understand which proteins (variables) contribute to the variation in the three conditions 276 (control, 6 hai, and 12 hai) for the 2 varieties, PCA was performed. PCA indicated that the 277 three conditions for 'Minneola' and 'Clemenules' can be discriminated against each other 278 according to differentially expressed proteins. The first principal component (PC1) of 279 'Minneola' explained 66.7% of the total variation and discriminated the biological samples on 280 the basis of infection of fungus, whereas PC2 explained 33.33% of the variation (Additional 281 File 2: Fig. S1A). According to the score plot for PC1 and PC2, the 'Minneola' 6 hai 282 treatment presented more discrepant behavior than the control and 'Minneola' 12 hai. Overall, 283 the 'Minneola' PCA demonstrated difference in protein expression for the three conditions. 284 To clarify which of the proteins contributed to the discrimination, variable importance plots 285 were produced based on the loading scores for PC1 and PC2 (Additional File 2: Fig. S1B). In 286 'Clemenules,' PC1 represented 52.2% of the total variation between the conditions and PC2 287 represented 47.8% of variation (Additional File 2: Fig. S1C). The variables that presented a 288 contribution to this variation were also plotted according loading scores for PC1 and PC2 289 (Additional File 2: Fig. S1D). According to the classification of relevant variables, those with 290 the highest influence on the variability between control and infected samples for 'Mineola' 291 (Table 1) and 'Clemenules (Table 2), respectively, were selected (Additional File 2: Fig. S2).

The proteins with the greatest influence on the variability of the conditions were submitted to a hierarchical grouping to show the pattern of protein expression in our diversity treatments (Fig. 3). It was possible to observe the separation of the proteins into 8 clusters for 'Mineola' (Fig. 3A) and 11 different clusters for 'Clemenules' (Fig. 3B), according to the level of expression in each condition.

297

298 **3.8 Protein–protein interaction network (interactomics)**

299 Proteins are in constant interaction in a living cell. They do not perform their functions alone 300 but integrate a series of networks and protein-protein interactions that are fundamental in 301 almost all cellular processes (Pallas and García 2011). To understand how A. alternata 302 interacts with susceptible and resistant plant proteins to affect cell functions, the proteins 303 identified as differentially expressed were analyzed by searching the String database and the 304 protein-protein interaction network. The abbreviations of the specific protein names related to 305 A. thaliana in the network for 'Minneola' are shown in Additional File 1, Table S3, and the 306 relation between proteins of 'Clemenules' and orthologous proteins in A. thaliana are shown 307 in Table S4. The networks were used to determine the importance of proteins based on their 308 centrality according to betweenness and degree information.

309 **4. Discussion**

Plants are constantly attacked by microorganisms and insects, but only a portion can successfully invade a plant and establish a relationship with the host and exploit it as an energy source. Thus, the occurrence of the disease in the host is not a common result, but an exception [20], because a plant has defense mechanisms capable of neutralizing the harmful effects of microorganisms [21]. Proteins are directly related to these defense responses, because they are responsible for catalyzing reactions at the metabolic level. For this reason, 316 the change in the accumulation of proteins in stress situations can be determinant of the 317 tolerance of a plant to the stress that was submitted [22].

318 In this study, proteins differentially expressed in citrus plants infected with A. 319 alternata were identified using a 2-DE approach. Comprehensive analysis of these proteins 320 will help to elucidate the molecular mechanism involved in the interaction between plants 321 infected with this fungus and understand how these plants respond to infection considering the 322 resistance and susceptibility. Here we discuss the main responses that occur in plants with 323 pathogen infection according to the proteins that most affected the separation of the 324 conditions established in this work. The proteomic analysis allows the understanding of how a 325 plant responds to the presence of a microorganism in real time, allowing identification of the 326 defense mechanisms and the signaling that occurs when a plant is affected by some stress 327 situation. The information contained in the genome of each organism defines the potential 328 contribution for each cellular function, but the expression of the proteome represents the 329 contributions of the present moment in which the plant is submitted to stress [23]. The 330 proteomic analysis of 'Minneola' versus 'Clemenules' interactions with A. alternata allowed 331 the establishment of a general scheme of biological processes for each interaction through a 332 time course (Fig. 4).

333

334 4.1 Proteins related to metabolic and cellular processes

Metabolic processes are generally affected in plants subjected to stress, including infection by microorganisms. Several pathways of energy production, including tricarboxylic acid (TCA), oxidative phosphorylation, and glycolysis, are active in almost all organisms and are responsible for the storage, release and production of this energy [24]. Many enzymes are directly involved with these pathways. In this study, some enzymes related to energy production were identified. Malate dehydrogenase, for example, is an enzyme that participates 341 in the TCA cycle and has the ability to convert malate to oxaloacetate reversibly [25]. Here, 342 this protein was down-regulated in the susceptible 'Minneola' (spot 238; Additional File 1: 343 Table S1), but up-regulated in the resistant 'Clemenules' (spot 235; Additional File 1: Table 344 S2). Malate dehydrogenase is a protein very susceptible to oxidative stress [26], so the 345 decrease in the regulation of this protein, as we can see here with the susceptible variety, can 346 be a defense response against infection [27], because the reduction of this protein can 347 decrease the production of reactive oxygen species (ROS). In a study with resistant Brassica 348 oleracea plants susceptible to Xanthomonas campestris pv. Campestre, this protein was only 349 identified in the resistant variety [28]. In another study carried out with plants susceptible to 350 Candidatus Liberibacter asiaticus, this protein also showed a reduction in the level of 351 expression in the symptomatic plants [29], which is the same as the results found in our work. 352 Another protein classified according to metabolic processes was RuBisCo (1,5-bisphosphate 353 carboxylase oxygenase), which is the most abundant protein in plants and is responsible for 354 the fixation of carbon dioxide in its organic form [30]. In the present work, this protein was 355 identified as up-regulated in both susceptible (Spots 304 and 306) and resistant (Spot 639) 356 varieties. In the study conducted by Villeth et al. (2016) [28] the opposite happened: a 357 decrease was observed in the regulation of this protein in resistant plants, which reflected a 358 strategy of resistance of plants. In several other studies involving plant-pathogen 359 relationships, this protein also showed a decrease in the regulation in infected plants [29, 31-360 33]. The reduction in the regulation of these proteins can affect photosynthesis during the 361 infection process, but it is not clear if this reduction is a defense response of the plant in 362 relation to the development of the fungus, because the fungus will be deprived of the 363 necessary nutrients for its development making this event favorable for the host [34]. In this 364 work, however, the increase in the regulation of RuBisCo in both resistant and susceptible 365 plants might be a defense response of the plant to infection because A. alternata is a 366 necrotrophic fungi and the decrease of metabolism and possible death of the plant would 367 benefit the development of the microorganism [35]. In this work, an ATP synthase was 368 identified in the resistant variety (spot 566; Table 2) and considered as up-regulated because it 369 was exclusive to the infected sample. This protein is very important to the process of ATP 370 production. It is responsible for catalyzing the phosphorylation of ADP through an 371 electrochemical gradient of protons generated by the electron transport chain [36]. Another 372 protein related to cell metabolism identified here was carbonic anhydrase, which has the 373 ability to catalyze the conversion reaction of carbon dioxide and water into carbonic acid 374 (H₂CO₃) [29]. Carbonic anhydrase was exclusive to the 'Minneola' variety (Spot 57). We 375 observed a significant reduction in the accumulation of this protein in infected samples. In 376 stress situations, the regulation of some global proteins can be altered, because cellular 377 "machinery" will be focused on the regulation of proteins related to stress responses [37]. The 378 PCA indicated that all of the above-mentioned results contributed highly to discrimination 379 between the different conditions to which the plants were submitted (Additional File 2: Fig. 380 S2).

