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Although it is commonly used in research and industrial domains, vibration analysis present some notable drawbacks such as important costs and sensitivity issues resulting from the technical difficulties of the sensor's position within the system. Therefore, there is an increasing interest for fault detection using motor current signal analysis (MCSA) in recent years. Some works have been focused on gear fault detection using the induction machine's electrical current. Hence, we propose a novel approach for gear fault diagnosis centered around a set of indicators (Park and Concordia transforms, Frenet-Serret equations,...) as part of a constructed library of fault indicators. These indicators rely on the geometric representations of the trajectories pursued by the electrical quantities of the three-phase motor. This work shows good results that enable the clustering of the healthy and faulty conditions.

Introduction

Due to constant need for high torque and significant speed reduction, gearbox-based transmission systems have been widely adopted in industrial applications. Given the economical implications at stake, the early diagnosis of potential gear malfunctions takes on special importance in order to implement the required maintenance processes in a timely manner. In this regard, many researchers have shown great interest in developing more reliable gear fault detection techniques.

The most widely used process for mechanical engineering and monitoring is vibration analysis since it is able to provide useful information leading to fault detection in a variety of mechanical systems involving electrical machines. When placed near the revolving elements, transducers such as accelerometers are capable of measuring the mechanical transverse vibration caused by the response of the mechanical structure due to external excitations. On the other hand, speed and torque sensors measure torsional vibrations which are mainly related to periodic events like gear meshing speed fluctuations. Several researchers proposed advanced techniques for vibration investigation such as cepstral analysis, discrete wavelet transform and cyclostationnarity analysis [START_REF] Lin | Gearbox fault diagnosis using adaptive wavelet filter[END_REF][START_REF] Zheng | Gear fault diagnosis based on continuous wavelet transform[END_REF][START_REF] Capdessus | Cyclostationary processes : Application in gear faults early diagnosis[END_REF][START_REF] Zhaohui | Sparse Feature Identification Based on Union of Redundant Dictionary for Wind Turbine Gearbox Fault Diagnosis[END_REF][START_REF] Li | A Fault Diagnosis Approach for Gears Using Multidimensional Features and Intelligent Classifier[END_REF][START_REF] Nacib | Detecting Gear Tooth Cracks Using Cepstral Analysis in Gearbox of Helicopters[END_REF]. However, the major limitation of vibration measurement is the difficulty of accessing the transmission system in order to place the sensor when there are implementation constraints due to limited space and high temperature. This results in sensitivity problems related to the installation position and difficulties of distinguishing the vibration source due to the diversity of mechanical excitations existing in the industrial environment [START_REF] Villwock | Time domain identification method for detecting mechanical backlash in electrical drives[END_REF]. Consequently, motor current signature analysis (MCSA) represents a promising alternative to vibration analysis considering its need for minimum invasion of system installation and its effective cost. Current-based techniques only require the motor's electrical measurements that are often already monitored for the control and protection of electrical machines. This process has been mainly used for motor fault detection such as rotor bar breaking and air-gap eccentricity asymmetries [START_REF] Choi | Iterative Condition Monitoring and Fault Diagnosis Scheme of Electric Motor for Harsh Industrial Application[END_REF][START_REF] Siddiqui | Early, diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by wavelet transform[END_REF]. Moreover, this approach has been largely applied to the fault detection of induction machine bearings using numerous techniques [START_REF] Siddiqui | Broken rotor bar fault detection in induction motors using wavelet transform[END_REF][START_REF] Bl | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF].

Relatively few researches focus on gear fault detection using motor current signal analysis [START_REF] Kia | Trends in gear fault detection using electrical signature analysis in induction machine-based systems[END_REF]. Based on the analytical approaches proposed in the literature in order to investigate the electrical signatures response to gear torsional vibrations, it was shown that the mesh and rotating frequencies can be detected due to the electromechanical modulation effect [START_REF] Mohanty | Fault Detection in a Multistage Gearbox by Demodulation of Motor Current Waveform[END_REF]. In addition to the stator current magnitude and phase demodulations in the frequency domain, the Kron transform's model in the time domain shows successful results when combined with the synchronous averaging method [START_REF] Combet | Gear fault diagnosis by motor current analysis -application to industrial cases[END_REF][START_REF] Kia | Analytical and experimental study of gearbox mechanical effect on the induction machine stator current signature[END_REF][START_REF] Ottewill | Condition monitoring of gearboxes using synchronously averaged electric motor signals[END_REF]. It has also been combined with the numerical simulations of the space vector instantaneous frequency related to gear crack faults as well as via wavelet analysis and time synchronous averaging. The results show that the fault sensitivity is comparable to the invasive methods [START_REF] Kia | Gear Tooth Surface Damage Fault Detection Using Induction Machine Stator Current Space Vector Analysis[END_REF][START_REF] Kia | Fault Index Statistical Study for Gear Fault Detection Using Stator Current Space Vector Analysis[END_REF]19].

