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ECM AND THE ELLIOTT-HALBERSTAM CONJECTURE FOR

QUADRATIC FIELDS

RAZVAN BARBULESCU

Abstract. The complexity of the elliptic curve method of factorization (ECM) is proven
under the celebrated conjecture of existence of smooth numbers in short intervals. In this work
we tackle a different version of ECM which is actually much more studied and implemented,
especially because it allows us to use ECM-friendly curves. In the case of curves with complex
multiplication (CM) we replace the heuristics by rigorous results conditional to the Elliott-
Halberstam (EH) conjecture. The proven results mirror recent theorems concerning the number
of primes p such that p − 1 is smooth. To each CM elliptic curve we associate a value which
measures how ECM-friendly it is. In the general case we explore consequences of a statement
which translated EH in the case of elliptic curves.

1. Introduction

Many heuristics in number theory, especially in cryptography, assert that the proportion
of primes (respectively smooth numbers) in an interval is unchanged when we restrict to a
particular set of integers which is of interest. To be more precise, let Π(x) be the set of primes
less than x and, for a parameter y, let Ψ(x, y) be the set of integers in [1, x] which are y-smooth
(or friable), i.e. such that all the prime factors are less than y. Then one studies if, for a set
A ⊂ N, the proportions |A

⋂
Π(x)|/|A

⋂
[1, x]| ( resp. |A

⋂
Ψ(x, y)|/|A

⋂
[1, x]|) is equivalent

to the proportion |Π(x)|/x (resp. |Ψ(x, y)|/x uniformly on y). The most celebrated example
is the precise version of the twin primes conjecture due to Hardy and Littlewood. Two other
problems concern

P1: the smoothness of Aa = {p+a : p prime}, for a constant a; see [Wan18] and [LWX20] for
the newest results, both of them are conditional on the Elliott-Halberstam conjecture;

P2: the primality of AE = {|E(Fp)| : p prime , p - ∆(E)} where E is an elliptic curve with
rational coefficients and E(Fp) is the reduction of E modulo p; see [Zyw11] for a review
of the literature.

In this work we address a series of questions related to

P3: the smoothness of the set AE above.

We call

ψE(x, y) = |{p prime : |E(Fp)| is y-smooth}|.(1)

The main result of this work, Theorem 2, is a generalization of a theorem of Wu, Liu and
Xi [LWX20], who studied problem P1, and it is conditional under the celebrated conjecture of
Elliott and Halberstam (EH).

Conjecture 1 (parametric EH, [LWX20],[Pol16]1). Let δ(x) be a decreasing function such that

(log2 x)/(η log x) ≤ δ(x) < η (x ≥ x0(η)),(2)

for any η ∈ (0, 1/2]
Let K be either Q or an imaginary quadratic field of class number one. For all q ∈ K we set

‖ q ‖ = |OK/q| the algebraic norm and ϕ(q) = |(OK/q)∗| the Euler function. Let us consider

ΠK(x; c, a) = {p ∈ OK , prime, ‖ p ‖ ≤ x, p ≡ a (mod c)}.

1Pollack stated the conjecture only in the case of constant δ
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Then for any fixed a ∈ OK , a 6= 0 and A > 0 we have∑
q ∈ K

‖ q ‖ ≤ x1−δ(x)

(q, a) = 1

∣∣∣∣πK(x; q, a)− π(x)

ϕ(q)

∣∣∣∣�A
x

(log x)A
,

uniformly for x ≥ x0.

The original EH conjecture was stated for K = Q and constant δ, and it is a strenghtening of
the Vinogradov-Bombieri (BV) theorem. Huxley [Hux71] proved a number field variant of the
BV theorem, so it was natural to make a number field EH conjecture which states Huxley’s result
for the same bound on q as in the original EH conjecture. Pollack [Pol16] wrote the statement
of the conjecture in the case of imaginary quadratic fields of class number one. Finally, Liu et
al. [LWX20] extended EH by replacing δ with a decreasing function. In this work we use the
number field EH. If we content ourselves with non-uniform results we can restrict to EH, but
if we desire uniform results we need a new variant of EH which combines the number field EH
(see [Pol16]) with the parametric EH (see [LWX20]).

The technical conditions on δ have an interesting story : Halberstam formulated the con-
jecture for constant δ, H. L. Montgomery suggested that one could take δ(x) → 0 and finally
Friedlander and Granville [FG92] showed that the conjecture fails if δ is less than a certain
function of x. Our arguments show that the version of the conjecture with constant δ implies
results with constant (log x)/(log y). However for the cryptographic motivation explained in
Section 2 we are interested in uniform results in x and y which allow to conduct numerical
experiments and vary the two parameters independently.