381

4.2 Proteins related to stress-defense response

383 The defense responses of a plant to stress are a dynamic process and depend on the intensity 384 and duration of the process [22]. In this work, although the two varieties used presented 385 different characteristics in relation to the susceptibility to the fungus, both the resistant and the 386 susceptible varieties presented defense responses. Of the proteins that most influenced the 387 separation of the individuals, the majority presented an increase in their regulation. 388 Ferredoxin is an important protein related to stress response. This protein was identified only 389 in the 'Minneola' variety and presented up-regulation in 'Minneola' 6 hai and 12 hai. This 390 protein has the ability to delay the action of the microorganism's effectors used to develop the

391 disease through the recognition of these effectors by the host cells [38]. Independent lines of 392 transgenic rice plants carrying the gene corresponding to ferredoxin showed enhanced 393 resistance to Xanthomonas oryzae pv. Oryzae [39]. In our work, the increased expression of 394 the ferredoxin protein can play a similar role in the 'Minneola' variety, once the disease 395 MMA in susceptible plants develops considering the relation between the microorganism's 396 effector and the plant. Cyclophilin was identified only in the susceptible variety and showed 397 an increase in its regulation mainly in 'Minneola' 12 hai. Cyclophilin is involved in several 398 molecular processes such as protein folding, signal transduction during plant development, 399 and stress response [40]. Evidence shows that this protein has the ability to recognize 400 pathogen-effecting molecules [41]. A protein that can be highlighted as important to the stress 401 response process is the elongation factor (E1). E1 is a multifunctional protein that is present in 402 several cell compartments [40] and participates in processes such as protein synthesis and 403 RNA processing, as well as inducing immunity from and resistance to pathogenic bacteria. In 404 addition, it is associated with programmed cell death control [39]. In our study, this protein 405 was also identified only in the 'Minneola' variety (Spot 292; Table 1) and presented up-406 regulation because it was exclusively identified in the 'Minneola' 12 hai sample. In another 407 study, the abundance of this protein was higher in the variety resistant to infection by 408 Xanthomonas campestris pv. Campestris [28]. Much research has been carried out to 409 investigate the defense mechanisms adopted against fungi [21, 42, 43]. A very specific 410 mechanism that can be highlighted is the action of chitinase, which has the ability to cleave 411 the chitin that is the main component of the cell wall of fungi [44]. Chitinase (spot 205) was 412 identified in our work and showed increased accumulation mainly in the treatment 12 hai. The 413 increase of the gene expression level corresponding to this protein has already been observed 414 in citrus plants resistant to the fungus A. alternata [13]. In a study carried out with citrus 415 plants susceptible to the *Citrus tristeza virus*, this protein also presented up-accumulated [32],

416 which is the same as the result found in the present work. The fine mapping of some citrus 417 genome regions has allowed the identification of possible candidate resistance genes to A. 418 alternata. Among these genes, cysteine protease was identified [6]. The protein corresponding 419 to this gene is considered an autophagic protein essential for autophagic cell death and 420 pathogenicity of fungi [45]. In the present work, cysteine protease was identified and 421 presented an increased level of expression in the susceptible and resistant varieties. Some 422 proteins homologous to cysteine protease can control cell differentiation and pathogenicity. In 423 some cases, the effect of this protein can be controlled by the production of ROS, which can 424 control the autophagy and can regulate the activity of this protein [46]. ROS also play a key 425 role in defense responses against microorganisms. In this case, many proteins are involved in 426 redox regulation to try to reduce the damage caused [47]. Four proteins related to oxidative 427 stress significantly influenced the separation of individuals according to the PCA (Additional 428 File 2; Fig. S2); they are GST, ascorbate peroxidase (APX), Cys peroxiredoxin, and 429 superoxide Mn dismutase (SOD). Regarding APX (spot 546; Table 1), this protein was 430 detected only in the susceptible variety and showed an increased regulation. This enzyme 431 plays a crucial role in the degradation of hydrogen peroxide in plant cells, because the ability 432 to eliminate ROS and reduce harmful effects on these macromolecules seems to represent an important trait of stress tolerance [48]. GST was identified in both susceptible (spot 352; 433 434 Table 1) and resistant (spot 439; Table 2) varieties. This protein was up-regulated in 435 'Minneola' and down-regulated in 'Clemenules'. This enzyme is responsible for removing the 436 ROS active in the maintenance of homeostasis in cotton plants infected with the necrotrophic 437 fungus Rhizoctonia solani, because five GSTs were identified [43]. In another work, this 438 protein was identified in the susceptible and resistant varieties and decreased its accumulation 439 in both [27, 28]. Cys peroxiredoxin (spot 434; Table 2) and SOD (spot 427; Table 2) had a 440 greater influence on the separation of 'Clemenules' individuals and increased their expression

441 level. SOD is the enzyme that constitutes the first line of ROS combat and has the capacity to 442 catalyze the dismutation of superoxide, producing oxygen and hydrogen peroxide [49]. Most 443 of the proteins related to oxidative stress in this work were identified mainly in the resistant 444 variety, and this is one of the main results of our work, because the performance of these 445 detoxifying enzymes may reflect a resistance strategy and because this resistance to the 446 fungus may be associated with both the loss of the fungal toxin target and the detoxification 447 process [50] as happened in this work. The two varieties studied here, both susceptible and 448 resistant, presented stress and defense responses. Indirect evidence shows that susceptible 449 plants have the toxin target receptor [7]. Even being susceptible to this pathogen, a plant 450 responds to defend itself or facilitates the development of pathogenicity of the fungus, 451 because recent studies have indicated that the reduction of the damage caused by ROS is 452 essential for the pathogenicity [51].

453

454 **4.3 Proteins related to regulation and localization**

455 Proteins involved in the regulation were identified with a not too high frequency (5% for 456 'Minneola' and 'Clemenules', (Fig. 2A and 2B, respectively). This category was mainly 457 represented by proteins involved with transcription translation factors such as the protein 458 transcription factor BTF3 (spot 334; Table 1) identified exclusively in 'Minneola' and the 459 protein eukaryotic translation initiation factor 5A-2 (eIF) (spot 92; Table 2) that was detected 460 in 'Clemenules' and was down-accumulated in infected samples. The regulatory proteins are 461 very important to the regulation of gene expression. The BTF3 identified in this work, for 462 example, was identified originally as a basal transcription factor responsible for initiating 463 transcription, forming a stable complex with the enzyme RNA polymerase [52]. This protein 464 exerts an important and distinct role on rice growth and development [53] and is involved in 465 regulating the localization of proteins during translation [54]. Here this protein was up-

466 regulated in infected samples. On the other hand, the eIF identified in 'Clemenules' is also 467 biologically important to growth and development in plants. The main function of this protein 468 is related to translation initiation because these factors interact with the ribosomal proteins 469 [55]. A very important fact is that these components of the eukaryotic translation initiation 470 complex are related to genes of recessive resistance against plant viruses. These factors were 471 essential determinants in the outcome of RNA virus infections, especially those belonging to 472 the *Potyvirus* family [56]. In relation to proteins involved with cell localization, an example 473 that was identified in the two varieties and influenced the separation of individuals according 474 to PCA was porin proteins (spot 376 in 'Minneola and spot 481 in 'Clemenules'). Porins are 475 proteins that compose the selective diffusion pores present in cell membranes and confer 476 permeability to the membrane allowing the passage of certain molecules. These proteins are 477 found in all eukaryotic organisms [57]. It was discovered that a mutant porin has some drastic 478 effects on agrobacterium-mediated tumorigenesis [58]. In this study, this protein presented 479 up-regulation in susceptible and resistant plants to A. alternata because it was identified only 480 in infected plants after 12 hai, but the accumulation was higher in resistant plants.

