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A Deep Learning Approach for LiDAR
Resolution-Agnostic Object Detection

Ruddy Théodose1,2, Dieumet Denis1, Thierry Chateau2, Vincent Frémont3 and Paul Checchin2

Abstract—Existing neural network-based object detection ap-
proaches process LiDAR point clouds trained from one kind of
LiDAR sensor. In the case of a different point cloud input, the
trained network performs with less efficiency, especially when the
given point cloud has low resolution. In this paper, we propose
a new object detection approach, which is more resilient to
variations in point cloud resolution. Firstly, layers from the point
cloud are randomly discarded during the training phase in order
to increase the variability of the data processed by the network.
Secondly, the obstacles are described as Gaussian functions,
grouping multiple parameters into a single representation. A
Bhattacharyya distance is used as a loss function. This approach
is tested on a LiDAR-based network and on an architecture using
camera and LiDAR sensors. The networks are trained exclusively
on the KITTI dataset and tested on Pandaset and the nuScenes
Mini dataset. Experiments show that our method improves the
performance of the tested networks on low-resolution point clouds
without decreasing the ability to process high-resolution data.

Index Terms—Deep Learning, 3D Object Detection, Sensor
Fusion, Intelligent Vehicle, Camera Sensor, LiDAR Sensor.

I. INTRODUCTION

Autonomous driving in urban environments still remains a
tremendous challenge. The autonomous vehicle must simulta-
neously manage multiple aspects of perception such as scene
analysis, traffic sign recognition, or moving object localization.
It is significant to control these aspects before deciding which
actions can be engaged to preserve the safety of other users
and the comfort of the passengers. 3D object detection for
autonomous vehicles is an active research topic since identi-
fying the parts of the scene that can interfere with the vehicle
trajectory is a crucial task within the navigation pipeline.
In this field, most works mainly rely, if not exclusively, on
LiDAR sensor data.

LiDAR sensors collect 3D point clouds depicting the sur-
roundings in great detail. However, the data structure of such
3D point clouds is usually not unique and normalized, and
the spatial positioning of the points is also irregular. More-
over, the information provided on the appearance of surfaces
is inadequate. By contrast, 2D cameras deliver structured
data with high resolution as per the spectrum captured, e.g.,
color information, infrared. These characteristics make them
particularly adapted for classification or identification tasks,
even on small or noisy images. However, the loss of depth
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information and the narrow field of view makes the full
3D reconstruction of the scene geometry difficult. Over the
past years, deep neural networks have proven their efficiency
in perception tasks by using camera images. Most methods
aim to extend these techniques to 3D point clouds. However,
due to the differences between 2D images and 3D LiDAR
information, the application of classical neural networks on 3D
point cloud data is still an open problem. For example, some
methods transform the sparse data into dense and structured
grids through voxelization that can then be used by operators
designed initially for image processing. Other works exploit
architectures based on PointNet [1], [2] with the aim to
directly process the 3D point cloud by utilizing the geometrical
relationships between points and their neighborhood [3], [4].
No sensor is adapted for all the situations. Hence, autonomous
vehicles are usually equipped with at least two types of
sensors [5], [6]. Currently, the majority of the 3D object
detection methods are purely LiDAR-based [7], [8], [9]. Fewer
methods employ the data fusion of the two sensors [10], [11]
because of their different data structures and constraints such
as calibration, registration of 2D/3D images, etc. However,
some methods exploit the outputs of 2D processing techniques
to constraint the possible locations of the objects in the scene.
For example, the helpful priors for the 3D detection task are
the utilization of semantic image segmentation [12] or 3D
frustums generated by 2D image detection [13].

While researches focused on the design of architectures that
allows to maximize accuracy, most of the existing models
are trained from a given set of LiDAR parameters and do
not generalize well if tested on another set. Even though
solutions have been developed for camera sensors (like domain
adaptation [14]), to the best of our knowledge, a few works
have analyzed the effects on pre-trained systems of 3D scans
issued from different resolutions of LiDAR sensors. Therefore,
we believe that this topic is important for three reasons. Firstly,
to generalize a detection method for emerging LiDAR sensors.
Secondly, we see that most of the existing systems are trained
on restricted geographical areas and for a specific set of
sensors rendering different networks useless if employed on
data outside its training distribution. Finally, the annotation
of new data is an expensive and time-consuming process.
Moreover, a network performing decently on new data, even
if the results are not perfect, can potentially speed up the
annotation process.

In this paper, we study the consequences of input distribu-
tion changes on networks and propose an approach to alleviate
these effects. First, we compare how methods exploiting both
sensors and methods using only 3D point clouds react to
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variations in resolution. Our study revolves around a network
inspired by PointPillars [15] and MVX-Net [11]. However, the
main contribution concerns the way the network is trained. We
propose a simple augmentation procedure in order to increase
the variability of inputs seen in the training stage and then
to make networks more robust to point cloud reduction. We
have also developed a new representation for the obstacles
and its corresponding loss function. Each target is represented
by a Gaussian function. This loss function focuses on the
occupation of the obstacle instead of regressing parameters
which can only be accurately estimated if sufficient data are
available. The performances of our approach are studied across
data from three datasets: the KITTI dataset, the Pandaset
dataset and the nuScenes Mini dataset. The results show that
our approach can help a network to converge better and to
produce accurate detections even if the input point cloud is
extremely sparse.

Fig. 1: The same network is able to process point clouds with
different resolutions. The missing detections on the sparse case
come from the lack of 3D points.

In this paper, we propose the following contributions:
• An extensive bibliographical study of the state-of-the-art

methods for 3D object detection in Section II. According
to the type of data used (images, 3D LiDAR points or
both), a summary of published networks is presented and
discussed;

• A new training procedure to increase the variability of
the inputs during the training stage;

• A novel way to represent the obstacles as normal distri-
bution is introduced in Section IV-A to use statistical dis-
tances and to study the similarities between a target and
a prediction in terms of occupation instead of regressing
directly the box parameters;

• The evaluation of our approach is conducted on multiple
datasets. The behaviors of our approach over inputs never
seen during the training stage are detailed in Section VII.