Theorem 2. Assume Conjecture 1 and set δ(x) = (log3 x)/(log2 x), which satisfies the condi-
tions of Equation 2. Let E be a elliptic curve with complex multiplication (CM) defined over Q.
Set

H =

{
(x, y) ∈ R2

+ : x
log3 x
log2 x ≤ y ≤ x

}
.

For any y ∈ [1, x] we set u = log x
log y . Then there exists a constant α(E) such that, as x→∞, we

have the asymptotic development

ψE(x, y)

ψE(x,∞)
=

ψ(xeα(E), y)

ψ(xeα(E),∞)

(
1 +O

(
log(u+ 1)2

(log y)2

))
,

uniformly for (x, y) ∈ H, where α(E) is a constant.

This is a rigorous basis for a notion which is used in cryptography. Indeed, when changing
the value of α(E) one obtains an error term which is larger than O((log(u+ 1))2/(log y)2).

Corollary 3. If E1 and E2 are two elliptic curves with α(E1) < α(E2) then, for large enough
x and y, uniformly for (x, y) ∈ H, we have

ψE1(x, y) > ψE2(x, y),

In this case we say that E1 is more ECM-friendly than E2.

The second main question of this article concerns the proportion of smooth integers which
contain at least one prime in a set whose density is known. In this work, the set of primes is one
of the sets in problems P1 and P3. For a set of primes Q and respectively v > 0 a parameter
we set.

ψQ(x, y) = {n ∈ ψ(x, y) : ∀p | n, p ∈ Q}.
Ψv(x, y) = ΨQ(x, y) for Q = {p prime : P−(p− 1) < y1/v}.(3)

Here and in the sequel P−(n) and P+(n) are the smallest and largest prime factors of n.
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Theorem 4. Let K be a number field. Let (x, y, z) be three positive integers such that u := log x
log y

and v := log y
log z are as in the domain

∆ : u ≤ x

log2 x
and v ≤ log2 x

log3 x
.

Then we have

ψv(x, y)/x ≥ ρ(v)ρ(u)(1 + o(1)),

uniformly on ∆.

The second part of the article is heuristic. In one direction, we prove that if one extends
Theorem 4 to a wider domain then one can eliminate the heuristics in an algorithms which uses
ECM as a building block. In a second direction, we prove that a heuristic assumption due to
Pollack [Pol16] implies a statement similar to Theorem 2 for all elliptic curves.

The article is organized as follows. In Section 2 we give the cryptographic motivation and
prove a complexity result under the assumption of a stronger version of Theorem 4. After
the background in Section 3, we prove the main theorem in Section 4. In Section 5 we prove
Theorem 4. In these two sections the results are conditional under the EH conjecture. We then
continue with heuristic results in Section 6 which treats the case of non-CM elliptic curves. In
Section 7 we recognize α(E) as a quantity which is already known in cryptography.

2. Cryptographic motivation

The set AE plays a key role in the elliptic curve method (ECM) of factorization [Len87]. Let
E be an elliptic curve defined over Q and P a point P = (xP : yP : zP ) ∈ E(Q). For an integer
N we set B(N) = bLN (1/2, 1/

√
2)c, where

LN (α, c) = exp
(
c(logN)α(log logN)1−α) .(4)

Next we set M = (B!)blog2Nc. Note that for any integer N such that gcd(xP , yP , zP , N) = 1
and gcd(N,∆(E)) = 1, E has good reduction modulo any unknown prime factor p of N and
P̄ := (xP : yP : zP ) mod p belongs to E(Fp). Running ECM for E and N consists in computing
Q = (xQ, yQ, zQ) := [M ]P mod N , i.e. one uses the cord-and-tangent formulae and reduces the
coordinates modulo N, if two points are different modulo N one uses the formula for adding two
distinct points. We claim that, if the order |E(Fp)| is B-smooth for an unknown prime factor p,
then gcd(zQ, N) is a multiple of p. Indeed, if the points involved in the double-and-add method
were all distinct not only modulo N but also modulo p, then Q is the neutral element, so zQ ≡ 0
(mod p). If one used a wrong formula because two points were distinct modulo N but equal
modulo p, then zQ ≡ yQ ≡ zQ ≡ 0 (mod p). In both cases ECM finds a multiple of p and a
carefull analysis shows that the probability that the result is exactly p is 1− o(1) (see [Len87]).
In case of failure one starts over with another curve.