Furthermore, the three-phase electrical signals have particular geometric representations that serve as different indicators giving additional information. Among these indicators, the Park and Concordia transforms model the electric quantities in a bi-dimensional frame and the Frenet-Serret differential equations represent the signal's trajectory in three-dimensional Euclidean space. Hence, these representations indicate any change in the system's state. Specifically, gear faults induce a typical dynamic modulation in the form of torsional vibrations giving rise to variations in the instantaneous speed and the mechanical torque of the drivetrain. These variations will subsequently affect the motor current signature and the geometric representations of these electical signals provide a comprehensive assessment of the system's state [START_REF] Combet | Gear fault diagnosis by motor current analysis -application to industrial cases[END_REF].

To our knowledge, the geometric patterns of Park and Concordia transforms were not applied to gear fault detection using MCSA. However, the indicators derived from Frenet-Serret equations were previously used to detect gear faults from the stator current with good results [START_REF] Frini | Gear fault detection using the geometric properties of electrical currents in three-phase induction motor-based systems[END_REF][START_REF] Frini | Gear fault detection using the geometric properties of electrical currents in three-phase induction motor-based systems[END_REF]. Nonetheless, this application established the basis of the method without further development. Contrary to our work, this subset of indicators was not compared to other ones in terms of their relevance and it was not integrated into a library of numerous indicators that are normalized, selected and classified. Thus, this establishes the novelty of combining these rarely used indicators with more advanced signal processing techniques as well as clustering techniques in the context of gear fault diagnosis using MCSA as shown in Fig. 1. The figure shows that the proposed approach is globally centered around electrical signals acquisition, signal processing using various techniques, fault indicators library implementation, feature selection and finally data clustering. This diagram is further detailed in section 3.

Hence, we put forward in this paper a novel approach for gear faults diagnosis using the asynchronous motor's three-phase current signal analysis based on a set of indicators. These indicators, such as the geometric representations of electrical signals as well as the classical fault signatures used in literature, are part of a constructed indicators library for a wide array of faults. Thus, one of the major contributions of this work is the implementaton of a library of general indicators based on electrical currents and also containing the proposed geometric indicators. Moreover, compared to previous works, the novelty of this contribution resides in the application of automated gear fault diagnosis based on feature selection and clustering as well as the comparison with other classical indicators in the context of the MCSA.

The first section introducing the implemented indicators is followed by the presentation of the algorithm that estimates the indicators, selects the most relevant ones according to a performance criterion and then uses this selection for the unsupervised clustering of the system's healthy and faulty states. Then, the experimental results for gear faults detection using the electrical quantities are shown and discussed. Finally, a summary and future work perspectives are presented as a conclusion. 

Presentation of fault indicators

This work incorporates a number of different indicators used for fault detection. Firstly, Park and Concordia transforms as well as the properties of the Frenet-Serret frame are detailed in the next sections since it is one of the first times that they are used for gear fault detection using MCSA. Lastly, the classical fault indicators usually used for a more general fault detection scheme are presented in the end of this section.

Park and Concordia transforms

The Park transform is a bi-dimensional representation that allows the projection of the three-phase frame electrical equations '1,2,3' onto an orthonormal two-phased coordinate system 'd,q' bound to the induction machine's stator [START_REF] Onel | Induction motor bearing failure detection and diagnosis: Park and concordia transform approaches comparative study[END_REF].

The bi-dimensional Park transform i(t) d,q of the three-phase electrical current i 123 (t) is described by [START_REF] Lin | Gearbox fault diagnosis using adaptive wavelet filter[END_REF].

[i d,q (t)] = [T ].[i 123 (t)] (1) 
where [T ] is the transformation matrix and is represented by (2).

[T ] =

   cosθ s cos(θ s -2π 3 ) cos(θ s -4π 3 ) -sinθ s -sin(θ s -2π 3 ) -sin(θ s -4π 3 ) 1 2 1 2 1 2    (2) 
where θ s is the angle between the stator and the d axis.

If θ s is equal to zero then the matrix [T ] becomes the Concordia matrix noted [C] and expressed by [START_REF] Capdessus | Cyclostationary processes : Application in gear faults early diagnosis[END_REF]. In this case, d and q axis are called α and β [START_REF] Paap | Symmetrical Components in the Time Domain and Their Application to Power Network Calculations[END_REF].

[C] = 2 3     1 -1 √ 2 -1 √ 2 0 2 3 -2 3 1 2 1 2 1 2     (3) 
Since the stator currents of the Park and Concordia transforms contain the speed information which is affected by the gear condition, they provide valuable information for gear fault detection [START_REF] Onel | Induction motor bearing failure detection and diagnosis: Park and concordia transform approaches comparative study[END_REF]. Using the Park transform on a rotor-referenced angle, it is known that the obtained d and q current trajectory has an elliptical pattern in ideal conditions. Whereas in the case of the Concordia transform, the pattern in ideal conditions has a circular form [START_REF] Onel | Induction motor bearing failure detection and diagnosis: Park and concordia transform approaches comparative study[END_REF]. Even if Park and Concordia are linear transforms, the occurrence of a gear failure manifests itself in the deviations of the geometric patterns thus enabling a new method for gear fault detection.