II. RELATED WORK

In this section, some relevant networks aiming at 3D object
detection on point clouds and RGB images are first introduced
and then secondly, methods targeting the management of point
clouds at different resolutions are presented.

A. 3D Object Detection Methods

We split the methods available in the literature into three
groups. The first group includes networks working exclusively
with 3D point clouds. Techniques from the second group only
exploit images. The last group of methods process both types

of data. Table I summarizes these approaches by mentioning
the raw input data used and the main paradigms existing in
the literature. These three groups of 3D detection methods are
analyzed below.

1) 3D Object Detection using 2D Images: Camera-based
3D object detection methods are generally less accurate than
LiDAR-based methods because of the lack of depth informa-
tion in the image. Hence, most of them rely on geometrical
constraints priors. Here, we focus only on monocular camera
methods. In [16], a 3D grid is populated with features from
the input image by projecting voxels on the image using the
camera parameters. The resulting 3D grid is then collapsed on
the vertical axis to reduce the computational cost. The authors
of [19] train an encoder-decoder architecture for depth esti-
mation. The resulting intermediate features (after the encoder,
before the decoder) are then used for 3D object detection.
Monocular 3D Region Proposal Network [17] proposes a two-
branch architecture, where one branch uses regular convolu-
tions across the whole image to estimate global features. The
other splits the image into row blocks then applies kernels,
distinct for each bin. These convolution kernels are called
“depth aware convolutions”. The primary assumption is that
each row block can be associated with a discretized depth
due to perspective projection (for example, lower rows often
represent road and close objects) and then a different operation
for each block is applied. In [18], a 2D object detection method
is followed by a 3D object detection one. However, their loss
function splits the box parameters into groups to simplify the
optimization process.

2) Point Cloud-based Methods: This group only uses the
3D point clouds provided by LiDAR sensors as inputs. Meth-
ods belonging to this group can be split into two subgroups:
grid-based methods and point-based methods.

Grid-based methods. The main idea of grid-based methods
consists in turning the 3D point cloud into structured data to
allow the use of concepts and operators which were success-
fully applied in 2D image processing such as convolutions.
The main drawback is that the precision depends on the
discretization of the grid. Some methods are based on exist-
ing 2D architectures to extract detections from BEV pseudo
images. BirdNet [20] and Complex YOLO [21] are based on
Faster-RCNN [31] and YOLO [32], [33], respectively. Their
corresponding networks are applied on the 3-channel pseudo-
images by concatenating a height map, a reflectance map,
and a density map. VoxelNet [7] was a major milestone.
In their paper, the authors describe an architecture including
encoding voxels features through PointNet-like methods. The
encoded grid is given to 3D dense convolutions and afterwards
to 2D convolutions in order to return the selected prior
boxes and their corrections. However, the use of 3D dense
convolutions on a large 3D grid is slow and computationally
expensive. SECOND [8] rectifies this by applying sparse
convolutions [34] on the grid. PointPillars [15] extends the
concept by using, directly, columns in a 2.5D pseudo image
instead of voxels in a 3D grid in order to speed up the
computation. Voxel-FPN [35], inspired by the Feature Pyramid
Networks [36], uses voxel grids with different resolutions
to encode voxels at different scales. Anchor-free methods,
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TABLE I: Summary of published networks aiming at 3D object detection from point clouds and/or RGB images. An overview
of the state of experimental evaluation of methods useful for autonomous driving.

Reference Raw Input
Data

Raw Data Processing Overview Object Types Dataset(s)
used

OFT [16] RGB Image − Resnet Backbone, projection of 3D voxels on image feature maps, each 3D
assigned with features inside the projection, then Voxelnet-like processing

Cars KITTI

M3D-
RPN [17]

RGB Image − DenseNet Backbone then 2 branches: (1) global feature extraction on the
whole image, (2) local “Depth-Aware” feature extractions. Horizontally
sliced image. Each slice is fed to its own convolution

Car, Pedestrian,
Cyclist

KITTI

MonoDIS [18] RGB Image − ResNet Backbone, 2D and 3D heads, box parameters divided into groups
for better convergence

Car, Pedestrian,
Cyclist

KITTI

CubifAE-
3D [19]

RGB Image − Multiple trainings: (1) depth estimation through encoder-decoder, (2) depth
latent space for 3D detection

Car, Pedestrian,
Cyclist and oth-
ers

KITTI,
nuScenes,
KITTI Virtual
2

BirdNet [20] Point Cloud Discretization into BEV
3-channel image (height,
density, reflectance)

Faster RCNN-like network Car, Pedestrian,
Cyclist

KITTI

Complex-
YOLO [21]

Point Cloud Discretization into BEV
3-channel image (height,
density, reflectance)

YOLO-like network, complex angles for regression Car, Pedestrian,
Cyclist

KITTI

VoxelNet [7] Point Cloud 3D voxelization Learned voxel encoding for each voxel, 3D convolutions to flatten on the
vertical axis then RPN

Car, Pedestrian,
Cyclist

KITTI

SECOND [8] Point Cloud 3D voxelization Learned voxel Encoding, sparse 3D convolution to reduce the computa-
tional burden, RPN

Car, Pedestrian,
Cyclist

KITTI
(nuScenes
thereafter)

PointPillars [15] Point Cloud Column voxelization (no
slices on vertical axis)

Learned voxel encoding, 2D convolutions, RPN Car, Pedestrian,
Cyclist

KITTI,
nuScenes

OHS [22] Point Cloud 3D voxelization, voxels
represented by the mean
content

Objects as sets of hotspots (non-empty voxels belonging to an object),
architecture inspired by SECOND or PointPillars

Car, Pedestrian,
Cyclist and oth-
ers

KITTI,
nuScenes

PointRCNN [3] Point Cloud − Two-stage method: (1) 3D proposal generation through point cloud seg-
mentation, each foreground point generating its own 3D proposal, (2) 3D
box refinement

Car, Pedestrian,
Cyclist

KITTI

Fast Point R-
CNN [4]

Point Cloud 3D voxelization Two-stage method: (1) 3D region proposal through VoxelNet architecture,
(2) pooling on VoxelNets feature maps, fusion with the corresponding
region of point cloud, the augmented point cloud is then processed by a
refinement network