There are two variants of the algorithm:

(1) searching for a fixed prime p of a given integer N , using a large number of random
curves E

(2) using a fixed curve E, to test for smoothness a large number of given integers N .

The first version is well studied. Two years after having presented the sketch of his algorithm,
Lenstra [Len87] published the full proof in which the complexity of ECM is reduced to proving
a lower bound on the density of y-smooth numbers in intervals of the form [x −

√
x, x +

√
x]

(see [Gra08]) for specific values of x and y. This version of ECM serves as a reference for rigor-
ous analysis of the algorithm in the literature. In an effort to complete the proof of smoothness
tests, Lenstra, Pila and Pomerance [LJPP93] invented the hyperelliptic curve method of fac-
torization (HECM) where one uses jacobians of genus two curves instead of elliptic curves.
Contrary to ECM, HECM relies on the density of y-smooth numbers in intervals of the form

[x− cx
2
3 , x+ cx

2
3 ], for which a proven lower bound was given in the same article [LJPP93].
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The second version of ECM corresponds to the cofactorization step in the number field sieve
(NFS) algorithm and the splitting step of the discrete logarithm algorithms as index calculus and
the NFS. Well optimized implementations, as CADO-NFS2, use a dozen of well-chose elliptic
curves to test the smoothness of billions of integers. Usually the curves are chosen as small
parameters from infinite families, but sometimes only a finite number of curves with better
properties are known. This boils down to the fact that the family is a parametrization of the
modular curve of a congruence group Γ whereas the finite list of better parameters correspond
to the modular curve of a congruence group Γ′ ⊂ Γ. In the case when Γ has genus 0 or 1 and
Γ′ has genus 2 or more, Faltings theorem proves that there is only a finite list of parameters of
the family which are better than all the others in the family (see [BS21] for a discussion on the
topic).

A second reason to use a single curve in ECM is if one wants to use implementation improve-
ments which are only possible for some parameters, e.g. is (2 : 1 : 1) belongs to the curve than
the multiplications by the x-coordinate of the point are free from an implementation point of
view. One might also find it interesting to use CM curves in ECM, in which case there is only a
finite list of them; however most implementations of ECM precede ECM by the p+ 1 algorithm
and actually prefer elliptic curves without CM.

Note that problem P3, defined in the introduction, is relevant for this second variant of ECM.
Since Theorem 2 eliminates the heuristics about ΨE(x, y), it allows us to eliminate heuristics

in the algorithms where ECM is used. A step of the number field sieve (NFS), called splitting,
considers a prime q, a generator g of (Z/qZ)∗ and a second element h ∈ (Z/qZ)∗. One factors
with ECM the integers geh mod q for values of e ∈ [1, q−1] which are uniformly randomly chosen
until one of them is y-smooth for y = Lx(2

3 , c) for an absolute constant c (see Algorithm 1).
Here we used the notation of Equation (4). The statement of the main theorem, if it remains
true when the domain ∆ is extended, eliminates the heuristics in the splitting step.

Algorithm 1: Splitting step in discrete logarithm NFS: main part

Input: a prime q and two integers g, h ∈ [1, q − 1] such that g is a generator
Output: an integer e such that P−(geh mod q) < y with y = Lq(

2
3 ,

1
cu

)

1: E : y2 = x3 + x2 − 3x+ 1, P = (−1 : 2 : 1) ∈ E
2: B ← Lq(

1
3 ,

1
cucv

); m← B!
3: repeat
4: e← random integer in [1, q − 1]
5: N ← geh mod q
6: Q(xQ : yQ : zQ)← [m]P (mod N)
7: until g := gcd(zQ, N) 6= 1

Theorem 5. Assume that Theorem 2 can be extended to the domain (x, y = x1/u, z = y1/v)
below :

∆′ : u ≤ cu
(log x)1/3

(log2 x)1/3
and v ≤ cv

(log x)1/3

(log2 x)1/3
,

for two constants cu, cv ≥ 31/3. Then, with a constant probability, Algorithm 1 on input ` ends
in a time L`(1/3, 3

1/3)1+o(1) .

Proof. We set the value of the constants : cv = cu = 31/3. The cost of line 6 is O(log2m) by
double-and-add exponentiation. This is

time(line 6) = O(logm) = O(B logB) = B1+o(1) = L`(1/3, 1/(cucv)).