Frenet-Serret frame properties

The differential geometry of curves theory has been introduced in the field of two-component signals system monitoring and in mechnical systems it was used for three-component vibration signals [START_REF] Granjon | Complex-valued signal processing for condition monitoring[END_REF][START_REF] Phua | Estimation of geometric properties of three-component signals for system monitoring[END_REF] as well as current signals [START_REF] Frini | Gear fault detection using the geometric properties of electrical currents in three-phase induction motor-based systems[END_REF][START_REF] Frini | Gear fault detection using the geometric properties of electrical currents in three-phase induction motor-based systems[END_REF].

Mathematically, an ideal three-phase asynchronous motor current noted i(t) consists of three separate components i 1 (t),i 2 (t), i 3 (t) which are each a sine wave of the same fundamental frequency. The expression of the three-phase electrical current is seen as a parametrized differential curve where the time variable t is considered as its parameter. This means that i maps each t ∈ R into a point i(t) = [i 1 (t),i 2 (t), i 3 (t)] ∈ R 3 , where R denotes the set of real numbers. All the functions i 1 , i 2 , i 3 are differentiable and i'(t) denotes the first derivative of i(t) represesenting the speed of the point.

Instead of plotting the three-phase current with respect to the time variable t, it is possible to represent it in three-dimensional euclidean space with each component following one of its axis. This representation serve as the spatial image set i(R) ⊂ R 3 and its curve's trajectory has an elliptical pattern when the waves are purely sinusoidal [START_REF] Carmo | Differential Geometry of Curves and Surfaces[END_REF]. In this case, the trajectory's shape and plane are characterized by a number of geometric properties that reflect the system's condition.

The Frenet-Serret formulas are differential equations derived from the definitions of the Frenet-Serret frame [START_REF] Frini | Gear fault detection using the geometric properties of electrical currents in three-phase induction motor-based systems[END_REF][25] and are written in matrix form as shown in [START_REF] Zhaohui | Sparse Feature Identification Based on Union of Redundant Dictionary for Wind Turbine Gearbox Fault Diagnosis[END_REF]. The vectors T(t), N(t) and B(t) represent the tangent, normal and binormal vectors composing the Frenet-Serret frame. T'(t), N'(t) and B'(t) denote the first derivatives associated to these vectors. The scalars κ(t) and τ (t) are defined as the curvature and the torsion of the curve respectively.

  T (t) N (t) B (t)   = ||i (t)||   0 κ(t) 0 -κ(t) 0 τ (t) 0 -τ (t) 0     T (t) N (t) B(t)   (4) 
The geometric properties of interest are therefore derived from those equations and they characterize the curve's behavior over time [START_REF] Carmo | Differential Geometry of Curves and Surfaces[END_REF]. The formulas of the Frenet-Serret frame properties of electrical currents are expressed as follows.

||i(t)||

= i 1 (t) 2 + i 2 (t) 2 + i 3 (t) 2 (5) B(t) = i (t) * i (t) ||i (t) * i (t)|| (6) κ(t) = ||i (t) * i (t)|| ||i (t)|| 3 (7) τ (t) = (i (t) * i (t)).i (t) ||i (t) * i (t)|| 2 (8) 
where '.' denotes the dot product, '*' denotes the cross product and i'(t), i"(t), i"'(t) denote the first, second and third derivatives of the signal respectively. See section III for more details of the derivatives implementation. Note that the binormal vector B(t) is sufficiently able to describe the plane containing the normal vector N(t) and the Tangent vector T(t) [START_REF] Carmo | Differential Geometry of Curves and Surfaces[END_REF]. Thus, the properties shown above are capable of locally describing the behavior of the trajectory pursued by a three-phase electrical current signal. Hence, these quantities serve as gear fault indicators when combined with the MCSA.

Classical fault indicators

Alongside the geometric indicators, several classical fault indicators are presented below [START_REF] Benbouzid | A Review of Induction Motors Signature Analysis as a Medium for Faults Detection[END_REF]. These indicators are not necessarily dedicated to gear faults but they represent a frame of reference by which the proposed geometric indicators will be evaluated in regards to their capabilities and they will be used for the validation step. The aim is to prove the sensitivity of the chosen indicators for gear faults alongside less specific ones. It is also important to note that even though the focus of the presented approach is on gear faults, the final objective of this work is to implement a library of indicators able to establish the diagnosis of different fault types. Thus, in addition to gear faults, these indicators are part of a general library for fault detection ranging from mechanical faults to electrical faults.