Car, Pedestrian,
Cyclist

KITTI

CenterPoint [23] Point Cloud 3D or column voxelization Objects represented by their center on the classification map, architecture
inspired by VoxelNet & PointPillars

nuScenes
classes

nuScenes

PV-
RCNN [9]

Point Cloud 3D voxelization + furthest
point sampling to extract
keypoints

Two-stage detection: (1) architecture inspired by SECOND for the region
proposal, the 3D feature maps sampled at multi-scales using the computed
keypoints, (2) RoI-Grid Pooling on the keypoints then Refinement Network

Car, Cyclist KITTI

Part-A2

Net [24]
Point Cloud − Two-stage detection: (1) point cloud semantic segmentation, part estima-

tion for positive 3D points then 3D proposals, (2) point cloud pooling then
refinement network to aggregate the estimated parts

Car, Pedestrian,
Cyclist

KITTI

MV3D [25] Point Cloud,
RGB image

Discretization into BEV
3-channel image (height,
density, reflectance) and
Cylindrical projection

Two-stage detector: (1) BEV generates 3D proposals, (2) 3D proposals
are projected on the BEV, the RGB image and on the cylindrical view,
features from the 3 feature maps (each view) are pooled then merged to
refine the boxes

Car KITTI

Frustum
Point-
Net [13]

Point Cloud,
RGB image

− The 2D detector on the image to create 3D frustums, for each result, the
3D points inside a frustum used to estimate the corresponding The 3D
box with an architecture similar to PointNet++

Car, Pedestrian,
Cyclist

KITTI

AVOD [10] Point Cloud,
RGB

Discretization into BEV
3-channel image (height,
density, reflectance)

Two-stage detector: (1) BEV and RGB images merged to generate 3D
proposals (2) 3D proposals are projected on the BEV and the RGB image
feature maps, the corresponding features are pooled then merged to refine
the 3D boxes

Car, Pedestrian,
Cyclist

KITTI

PointFusion [26] Point Cloud,
RGB image

− 2D detector to extract 2D crop and 3D frustum, 2D crop and corresponding
point cloud processed by a ResNet and a PointNet, respectively. Features
merged to estimate a refined 3D box

Car, Pedestrian,
Cyclist

KITTI, SUN-
RGBD

ContFusion [27] Point Cloud,
RGB image

− The 2D feature extraction, feature sampling through continuous convolu-
tion with the point cloud, reprojection of the sampled features on a BEV
then 3D box prediction

Car KITTI,
TOR4D
(private)

IPOD [28] Point Cloud,
RGB image

2D Semantic Segmentation 3 parts: (1) using the 2D segmentation, all the 3D background points are
discarded and proposals are generated from the remaining points, (2) a
backbone network extracts local and global features from the whole point
cloud, (3) the features are extracted from the proposals and used in a
refinement network

Car, Pedestrian,
Cyclist

KITTI

Frustum
Con-
vNet [29]

Point Cloud,
RGB image

− The 2D detector on the image to create 3D frustums, for each result, point
cloud part inside the frustum is kept and voxelized along the frustum axis,
convolutions are used along this axis to estimate the 3D box

Car, Pedestrian,
Cyclist

KITTI

PointPainting [12]Point Cloud,
RGB image

2D Semantic Segmentation Point features (3D coordinates, reflectance) concatenated with the score
given by 2D segmentation. Experiments on multiple detectors (PointR-
CNN, PointPillars, etc.)

Car, Pedestrian,
Cyclist

KITTI,
nuScenes

MVX-
Net [11]

Point Cloud,
RGB image

3D voxelization VoxelNet used for the 3D detection and Backbone Faster RCNN for the
2D feature maps, 2 fusion methods tested: (1) 2D features sampled on
point level and merged before voxel encoder, (2) 2D features sampled on
voxel level and merged after voxel encoder

Car KITTI

MMF [30] Point Cloud,
RGB image

3D voxelization Two-stage detector: (1) RGB image processed to generate intermediate
feature maps and a depth map. Maps are merged with LiDAR features to
generate 3D proposals. (2) LiDAR and RGB feature maps are pooled and
merged to refine the estimated boxes

Car (main) KITTI,
TOR4D
(private)
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assimilating object detection to keypoint detection [37], [38]
have also been transposed to 3D object detection [22], [23].
The main goal of these methods is not to change the input
data representation but the output format, as detections are no
more related to prior boxes.

Point-based methods. Point-based methods aim to deal
with raw point clouds at some stage directly, in contrast to
the grid-based approach. This paradigm can be applied for the
whole method or jointly with grid representations. Moreover,
most of these methods are two-stage detectors. PointRCNN [3]
adopts a two-stage approach: A first stage generates pro-
posals from foreground point segmentation followed by the
refinement of the proposals to estimate targeted boxes. Fast
PointRCNN [4] and PV-RCNN [9] employ a VoxelNet-like to
generate proposals processed by PointNet-like networks. Part-
A2 [24] initially estimates object parts (top left, bottom right,
etc.) from point cloud to improve the 3D box refinement stage.

3) 3D Object Detection using Multi-Sensor Fusion: This
section focuses on camera-LiDAR data fusion to localize
surrounding objects, in contrary to the previously mentioned
methods that exploit only one sensor. These methods can be
divided into two subgroups. The first makes use of both sensor
data within the same system. The second uses outputs from
existing and pre-trained 2D methods as priors or inputs for
methods that focus on point clouds. These are introduced in
the following paragraphs.

Parallel flows. These methods generally use images as a
second input to exploit the complementary nature of data.
MV3D [25] and AVOD [10] are methods that simultaneously
process images and point clouds to extract intermediate pro-
posal. MV3D [25] generates 3D proposals from a LiDAR
scan and then projects them onto the LiDAR BEV. Features
inside the projection of each modality are extracted through
ROI pooling and merged to estimate final boxes. AVOD [10]
extends the idea by projecting all pre-built prior boxes on high-
resolution feature maps from LiDAR BEV and RGB images.
MVX-Net [11] adds pooled features from RGB feature maps
to voxels used in VoxelNet. The method described in [27] takes
advantage of leveraging continuous convolutions to merge fea-
ture maps from each sensor. The authors of [30] improve this
architecture by adding related tasks such as ground estimation
and depth completion to boost the 3D refinement subnetwork.