Since e is randomly chosen with uniform probability, the number of executions of loop in
lines 3-7 is with a constant probability less than a constant times the inverse of the success

2https://cado-nfs.gitlabpages.inria.fr/
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probability. We saw in this section that the condition in line 7 is satisfied if, for all prime
factors p of N , the order |E(Fp)| is B-smooth. We set u = cu

log q
log y and v = cv

log y
logB and conclude

that the number of executions of the loop is q/Ψv(q, y).
Since u and v are in ∆′, the assumption states that we have q/ψv(q, y) ≥ (ρ(v)ρ(u))(1+o(1)).

We inject the values of v and u:

log(ρ(v)ρ(u)) = (−1 + o(1)) ·(u log u+ v log v)

= (−1 + o(1)) ·
(
cu+cv

3 (log q)1/3(log2 q)
2/3
)
.

Hence the loop is executed at most Lq(1/3,
cu+cv

3 )1+o(1) times. When we multiply this by the

cost B1+o(1) = Lq(1/3,
1

cucv
)1+o(1), we find

time(Algorithm 1) = Lq(1/3, c),

where c = 1
cucv

+ cu+cv
3 = 31/3.

�

Remark 6. (i) Since Algorithm 1 uses a single curve E, with an explicitly given rational point
P , we avoid heuristics about the rank of elliptic curves.

(ii) At a heuristic level, the complexity remains the same if one searches for y-smooth in-
tegers. In that case, after line 7, one factors N/g with ECM and then goes back to line 3.
Under the heuristic assumption that different elliptic curves are independent, the probability
that P−(N/g) < y is negligible with respect to the probability that P−(N) < y. Hence the full
algorithm has a complexity equal to that of Algorithm 1 raised to the power 1 + o(1).

3. Background

In the case of an elliptic curve with CM, problem P3 is a simple generalization of problem P1
from Q to an imaginary quadratic field of class number one, as established by the following result.

We use the notation ‖ · ‖ for the number field norm. We also set

ψK(x, y; c, a) = |{π ∈ ΠK(x; c, a), P+(‖ π − 1 ‖) < y}|.(5)

Lemma 7 (CM theory, see [RS09] Th 1.1). For any elliptic curve E with CM by an order of
K, there exists a, c ∈ OK such that, for any prime ` split in K, |E(F`)| = ‖ π − 1 ‖, where π is
unique such that ‖ π ‖ = ` and π ≡ a (mod c).

In particular

ψE(x, y) = ψK(x, y; c, a)

for two constants a and c depending on E.

We follow the strategy of Wang [Wan18], so we assume Conjecture 1. Since classical EH
conjecture is a strengthening of the statement of the Vinogradov-Bombieri (BV) theorem, the
number field version of EH is the same strengthening of the number field BV, which due to Hux-
ley. In the case of imaginary quadratic fields of class number one, the statement of Conjecture 1
can be found in [Pol16], but we allow δ to be non-constant.

An important ingredient of Wang’s proof is the linear sieve. Let A ⊂ OK be a finite set,
P ⊂ OK a set of primes, z ≥ 2 a real and d ∈ OK a square-free integer whose prime factors
belong to P. Call Ad = A

⋂
dOK and PP(z) =

∏
‖p‖<z,p∈P π. Let X be an approximation of

|A| and w a multiplicative function such that 0 < w(p) < ‖ p ‖ and, for any d | PP(z),

|Ad| =
w(d)

‖ d ‖
X(1 + o(1)).

We set r(A, d) = |Ad| − w(d)
‖d‖ X. We make some more notations.

S(A;P, z) = |{a ∈ A : (a, PP(z)) = 1}|,
V (z) =

∏
p∈ΠK(z)(1−

w(p)
‖p‖ ).

(6)
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Lemma 8 (Rosser-Iwaniec [Iwa80]). Assume that there exists K ≥ 2 such that∏
u≤‖p‖<v

(
1− w(p)

p

)−1

≤ log v

log u

(
1 +

K

log u

)
for all v > u ≥ 2. For any D ≥ z ≥ 2 one has

S(A;P, z)� XV (z) +
∑

‖d‖<D,d|P (z)

|r(A, d)|.

We finish the section with a trilogy of results about asymptotic developments of the number
of smooth elements in various sets of integers. The equivalent of ψK(x, y) is known since
Hildebrand’s work but the error term was made explicit by Scourfield.

Theorem 9 ([Sco04]). Let K be an imaginary quadratic field. Then, uniformly on H, one has

ψK(x, y) = λKx

(
ρ(u) +

ρ′(u)

log y
(αK + o(1))

)
,

where λK is the residue of ζK and αK = L′(1, χ)/L(1, χ) for χ the non-trivial character of K.