481 **5. Conclusion**

482 The 'Minneola' (susceptible) and 'Clemenules' (resistant) citrus varieties presented distinct 483 metabolic responses to the infection by the fungus A. alternata (Fig. 4). Susceptible plants 484 presented an increase of proteins involved in stress response, ROS detoxification, and 485 regulation during the interaction and a reduction of protein expression involved in metabolic 486 and cellular processes. Some 'Minneola' exclusive proteins such as ferredoxin and 487 cyclophilin may be good candidates for proteins interacting with A. alternaria protein 488 effectors. In the resistant plant, ROS detoxification process was also observed with a higher 489 number of proteins involved than in the susceptible variety; proteins such as glutathione S-

490 transferase, APX, Cys peroxiredoxin, and SOD were mainly involved. Specific proteins 491 related to immune system processes were observed. Inverse to the susceptible variety, the 492 resistant plants showed an increase in the regulation of proteins related to photosynthesis and 493 other proteins involved in metabolism maintenance.

494

Declarations 495

496 Availability of data and materials

497 The data sets supporting the results of this article are included within the article and its 498 additional files.

499

500 **Competing interests**

501 The authors declare that the research was conducted in the absence of any commercial or 502 financial relationships that could be construed as a potential conflict of interest.

503

504 Funding

505 MSD and EMAS were funded by Coordenação de Aperfeiçoamento Pessoal de Nível 506 Superior (CAPES). TMO was funded by Conselho Nacional de Desenvolvimento Científico e 507 Tecnológico (CNPq). This research was supported by CNPq (Pesquisador Visitante Especial 508 call coordinated by FM). CPP and FM received a Productivity Grant from CNPq (PQ). This 509

work was made in the frame of the International Consortium in Advanced Biology (CIBA).

510

511 Authors' Contributions

512 MSD conducted all the experiments. MSG and TMO contributed to proteomic analyses. 513 EMAS made the cluster analysis. KCK and MB were responsible for plant and fungus 514 production and plant inoculation. MSD and FM analyzed the data and wrote the manuscript.

515 FM and CPP were responsible for the financial support of the research. FM supervised TMO

516 and advised MSD, MSG and EMAS.

517

- 518 Acknowledgements
- 519 Not applicable.

520 **6. References**

- 521 [1] FAO, Food and Agriculture Organization of the United Nations FAOSTAT, 2017.
- 522 http://www.fao.org/economic/est/est-commodities/citrus-fruit/en/. (Accessed 2017.
- 523 [2] L. Goldenberg, Y. Yaniv, R. Porat, N. Carmi, Mandarin fruit quality: a review, Journal of 524 the Science of Food and Agriculture 98(1) (2018) 18-26.
- 525 [3] E.C. Cerqueira, M.T.d. Castro Neto, C.P. Peixoto, W.d.S. Soares Filho, C.A.d.S. Ledo,
- J.G.d. Oliveira, Resposta de porta-enxertos de citros ao déficit hídrico, Revista Brasileira de
 Fruticultura 26 (2004) 515-519.
- [4] N.A.R. Peres, J.P. Agostini, L.W. Timmer, Outbreaks of Alternaria Brown Spot of Citrus
 in Brazil and Argentina, Plant Disease 87(6) (2003) 750-750.
- 530 [5] K. Akimitsu, T.L. Peever, L.W. Timmer, Molecular, ecological and evolutionary
- approaches to understanding Alternaria diseases of citrus, Molecular Plant Pathology 4(6)
 (2003) 435-446.
- [6] J. Cuenca, P. Aleza, A. Garcia-Lor, P. Ollitrault, L. Navarro, Fine Mapping for
 Identification of Citrus Alternaria Brown Spot Candidate Resistance Genes and Development
 of New SNP Markers for Marker-Assisted Selection, Frontiers in Plant Science 7 (2016)
 1948.
- 537 [7] T. Tsuge, Y. Harimoto, K. Akimitsu, K. Ohtani, M. Kodama, Y. Akagi, M. Egusa, M.
 538 Yamamoto, H. Otani, Host-selective toxins produced by the plant pathogenic fungus
 539 Alternaria alternata, FEMS Microbiology Reviews 37(1) (2013) 44-66.
- 540 [8] J. Cuenca, P. Aleza, A. Vicent, D. Brunel, P. Ollitrault, L. Navarro, Genetically Based
- 541 Location from Triploid Populations and Gene Ontology of a 3.3-Mb Genome Region Linked
- to Alternaria Brown Spot Resistance in Citrus Reveal Clusters of Resistance Genes, PLoS
 ONE 8(10) (2013) e76755.
- 544 [9] Z. Dalkilic, L.W. Timmer, F.G. Gmitter, Linkage of an Alternaria Disease Resistance
- 545 Gene in Mandarin Hybrids with RAPD Fragments, Journal of the American Society for 546 Horticultural Science 130(2) (2005) 191-195.
- 547 [10] O. Gulsen, A. Uzun, I. Canan, U. Seday, E. Canihos, A new citrus linkage map based on
 548 SRAP, SSR, ISSR, POGP, RGA and RAPD markers, Euphytica 173 (2010).
- 549 [11] I. Jahangir, S. Pratyoosh, M. Nimai Prasad, V. Mukund, Microbial Interactions in Plants:
- 550 Perspectives and Applications of Proteomics, Current Protein & Peptide Science 18(9) (2017)
- 551 956-965.
- 552 [12] E.A. Chagas, J.O. Cazetta, E.G.M. Lemos, M. Pasqual, A.d. Goes, J.D. Ramos, R. Pio,
- 553 W. Barbosa, V. Mendonça, L.A. Ambrosio, Identificação de híbridos de citros resistentes à
- 554 mancha-marrom-de-alternária por meio de fAFLP e testes de patogenicidade, Pesquisa
- 555 Agropecuaria Brasileira 42 (2007) 975-983.