Gear fault frequencies, as expressed by [START_REF] Siddiqui | Early, diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by wavelet transform[END_REF]. It should be noted that even if this frequency is synchronous with the rotational frequency which is not specific to gear faults, research has established that the second, third and forth harmonics are distinctly related to gear dynamics [START_REF] Ondel | Diagnostic par reconnaissance des formes : application à un ensemble convertisseur -machine asynchrone[END_REF][START_REF] Kia | Trends in gear fault detection using electrical signature analysis in induction machine-based systems[END_REF].

f gf = f s ± m.f r (9) 
where f s is the supply frequency, m is an integer ∈ {2, 3, 4} and f r is the rotating frequency. Misalignment fault frequencies, as expressed by (10) [START_REF] Ondel | Diagnostic par reconnaissance des formes : application à un ensemble convertisseur -machine asynchrone[END_REF].

f mis = f s ± f r (10) 
Ball pass frequency of bearing outer race expressed by [START_REF] Bl | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF].

f BP F O = f s ± j. N b 2 .f r .(1 - BD P D .cosβ) (11) 
where j is an integer ∈ {1, 2, 3}, N b is the number of balls, BD and PD are the ball diameter and the pitch diameter respectively, and β is the contact angle between the balls and the ball bearing rings.Ball pass frequency of bearing inner race expressed by [START_REF] Kia | Trends in gear fault detection using electrical signature analysis in induction machine-based systems[END_REF].

f BP F I = f s ± j. N b 2 .f r .(1 + BD P D .cosβ) (12) 
The current scatter plot dispersion parameter, based on the general expression [START_REF] Mohanty | Fault Detection in a Multistage Gearbox by Demodulation of Motor Current Waveform[END_REF]. It has been established in [START_REF] Ondel | Fault Detection and Diagnosis in a Set Inverter Induction Machine Through Multidimensional Membership Function and Pattern Recognition[END_REF] that this indicator is sensitive to a wide array of mechanical faults.

ξ jl = N i=1 (x ji -µ).(x li -µ) N (13) 
where j and l are integers ∈ {1, 2, 3} and j =l related to each current phase, x is a given signal for each sample i, µ is the mean of the signal and N is the number of data samples.

The modulus of the Concordia components i α,β (t) and v α,β (t) derived from (3), as expressed by [START_REF] Combet | Gear fault diagnosis by motor current analysis -application to industrial cases[END_REF].

|i α,β (t)| = i 2 α (t) + i 2 β (t) |v α,β (t)| = v 2 α (t) + v 2 β (t) (14) 
The active power P, the reactive power Q and the apparent power S are derived from the Concordia transforms (3) of the current i α,β , and the votlage v α,β as shown below.

P = v α (t)i α (t) + v β (t).i β (t) Q = v β (t).i α (t) -v α (t).i β (t) S = P 2 + Q 2 (15)
The active and reactive powers calculated are normalized by the root mean square (RMS) value of the apparent power S and they are called P' and Q'. The mean values extracted from P' et Q' are called m p and m q .

The power factor derived from [START_REF] Kia | Analytical and experimental study of gearbox mechanical effect on the induction machine stator current signature[END_REF], as expressed by [START_REF] Ottewill | Condition monitoring of gearboxes using synchronously averaged electric motor signals[END_REF]. It has been proven in [START_REF] Ibrahim | A New Bearing Fault Detection Method in Induction Machines Based on Instantaneous Power Factor[END_REF] that this quantity is capable of electrical faults detection.

cosϕ = P S (16) 
The complex positive sequence components for the currents and voltages respectively, as expressed by [START_REF] Kia | Gear Tooth Surface Damage Fault Detection Using Induction Machine Stator Current Space Vector Analysis[END_REF]. It has been shown in [START_REF] Cablea | Method for computing efficient electrical indicators for offshore wind turbine monitoring[END_REF] that these components are able to detect electrical faults such as supply imbalance.

I p = 1 3 .(i 1 + a.i 2 + a 2 .i 3 ) V p = 1 3 .(v 1 + a.v 2 + a 2 .v 3 ) (17) 
where a = e j(2π/3 ) with j the imaginary number. Moreover, several current amplitudes related to the supply frequency odd harmonics in the first current phase are included in this library. Those frequencies range from the third supply frequency harmonic 3f s to the twenty-ninth supply frequency harmonic 29f s . It has been shown that these quantities contain relevant fault information [START_REF] Ondel | Diagnostic par reconnaissance des formes : application à un ensemble convertisseur -machine asynchrone[END_REF].

It needs to be emphasized that several of the aforementioned indicators are not related to gear faults. They were included in the indicators library in order to validate the relevance of the more appropriate gear fault indicators for this case and as part of a generalized application of the proposed method. The library containing the Park and Concordia transforms, the Frenet-Serret frame properties and the classical fault indicators presented in this section is estimated by an algorithm. The most relevant indicators are then selected by the algorithm and used for gear fault detection in this case. This algorithm is detailed in the following section.

Estimation algorithm

The algorithm for parameters estimation, selection and classification for fault diagnosis is shown in Fig. 2. The data of the electrical currents and voltages acquired from the system are fractionated into files of a set duration . The Park and Concordia transforms are applied to signals which are processed with the Empirical Mode Decomposition (EMD). The filtering process provided by this method is important in order to obtain relevant Park and Concordia 2D patterns. This technique was proposed as the fundamental part of the Hilbert-Huang transform [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

In contrast to the Fourier transform and wavelet transform, the empirical mode decomposition decomposes any oscillating signal into Intrinsic Mode Functions (IMFs) that are not fixed analytically but are instead adaptively derived from the data if the functions satisfy certain requirements [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. The EMD results in a finite set of frequency ordered intrinsic mode components and each successive component contains slower oscillations than the previous one. The decomposition method is based on the computation of the mean value from the lower and higher envelopes in order to obtain the IMFs and the residuals. The first extracted IMF contains the invasive high frequency components. So, the first IMF is subtracted and the signal is reconstructed with previously filtered or thresholded IMFs. Therefore, the EMD serves as an efficient multi-resolution tool for removing the noisy components induced by the supply harmonics from electrical signals.