Sequential streams. The methods introduced in this para-
graph operate sequentially and are 2D-driven. These pro-
cesses exploit results from RGB processing as filters on the
point cloud, contrary to the previously mentioned techniques.
Frustum PointNet [13], Frustum Convnets [29] and PointFu-
sion [26] exploit results from a 2D detector to extract points
that fall inside each detection and then reduce the search
space for each object. The frustums are then processed to
precisely localize objects. IPOD [28] removes the background
3D points by exploiting a segmentation map from RGB camera
images. Each foreground point is used as a location for prior
boxes and then processed afterwards. In [12], the authors show
the improvement of performances on several LiDAR-based
detectors only by integrating the semantic information from
a segmentation map in the input.

B. Point Cloud-based Resolution-Agnostic Deep Learning

To the best of our knowledge, domain adaptation has
become an active research field on images. However, less re-
search has been conducted on domain adaptation or portability
on 3D point clouds, especially in an outdoor sensor data.
As shown in [39], each 3D LiDAR sensor has its own set
of characteristics corresponding to a range, point distribution,
data coherency on disturbed conditions,etc. The authors of [40]
perform an in-depth analysis of the performance of their
architecture for semantic segmentation of point clouds from a
32-channel and a 128-channel LiDAR. 3D Domain Adaptation
is studied and analyzed on 3D CAD (Computer-Aided Design)
object datasets such as ModelNet [41]. Studies on outdoor
scenes are less usual and most of them target the semantic
segmentation of point clouds. In [42], a shared representation
is learned in a self-supervised fashion through the recon-
struction of deformed 3D point clouds. With PointDAN [43],
an architecture is designed to learn cross domain local and
global features to align objects from two distinct distributions.
Some methods such as [44] have recourse to Generative
Adversarial Networks to close the gap between synthetic data
and real-world data. In [45], the authors propose a point cloud
completion method by assimilating the task of reconstructing
the underlying surface. A semantic segmentation network is
then trained from the reconstructed surface that serves as the
new canonical domain. Our method does not directly aim at
the LiDAR domain adaptation. Instead, we aim at enforcing
some aspects of the network in the training phase in order to
make it more resilient to variations in point cloud resolution.

III. OBJECT DETECTION NETWORK INDEPENDENT OF
POINT CLOUD RESOLUTION

In this paper, we propose an end-to-end trainable method
for 3D object detection. The network takes point clouds and
images as inputs.

A. LiDAR Data Preprocessing

This section lists the set of operations applied on the 3D
LiDAR point cloud.

A 3D point cloud is defined as a set P =
{[xi,yi,zi]

T ∈ R3}i∈1...N with [xi,yi,zi]
T the location of

the i-th point in the 3D space. The common frame is defined
with x-axis oriented forward, the y-axis leftward and the
z-axis upward.

The input point cloud is discretized according to the method
described in [15]: The point cloud is turned into column voxels
with no vertical discretization compared to a 3D voxel grid that
slices the point cloud over the three dimensions. This way,
a BEV pseudo-image can be generated where each non-zero
pixel is assigned to a non-empty voxel. The terms “pixel” and
“voxel” are used interchangeably when referred to the BEV
image: One column voxel (volume) is linked to only one cell
of the BEV map.

Each voxel has two data representations: A version contain-
ing the 3D points, name 3D voxel, and a version containing
only the projections of these points on the image plane, named
RGB voxel.
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The search space is restricted to the interval [xmin,xmax] (in
meters) on the x axis and [ymin,ymax] (in meters) on the y axis.
This point cloud is discretized into a maximum of nin

x × nin
y

voxels over the two dimensions.

B. Network Architecture

Figure 2 describes the global structure of the system. The
RGB image is turned into a feature map which is sampled
using the projections of the 3D points on the image plane. The
3D points and the extracted features are then concatenated.
The resulting voxels are then processed by a PointPillars
architecture [15]. The approach looks like the one described
in [12] except the extracted features are not gathered from
a semantic segmentation output. Moreover, in opposition with
MVXNet whose image network is a pre-trained Faster-RCNN,
we train our network from the beginning.

Fig. 2: Overview of the proposed network architecture.

a) Image Network: This network, processing input
RGB images to produce feature maps to sample, has
its architecture detailed in Figure 3. In this paragraph,

Fig. 3: Architecture of the image network.

Conv2D(cin, cout , k, s, p) refers to a 2D convolution operator
where cin, cout refers to the number of input and output
channels, k the kernel size, s the stride, p the padding.
Likewise, MaxPool(k, s, p) denotes a Max Pooling operator.
Blocks named “Up2” represent an up-sampling with a factor
2, respectively. Linear(cin, cout ) represents a linear layer where
cin, cout gives the number of input and output channels. The
block named “Base” used in the Image Feature Extractor’s
Core is composed of a Conv2D(3, 64, 7, 2, 3) (for the 3
RGB channels), a batch normalization, a ReLU activation
and a MaxPooling(3,2,1). Block labeled Resi comes from a
ResNet18 architecture [46]. As input images size may vary

with the dataset, we chose a ResNet18 as a basis because of
it small size and its small computation charge.

b) Sampling: The image use is heavily inspired by
the PointFusion method described in [11]. The feature map
computed by is then sampled through the projections contained
in each RGB voxel.

c) BEV Network: As indicated, the network processing
the voxels is a PointPillars network [15]. Each voxel, con-
taining 3D points and their corresponding RGB features, are
first processed by a Voxel Feature Encoder (VFE) in order to
represent its content as a vector. All these vectors are scattered
across a BEV pseudo-image which is then fed to a Region
Proposal Network (RPN). The network returns 3 outputs: a
classification map, a direction map and a regression map.

C. Network Output
In common datasets, 3D obstacles are represented by a

position [x,y,z]T , dimensions [h,w, l]T and an orientation θ .
The orientation is often restrained to the vertical axis. The set
of parameters is S = {x,y,z,h,w, l,θ}.