- [13] R. Stuart, Análise da interação entre citros e <u>Alternaria alternata</u> patótipo tangerina,
 Universidade Estadual de Campinas, Campinas, 2011.
- 558 [14] E. Llorens, E. Fernández-Crespo, B. Vicedo, L. Lapeña, P. García-Agustín, Enhancement
- 559 of the citrus immune system provides effective resistance against Alternaria brown spot 560 disease, Journal of Plant Physiology 170(2) (2013) 146-154.
- 561 [15] S. Duplessis, P.-E. Courty, D. Tagu, F. Martin, Transcript patterns associated with 562 ectomycorrhiza development in *Eucalyptus globulus* and *Pisolithus microcarpus*, New 563 Phytologist 165(2) (2004) 599-611.
- 564 [16] C.P. Pirovani, H.A.S. Carvalho, R.C.R. Machado, D.S. Gomes, F.C. Alvim, A.W.V.
- 565 Pomella, K.P. Gramacho, J.C.d.M. Cascardo, G.A.G. Pereira, F. Micheli, Protein extraction
- for proteome analysis from cacao leaves and meristems, organs infected by *Moniliophthora perniciosa*, the causal agent of the witches' broom disease, Electrophoresis 29(11) (2008)
 2391-2401.
- 569 [17] V. Neuhoff, N. Arold, D. Taube, W. Ehrhardt, Improved staining of proteins in 570 polyacrylamide gels including isoelectric focusing gels with clear background at nanogram 571 sensitivity using Coomassie Brilliant Blue G-250 and R-250., Electrophoresis 9 (1988) 255-572 262.
- 573 [18] A. Shevchenko, H. Tomas, J. Havlis, J.V. Olsen, M. Mann, In-gel digestion for mass 574 spectrometric characterization of proteins and proteomes, Nat. Protocols 1(6) (2007) 2856-575 2860.
- 576 [19] G.A.P. de Oliveira, E.G. Pereira, C.V. Dias, T.L.F. Souza, G.D.S. Ferretti, Y. Cordeiro,
- L.R. Camillo, J. Cascardo, F.C. Almeida, A.P. Valente, J.L. Silva, Moniliophthora perniciosa
 Necrosis- and Ethylene-Inducing Protein 2 (MpNep2) as a Metastable Dimer in Solution:
 Structural and Functional Implications, PLoS ONE 7(9) (2012) e45620.
- [20] V. Pallas, J.A. García, How do plant viruses induce disease? Interactions and interference
 with host components, Journal of General Virology 92(12) (2011) 2691-2705.
- 582 [21] A.K.A.L. Cipriano, D.M.F. Gondim, I.M. Vasconcelos, J.A.M. Martins, A.A. Moura,
- F.B. Moreno, A.C.O. Monteiro-Moreira, J.G.M. Melo, J.E. Cardoso, A.L.S. Paiva, J.T.A.
 Oliveira, Proteomic analysis of responsive stem proteins of resistant and susceptible cashew
 plants after Lasiodiplodia theobromae infection, Journal of Proteomics 113 (2015) 90-109.
- 585 plants alter Lasiouipioula theopioniae infection, journal of Proteonitics 115 (2015) 90-109.
- [22] K. Kosová, P. Vítámvás, I.T. Prášil, J. Renaut, Plant proteome changes under abiotic
 stress Contribution of proteomics studies to understanding plant stress response, Journal of
 Proteomics 74(8) (2011) 1301-1322.
- 589 [23] A. Mehta, A.C.M. Brasileiro, D.S.L. Souza, E. Romano, M.A. Campos, M.F. Grossi-de-590 Sá, M.S. Silva, O.L. Franco, R.R. Fragoso, R. Bevitori, T.L. Rocha, Plant-pathogen
- 591 interactions: what is proteomics telling us?, FEBS Journal 275(15) (2008) 3731-3746.
- 592 [24] T. Li, J. Zhang, H. Zhu, H. Qu, S. You, X. Duan, Y. Jiang, Proteomic Analysis of
 593 Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit,
 594 Frontiers in Plant Science 7 (2016) 725.
- 595 [25] T. Tomaz, M. Bagard, I. Pracharoenwattana, P. Lindén, C.P. Lee, A.J. Carroll, E.
- Ströher, S.M. Smith, P. Gardeström, A.H. Millar, Mitochondrial Malate Dehydrogenase
 Lowers Leaf Respiration and Alters Photorespiration and Plant Growth in Arabidopsis, Plant
 Physiology 154(3) (2010) 1143-1157.
- 599 [26] A. Monavarfeshani, M. Mirzaei, E. Sarhadi, A. Amirkhani, M. Khayam Nekouei, P.A.
- 600 Haynes, M. Mardi, G.H. Salekdeh, Shotgun Proteomic Analysis of the Mexican Lime Tree
- 601 Infected with "CandidatusPhytoplasma aurantifolia", Journal of Proteome Research 12(2)602 (2013) 785-795.
- 603 [27] X. Ji, Y. Gai, C. Zheng, Z. Mu, Comparative proteomic analysis provides new insights 604 into mulberry dwarf responses in mulberry (Morus alba L.), Proteomics 9(23) (2009) 5328-
- 604 into m 605 5339.

- 606 [28] G.R.C. Villeth, L.S.T. Carmo, L.P. Silva, M.F. Santos, O.B. de Oliveira Neto, M.F.
 607 Grossi-de-Sá, I.S. Ribeiro, S.N. Dessaune, R.R. Fragoso, O.L. Franco, A. Mehta,
 608 Identification of proteins in susceptible and resistant Brassica oleracea responsive to
- 609 Xanthomonas campestris pv. campestris infection, Journal of Proteomics 143 (2016) 278-285.
- 610 [29] C.C. Nwugo, H. Lin, Y. Duan, E.L. Civerolo, The effect of 'Candidatus Liberibacter
- asiaticus' infection on the proteomic profiles and nutritional status of pre-symptomatic and
- 612 symptomatic grapefruit (Citrus paradisi) plants, BMC Plant Biology 13 (2013) 59-59.
- [30] R.J. Spreitzer, M.E. Salvucci, RUBISCO: Structure, Regulatory Interactions, and
 Possibilities for a Better Enzyme, Annual Review of Plant Biology 53(1) (2002) 449-475.
- [31] F. Martinelli, R.L. Reagan, D. Dolan, V. Fileccia, A.M. Dandekar, Proteomic analysis
 highlights the role of detoxification pathways in increased tolerance to Huanglongbing
 disease, BMC Plant Biology 16 (2016) 167.
- 618 [32] M.S. Dória, A.O. de Sousa, C.d.J. Barbosa, M.G.C. Costa, A.d.S. Gesteira, R.M. Souza,
- 619 A.C.O. Freitas, C.P. Pirovani, Citrus tristeza virus (CTV) Causing Proteomic and Enzymatic
- 620 Changes in Sweet Orange Variety "Westin", PLoS ONE 10(7) (2015) e0130950.
- 621 [33] M. Di Carli, M.E. Villani, L. Bianco, R. Lombardi, G. Perrotta, E. Benvenuto, M.
- 622 Donini, Proteomic Analysis of the Plant–Virus Interaction in Cucumber Mosaic Virus (CMV)
- Resistant Transgenic Tomato, Journal of Proteome Research 9(11) (2010) 5684-5697.
- [34] M.D. Bolton, Primary Metabolism and Plant Defense—Fuel for the Fire, Molecular
 Plant-Microbe Interactions 22(5) (2009) 487-497.
- 626 [35] E.M. Govrin, A. Levine, The hypersensitive response facilitates plant infection by the 627 necrotrophic pathogen *Botrytis cinerea*, Current Biology 10(13) (2000) 751-757.
- 628 [36] A. Baracca, S. Barogi, V. Carelli, G. Lenaz, G. Solaini, Catalytic Activities of
- 629 Mitochondrial ATP Synthase in Patients with Mitochondrial DNA T8993G Mutation in the 630 ATPase 6 Gene Encoding Subunit a, Journal of Biological Chemistry 275(6) (2000) 4177-
- 631 4182.
- [37] C.C. Nwugo, A.J. Huerta, The Effect of Silicon on the Leaf Proteome of Rice (Oryza sativa L.) Plants under Cadmium-Stress, Journal of Proteome Research 10(2) (2011) 518-528.
- [38] H.J. Lin, H.Y. Cheng, C.H. Chen, H.C. Huang, T.Y. Feng, Plant amphipathic proteins
- delay the hypersensitive response caused by harpinPssandPseudomonas syringaepv.syringae,
 Physiological and Molecular Plant Pathology 51(6) (1997) 367-376.
- 637 [39] K. Tang, X. Sun, Q. Hu, A. Wu, C.H. Lin, H.J. Lin, R.M. Twyman, P. Christou, T. Feng,
- Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae, Plant Science 160(5) (2001) 1035-
- 640 1042.
- 641 [40] P.G.N. Romano, P. Horton, J.E. Gray, The Arabidopsis Cyclophilin Gene Family, Plant 642 Physiology 134(4) (2004) 1268-1282.
- [41] G. Coaker, A. Falick, B. Staskawicz, Activation of a Phytopathogenic Bacterial Effector
 Protein by a Eukaryotic Cyclophilin, Science 308(5721) (2005) 548-550.
- 645 [42] F.-X. Wang, Y.-P. Ma, C.-L. Yang, P.-M. Zhao, Y. Yao, G.-L. Jian, Y.-M. Luo, G.-X.
- 646 Xia, Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium
- 647 dahliae, Proteomics 11(22) (2011) 4296-4309.
- 648 [43] M. Zhang, S.-T. Cheng, H.-Y. Wang, J.-H. Wu, Y.-M. Luo, Q. Wang, F.-X. Wang, G.-X.
- 649 Xia, iTRAQ-based proteomic analysis of defence responses triggered by the necrotrophic
- pathogen Rhizoctonia solani in cotton, Journal of Proteomics 152 (2017) 226-235.
- 651 [44] G.F. Pegg, D.H. Young, Purification and characterization of chitinase enzymes from
- 652 healthy and Verticillium albo-atrum-infected tomato plants, and from V. albo-atrum,
- 653 Physiological Plant Pathology 21(3) (1982) 389-409.