Following the empirical mode decomposition of the electrical signals, the curve obtained from the estimation of Park and Concordia transforms have to be expressed as numerical values in order to enable their comparison with the rest of the numerical indicators. To convert the geometric indicators into numerical values that represent the state of the system, the compactness of the patterns dispersion is calculated [START_REF] Ondel | Diagnostic par reconnaissance des formes : application à un ensemble convertisseur -machine asynchrone[END_REF]. This quantity evaluates how much a scatter plot distribution is compact and it is dependent on the system state. Note that the compactness is not considered as an indicator such as the ones presented before but more like a new set of numerical indicators based on the transformation of the original geometric ones and mainly created for feature selection purposes. Thus, the compactness expression is as shown by ( 18) [START_REF] Ondel | Diagnostic par reconnaissance des formes : application à un ensemble convertisseur -machine asynchrone[END_REF].

Compactness = N j=0 (x j -µ). t (x j -µ) (18) 
where x j a data point for each sample j of a given indicator's data points, µ is the mean value and N is the total number of data points.

For the calculation of the Frenet-Serret equations, it is important to filter the electrical signals around the fault frequency in order to remove the intruding noisy components and obtain sinusoidal waveforms that are relatively clean. The basis of the Frenet-Serret approach is centered around the properties related to a three-dimensional current trajectory that resembles an elliptical form and filtering the signals insures this requirement. Thus, instead of using EMD as a denoising technique as before, a filter needed to be applied in this case. A band-pass linear phase finite impulse response FIR filter around the frequency of the defect f gf is therefore used. The filter's cut-off frequencies are defined around a small band-pass so that the three-dimensional current trajectory has a clean elliptical form.

Afterwards, according to the Frenet-Serret equations definition, the differentiation step is required in order to calculate the time derivatives. For this step, a smoothing and differentiation filter is inserted. It is considered as a low-pass differential high-order filter in order to achieve the differentiation and the smoothing part reduces the amplitude alteration and the high frequency noise induced by the operation. The delay and phase-shift introduced are also compensated by discarding samples. Therefore, the processed signals are used for the calculation of the Frenet-Serret approach's quantities according to their definition. This estimation was validated using a simulated three-component signal with added Gaussian noise, thus emulating the electrical current and the obtained results correspond to the theoretical values [START_REF] Carmo | Differential Geometry of Curves and Surfaces[END_REF]. Finally, the compactness of properties of the Frenet-Serret approach are calculated.

As for the classical fault indicators, the acquired currents and voltages are filtered using a low pass filter. It has a cutoff frequency of f c = 1 KHz and is defined past the supply frequency harmonics of interest in order to remove the high frequency noise components. Next, the discrete Fourier transform is performed on the processed electrical signals in order to move into the frequency domain. After that, the classical indicators are implemented according to their theoretical definition. Then, the algorithm proceeds to find and extract the corresponding amplitudes thus giving the parameters related to the classical indicators.

All of the estimated indicators are grouped into a data vector and they are then normalized with respect to the amplitude of the fundamental supply frequency in order to ensure a common parameters scale. Afterwards, the five most relevant indicators are extracted by the Sequential Backwards Selection (SBS) algorithm [START_REF] Dash | Feature Selection for Classification[END_REF].

The interest behind feature selection is to directly select a subset of features that is the most relevant. It improves the computational efficiency by reducing the number of operations as well as lowering the generalization error of the model by removing irrelevant features. Thus, the use of numerous indicators of varying relevance confirms that the algorithm is working as intended when they get rejected in favor of the appropriate ones. SBS belongs to a set of greedy search algorithms that are used to reduce an initial d-dimensional feature space to a s-dimensional feature subspace where s < d. This algorithm first computes the criterion function J for all features. J indicates the quality of the selection based on the relevance of the included features. It is defined as the dispersion of the features points, as expressed by (19), divided by their compactness [START_REF] Kia | Fault Index Statistical Study for Gear Fault Detection Using Stator Current Space Vector Analysis[END_REF] [START_REF] Da Mota | Intelligent Modeling To Predict Ejection Fraction From Echocardiographic Reports[END_REF]. Note that even if the compactness used here has the same expression as before, it has a different purpose since it comes from the definition of the quality function.

Dispersion = N j=0 (µ -g). t (µ -g) (19) 
where g = N j=0 µj N and µ j is the mean value of x j . Then, each feature is deleted one at a time and the criterion function J is computed for all subsets with d-1 features and then the least relevant feature is discarded. Afterwards, each feature among the remaining d-1 is eliminated one at a time and the worst feature is removed to form a subset with d-2 features. This procedure continues until a predefined number of features (five in this case) are left. Next, in order to enable the three-dimensional representation of the data, the principal component analysis (PCA) is performed to safely reduce the dimensionality of the features by replacing several correlated variables with a new set of linear and normalized variables [START_REF] Song | Feature Selection Using Principal Component Analysis[END_REF]. For this reason, SBS and PCA were combined for feature selection.