We decide to represent each obstacle as a normal distribu-
tion: N (µµµ, ΣΣΣ):

µµµ = [x,y]T ∈ R2, ΣΣΣ =

(
a b
b c

)
∈ R2×2 (1)

with

a =
cos2(θ)

2σ2
w

+
sin2(θ)

2σ2
l

, b =− sin(2θ)

4σ2
w

+
sin(2θ)

4σ2
l

,

c =
sin2(θ)

2σ2
w

+
cos2(θ)

2σ2
l

, σw =
w
3
, σl =

l
3
,

ΣΣΣ being symmetric positive-definite.
We note

F : R7→ R2×R2×2

(x,y,z,h,w, l,θ) 7→ µµµ,ΣΣΣ

the function that turns the parameters S into a multivariate
Gaussian function.

With this expression, an obstacle is defined as a Gaussian
function. This representation focuses on the shape of the
Gaussian function and the space occupied by its related
obstacle. However, it does not provide information about the
target’s orientation. Therefore, ambiguities arise from the fact
that multiple configurations can produce the same Gaussian
function as illustrated in Figure 4.

The network returns three same size maps: A map for
classification, a map for regression of boxes’ parameters S, and
one for orientation disambiguation. An anchor-free approach
inspired from [37] is used here to represent the object where
each predicted object is described by its center. This method is
contrary to many approaches defining prior boxes with various
sizes and orientations located in fixed positions. Indeed, an
anchor-based method requires a set of hyperparameters specif-
ically tuned to work correctly (size of anchors, Intersection
of Union (IoU) threshold to define a positive anchor, etc.).
Anchor-free method removes this constraint, allowing to re-
duce the number of critical parameters that may significantly
affect the training process.
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(a) w = wre f ,
l = lre f ,θ = θre f

(b) w = wre f ,
l = lre f ,θ = θre f −π

(c) w = lre f ,
l =wre f ,θ = θre f +

π

2

(d) w = lre f ,
l =wre f ,θ = θre f − π

2

Fig. 4: Parameter sets producing the same Gaussian function,
wre f , lre f ,θre f are the reference values.

IV. IMPLEMENTATION DETAILS

A. Training

1) Ground Truth Formatting: Each ground truth object i is
defined by a class and its box parameters [xi,yi,zi,hi,wi, li,θi]

T

with its position [xi,yi,zi]
T , its dimensions [hi,wi, li]

T and its
orientation θi.

Ground truth maps are arranged using a process described
in [37]. Each label is represented by a Gaussian function,
whose mean is the center of the object. A voxel is named
positive if its ground truth value is 1 (the center of the object
belongs to this voxel). One label is then assigned to one voxel
in the classification map.

The regression map is composed of 7 channels, one for
each box parameter. Let us denote ∆x the first channel, ∆y the
second one and so on, see (2). Voxels are defined according
to a static grid with a fixed position and each voxel on the
classification map represents a portion on the metric space. For
the ground truth object i, its associated voxel, whose center
is located at (x̃i, ỹi) of the metric space and at (u,v) on the
regression map, the corresponding target for the regression is
defined as:

∆x = x̃i− xi, ∆y = ỹi− yi, ∆z = zi, ∆h = hi,

∆w = wi, ∆l = li, ∆θ = θi
(2)

The orientation map is a four-channel image, each channel
representing one of the four quadrants defined in Figure 5.
This map is defined to select the correct case from the ones
defined in Figure 4.

Fig. 5: The four quadrants of the orientation map.

2) Loss Functions: A multitask-loss is used:

L = γclsLcls + γregLreg + γoriLori (3)

with Lcls, Lreg, Lori the losses related to scene classification,
parameter regression, orientation ambiguities removal. γcls,
γreg, γori are their respective weights.

a) Scene Classification: Lcls is a mean of focal losses
applied on each pixel of the classification map.

b) Regression: The following computations occur only
on the locations of positive voxels. Then, we suppose the
box parameters extracted from the corresponding prediction
and target maps. The box parameters are split into two sets,
Sc = {x,y,z,h} and Samb = {w, l,θ}, Samb is related to rotation
ambiguities.

The obstacles can be defined as probability laws, therefore
the definition of a statistical distance between a target obstacle
and a predicted obstacle is possible. In our case, we decided
to use the Bhattacharyya distance. If P, Q are two multivariate
Gaussian functions P = N (µµµP,ΣΣΣP),Q = N (µµµQ,ΣΣΣQ), the
Bhattacharyya distance is expressed as:

DB(P,Q)=
1
8
(µµµP−µµµQ)

T
ΣΣΣ
−1(µµµP−µµµQ)+

1
2

ln
detΣΣΣ√

detΣΣΣP detΣΣΣQ
.

(4)
The regression loss is then defined as:

Lreg =
1

Npos
∑
pos

SL1(Sc, Ŝc)+DB(F(Sc, Ŝamb),F(Sc,Samb)) (5)

with pos the locations of the positive voxels, Npos the num-
ber of positive voxels, SL1 the Smooth L1 loss, S∗ and Ŝ∗
respectively the targets and the predictions.

c) Orientation disambiguation: Lori is a focal loss ap-
plied on the positive pixel locations of the estimated and the
ground truth orientation maps.

3) Data Augmentation: In the field of autonomous driving,
the most common LiDAR sensors used are rotating mechanical
sensors, delivering 3D points from one emission location in
a layered manner. Points from the same layer share the same
latitude in a spherical frame centered on the sensor. For each
sample, some layers are randomly discarded as illustrated in
Figure 6. During the training, they are randomly discarded
until between 25% and 60% in each point cloud.

(a) Initial point cloud (b) Point cloud after layer reduc-
tion

Fig. 6: Illustration of randomized layer removal (b). (a) Initial
point cloud. On the top images, the point cloud projections are
displayed. Colors represent distance from the LiDAR sensor.

V. EXPERIMENTAL PROTOCOL

We describe here the conducted experiments and how they
are evaluated across the datasets.