- [45] T.-B. Liu, X.-H. Liu, J.-P. Lu, L. Zhang, H. Min, F.-H. Lin, The cysteine protease
 MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in *Magnaporthe oryzae*, Autophagy 6(1) (2010) 74-85.
- 657 [46] M.E. Pérez-Pérez, M. Zaffagnini, C.H. Marchand, J.L. Crespo, S.D. Lemaire, The yeast
- autophagy protease Atg4 is regulated by thioredoxin, Autophagy 10(11) (2014) 1953-1964.
- [47] P. Bulbovas, M.C.S. Rinaldi, W.B.C. Delitti, M. Domingos, Seasonal variation in
 antioxidants in leaves of young plants of Caesalpinia echinata Lam. (brazilwood), Rev. bras.
 Bot. 28 (4) (2005).
- [48] N. Ben Amor, K. Ben Hamed, A. Debez, C. Grignon, C. Abdelly, Physiological and
 antioxidant responses of the perennial halophyte Crithmum maritimum to salinity, Plant
 Science 168(4) (2005) 889-899.
- 665 [49] S.S. Gill, N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress 666 tolerance in crop plants, Plant Physiology and Biochemistry 48(12) (2010) 909-930.
- 667 [50] H. Otani, K. Kohmoto, M. Kodama, Alternaria toxins and their effects on host plants, 668 Canadian Journal of Botany 73(S1) (1995) 453-458.
- [51] S.L. Yang, K.-R. Chung, The NADPH oxidase-mediated production of hydrogen
 peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria
 alternata of citrus, Molecular Plant Pathology 13(8) (2012) 900-914.
- [52] X.-M. Zheng, V. Moncollin, J.-M. Egly, P. Chambon, A general transcription factor
 forms a stable complex with RNA polymerase B (II), Cell 50(3) (1987) 361-368.
- [53] Y. Wang, X. Zhang, S. Lu, M. Wang, L. Wang, W. Wang, F. Cao, H. Chen, J. Wang, J.
- Zhang, J. Tu, Inhibition of a Basal Transcription Factor 3-Like Gene Osj10gBTF3 in Rice
 Results in Significant Plant Miniaturization and Typical Pollen Abortion, Plant and Cell
 Physiology 53(12) (2012) 2073-2089.
- 678 [54] B. Wiedmann, H. Sakai, T.A. Davis, M. Wiedmann, A protein complex required for 679 signal-sequence-specific sorting and translocation, Nature 370 (1994) 434.
- [55] L. Feng, K. Wang, Y. Li, Y. Tan, J. Kong, H. Li, Y. Li, Y. Zhu, Overexpression of
 SBPase enhances photosynthesis against high temperature stress in transgenic rice plants,
 Plant Cell Reports 26(9) (2007) 1635-1646.
- 683 [56] C. Robaglia, C. Caranta, Translation initiation factors: a weak link in plant RNA virus 684 infection, Trends in Plant Science 11(1) (2006) 40-45.
- [57] K. Fischer, A. Weber, S. Brink, B. Arbinger, D. Schünemann, S. Borchert, H.W. Heldt,
 B. Popp, R. Benz, T.A. Link, Porins from plants. Molecular cloning and functional
 characterization of two new members of the porin family, Journal of Biological Chemistry
 269(41) (1994) 25754-60.
- 689 [58] T. Kwon, Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of 690 Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation, Molecules and
- 691 Cells 39(9) (2016) 705-713.
- 692
- 693

Tables

G	At	Accession Species Protein ID	Fold Change ^b	PCA ^C		PPI network		
Spot ^a	Accession			6h / 12h	Influence PC1 (%)	Influence PC2 (%)	Centrality ^c	Arabidopsis ID
17	gi 985465608	Citrus sinensis	Bis (5'-adenosyl)-triphosphatase-like	0.6 / 0.5	-6%	-	-	FHIT
33	XP_006430087.1	Citrus clementina	Hypothetical protein CICLE_v10012459mg	0.3 / 0.5	-8%	3%	В	At5g06290
35	ADQ74414.1	Anisodus tanguticus	Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial (plastid)	np / 0.6	-12%	9%	HB	RBCL
52	gi 568830768	Citrus sinensis	Protein usf	0.2 / 0.4	-18%	-	-	AT2G32520
57	gi 568832193	Citrus sinensis	Carbonic anhydrase 2-like isoform X1	0.2 / 0.5	-12%	3%	В	CA1
70	orange1.1g024380m	Citrus sinensis	Legume lectin domain (Lectin_legb)	np / 1.2	-12%	31%	-	Not found
80	EEF43857.1	Ricinus communis	Lactoylglutathione lyase, putative	0.6 / 0.4	-5%	-2%	В	GLX1
81	gi 568826116	Citrus sinensis	Putative lactoylglutathione lyase	0.5 / 0.4	-11%	-2%	В	GLX1
84	gi 568825162	Citrus sinensis	FerredoxinNADP reductase, leaf-type isozyme, chloroplastic	np / 0.3	-3%	-	-	Not found
98	gi 568880700	Citrus sinensis	Glutamate-1-semialdehyde 2,1-aminomutase 2, chloroplastic	0.6 / 0.4	-4%	-	-	GSA2
101	XP_006476982.1	Citrus sinensis	Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) / Triosephosphate dehydrogenase	0.6 / 0.4	-27%	-17%	Н	GAPC1
132	XP_006492541.1	Citrus sinensis	Adenosylhomocysteinase / sahase	0.7 / 0.6	-6%	-5%	В	HOG1
135	XP_006492541.1	Citrus sinensis	Adenosylhomocysteinase / sahase	np / 1.1	-6%	13%	В	HOG1
140	XP_006481907.1	Citrus sinensis	Phosphopyruvate hydratase / Enolase	0.5 / 0.2	-7%	-4%	HB	LOS2
145	orange1.1g009075m	Citrus sinensis	Polygalacturonase-like protein	np / 0.1	-18%	-	-	Not found
146	ACP43315.1	Citrus maxima	20S proteasome beta subunit 5	0.8 / 0.7	-6%	-6%	Н	AT3G26340
148	XP_006492150.1	Citrus sinensis	Chaperonin CPN6/0-2, mitochondrial	0.2 / 0.3	-37%	4%	HB	HSP60
155	XP_006485108.1	Citrus sinensis	ATP-dependent Clp protease ATP-binding subunit clpa homolog CD4B, chloroplastic	np / 0.1	-19%	1%	В	CLPC1
161	BAI63297.1	Citrus jambhiri	Thaumatin-like protein	1.1/0.7	-	-6%	-	AT2G28790

Table 1. Differentially expressed proteins with highest influence on the variability between control and infected samples of 'Minneola'.