The selected parameters are classified using K-means clustering algorithm based on the euclidean distance. Kmeans is an unsupervised classification algorithm dedicated to solving the clustering problems of unlabeled data. It enables the classification of the estimated indicators into two groups : healthy gear state and faulty gear state. In the following section, the experimental set-up and the results of this algorithm are presented.

Experimental results

Experimental set-up

As shown in Fig. 3, the acquisition of the three-phase electrical signals used in this study was performed on the GOTIX 1 test bench which is dedicated to gear faults characterization. A 55 KW, 50 Hz, 380 V, 119.5 A, 735 rpm three phased motor is driving two rotating shafts coupled to a one-stage gearbox with N in = 57 and N out = 15 teeth numbers at the input and output respectively. The gear train has a 3.8 multiplier factor and is equipped with parallel straight teeth gears in case-hardened steel. The motor power supply is an Altivar 66 with a frequency f s = 32 Hz. Thus, the rotational speed is 470 rpm with a 200 Nm torque and the load level is therefore approximately 20%. However, since the experiment happens over a long period of time, other load levels are not available for the moment.

The electrical current signals are measured using an SC 1C 300 A/1 V current clamp with a 10 KHz bandwidth and the electrical voltages are acquired using a DP25 differential probe with a 15 MHz bandwidth. Before the computing process, an OROS 38 synchronous acquisition chain is used for signal capture with a 25 KHz sampling frequency, a 10 KHz for 25.6 ksmps/s bandwidth and an acquisition time of 80 seconds.

The wear experiment aims to naturally degrade a brand new gear without artificial initialization of the defect. The healthy condition at the beginning stages of the experiment is compared to the latest data after 7000 hours of natural wear which represents the faulty gear condition. Due to fatigue, the surface wearing fault has spontaneously occurred on the input wheel whose rotational frequency f in = 7.83 Hz. Therefore, according to (9), the fault frequencies are f gf + = 40 Hz and f gf -= 24 Hz.

The current signal used has a sampling frequency of 25 KHz, it is processed over 30000 points for a duration of 1 second. The band-pass filtering used for the properties of the Frenet-Serret frame estimation is around f gf + = 40 Hz, more specifically between the cut-off frequencies f c1 = 38 Hz and f c2 = 42 Hz, in order to avoid the supply current frequency components which are more prevalent near f gf -= 24 Hz. 

Experimental results

Geometric indicators estimation

The results of the geomtric indicators estimation before calculating their compactness and using them in the selection/clustering process are presented in this section. The aim is to establish the gear fault detection capabilities of each indicator separately used in the estimation algorithm. (f) Torsion τ (t). (g) i(t) in 3D space. (h) B(t) in 3D space.

-1 1 (f) Torsion τ (t). The results of the Frenet-Serret indicators estimation for the current in healthy and faulty conditions are shown in Fig. 4 and Fig. 5 respectively. As shown in Fig. 4 (b) and Fig. 5 (b), the filtering step reduces the noise components contained in the raw three-phase current as seen in Fig. 4 (a) and Fig. 5 (a), therefore the resulting position vector i(t) has a sinusoidal waveform. The length of the position vector ||i(t)|| as shown in Fig. 4 (c) and Fig. 5 (c), has a more regular pattern in the healthy condition. This indicator represents the amount of the signal and it increases when the fault appears.

0 1 B 3 B 2 0 B 1 1 0 -1 -1 (i) B(t) in scale unit.
The Binormal vector B(t) in Cartesian coordinate, as shown in Fig. 4 (d) and Fig. 5 (d) has a more pattern regular after the occurrence of the fault. When represented in the 3D space, as seen in Fig. 4 (h) and Fig. 5 (h), this vector pursues a different trajectory when the fault appears. This is further confirmed with the zoomed out representation of the Binormal vector in the scale unit, as shown in Fig. 4 (i) and Fig. 5 (i). In the healthy state, it points globally towards a direction which is more parallel to the plane of the trajectory curve seen in Fig. 4 (g) and Fig. 5 (g), whereas it becomes more orthogonal to the plane of the curve in the faulty state. When the fault appears, the trajectory becomes more structured and therefore the Binormal vector becomes less disoriented.

As for the curvature κ(t), as shown in Fig. 4 (e) and Fig. 5 (e) it has a less regular pattern in the faulty condition. Finally, in regards to the Torsion indicator τ (t), shown in Fig. 4 (f) and Fig. 5 (f), while its value is extremely small and near zero as expected according to the theory, there is little change in its visible pattern. Therefore, it is dependent on the compactness calculation in order to properly evaluate it.

As shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, the Park and Concordia transform components in bi-dimensional space for healthy and faulty conditions have nearly elliptical and circular patterns respectively. This is in accordance with the theory but since the experimentation settings are not ideal, the patterns do not have a perfect shape. As seen in Fig. 6 and Fig. 7, the components without the EMD filtering have intersecting patterns and are not distinctly separated, even if the shapes become deformed when the fault occurs. However, as seen in Fig. 8 and Fig. 9 where the EMD filtering is added, the faulty condition patterns have deformed shapes when compared with the healthy condition even when taking into account the amplitude change which can be induced by the load. Indeed, the occurrence of a gear fault manifests itself in the visible deformations of the healthy condition pattern.