A. Description of Datasets
In this study, the experiments are conducted on three

datasets: The KITTI dataset, the nuScenes dataset and the



7

Pandaset dataset. Table II sums up some features of the studied
datasets.

a) KITTI: The embedded sensors include a 64-channel
LiDAR (Velodyne HDL-64E) on the top of the vehicle and two
front color cameras. In this study, only the subset dedicated
to 3D object detection is used. This dataset contains 7481
annotated training samples and 7518 testing samples. The 7481
train samples are commonly split into a train group of 3712
samples and a validation group of 3769 samples. Each sample
consists of a panoramic 3D point cloud. The RGB images from
each camera are synchronized. The calibration parameters are
provided. The annotations are only defined in the camera’s
field of view.

b) Pandaset: Pandaset [47] contains scenes recorded on
San Francisco and El Camino Real. The robotic vehicle is
equipped with six cameras, one spinning 64-channel LiDAR
and one front solid-state LiDAR. In this study, we focus on
the spinning LiDAR Hesai Pandar64.

c) nuScenes Mini: nuScenes [48] is a dataset that pro-
vides data recorded through Boston and Singapore on 360◦

thanks to one 32-channel LiDAR and six cameras. One speci-
ficity of this dataset is that it encourages the accumulation
of point clouds over multiple frames (called sweeps) to get
a denser cloud. If the timestamps are taken into account, the
estimation of the velocity of the targets is possible. For our
experiments, we aim at detecting on synchronized point cloud
and RGB image. Thus, the intermediate sweeps are not used.
For the current experiments, we focus on the “Mini” subset
containing 10 sequences.

B. Comparison Methodology

Each annotated dataset contains biases. Thus, for the same
tasks, the required criteria may greatly vary among the
datasets. In the following paragraphs, we detail our choices in
order to compare the results on different datasets with the same
setup. KITTI training split is used for training our experiments.
Hence, we modify point clouds of testing point clouds sets to
fit into the training conditions of the network. The x-axis is
oriented forward, the y-axis leftward and the z-axis upward.
All datasets have at least a 360◦ mechanical LiDAR and at
least one front camera. However, due to restrictions in the
KITTI dataset, we only exploit the section of the point cloud
inside the frustum of the front camera. Hence, this restriction is
also applied on validation data. Moreover, the experiments are
trained for a specific range. Consequently, all validation point
cloud are cropped to fit into this range. Each dataset defines
its class names and, for each similar category, the targets may
greatly differ. For example, the “Car” class may include large
personal vehicles such as SUVs and Vans in one dataset. In
another dataset, the same “Car” class may only include small
vehicles and two other classes for the SUVs and the Vans
might be specifically created. For these experiments, we tried
to establish correspondences of class names that represent the
same entities in the different datasets. Each dataset defines
its own obstacle representation for obstacles. For example
on nuScenes, the orientation of annotations are defined as
quaternions, allowing the rotation on the three axes. On KITTI
however, the road is supposed horizontal, thus the orientation

is defined as a scalar representing the rotation angle around the
vertical axis. Some datasets also define attributes to describe
the temporary states of the targets. For example, the dynamic
status of a vehicle can be described as “Moving”, “Stopped”
or “Parked”. For this study, each obstacle is defined according
to the KITTI standards: Semantic class, position, dimensions
and rotation around the vertical axis. Moreover, for nuScenes
and Pandaset, we check if an annotation includes at least 5
points. If not, the annotation is discarded. All datasets use the
Average Precision (AP) as a performance metric. However,
depending on the method, criteria to separate true detections
from errors may differ. For example, the nuScenes compute the
AP using distances between the center of the targets and the
proposals. In this study, we keep the process used in KITTI:
An IoU-based AP computation. For the KITTI validation
split, we consider the difficulty-based clustering introduced
by the dataset. Moreover, the IoU threshold is fixed at 0.7.
However, for Pandaset and nuScenes, all labels are considered
as belonging to the same group. Easy and hard cases are
grouped under the same value. In fact, KITTI difficulties are
defined according to parameters on the image plane that are
not explicitly defined on the other datasets. Moreover, for
Pandaset and nuScenes, we also display the AP with an IoU
threshold at 0.5. The reason is that each dataset has its own
biases, especially on the box fitting. A high threshold would
have supposed that the annotators on different bases have the
same sensibility about data extrapolation and box fitting. We
focus our study on BEV detection. In fact, this work also
concerns the impact of low-resolution point clouds for the
evaluation. Ground and car tops may not be defined enough
to estimate features related to the vertical axis (height and
altitude). However, the main goal remains the object detection
on data recorded on unknown environments with different
LiDAR sensors. Depending on the equipped sensors and the
choices of the annotators, the maximum labeling range varies
greatly among datasets. nuScenes limits its annotations to 50 m
for cars while Pandaset can provide labels beyond 100 m.
However, our networks are trained to work until 80 m. Thus,
for a shorter range (nuScenes), the point cloud is used as if
it reaches 80 m but the outputs beyond the labeling range are
discarded. For a longer range, the input point cloud is cropped
to fit into the 80 m along the x axis.

C. Conducted Experiments

In order to evaluate the contributions of the presented
techniques, we conduct different experiments, each one with
a different configuration.

The input range is set to [xmin,xmax] × [ymin,ymax] =
[0.0,70.4]× [35.2,35.2]. The base surface of each voxel (on the
xy plane) measures 0.22×0.22 m2, leading to a voxel grid with
320× 320 cells. (γcls,γreg,γori) are defined as (2.0,1.0,0.2).
For the focal loss, (α,β ) is defined as (2,4). These values
come from an improved implementation of [8]. All models, CL
and L, are trained for 100 epochs using an Adam optimizer and
a one-cycle learning rate scheduler with a maximum learning
rate set to 0.001. About the common data augmentation
techniques applied, the point cloud is first randomly mirrored
along the y axis. We then perform random global translations,
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TABLE II: Datasets used for experimental evaluation.

Name Number of scenes Weather conditions Image size LiDAR

KITTI 7481 (Train) Sunny Variable (about 1242×375) Velodyne HDL-64E
nuScenes Mini 404 (10 sequences) Sunny, Night, Cloudy 1600×900 Reference not provided

(32 layers)
Pandaset 8240 (103 sequences) Sunny, Rainy, Night 1920×1080 Hesai Pandar64

rotations and scalings on the point clouds and the annotations.
On camera-LiDAR methods, all images in the dataset do not
have the same sizes. Hence, to allow batch processing, each
image is randomly cropped, so the result has 1024× 256
pixels. Moreover, noise is added to images and parameters
such as saturation and value are altered.