168	XP_012070412.1	Jatropha curcas	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	0.3 / np	-16%	-8%	С	ATMS1
171	gi 512125698	Citrus sinensis	Chain A, Structure Of A Cyclophilin From Citrus Sinensis (cscyp) In Complex With Cycloporin A	1.7 / /1.9	7%	-	-	Not found
173	AAL35658.1	Flacourtia jangomas	Ribulose 1,5-bisphosphate carboxylase, partial (chloroplast)	1.4 / 1.5	39%	3%	HB	RBCL
180	XP_006491863.1	Citrus sinensis	Copper transport protein cch	np / 1	4%	-2%	С	At1g66240
181	XP_006468538.1	Citrus sinensis	Thioredoxin	np / 1	4%	-3%	С	TO1
191	gi 568870196	Citrus sinensis	Osmotin-like protein	np / 1.7	5%	-	-	Not found
222	gi 568846849	Citrus sinensis	Hsp70-Hsp90 organizing protein 3-like	2.0/2.3	6%	2%	С	Нор3
234	gi 568839727	Citrus sinensis	Glyceraldehyde-3-phosphate dehydrogenase GAPB, chloroplastic	1.2 / 1.8	3%	5%	HB	GAPB
238	gi 568864588	Citrus sinensis	Malate dehydrogenase, mitochondrial	0.8 / 0.6	-13%	-15%	С	mMDH2
239	gi 568883665	Citrus sinensis	Caffeic acid 3-O-methyltransferase-like	np / 1.5	-5%	22%	С	OMT1
252	gi 568854455	Citrus sinensis	Uncharacterized protein At5g02240-like	0.8 / 0.4	-5%	-5%	С	AT2G37660
253	gi 568875954	Citrus sinensis	Phosphomannomutase	1.2 / 2.7	3%	9%	С	РММ
254	gi 568879954	Citrus sinensis	Proteasome subunit alpha type-4	0.9/3.9	6%	20%	Н	PAC1
255	gi 568863109	Citrus sinensis	Oxygen-evolving enhancer protein 2, chloroplastic	1.3 / 3.2	6%	12%	С	PSBP-1
•273	gi 568875954	Citrus sinensis	Phosphomannomutase	œ	3%	9%	С	PMM
•275	gi 568873338	Citrus sinensis	3-ketoacyl-coa thiolase 2, peroxisomal	œ	2%	8%	С	РКТ3
•292	gi 568869888	Citrus sinensis	Elongation factor 1-alpha	œ	5%	16%	С	AT1G07920
•298	gi 568840591	Citrus sinensis	Glutaredoxin-C4	œ	2%	7%	С	AT5G20500
•300	gi 568832597	Citrus sinensis	10 kda chaperonin-like	œ	4%	12%	С	CPN10
•304	gi 568857400	Citrus sinensis	Ribulose bisphosphate carboxylase small chain, chloroplastic-like	œ	4%	13%	С	RBCS2B
•306	gi 568857400	Citrus sinensis	Ribulose bisphosphate carboxylase small chain, chloroplastic-like	œ	8%	23%	С	RBCS2B
•318	gi 568864066	Citrus sinensis	Glycine cleavage system H protein, mitochondrial	œ	2%	8%	С	AT1G32470
•334	gi 568823453	Citrus sinensis	Transcription factor BTF3 homolog 4	œ	2%	7%	Н	BTF3
•341	gi 568863109	Citrus sinensis	Oxygen-evolving enhancer protein 2, chloroplastic	œ	2%	7%	С	PSBP-1

• 344	gi 568863109	Citrus sinensis	Oxygen-evolving enhancer protein 2, chloroplastic	œ	2%	7%	С	PSBP-1
•352	gi 568852489	Citrus sinensis	Glutathione S-transferase F6	œ	-	8%	-	GSTF6
•371	gi 568879954	Citrus sinensis	Proteasome subunit alpha type-4	œ	2%	8%	Н	PAC1
•376	gi 568857970	Citrus sinensis	Mitochondrial outer membrane protein porin of 34 kda	00	-	8%	-	VDAC1
•385	gi 568825219	Citrus sinensis	Proteasome subunit alpha type-7	œ	2%	7%	Н	PAD2
•387	gi 568881387	Citrus sinensis	Tropinone reductase homolog At5g06060-like	00	-	8%	-	AT5G06060
•389	gi 568831451	Citrus sinensis	Prohibitin-3, mitochondrial	œ	2%	8%	С	PHB3
•421	gi 568845013	Citrus sinensis	UDP-glucose 4-epimerase GEPI48-like	œ	2%	7%	С	UGE5
•450	gi 568826102	Citrus sinensis	Aminomethyltransferase, mitochondrial	œ	2%	8%	С	AT1G11860
•453	gi 568832251	Citrus sinensis	Peptidyl-prolyl cis-trans isomerase CYP38, chloroplastic isoform X1	œ	5%	15%	С	CYP38
•462	gi 568873338	Citrus sinensis	3-ketoacyl-coa thiolase 2, peroxisomal	00	2%	8%	С	РКТ3
•463	gi 568838553	Citrus sinensis	Cysteine proteinase RD21a	œ	4%	14%	С	RD21A
0546	gi 300837175	Citrus limon	Ascorbate peroxidase	00	-	8%	-	APX1
o572	XP_015901577.1	Citrus sinensis	Mlp-like protein 423-related	œ	6%	-13%	-	MLP423
0575	XP_012080320.1	Citrus sinensis	Translation initiation factor 5a-related	8		-7%	С	ELF5A-1
o576	gi 9369404	Arabidopsis thaliana	T23e23.17	œ	3%	-7%	-	MLP423
o599	gi 568872179	Citrus sinensis	Endo-1,3;1,4-beta-D-glucanase-lik	œ	-	-7%	-	AT3G23600
o601	XP_006474693.1	Citrus sinensis	20 kda chaperonin, chloroplastic	œ	3%	-7%	С	CPN20
0603	gi 568838521	Citrus sinensis	MFP1 attachment factor 1-like isoform X1	œ	-	-7%	-	WPP2
0604	gi 227937349	Citrus maxima	20S proteasome beta subunit 5	œ	3%	-6%	Н	AT3G26340
o613	gi 568822583	Citrus sinensis	Acid phosphatase1	œ	3%	-8%	-	AT5G51260
0623	orange1.1g024615m	Citrus sinensis	L-ascorbate peroxidase 2, cytosolic	œ	3%	-7%	-	Not found
0629	gi 567892199	Citrus clementina	Hypothetical protein CICLE_v10032366mg	8	5%	-10%	-	Not found
0633	XP_006481991.1	Citrus sinensis	Nascent polypeptide associated complex alpha subunit-related	œ	3%	-6%	Н	AT3G12390

0639	gi 1026057598	Capsicum annuum	Prohibitin-3, mitochondrial-like	œ	3%	-7%	В	AT2G30050
0657	gi 568826827	Citrus sinensis	30S ribosomal protein S5, chloroplastic	œ	3%	-6%	С	MOD1
0685	gi 567861648	Citrus clementina	Hypothetical protein CICLE_v10028594mg	œ	3%	-6%	HB	FBA2
0643	gi 568826827	Citrus sinensis	30S ribosomal protein S5, chloroplastic	œ	3%	-6%	HB	EMB3113
0686	gi 225449016	Vitis vinifera	Adenosine kinase 2	œ	3%	-7%	В	ADK2
0687	gi 567919464	Citrus clementina	Hypothetical protein CICLE_v10008562mg	œ	8%	-17%	С	mMDH2
0689	gi 568864779	Citrus sinensis	Protein ASPARTIC PROTEASE IN GUARD CELL 1	œ	4%	-8%	-	ASPG1
o690	gi 568862533	Citrus sinensis	Aspartic proteinase CDR1-like	œ	-	-7%	-	CDR1
o703	XP_006471634.1	Citrus sinensis	Pectinacetylesterase family protein	œ	6%	-12%	-	AT4G19420

⁶⁹⁷ ^a • Exclusives Spots from Infected Samples 6 hai; o Exclusives Spots from Infected Samples 12 hai.

 $\frac{698}{699}$ b Fold change (infected sample volume/control normalized volume): underexpressed proteins have values between 0 to 1, while overexpressed proteins have values from 1 to ∞ . np = protein not found in gel.

700 ^c Variable importance for the PCA of differentially expressed protein.

701 ^d B: bottleneck; H: hub; C: common; HB: hub-bottleneck.