The result was generalized so that ζK was replaced by a large class of Dedekind series of the
form Z(s)G(s) where Z is a product of zeta functions with positive exponents and G a well
behaved function (including holomorphic functions). The following particular case is sufficient
for our applications.

Theorem 10 (Theorem 1.1 in [HTW08], case Z = ζ, G holomorphic). Let h be an arithmetic

function whose Dedekind series H(x) =
∑

n
h(n)
ns is meromorphic with a simple pole at 1. Let

a0 and a1 be such that the Laurent expansion of H at 1 is H(s) = a0/(s − 1) + a1 + O(s − 1).
Then ∑

n ≤ x
P−(n) > y

h(n) = xρ(u)

(
a0 + a1

log(u+ 1)

log y
+O

(
(log(u+ 1))2

(log y)2

))
,

uniformly on (log x)1+ε ≤ y ≤ x for any fixed ε > 0.

Finally, one proved a similar result for Z = ζ−1, the Dedekind series of µ.

Lemma 11 ([LT15]). Let µ be the Möbius function and let P−(n) denote the least prime factor
of n with the convention P−(1) =∞. For any ε > 0, we have∑

n ≤ x
P−(n) > y

µ(n)

n
=

{
1 +Oε

(
log(u+ 1)

log y

)}
ρ(u) +Oε(exp(−(log y)

3
5
−ε))

uniformly in x ≥ 2 and exp{(log x)
2
5

+ε} ≤ y ≤ x, where u = (log x)/ log y.

See [dlBF20] for a results which eliminates the error term Oε(
log(u+1)

log y ).

4. Main theorem

Proof of Theorem 2. By Lemma 7 we have

ψE(x, y) = |{p split, P+(|E(Fp)|) < y)}|+ |{p inert, P+(|E(Fp)|) < y)}|+O(1)
= ψK(x, y; c, a) + |{p inert : P+(p+ 1) < y}|+O(1),

for two constants a, c ∈ OK (see the notation (5)).
The second term of the right member is treated by Wang [Wan18]. His proof applies directly

in the case of cyclotomic fields K and can be adapted in the other cases:

|{p inert : P+(p+ 1) < y}| = (1 + o(1))ρ(u)
π(x)

2
.

Hence, it remains to prove an equivalent for ψK(x; c, a).
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We let δ(x) be as in Conjecture 1 and let y be such that u = O( log2 x
log3 x

). This is such that

Li(x)

(log x)1/2
= ψE(x, y)ρ(u) · o(ε(x, y)).(7)

Hence, in the following the terms O( 1
(log x)1/2

) are negligible.

We use an inclusion-exclusion principle to write

(8) ψK(x, y; c, a) =
∑
q ∈ OK

P−(‖ q ‖) > y

µ(q)πK(x; qc, a) = S1 + S2,

where
S1 =

∑
q ∈ OK

‖ q ‖ ≤ x1−δ(x)

P−(‖ q ‖) > y

µ(q)πK(x; qc, a)

S2 =
∑

q ∈ OK
‖ q ‖ > x1−δ(x)

P−(‖ q ‖) > y

µ(q)πK(x; qc, a).

We write S1 = S′1 + S′′1 with

S′1 = Li(x)
ϕ(c)

∑
q ∈ OK

‖ q ‖ ≤ x1−δ(x)

p−(‖ q ‖) > y

µ(q)
ϕ(q) ,

S′′1 =
∑

q ∈ OK
‖ q ‖ ≤ x1−δ(x)

p−(‖ q ‖) > y

µ(q)r(x, qc) where r(x, qc) = (πK(x; qc, a)− Li(x)
ϕ(cq)).

In step 1′ we show that S′1 = Li(x)
ϕ(c)

ψK(x,y)
ψK(x,∞)(1 + o(1/u)). In step 1′′ we show that S′′1 = O( 1

log x),

which will be proven to be hidden in the o(ε(x, y)).
In the case of S2 the main ingredient is the linear sieve, which was introduced in Section 3.

We take A = A(mc, a) := {w ∈ A : w ≡ a (mod cm)} and note that we have

Ad(mc, a) =
1

ϕ(d)
· Li(x)

ϕ(cm)
+

(
πK(x; dmc, a)− Li(x)

ϕ(dmc)

)
.(9)

We apply Lemma 8 to A = A(mc, a) with X = Li(x)
ϕ(m) and

w(p) =

{
0, p | amc

1
‖p‖−1 , otherwise.

