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Abstract—A real-time applicative software consists of both
aperiodic and periodic tasks. The periodic tasks have regular
arrival times and strict deadlines. The aperiodic tasks have
irregular arrival times and no deadline. The objective of an
optimal aperiodic task server is to guarantee minimal response
times for the aperiodic tasks and no violation of hard deadlines
for periodic tasks. We consider a real-time energy harvesting
system composed of energy harvester, energy storage unit, uni-
processing unit and the real-time tasks. We introduce a novel
aperiodic task scheduler, namely SSP which is an extension of
the slack stealing server so as to cope with fluctuations in energy
availability. Experimental results are reported so as to bring to
light that the proposed algorithm achieves better performance
in terms of aperiodic responsiveness. Simulations have been
conducted for various settings of workloads and harvested energy
profiles.

Index Terms—Earliest Deadline First, energy harvesting, ape-
riodic servicing, preemptive scheduling, energy management.

I. INTRODUCTION

One of the key features for the next generation of portable
wireless devices used for sensing, environmental/infrastructure
monitoring, etc. is for them to become self-powered. Harvest-
ing ambient energy from the environment to provide power
for these devices has been recognized as one of the most
promising technologies [1] [2]. Energy harvesting (EH) allows
sensors to be placed where a connected network infrastructure
is not available or practical. Photovoltaic cells, thermoelec-
tric converters, and other energy harvesting techniques are
available to harvest energy. Nevertheless, new problems arise
because perpetual operation of an autonomous system implies
energy neutrality: The system should never consume more
energy than available. In contrast to classical battery-operated
embedded systems, batteries are solely used as energy buffers
and not as primary energy sources. As a positive consequence,
the cost and size of batteries are reduced significantly.
In this paper, we consider an application software with real-
time requirements where tasks are given by computation times
as well as amount of energy required by their execution.
Specifically, periodic tasks are given by periods and deadlines
whereas aperiodic tasks have unpredictable arrival times and
have non deadline. Scheduling periodic tasks with no energy
limitation has been extensively studied for a long time [3].
The most famous result is certainly the proof of optimality

of the Earliest Deadline First (EDF) scheduler reported in
[4]. We recently proved that EDF which is greedy and non
clairvoyant is no more suitable if the processor is supplied
thanks to fluctuating regenerative energy [5]. Nonetheless, a
clairvoyant and idling variant of EDF called ED-H has been
proved optimal for uniprocessor energy harvesting systems
where all the tasks, periodic or not, have hard deadlines to
meet [6]. In this paper, we will focus on the scheduling issue
where the application software is a mixed task set composed
of both periodic hard deadline tasks and soft aperiodic tasks.
The paper will address the following question: how to reduce
the response time of aperiodic tasks while guaranteeing no
deadline miss for the periodic tasks when all the tasks exe-
cute on a monoprocessor self-powered device? The paper is
organized as follows: First, we describe a novel aperiodic task
server which is an extension of the Slack Stealing server [7].
Second, by means of simulations, we demonstrate significant
system performance improvement in aperiodic responsiveness
comparing to Background servicing. Third, to provide insights
for system designers, we report simulation results that show
the impact of the aperiodic server on the response time for the
soft aperiodic tasks.

II. BACKGROUND AND RELATED WORK

A. Aperiodic task servicing

The so-called TBS (Total Bandwidth Servicing) algorithm
permits to execute aperiodic tasks with efficient responsiveness
[9]. Once any aperiodic task arrives, it is assigned a virtual
deadline. Then, it is jointly scheduled by EDF with the
periodic tasks. The virtual deadline depends on processor
utilization available for the aperiodic tasks called capacity
of the server. An improved version of TBS called TB∗ was
proved to be optimal [9]. An iterative process is applied so
as to shorten the virtual deadline and consequently improve
the aperiodic response time. Such approach was extended so
as to adapt to energy harvesting settings [11]. However, no
theoretical analysis permits to state the relative performance
of the so-called TB-H server.