, 0,

				_	РС	CA ^c	PPI ne	etwork
Spot ^a	Accession	Species	Protein ID	Fold change ^b	Influence PC1 (%)	Influence PC2 (%)	Centrality ^d	Arabidopsis ID
30	XP_008359031.1	Malus domestica	PREDICTED: proteasome subunit beta type-4-like	3 / 1.9	3%	-5%	Н	PBG1
31	gi 283131283	Citrus jambhiri	Thaumatin-like protein	2.9 / 1.3	-	-6%	-	AT2G28790
42	gi 568856629	Citrus sinensis	Fructose-bisphosphate aldolase cytoplasmic isozyme	2.2/3.1	7%	2%	В	FBA6
45	XP_006441425.1	Citrus clementina	Hypothetical protein CICLE_v10020931mg	2.7 / 2.7	20%	-3%	С	AT5G08300
46	XP_006489733.1	Citrus sinensis	Malate dehydrogenase	1.8 / 2.0	3%	1%	С	c-NAD-MDH2
92	XP_008443857.1	Cucumis melo	Eukaryotic translation initiation factor 5A-2	0.5 / 0.5	-5%	4%	В	ELF5A-1
124	XP_006481573.1	Citrus sinensis	2-Cys peroxiredoxin BAS1, chloroplastic	0.6 / 1.0	-4%	14%	В	At5g06290
139	XP_006474693.1	Citrus sinensis	20 kda chaperonin, chloroplastic	2.6 / 1.1	-1%	-3%	С	CPN20
151	XP_008457647.1	Cucumis melo	Triosephosphate isomerase, chloroplastic	0.6 / 0.8	-5%	7%	Н	TIM
166	XP_006483853.1	Citrus sinensis	Carbonic anhydrase 2 isoform X1	0.3 / 0.7	-3%	4%	-	BCA4
175	XP_006450842.1	Citrus clementina	Hypothetical protein CICLE_v10009194mg	4.2/4.3	56%	-14%	С	AT5G06740
187	KDO84609.1	Citrus sinensis	Hypothetical protein CISIN_1g023620mg	0.5 / 0.7	-10%	12%	HB	PAF2
224	XP_006477460.1	Citrus sinensis	Malate dehydrogenase, chloroplastic	0.2/0.3	-10%	7%	С	MDH
235	XP_017638623.1	Gossypium arboreum	Malate dehydrogenase, mitochondrial-like	1.8 / 1.1	-2%	-5%	С	mMDH2
261	BAU51794.1	Citrus depressa	O-methyltransferase	0.6 / 0.8	-5%	6%	В	OMT1
300	XP_010102294.1	Morus notabilis	GDP-mannose 3,5-epimerase 1	0.6 / 0.6	-4%	4%	С	SWP
303	XP_017976224.1	Theobroma cacao	Ribulose bisphosphate carboxylase/oxygenase activase 2, chloroplastic isoform X1	0.4 / 0.6	-9%	10%	HB	RCA
319	XP_017976224.1	Theobroma cacao	Ribulose bisphosphate carboxylase/oxygenase activase 2, chloroplastic isoform X1	0.6 / 0.8	-7%	13%	HB	RCA
375	XP_006424516.1	Citrus clementina	Hypothetical protein CICLE_v10028085mg	0.6 / 0.6	-15%	15%	HB	CPN60A
379	ADM35974.1	Citrus limon	Protein disulfide isomerase	0.7 / 0.6	-28%	21%	В	PDIL1-1

Table 2. Differentially expressed proteins with highest influence on the variability between control and infected samples of 'Clemenules'.

389	XP_006492570.1	Citrus sinensis	Stromal 70 kda heat shock-related protein, chloroplastic isoform X2	0.6 / 0.6	-23%	24%	HB	cpHsc70-2
407	XP_007013338.1	Theobroma cacao	GTP-binding nuclear protein Ran-3	1.8 / np	-4%	-3%	С	RAN3
409	KDO62916.1	Citrus sinensis	Hypothetical protein CISIN_1g018871mg	3.6 / np	-4%	-6%	-	AT2G38380
410	XP_006481883.1	Citrus sinensis	Fructose-bisphosphate aldolase cytoplasmic isozyme	3.3 / np	-13%	-23%	В	FBA6
413	XP_014506143.1	Vigna radiata var. radiata	18.5 kda class I heat shock protein-like	2.5 / np	-3%	-2%	-	AT1G07400
418	XP_006476377.1	Citrus sinensis	Nucleoside diphosphate kinase III, chloroplastic/mitochondrial-like	2.9 / np	-9%	-13%	Н	AT4G23900
427	ADB10839.1	Citrus japonica	Manganese superoxide dismutase	2.5 / np	-5%	-6%	С	MSD1
433	KHN28540.1	Glycine soja	Oxygen-evolving enhancer protein 2, chloroplastic	0.6 / np	-4%	1%	С	PSBP-1
434	XP_006481573.1	Citrus sinensis	2-Cys peroxiredoxin BAS1, chloroplastic	2.0/ np	-4%	-3%	В	At5g06290
439	XP_006486019.1	Citrus sinensis	Glutathione S-transferase DHAR2-like	1.6 / np	-5%	-3%	С	DHAR2
446	EOY23718.1	Theobroma cacao	Nascent polypeptide-associated complex subunit alpha-like protein 2	5.3 / np	-18%	-62%	С	NACA2
459	XP_002277301.1	Vitis vinifera	Elongation factor tub, chloroplastic	0.6 / np	-12%	2%	Н	RABE1b
460	XP_006464261.1	Citrus sinensis	Bifunctional aspartate aminotransferase and glutamate/aspartate- prephenate aminotransferase isoform X1	0.4 / np	-6%	2%	В	AAT
462	XP_006487727.1	Citrus sinensis	Rubisco accumulation factor 1, chloroplastic	0.4 / np	-35%	9%	С	AT3G04550
471	XP_010528013.1	Tarenaya hassleriana	Heat shock protein 90-1-like isoform X1	0.6 / np	-17%	3%	HB	CR88
• 474	gi 568866092	Citrus sinensis	Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic isoform X2	∞	14%	9%	HB	RCA
•480	gi 568863336	Citrus sinensis	ATP-dependent Clp protease ATP-binding subunit clpa homolog CD4B, chloroplastic	x	3%	2%	С	CLPC1
•481	gi 568824081	Citrus sinensis	Mitochondrial outer membrane protein porin 2-like	∞	18%	11%	-	VDAC2
•485	gi 568846150	Citrus sinensis	28 kda ribonucleoprotein, chloroplastic-like	∞	4%	3%	С	RBP31
•487	gi 568838553	Citrus sinensis	Cysteine proteinase RD21a	x	4%	3%	В	RD21A
•488	gi 460398169	Solanum lycopersicum	Nucleoside diphosphate kinase 3-like	∞	11%	7%	Н	AT4G23900
•494	gi 568855988	Citrus sinensis	2-Cys peroxiredoxin BAS1, chloroplastic	∞	5%	3%	В	At5g06290
•495	gi 641845205	Citrus sinensis	Hypothetical protein CISIN_1g0270582mg, partial	∞	3%	3%	С	AT3G08740
•501	gi 567919984	Citrus clementina	Hypothetical protein CICLE_v10009198mg	∞	7%	5%	С	LHCB3