The results of the geomtric indicators estimation taken separately demonstrate that these quantities are for the most part sensitive to gear faults occurence. Hence, the gear failure detection capabilities of these indicators has been established. The next section focuses on the comparison, the selection and the clustering of the used indicators in the context of the estimation algorithm for gear diagnosis using electrical currents.

Estimation algorithm results

The estimation algorithm proceeds to normalize, compare, select and establish the clustering of the previously estimated indicators. The results of the selection process show that the five most relevant indicators selected by the algorithm are the compactness of the Concordia electrical current component i ( t) α,β (3), the compactness of the torsion τ (t) [START_REF] Choi | Iterative Condition Monitoring and Fault Diagnosis Scheme of Electric Motor for Harsh Industrial Application[END_REF], the compactness of the binormal vector B(t) [START_REF] Nacib | Detecting Gear Tooth Cracks Using Cepstral Analysis in Gearbox of Helicopters[END_REF], the modulus of the Concordia current component |i(t) α,β | (14) and the mean value of the normalized reactive power m q (15). Table 1 establishes the comparison between the selected indicators and the other classical fault indicators. Indeed, the SBS process results based on the maximization of the quality function J show the noticeable enhancement of the selection quality as the less relevant indicators are progressively rejected and the five most relevant ones are chosen.

Rejected indicators

Quality function J Misalignment fault frequencies [START_REF] Siddiqui | Broken rotor bar fault detection in induction motors using wavelet transform[END_REF] 1.07 The power factor [START_REF] Ottewill | Condition monitoring of gearboxes using synchronously averaged electric motor signals[END_REF] 2.2 The current dispersion [START_REF] Mohanty | Fault Detection in a Multistage Gearbox by Demodulation of Motor Current Waveform[END_REF] 4.42 Supply frequency odd harmonics 12.53 Complex positive sequence [START_REF] Kia | Gear Tooth Surface Damage Fault Detection Using Induction Machine Stator Current Space Vector Analysis[END_REF] 39.62 Bearing faults frequencies [START_REF] Bl | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF][START_REF] Kia | Trends in gear fault detection using electrical signature analysis in induction machine-based systems[END_REF] 49.31 Compactness of the position vector [START_REF] Li | A Fault Diagnosis Approach for Gears Using Multidimensional Features and Intelligent Classifier[END_REF] 58.66 Gear faults frequencies [START_REF] Siddiqui | Early, diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by wavelet transform[END_REF] 72.48 Compactness of the Park Transform [START_REF] Zheng | Gear fault diagnosis based on continuous wavelet transform[END_REF] 84.27 Compactness of the curvature [START_REF] Villwock | Time domain identification method for detecting mechanical backlash in electrical drives[END_REF] 105.45 Mean value of the active power [START_REF] Kia | Analytical and experimental study of gearbox mechanical effect on the induction machine stator current signature[END_REF] 160.94 Modulus of the Concordia voltage [START_REF] Combet | Gear fault diagnosis by motor current analysis -application to industrial cases[END_REF] 233.77 Last five selected indicators [START_REF] Capdessus | Cyclostationary processes : Application in gear faults early diagnosis[END_REF][START_REF] Choi | Iterative Condition Monitoring and Fault Diagnosis Scheme of Electric Motor for Harsh Industrial Application[END_REF][START_REF] Nacib | Detecting Gear Tooth Cracks Using Cepstral Analysis in Gearbox of Helicopters[END_REF][START_REF] Combet | Gear fault diagnosis by motor current analysis -application to industrial cases[END_REF][START_REF] Kia | Analytical and experimental study of gearbox mechanical effect on the induction machine stator current signature[END_REF] 

233.77

Table 1: Indicators comparison through the results of the quality function J of the SBS algorithm.

The estimation algorithm results presented in the previous section are shown in Fig. 10. The three components shown as axes represent the linear variables replacing the five chosen indicators through the principal component analysis. 

Validation

In order to assess the robustness to load changes and different fault types, the estimation algorithm is validated using experimental data acquired from a test bench driven by a 2.24 KW, 60 Hz, 280 V, 7. The band-pass filtering used for the properties estimation of the Frenet-Serret frame is around f gf + and f BP F O+ , more specifically between the cut-off frequencies f c1 = 48 Hz and f c2 = 60 Hz, in order to avoid the supply current frequency components which are more prevalent near f gf -and f BP F O-.