Using the available slack of periodic tasks for advancing the
execution of aperiodic requests is the basic principle adopted
by the Earliest Deadline Late Server (EDL) [7]. The idea
is to postpone the execution of periodic tasks as long as



possible. The processor idle times of the so-called dynamic
EDL schedule serve to perform the aperiodic tasks as soon
as possible, profiting from the immediate available surplus of
processing time called slack time. The EDL Server was proved
optimal, that is, the response times of aperiodic tasks are the
best achievable. In summary, whenever at least one aperiodic
task enters the system, the dynamic EDL schedule is updated
to predict future time intervals where periodic activities should
be executed and future time intervals where aperiodic tasks
should be executed for optimal responsiveness.
The pseudo-code of Algorithm 1 describes the outline of the
EDL server.

Algorithm 1 The Slack Stealing server EDL [11]
Require:

t: current time
Γ(t): list of periodic tasks
Ap(t): list of aperiodic tasks
while True do

if Ap(t) is not empty then
Update the EDL schedule in order to execute the
periodic tasks of Γ(t) in the EDL busy periods
if SlackTime(t)>0 then

Schedule the tasks in Ap(t) according to First Come
First Serve

else
Schedule the tasks in Γ(t) according to EDF

end if
else

Schedule the tasks in Γ(t) according to EDF
end if
t := t+ 1

end while

B. Hard deadline scheduling with energy consideration

As EDF, the energy harvesting aware ED-H algorithm
chooses the ready task with the shortest deadline for
execution. [6]. Nevertheless, ED-H may choose to postpone
the completion of this task in order to avoid energy depletion
in the future. As a result, the ED-H processor has Dynamic
Power Management, which determines when the processor
should be in the busy state and when it should be idle.
At each time instant, the choice is based on two dynamic
variables respectively called slack time and preemption slack
energy. The slack time is the longest period of time during
which the processor can be left unoccupied without causing
a deadline violation. The preemption slack energy is the
maximum amount of energy that the active task can spend
while ensuring that no task suffers from energy depletion.
Optimality of the ED-H scheduler has been established in
[6]. If any algorithm can schedule a hard real-time task set
on a platform with a specified processor, energy harvester,
and energy reservoir, then the ED-H algorithm can schedule
it on the same platform.

III. SYSTEM MODEL AND ASSUMPTIONS

The energy harvesting system consists of four parts: energy
harvester, energy storage, the processor and the real-time
tasks (see figure 1). The energy harvester draws the energy
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Fig. 1. Framework of an energy harvesting device

from an environmental source and feeds into the energy
storage unit with instantaneous charging rate Pp(t) at time t.
We postulate that energy production and energy consumption
coexist. Any task’s instantaneous power consumption is not
less than the source’s instantaneous power consumption.
The term ”energy storage” refers to a reservoir that can be
used to store energy. The energy level of the store at the
time instant t is given by E(t). The stored energy can be
utilised at any moment in the future. We are assuming an
ideal storage unit with no leaks. When the storage unit is
fully charged (i.e. E(t) = E at time t), energy is dissipated.
When the processor’s energy storage capacity is spent, it
can no longer function and shuts down. We assume that
energy production and consumption can occur simultaneously.

A four-tuple (Ci, Ei, Di, Ti) is connected with a periodic
task taui and represents its Worst Case Execution Time
(WCET), Worst Case Energy Consumption (WCEC), relative
deadline, and period. We assume that Ei and Ci are not really
proportional [8]. A task makes a request, which is represented
by a job. The first job of τi is released at time 0 and the
subsequent ones at times kTi, k = 1, 2, ... called release times.
H is the least common multiple of the request periods Ti,
called the hyper-period. The processor utilization of the set of
periodic tasks τ is Upp =

∑
τiετ

Ci

Ti
which is lower than 1.

In addition, we consider Ap the stream of m soft aperiodic
requests, defined as Ap = {Api|1 ≤ i ≤ m} and Api =
(ri, ci, ei). ri is the arrival time of the soft aperiodic task Api.
ci and ei are respectively the worst case execution time and
the worst case energy requirement of Api.

IV. ENERGY HARVESTING AWARE APERIODIC TASK
SERVICING

In this section we will introduce a novel scheduling algo-
rithm which is drawn from EDL and is adapted to mixed task
sets in real-time systems with energy harvesting constraints.