•506	gi 945081	Petunia x hybrida	P21	ø	13%	8%	-	AT3G45310
•508	gi 568843850	Citrus sinensis	NADH-cytochrome b5 reductase-like protein	8	22%	14%	С	AT5G20080
•509	gi 567917652	Citrus clementina	Hypothetical protein CICLE_v10009184mg	8	6%	4%	С	AT5G06740
•513	gi 567861290	Citrus clementina	Hypothetical protein CICLE_v10028904mg	8	4%	3%	-	AT4G39230
•515	gi 567919326	Citrus clementina	Hypothetical protein CICLE_v10008909mg	8	9%	6%	Н	ATARCA
•517	gi 567917574	Citrus clementina	Hypothetical protein CICLE_v10008097mg	8	4%	-	-	GAMMA-VPE
•518	gi 567899352	Citrus clementina	Hypothetical protein CICLE_v10020519mg	8	7%	5%	С	OASB
•519	gi 359807616	Glycine max	Uncharacterized protein LOC100817577	8	3%	2%	С	MAB1
•521	gi 116787631	Picea sitchensis	Unknown	8	5%	3%	В	PRK
•525	gi 1012089035	Arachis duranensis	Glyceraldehyde-3-phosphate dehydrogenase GAPC2, cytosolic	8	8%	5%	Н	GAPC2
•537	gi 15232888	Arabidopsis thaliana	6-phosphogluconate dehydrogenase, decarboxylating 3 []	8	3%	2%	С	AT3G02360
•538	gi 359329064	Citrus medica	Ribulose bisophosphate carboxylase large subunit, partial (chloroplast)	8	10%	6%	В	RBCL
•550	gi 470110155	Fragaria vesca subsp. vesca	Endoplasmin homolog	8	8%	5%	С	SHD
•552	gi 15232963	Arabidopsis thaliana	Ribonuclease and inhibitor rraa/Dimethylmenaquinone methyltransferase	œ	3%	-	-	AT3G02770
•563	gi 116788974	Picea sitchensis	Unknown	œ	4%	3%	Н	AT1G45000
•566	XP_006468800.1	Citrus sinensis	ATP synthase subunit beta, mitochondrial	œ	4%	3%	В	AT5G08680
0569	XP_006480857.1	Citrus sinensis	Ribulose bisphosphate carboxylase/oxygenase activase 2, chloroplastic	œ	-1%	-11%	HB	RCA
0580	XP_002530746.1	Ricinus communis	Probable small nuclear ribonucleoprotein F	8	-1%	-10%	В	RUXF
0585	XP_002530746.1	Ricinus communis	Probable small nuclear ribonucleoprotein F	8	-1%	-12%	В	RUXF
0587	XP_006475838.1	Citrus sinensis	Uncharacterized protein LOC102628231 isoform X1	œ	-1%	-8%	С	AT2G41475
0605	XP_006466586.1	Citrus sinensis	Caffeoyl-coa O-methyltransferase-like	8	-1%	-7%	С	CCoAOMT1
0608	XP_006467509.1	Citrus sinensis	Chlorophyll a-b binding protein of LHCII type 1	8	-1%	-9%	С	CAB3
0615	XP_006469979.1	Citrus sinensis	Prohibitin-3, mitochondrial	8	-1%	-3%	С	PHB3
0616	AAM65657.1	Arabidopsis thaliana	Actin 4	8	-	-4%	-	ACT4

0626	XP_006473275.1	Citrus sinensis	Cysteine proteinase RD21a	œ	-1%	-12%	В	RD21A
0639	XP_006488046.1	Citrus sinensis	Rubisco large subunit-binding protein subunit alpha	×	-1%	-5%	HB	CPN60A
0641	XP_006439784.1	Citrus clementina	Hypothetical protein CICLE_v10019638mg	œ	-1%	-16%	В	ALDH2B4
0658	XP_006488102.1	Citrus sinensis	Protein disulfide isomerase-like 1-4 isoform X1	×	-1%	-12%	С	PDIL1-4

^a • Exclusives Spots from Infected Samples 6 hai; o Exclusives Spots from Infected Samples 12 hai.

^b Fold change (infected sample volume/control normalized volume): underexpressed proteins have values between 0 to 1, while overexpressed proteins have values from 1 to ∞ . np = protein not found in gel.

^c Variable importance for the PCA of differentially expressed protein.

^d B: bottleneck; H: hub; C: common; HB: hub-bottleneck.

718 Figure legends

Figure 1. 2-DE analysis of 'Minneola' (susceptible) and 'Clemenules' (resistant)
variety proteins. A, B and C. 'Mineola' variety. D, E and F. 'Clemenules' variety. A and
D. Control condition. B and E. 6 hai. C and F. 12 hai. The proteins indicated by the
arrows were differentially expressed under the applied treatment. hai: hour after infection.

Figure 2. Distribution of the differentially expressed proteins. A. According to
biological processes for 'Minneola' variety. B. According to biological processes for
'Clemenules' variety. C. According to the expression level for 'Minneola' and
'Clemenules' analyzed together.

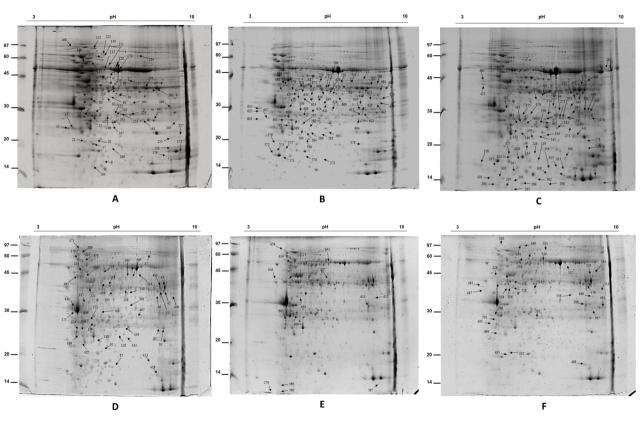
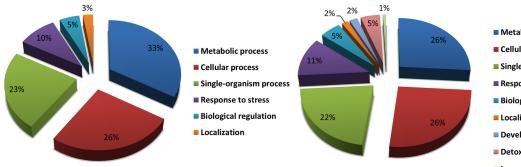
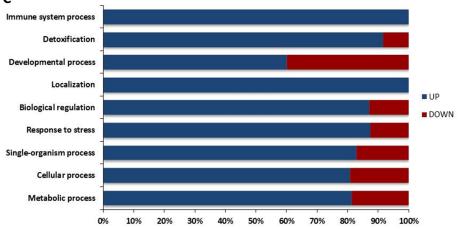

728

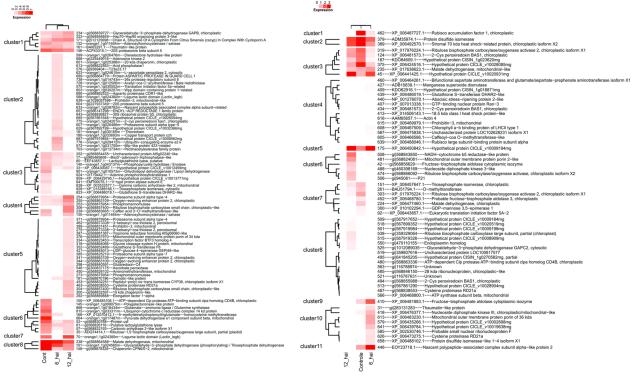
Figure 3. Bi-directional hierarchical clustering of differential expression of proteins.
A. 'Minneola' variety proteins. B. 'Clemenules' variety proteins.

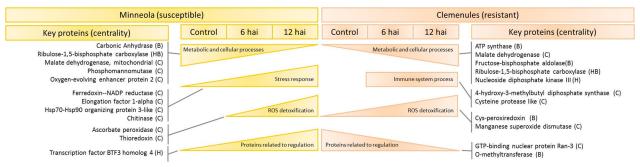
731


Figure 4. General scheme of biological processes involved in mandarin varieties
infected by *Alternaria alternata*. A. 'Minneola' variety. B. 'Clemenules' variety. B:

bottleneck; C: common; H: hub; hai: hour after infection; HB: hub-bottleneck.




С



Metabolic process

- Cellular process
- Single-organism process
- Response to stress
- Biological regulation
- Localization
- Developmental process
- Detoxification
- Immune system process