All the experiments are trained on the train split of the
KITTI dataset. Each experiment is identified with a name
whose structure is defined as Sensor-TrainNumLayers-Loss.
The part Sensor can take the values L for LiDAR or CL for
Camera + LiDAR. TrainNumLayers qualifies the number of
layers in point cloud used for the training phase, 64/8 when
the number of layers is fixed, Var when the randomized layer
reduction is applied. Loss refers to the loss used, Std for
the loss described in [15], G for the loss function described
in IV-A2. For example, L-Var-G refers to the experiment
using 3D point clouds, layer reduction to generate randomized
distribution and the statistical loss. Note that all experiments,
including CL-experiments are trained from scratch. The RGB
parts do not come from pre-trained networks. Consequently,
both RGB and BEV parts are trained as a single network.

In order to get a reference, we also evaluate the perfor-
mances of a pre-trained PointPillars network with its original
parameters (anchor-based, 0.16× 0.16 m2 voxels, . . . ) and a
pre-trained PV-RCNN [9].

VI. EXPERIMENTS ON KITTI DATASET

In this section, we introduce the experiments conducted
on the KITTI dataset [49]. Results of all experiments on
the validation split are displayed in Table III. We detail the
different observations in the following paragraphs.

The CL-experiments run at 35 ms and the L-experiments run
at 20 ms on a computer equipped with a GPU NVidia 1080Ti
and a CPU Intel Core i7−7700K.

A. Differences between Camera-LiDAR Methods and LiDAR
Networks

On 64 layer point clouds and for the same number of
epochs, better performances are observed on networks using
only point clouds in comparison with networks exploiting both
sensors.

First, all networks are trained with the same hyperparame-
ters. Hence, under the same conditions, CL-networks, which
contain more parameters due to the image subnetwork, are
more difficult to train. Moreover, in opposition with 3D point
clouds which are produced by an active sensor and contain
only geometric information, images tend to be denser and
more sensitive to photometric phenomena and camera artifacts.

When trained on low resolution point clouds, experiments
(#5 CL-8-Std, #6 CL-8-G) perform better than their L-
counterparts (#11 L-8-Std, #12 L-8-G) on high resolution data.
The same observation is visible when the CL-networks are
trained on 64-layer point clouds and applied on 8-layer data.
This means that the network does not exclusively focus on
the layout of the 3D points but also exploit the features
extracted from the RGB image. Experiments (#11 L-8-Std,
#12 L-8-G) only deal with extremely sparse point clouds that
depict surfaces with low resolution. Hence, networks focus on
optimizing this difficult train set and then are more prone to
overfitting.

B. Influence of Layer Reduction

We first analyze the effects of the layer reduction on
CL-experiments with standard loss (experiments #1 CL-64-
Std, #3 CL-Var-Std and #5 CL-8-Std). On 64-layer point
clouds, the layer reduction seems to have few impact on the
experiments. In fact, both image features and detailed point
cloud are useful for target identification. However, on 8-layer
point clouds, experiment #1 CL-64-Std returns lower scores
as no examples of such type were seen during the training
stage. Experiment #5 CL-8-Std is highly specialized on low-
resolution point clouds. The randomized layer removal helped
experiment #3 CL-Var-Std to get the best trade-off.

Concerning the L-experiments, we focus on experi-
ments #7 L-64-Std, #9 L-Var-Std and #11 L-8-Std. On 64-
layer point clouds, we notice an improvement between experi-
ments #7 L-64-Std and #9 L-Var-Std. The layer removal helped
the network to learn a better representation of the targets as
more diverse examples were associated to the same goal. Once
again, this operation also helped to improve the outputs on
low-resolution point clouds without specializing the network
on the latter point cloud distribution.

These experiments show that random layer removal can be
an easy way to improve the performances of a detector on low-
resolution point cloud with minor loss (LiDAR methods) or
even improvement (fusion methods) on high-resolution data.

C. Influence of Gaussian Representation

We focus now on the effects of the use of a statistical
distance as a loss. On almost all cases, we observe a slight
degradation of the results comparing to the experiments using
Smooth-L1 losses.

Figure 7 shows the profiles of the Bhattacharyya loss DB
(Eq. 4) for variations according w, l and θ . In Figure 7a,
all the parameters are fixed except θ . The curve looks like
the sine function with global minima at kπ,k ∈ Z, allowing
multiple solutions. The main difference with the sine function
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TABLE III: Evaluation of all experiments for BEV detection on the KITTI validation set, nuScenes Mini and Pandaset datasets,
64 layers and evenly spaced 8 layers. All the results are computed with Average Precision (%). The last number in dataset
identifier indicates the IoU threshold used for computing the scores.

Exp. ID KITTI 64 layers 0.7 KITTI 8 layers 0.7 nuScenes 0.5 Pandaset 0.5 Mean
Easy Moderate Hard Easy Moderate Hard Datasets

#1 CL-64-Std 75.02 59.22 54.71 41.81 29.48 27.29 9.09 11.26 29.04
#2 CL-64-G 72.07 53.10 53.31 42.11 29.59 27.47 9.09 15.31 29.23
#3 CL-Var-Std 77.46 58.49 54.50 61.57 40.46 38.83 15.65 14.39 35.11
#4 CL-Var-G 70.18 51.90 52.55 57.14 38.61 36.34 16.61 7.41 31.56
#5 CL-8-Std 71.55 58.72 54.57 65.30 46.96 41.10 16.26 4.73 33.43
#6 CL-8-G 65.55 48.19 47.92 64.34 45.12 40.06 16.35 9.09 32.29