We suppose that the hard deadline periodic tasks are scheduled
using to the optimal scheduler ED-H.

A. SSP: Slack Stealing servicing

SSP (Slack Stealing with Energy Preserving) is a Slack
Stealing server that works similarly to the EDL server but
takes into consideration fluctuations in energy availability.
The notion of slack will be discussed here in terms of
both time and energy. The optimality of the SSP server is
established in the sense that among all possible aperiodic
servers for real-time energy harvesting systems, SSP gives
the shortest aperiodic response time [11]. The main principle
of the slack stealer SSP for aperiodic servicing with ED-H
is to allow aperiodic job executions as long as it does not
result in a deadline violation for all the jobs generated by
the periodic task set τ . Recognize that a deadline violation
can be caused by either because of processing time starvation
(not having enough time to complete a task before deadline)
or energy starvation (not have enough energy to complete a
task before deadline).

Consequently, we can think of the system slack at current
time t as a pair of elements denoted slack time and slack
energy, respectively. The slack time of tau at time t is
defined as the maximum processing time available at t after
completing the tasks of tau on time. Slack time is a variable
value that represents the variation of processing surplus. Its
computation allows it to determine how long the processor
can be idle or busy executing additional tasks, such as
aperiodic ones, at any time.

The slack energy of tau at time t is defined as the
maximum energy available at t after completing the tasks of
tau on time. Slack energy is a dynamic value that expresses
changes in energy surplus. Its computation allows it to
determine how much energy could be wasted or consumed by
executing additional tasks, such as aperiodic ones, at any time.

When the aperiodic queue is not empty, the slack stealer
SSP can be seen as a task that is ready to execute. When
the queue is empty, this task is paused. When there is slack,
such as slack time or slack energy, the slack stealer is given
top priority. Details on how to calculate slack time and
slack energy are given in [11]. It receives the lowest priority
whenever there is either no slack time or no slack energy.
The slack stealer SSP selects the aperiodic tasks in FCFS
order.

The framework of the SSP server is described by the
pseudo-code of Algorithm 2.

B. Implementation considerations

SSP has a O(m.n) complexity, where m is the number
of iterations and n is the number of periodic tasks. The
complexity of the algorithm is pseudo-polynomial since the

Algorithm 2 The Slack Stealing server SSP
Require:

t: current time
L(t): list of periodic tasks at t
Ap(t): list of aperiodic tasks at t
while TRUE do

if Ap(t) is not empty AND energy reservoir is not empty
AND SlackEnergy(t) > 0 AND SlackT ime(t) > 0
then

Schedule the tasks in Ap(t) according to First Come
First Serve

else
Schedule the tasks in Γ(t) according to ED-H

end if
t := t+ 1

end while

number of iterations, m, is dependent on the periods and dead-
lines of the hard deadline tasks. The frequent slack time and
slack energy calculations in SSP cause rather substantial time
overheads. However, under the optimal slack stealing strategy,
extra processing time and energy are leveraged whenever
possible for aperiodic activities by procrastinating periodic
operations.

V. SIMULATIONS AND DISCUSSION

A. Introduction to the experiment

When implementing an aperiodic task algorithm, many
factors affect aperiodic response time performance:

• The ratio of processor utilization and the ratio of har-
vested energy used by the periodic tasks determine the
quantity of energy and processing times available for the
aperiodic tasks.

• The aperiodic processing load and the ratio of energy
needed by the aperiodic tasks have a direct effect upon
aperiodic response time performance. The smaller both
the quantity of processing times and energy required by
the aperiodic tasks are, then the more likely it is that the
aperiodic tasks are served immediately.

The experiment compares and evaluates the performance
of aperiodic task servers using simulations. The SSP server
will be pitted against two background servers: Background
with Energy Surplus (BES) and Background with Energy
Preserving (BEP). When no periodic tasks are present in the
system and the energy storage is fully replenished, BES serves
aperiodic tasks. BEP, the enhanced version of BES, allows
any aperiodic task to run if its execution does not cause an
energy shortage for future occurring periodic tasks. In terms
of processing loads and energy requirements, we will consider
various application profiles. In addition, the experiment will
show how different parameters (such as the power provided
by the environmental source) affect the response time of soft
aperiodic tasks.