The estimation algorithm applied to this configuration for healthy, gear spalling fault and outer race bearing fault (BPFO) at 45 Hz frequency for 25% and 75% load level are shown in Fig. 12 and Fig. 13 The five most relevant indicators selected in the case of 25% load level are the compactness of the Concordia component i(t) α,β (3), the compactness of the torsion τ (t) [START_REF] Choi | Iterative Condition Monitoring and Fault Diagnosis Scheme of Electric Motor for Harsh Industrial Application[END_REF], the compactness of the binormal vector B(t) [START_REF] Nacib | Detecting Gear Tooth Cracks Using Cepstral Analysis in Gearbox of Helicopters[END_REF], the mean value of the normalized reactive power m q (15) and the amplitude of gear fault frequency [START_REF] Siddiqui | Early, diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by wavelet transform[END_REF]. For 75% load level, the compactness of the Concordia component i(t) α,β (3), the compactness of the torsion τ (t) [START_REF] Choi | Iterative Condition Monitoring and Fault Diagnosis Scheme of Electric Motor for Harsh Industrial Application[END_REF], the compactness of the binormal vector B(t) [START_REF] Nacib | Detecting Gear Tooth Cracks Using Cepstral Analysis in Gearbox of Helicopters[END_REF], the amplitude of the bearing outer frequency (BPFO) [START_REF] Bl | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF] and the amplitude of gear fault frequency (9) are selected. When comparing with the previous results, we notice that the three first geometric parameters are consistently chosen as relevant indicators in every case, while the modulus of the Concordia current component |i(t) α,β | (14) and the mean value of the normalized reactive power m q (15) prove to be unreliable in this new configuration. The result of the chosen indicators clustering for 25% and 75% load level provides distinctly separated and distant classes of healthy condition (blue color) and faulty conditions with spalling gear fault (red color) and bearing wear fault (green color). At 25% load (Fig. 12), the clustering error is 3.33% between the two fault types classes since they are relatively close. However, at 75% load (Fig. 13), the classes scatter points are more distant and thus the classification error is null. Thus, this validates the robustness of the geometric indicators estimation for the efficient detection of different fault types, in different frequencies and load levels.

Conclusion

In this paper, a method of gear fault detection based on the geometric indicators of electrical signals in three-phase asynchronous motors is proposed. A library of indicators for different faults detection is implemented in this work. The indicators stemming from Park and Concordia transforms and the properties of Frenet-Serret frame are selected based on their relevance and are combined with the motor current signature analysis. The results show an excellent classification of gear healthy and faulty conditions. Compared to other methods, this technique is non-invasive, convenient, quick and efficient. It is also able to overcome the noisy nature of the electrical signals. Moreover, since it is a time-domain method that provides additional information about the system's condition, it proves to be an interesting alternative to other methods that require more processing which may induce information loss, especially transient data. It potentially takes into account a wide array of faults and it is relatively robust to configuration changes in terms of load levels and different fault types. This technique is open to improvement especially in regards to the integration of additional faults (motor faults, electrical faults,...) into the classification process. One of the perspectives of this work is the comparison with more advanced methods such as Time Synchronous Averaging in order to further confirm the robustness of the proposed technique. The aim is also to apply the method to more complex cases involving combined faults and variable speed. Moreover, one of the limitations of this technique is that it requires the healthy state data in order to establish the diagnosis. Also, at this point in time, it is unclear whether the method is able determine the fault severity of the cases. In addition, the major limitation of the Frenet-Serret indicators is that they require the knowledge of the fault frequency in advance in order to filter the signal and provide satisfying results. Therefore, these limitations should be addressed with a more developed technique that resolves these issues.
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 1 Figure 1: Block diagram of the proposed approach.
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 2 Figure 2: Block diagram of the proposed estimation algorithm.
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 3 Figure 3: Schematic of the proposed experimental set-up 1 .
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 4 Figure 4: Properties of Frenet-Serret approach of the electrical current in healthy condition.

  (a) Raw three-phase electrical current. (b) Position vector i(t). Length of position vector ||i(t)||. Binormal vector B(t) in Cartesian coordinates. (e) Courvature κ(t).
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 567 Figure 5: Properties of the Frenet-Serret approach of the electrical current in faulty condition.
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 89 Figure 8: Park transform components in 2D space for healthy and faulty conditions with EMD filtering.
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 10 Figure 10: Clustering of the estimation algorithm components for healthy and faulty conditions at 32 Hz and 20% load.

  5 A, 2850 rpm three phased motor coupled to a two-stage gearbox as shown in Fig. 11. The first stage contains N in1 = 29 and N out2 = 100 teeth numbers, whereas the second stage has N in3 = 36 and N out4 = 90 teeth numbers at the input and output respectively. The supply frequency used is 45 Hz and the rotational frequency is 780 rpm. The experiments have been carried out for a duration of 10 seconds with a 25 KHz sampling frequency at 25% and 75% load levels. In addition to healthy condition, a spalling fault on the gear wheel N in3 = 36 corresponding to fault frequencies f gf 2+ = 58 Hz and f gf 2-= 35 Hz (9) as well as an outer race bearing wear fault at the fault frequency f BP F O+ = 50 Hz and f BP F O-= 40 Hz (11) have been artificially created.
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 11 Figure 11: Schematic of the validation test bench
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 12 Figure 12: Clustering of the estimation algorithm for healthy, gear spalling and BPFO at 45 Hz frequency and 25% load.
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 13 Figure 13: Clustering of the estimation algorithm for healthy, gear spalling and BPFO at 45 Hz frequency and 75% load.
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