The inequality required to apply the lemma is verified because Mertens formula guarantees the
case w(p) = 1 and we have the sandwich inequalities for all primes p ∈ OK with ‖ p ‖ > 2(

1− 1

‖ p ‖

)
≤
(

1− 1

‖ p ‖ − 1

)
≤
(

1− 1

‖ p ‖

)(
1 +

1

‖ p ‖2

)
.

We conclude that S2 = S′2 + S′′2 where

S′2 =
∑

m ≤ xδ
(m, a) = 1

π(x)
ϕ(m)

∏
p < z
p - am

(
1− 1

‖p‖−1

)
S′′2 =

∑
m ≤ xδ

(m, a) = 1

∑
d < D

d | Pam(z)

|r(A(mc, a), d)|.

In steps 2′ and 2′′ we prove that S′2 = O(uδ) and respectively S′′2 = O( 1
log x), both of which

will be proven to be hidden in the term o(ε(x, y)).
Step 1′. By Lemma 11 we have

(10)

S′1 = πK(x)
ϕ(c) ρ

(
log(x1−δ(x))

log y

)
(1 +O( log(u+1)

log y )) +O(−(log y)
3
5
−ε)

= πK(x)
ϕ(c) ρ

(
log(x1−δ(x))

log y

)
(1 +O( log(u+1)

log y ))

= πK(x)ρ(u)
(

1 +O( δ(x)
u ) +O( log u

log y )
)

= πK(x)ρ(u)(1 + o(ε(x, y))).
7



Step 1′′. In the case of S′′1 we use the trivial inequality µ(q) ≤ 1 and use Conjecture 1 with

0 < δ̃(x) < δ(x) so that cq ≤ x1−δ whenever ‖ q ‖ ≤ x1−δ̃.

(11)
S′′1 ≤

∑
‖m‖≤x1−δ̃

∣∣∣πK(x;mc, a′)− Li(x)
ϕ(q)

∣∣∣
� Li(x)/ log(x)A0 ,

where A0 > 0 is an absolute constant. Here a′ is such that a′ ≡ a (mod c) and a′ ≡ 1 (mod m).
Step 2′. The terms of S′2 are all positive, so we get an upper bound if we delete the condition

(a,m) = 1 under the σ sign. The parameters z and D are set as follows z = D = y1−2δ. Then
we have

S′2 � Li(x)
∏
‖p‖<z

(
1− 1

‖p‖−1

)∑
m≤xδ

f(m)
‖m‖ ,(12)

where f is the multiplicative function such that, for all p ∈ OK , f(p) = 1 +O( 1
‖p‖). We replace

the sum
∑ f(m)
‖m‖ by a partial Euler product and obtain

S′2 � π(x)
∏
‖p‖<z

(
1− 1

‖p‖

)∏
‖p‖<xδ

(
1− 1

‖p‖

)−1

� Li(x)δ(x)s(x)u.
(13)

Step 2′′. To handle S′′2 note that if ‖ m ‖ ≤ xδ and ‖ d ‖ ≤ D = y1−2δ ≤ x1−2δ then q := md
is such that ‖ q ‖ ≤ x1−δ. Hence

S′′2 ≤
∑
‖q‖≤x1−δ

∑
d|q |r(A; d, a)|

≤
∑
‖q‖≤x1−δ τ(q)|πK(x; q, a)− πK(x)

ϕ(q) |
≤ (S′′2,∗S

′′
2,†)

1
2 ,

(14)

where

S′′2,† =
∑
‖q‖≤x1−δ |πK(x; q, a)− πK(x)

ϕ(q) |
S′′2,∗ =

∑
‖q‖≤x1−δ τ(q)2|πK(x; q, a)− πK(x)

ϕ(q) |.

We recognize the expression of the EH conjecture, so

S′′2,† ≤ x/(log x)A.(15)

We upper bound S′′2,∗ using the crude inequality∣∣∣∣πK(x; q, a)− πK(x)

ϕ(q)

∣∣∣∣ ≤ πK(x; q, a) +
πK(x)

ϕ(q)
πK(x; q, a) ≤ 2.1 · x

q
,

so

S′′2 ≤ (x/(log x)A)
1
2

(
x
∑
‖q‖≤x1−δ

τ(q)2

‖q‖

) 1
2

� πK(x)/(log x)A/2−4.
(16)

Completion of the proof of an asymptotic development. When combining Equa-
tions 10, 11, 13 and 16 we obtain

ψK(x, y; a, c) = Li(x)
ϕ(c)

(
ρ(u) +O( δu + log2 x

log y ) +O( 1
(log x)A0

) + α(E)δ(x)s(x)u+O( 1
(log x)A/2−4 )

)
= ρ(u)

ϕ(c) Li(x)
(

1 + α(E) δ(x)s(x)u
ρ(u) (1 +O( 1

log x))
)
.