#7 L-64-Std 85.35 75.16 71.13 27.55 20.95 18.21 37.69 49.35 46.62
#8 L-64-G 84.93 75.02 71.59 27.21 18.99 16.62 50.12 52.63 50.21
#9 L-Var-Std 86.46 75.69 74.43 58.61 40.34 35.81 47.86 49.00 55.16
#10 L-Var-G 85.90 75.45 72.30 58.16 40.56 35.48 66.91 52.26 60.44
#11 L-8-Std 48.54 44.18 44.53 67.65 48.26 43.62 55.04 16.82 42.69
#12 L-8-G 43.85 42.18 41.95 66.32 47.18 42.83 44.43 11.58 37.69

PointPillars [15] 89.65 87.17 84.37 46.99 32.34 27.85 29.38 30.47 45.66
PV-RCNN [9] 90.26 88.04 87.39 40.02 28.66 26.48 32.96 39.73 48.24

concerns the impact of the target’s dimensions. We tested DB
for different target lengths. The closer to 1 the ratio l

w is,
the less the occupancy of the target changes if rotated, and
less the error on θ affects the loss. Thus, this loss function
acts as a weight on targets as it focuses on an angular error
from more elongated targets. The loss function has one global
minima and the function is convex. We note that the loss value
is greater if the prediction is smaller than the target. However,
the values returned by the loss tend to be much lower than the
ones returned by a Smooth-L1 loss, leading to a more difficult
convergence on the dimensions as shown in Figure 7b.

D. Conclusion

The effects of our training procedures are studied over data
from the KITTI validation split. The layer reduction allows
improving the performances of a network in various cases
easily without any priors. However, while the point cloud
distribution varied, the scene remains the same, which does
not indicate if the network can be applied on other places
and with other sensors. On the KITTI dataset, the Gaussian
representation seems to degrade the network as it is less
precise than the Smooth-L1. However, its benefits are more
visible on out-of-distribution data.

VII. EXPERIMENTS WITH OTHER DATASETS

Until now, we have only generated situations where the
point clouds vary but the environments and the annotation
biases stay the same. In this section, we experiment with our
trained networks on nuScenes Mini and Pandaset. By testing
on other datasets, we can evaluate how our complete network
reacts to stimuli of different environments and capture setups.
Table III provides the values computed on the nuScenes and
Pandaset datasets.

A. Common Analyzes

The main observation is that methods exploiting RGB
images perform poorly in all cases. Networks using only point
clouds tend to resist better to these changes. In fact, only

(a) DB(θ) for different object sizes
with θgt =

π

4

(b) DB(l) with lgt = 4m

Fig. 7: Variations of DB as a function of a single parameter,
the others being fixed at ground truth.

bare geometrical information is available on 3D point clouds.
Targets are often recognizable by their shape. Additional data
such as RGB information that could be affected by external
phenomena are integrated by the network during the training
stage. When training on KITTI without constraints on images
features, the networks implicitly learn the specificities of the
camera (noise artifacts, dynamic range, deformations. . . ) but
also what characterize the scenes. This could be lighting (e.g.
twilight and night scenes missing in KITTI), the different
urban infrastructures or even the car models available in
restricted geographic regions. Hence, changing the image do-
main has an important impact on methods using both sensors.

B. Analyzes on nuScenes Mini

As expected, the performances drop significantly on the
new dataset. The labels are originally designed for point
cloud accumulation. Thus, detection on a single scan is more
difficult. Furthermore, the results on experiments #8 L-64-G
and #10 L-Var-G are now better on this dataset than they were
before on the KITTI dataset and surpass their counterparts
(experiments #7 L-64-Std and #9 L-Var-Std, respectively).
For out-of-distribution data, the new loss function helped
the network to acquire a more flexible (but less precise)
representation of a car, allowing a better knowledge transfer
on unknown data.
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Figure 8 illustrates qualitative results for experiment #10 L-
Var-G on the nuScenes dataset. We can observe the contrast
between the scene captured by the camera and the sparsity of
one point cloud.

C. Analyzes on Pandaset

We observe the same general dynamics on the unaltered
point clouds as during the comparison on the KITTI validation
set. Despite the similar number of points available on both
point clouds, AP values are much lower on Pandaset than on
KITTI dataset. First, even if the KITTI train and validation
splits are distinct, all samples come from the same sequences,
inducing an important bias. Moreover, compared to KITTI,
the density of labels is higher on Pandaset data. Among the
labels, many of them are located outside the roadway, in
a mall parking lot for example. Another reason related to
possibly missed obstacles concerns the intra class variability.
Depending on the city, the distribution of car models may
vary considerably. On the recorded scenes, we observe vehicle
models that do not exist in the KITTI dataset (recorded
in Germany). Thus, the network tends to return the same
parameters as it only observe a small part of the spectrum
of vehicle models during the training phase.

Figure 9 presents qualitative results obtained for experi-
ment #10 L-Var-G on Pandaset data. We observe that the
network provides relevant BEV detections despite the context
difference. Even if the number of targets is large in the scene,
the network is still able to extract most of the obstacles.

VIII. CONCLUSION

In this paper, we study how 3D object detection networks
react over datasets and point cloud distributions. We propose
an approach to improve performances over unknown data
without supplementary knowledge. The approach rests on two
points. The first one consists in randomly discarding point
cloud layers during the training. This technique allows to
enforce the network to not overfit a 3D point distribution. The
second one is a new obstacle representation. Each obstacle
is represented by a Gaussian function, allowing the use of
statistical distances as loss functions. Despite not being a
domain adaptation method, our approach, exclusively trained
on a subset of the KITTI dataset, provides accurate outputs
on data from nuScenes and Pandaset datasets that were never
revealed at the training stage. The work presented in this paper
focuses on car detection. In future work, it would be needed to
study how the method and the loss function act in multi-class
detection. When working on low-resolution point clouds, it is
hard to estimate the features of a target with complete exacti-
tude. Finally, it would be interesting to investigate uncertainty
estimation for object detection, especially for a critical field
such as autonomous driving.
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and S. Roth, Eds. Cham: Springer Intl. Publishing, 2019, pp. 197–209.

[22] Q. Chen, L. Sun, Z. Wang, K. Jia, and A. Yuille, “Object as Hotspots:
An Anchor-Free 3D Object Detection Approach via Firing of Hotspots,”
arXiv preprint arXiv:1912.12791, 2019.
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