The ED-H algorithm, as previously stated, is used to
schedule periodic tasks. The FCFS policy governs how ape-
riodic tasks are handled. The metrics used to evaluate the
performance of the aperiodic servers SSP, BEP, and BES are
now presented. The obtained results here are based on the
assumption that

• The overall processing load Up is made up of 50% of
periodic processor utilization Upp and 50% of aperiodic
processor utilization Ups.

• In the same way, the total energy load Ue includes 50% of
the periodic energy usage Uep and 50% of the aperiodic
energy utilization Ues.

We will explain how each aperiodic task server behaves
from various angles, including the average response time
of aperiodic tasks. It is worth emphasizing that the goal is
to reduce the mean response time of soft aperiodic tasks
while maintaining the schedulability of periodic tasks with the
lowest possible implementation costs, i.e. the fewest possible
preemptions and computing operations.

B. Simulation Environment

We used Matlab to create a simulator. The two-dimensional
and three-dimensional graphs that result are plotted with high
resolution. Our code is capable of producing any simulation
with parameters specified by the user. The generator of pe-
riodic tasks takes as input the number of tasks n, the hyper-
period H, processing utilization Upp, and energy utilization
Uep.

The simulator automatically generates
a periodic task set τ where each task τi is characterized

by quadruple (Ci, Ei, Di, Ti) | 1 ≤ i ≤ n}. Periods and
computation times are uniformly distributed, in dependance
of Upp =

∑n
i=1

Ci

Ti
. Energy consumption of every task is

proportional to its period and depends on the setting of
Uep =

∑n
i=1

Ei

Ti
. Periodic task sets are generated so as to

guarantee feasibility in terms of processing time and energy
consumption i.e. Upp ≤ 1 and Uep ≤ Pp where Pp is the
average recharging power.

The input data of the aperiodic tasks are number of
desired tasks m, processing utilization factor Ups and energy
utilization Ues. A stream of aperiodic tasks with uniform
distribution is generated by simulating a Poisson aperiodic
arrival pattern.

A simulation run consists of one task set composed of 20
periodic tasks. Simulations are performed on 10 hyperperiods
to reduce the bias effect of random generation procedure.
Each point on the curves corresponds to 100 runs. The energy
storage unit is assumed to be initially full. Its capacity is
equal to Emin, defined as the minimum size of the energy
reservoir that guarantees feasibility. The energy produced by
the source is not controllable. We assume that it is possible to
accurately estimate short-term energy within some prediction
errors margin. Four different energy profiles extracted from
[10] have been considered in our performance evaluation:

constant, sine wave signal of period π = 2, a rectifier, and
a pulse signal with a 20% duty-cycle (Figure 2). The power
for the constant profile was supposed constant and equal to
5. The output power of the three profiles is supposed variable
between 2 and 17. It is worth mentioning that Epmin of each
profile p should not be less than the area Ap.
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Fig. 2. Energy source profiles under study.

The following metrics are addressed in our study:
1) Average response time of aperiodic tasks defined as av-

erage time between arrival and completion, normalized
with regards to average computation time. For example,
a y-axis value of 10 indicates that the average response
time is 10 times greater than the computation time.

2) Average jitter of aperiodic tasks: Real-time systems, es-
pecially software control systems, are developed to meet
the requirements of real-time automation systems. One
issue is to minimize the delay and jitter of tasks. Jitter
represents the induced offset between the release time of
the aperiodic task and its actual starting time. Therefore,
we evaluate the average jitter which is normalized with
respect to its response time.
As a result, a jitter of 1 on the y-axis corresponds to its
response time; a jitter of 0 relates to the shortest possible
jitter time and indicates that the task was completed
without being blocked.

C. Experiment Results for Average response time of aperiodic
tasks

The evaluations are carried out in this initial set of
experiments for a total energy utilization applied to the
system that ranges from 5% to 100%, while the total
processing utilization load remains constant (Up = 0.6).
Figures 3, 4, 5 and 6 show the results for a constant profile,
a Sine wave with period pi = 2, a Rectifier signal, and a
Pulse signal with a 20% duty-cycle, respectively. They show
the normalized mean aperiodic response time in relation to
the aperiodic computation time.