(17)

Since δ(x)s(x)u
ρ(u) → 0 we have completed the proof.

Putting the asymptotic development in the form of the statement. Based on
Theorem 9, one can reproduce mutatis mutandis the arguments in the proof of Theorem 1.1
in [BL17] and obtain

ψK(x, y)

ψK(x,∞)
=

ψ(xeα(E), y)

ψ(xeα(E),∞)

(
1 +O

(
log(u+ 1)2

(log y)2

))
,(18)
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where α(E) = L′(1, χ)/L(1, χ) where χ is the non-trivial character of K. �

5. The set Ψv(x, y)

This section is devoted to proving the following result, which implies Theorem 4 in the
introduction.

We prepare the proof with a lemma, which is a variation of the fact that a set of primes
which has a natural density also has an analytic density (see for example Th III.1.3 in [Ten15]).

Lemma 12. Let Q be a set of primes such that |πQ(x)
π(x) − λ(x)| = O( 1

(log x)A
), λ(x) is a positive

decreasing function, A > 0 a constant and πQ(x) is the cardinality of Q
⋂

[1, x]. Then we have∑
p < x
p ∈ Q

1

p
/
∑
p < x

1

p
≥ λ(x)

(
1 +

1

log x log2 x
+O(

1

(log x)A
)

)
.

Proof. With these notations we have

∑
p < x
p ∈ Q

1

p
=

bxc∑
n=1

πQ(n)− πQ(n− 1)

n
.

By an Abel summation we have

bxc∑
n=1

πQ(n)− πQ(n− 1)

n
=
πQ(x)

bxc
+

bxc∑
n=1

πQ(n)

n(n+ 1)
.

We use λ(n) ≥ λ(x) for all n ≤ n and have∑bxc
n=1

πQ(n)
n(n+1)

=
∑

n≤x λ(n) 1
n logn +O(

∑
n≤x

1
n(logn)A+1 )

≥ λ(x)
∑

n≤x
1

n logn +O(
∑

n≤x
1

n(logn)A+1 )

≥ λ(x) log log x+O( 1
(log x)A

).

Finally, the term πQ(x)/bxc has a contribution λ
log x +O( 1

(log x)A
). �

Proof of Theorem 4.

ψv(x,y)
ψ(x,y) =

(∑
p ∈ Q

y1/v < p ≤ y
ψ(x/p, y, p)

)
/
(∑

y1/v<p≤y ψ(x/p, y, p)
)

=

(∑
p ∈ Q

y1/v < p ≤ y
x/pρ(u)(1 + ε(x, y, p))

)
/
(∑

y1/v<p≤y x/pρ(u)(1 + ε(x, y, p))
)
,

where ε(x, y, p) = (ψ(x/p, y, p)−x/pρ(u))/ρ(u). Since ε(x, y, p) = O(1/u) and using Lemma 12
we further have

ψv(x, y) = ψ(x, y)(1 +O( 1
u))

(∑
p ∈ Q

y1/v < p ≤ y
1/p

)
/
(∑

y1/v<p≤y 1/p
)

≥ xρ(u)ρ(v) ·
(

1 + o(1) +O( 1
u + 1

log y log2 x
+ log(u+1)

log y )
)

≥ xρ(u)ρ(v)(1 + o(1)).

(19)

�
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6. The case of non-CM elliptic curves

In the cryptographic applications one can test if a presumed formula for α(E) matches the
numerical experiments. This section, based on a working hypothesis, is not a proof but an
attempt to find a formula for α(E) in the case of curves without CM, and it continues in
Section 7.2.

A key fact in the CM case was the asymptotic equivalent of πK(x; d, a) given in equation (9).
The role of πK(x; d, a) in the CM case is played here by

πE(x; d) = |{p ∈ Π(x) : d | E(Fp)}|.(20)

David and Wu [DW12b] give an asymptotic equivalent under GRH:

πE(x; d) =

∏
q|d

q2 − 2

(q − 1)(q2 − 1)

Li(x) +O(d3x1/2 log(d ·NEx)).(21)

The error term is Ox(d3 log d), which is much smaller than given by the effective Chebotarev
theorem in the case of a generic number field of degree d. One can sum the error terms up to
d ≤ x1/4/(log x)2 and obtain a Bombieri-Vinogradov statement for elliptic curves.