SSP clearly beats the other algorithms across all energy
profiles, as it takes advantage of time slack stealing to max-



imize CPU utilization. This demonstrates that our theoretical
research was carried out without making any assumptions
about energy production through time. Under the Pulse signal
profile, BEP outperforms BES by a tiny margin and shows
a considerable decline in comparison to the BEP method
(Figure 6). The results of the Pulse model are predicted to
reveal that the performance of the three algorithms, especially
BES, is slightly lower than the three other models. BES, for
example, is at least 12.5% percent less responsive under the
Pulse signal profile than under the other modes. The reason
for this is that power is only gathered on a 20% duty-cycle
of the overall signal, and BES allows aperiodic tasks to be
performed only when the energy reservoir is full, resulting in
increased aperiodic responsiveness.
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Fig. 3. Aperiodic response time with respect to Ue/Pp, for Up=0.6 under
constant profile.
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Fig. 4. Aperiodic response time with respect to Ue/Pp, for Up=0.6 under
sinusoidal signal of period π/2.

D. Experiment Results for Average jitter of aperiodic tasks

This section includes a set of experiments that demonstrate
how SSP minimizes aperiodic task delays and jitters in energy-
constrained real-time systems, as enforced by the operating
system, control tasks, kernel mechanisms,etc. The induced off-
set between the aperiodic task’s release time and its execution
start is referred to as jitter.

For a constant total processing utilization of 0.4, SSP is
evaluated as a function of total energy consumption Ue/Pp
and jitter is compared to background policies. Average jitter
time is normalized with respect to its response time. Figures
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Fig. 5. Aperiodic response time with respect to Ue/Pp, for Up=0.6 under
rectifier signal.
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Fig. 6. Aperiodic response time with respect to Ue/Pp, for Up=0.6 under
pulse signal.

7, 8, 9, and 10 show the simulation results for a constant
profile, a Sine wave with a period of π = 2, a Rectifier signal,
and a Pulse signal with a duty-cycle of 20% duty-cycle
respectively.

From the graphs, we observe that the SSP server outstands
the background servers by reducing the delay and jitter
of the aperiodic tasks for all energy loads and under all
energy profiles. For example, the results in Figure 7 show
that the jitter of SSP is at least 16% lower than BEP and
BES. Furthermore, higher is the energy load Ue/Pp, more
important is this advantage.

It is worth mentioning that BES exemplifies the inferior
server for all energy profiles, and shows a significant degra-
dation compared to BEP (Figure 10) under the Pulse signal
profile owing to the power harvested by the Pulse profile and to
the performance of the BES algorithm. For example, the jitter
time variance between BES and BEP under the Pulse signal
profile is 26% at Ue/Pp=6 (Figure 10), while it is equal to
10% under the constant profile (Figure 7).

VI. CONCLUDING REMARKS

Energy autonomous systems are becoming an important
class of embedded real-time systems that utilize ambient
energy to perform their computations. They do not need to
charge the battery cyclically since they rely on an external
energy supply.
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Fig. 7. Jitter time with respect to Ue/Pp, for Up=0.4 under constant profile.
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Fig. 8. Jitter time with respect to Ue/Pp, for Up=0.4 under sinusoidal signal
of period π/2.

In this paper, we investigated the problem of scheduling real-
time tasks implemented on a single processor supplied with
energy harvesting. We considered hard periodic and soft ape-
riodic real-time tasks. Periodic tasks are scheduled according
to the optimal scheduler ED-H. We have described a novel
aperiodic task server, proved to be theoretically optimal in
terms of aperiodic responsiveness [11]. The so-called aperiodic
task servicing algorithm, SSP, suggests to steal both processing
time and environmental energy so as to execute the aperiodic
tasks as soon as possible with no deadline violation and no
energy starvation.
The experimental study reported in the paper permits to
measure the actual performance gain of SSP in comparison
to classical Background servicing techniques. Additional sim-
ulation results and details for the optimality statement of the
aperiodic task server SSP can be found in [11].
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