Theorem 13 (under GRH, Prop 5.3 in [Kow05]3.). For X = x1/5,∑
q≤X

∣∣∣∣πE(x; q)− w(q) Li(x)

q

∣∣∣∣�E,A
x

(log x)3
,(22)

where 0 < wE(q) < q is a multiplicative function depending on E.

We follow Pollack [Pol16] and “pretend that this approximation is valid for d up to size ≈ x,
at least on average”. For the moment, the following statement is only a hypothesis which is
interesting to investigate and which allows us to derive the value of α(E).

Hypothesis 14. Let δ(x) be a decreasing function such that

(log2 x)/(2 log x) ≤ δ(x) < 1 (x ≥ x0).

Then, for any fixed elliptic curve E defined over Q and any A ≥ 0, Equation (22) holds for

X = x1−δ(x), where wE(q) is the multiplicative function of Theorem 13.

Theorem 15. Assume Hypothesis 14 for an elliptic curve E and a function δ(x). Set

H =

{
(x, y) ∈ R2

+ : x
log3 x
log2 x ≤ y ≤ x

}
.

For any y ∈ [1, x] we set u = log x
log y . Then there exists a constant α(E) such that, as x→∞, we

have the asymptotic development

ψE(x, y)

ψE(x,∞)
=

ψ(xeα(E), y)

ψ(xeα(E),∞)
·
(

1 +O

(
log(u+ 1)

log y

))
,

uniformly for (x, y) ∈ H.

Proof. The argument is a verbatim translation of the proof of Theorem 2. The inclusion-
exclusion principle yields

ψE(x, y) = S1 + S2,(23)

where

S1 =
∑

q ≤ x1−δ(x)

P−(q) > y

µ(q)πE(x; qc)

S2 =
∑

q > x1−δ(x)

P−(q) > y

µ(q)πE(x; qc).

3See also Equation (4.7) in [DW12a].

10



We write S1 = S′1 + S′′1 + S†1 with

S′1 = Li(x)
∑

q > x1−δ(x)

P−(q) > y

µ(q)
ϕ(q)

S◦1 = Li(x)
∑

q > x1−δ(x)

P−(q) > y

µ(q)( 1
ϕ(q) −

wE(q)
q )

S′′1 =
∑

q > x1−δ(x)

P−(q) > y

µ(q)r(x, q) where r(x; q) = πE(x; q)− Li(x)wE(q)
q .

From Equation (21) we have 1
ϕ(q) −

wE(q)
q = O( 1

q2
) and then

S◦1/Li(x) �
∑

q
1
q2

�
∏
p>y(1−

1
p2

)−1 = O( 1
y ).

The sum S′1 is identical to Theorem 2 so we can use Equation (10). As in step 1′′, we show that
S′′1 is also hidden in the o(ε(x, y)) while replacing Conjecture 1 with Hypothesis 14.

For S2 we apply Lemma 8 with D = y1−δ and z = D. Then we can write S2 = S′2 + S′′2 ,
where

S′2 �
(∑

m≤xδ
π(x)
ϕ(m)

∏
p < z
p - m

(
1− wE(p)

p

))
S′′2 �

∑
m≤xδ

∑
d < D

d | Pm(z)

|rE(md)|,

Again, Step 2′′ can be copied mutatis mutandis to prove that S′′2 = o(ε(x, y)). Finally,

Equation (21) implies that (1− wE(p)
p )/(1− 1

p) = 1 +O( 1
p2

), so, up to a multiplicative constant,

S′′2 has the same value as in Equation (13), so S′2 = o(ε(x, y)).
�

7. A formula for α(E)

7.1. Recognizing α(E) in the CM case.

Proposition 16. Let E be an elliptic curve with CM and let α(E) be the constant in Theorem 2.
For all rational primes ` we set

α`(E) = log `

(
1

`− 1
− Ep(val`(|E(Fp)|))

)
,

where Ep denotes the average value in the sense of Chebotarev density over random primes p.
Then we have

α(E) =
∑
`

α`(E).

Proof. The proof of Theorem 2 implies that α(E) = L′(1, χ)/L(1, χ). Due to the uniforme
convergence of the Euler product which divides L(s, χ), we can derivate term by term:

α(E) = −
∑

`
∂
∂s log(1− 1+χ(`)

`s )
∣∣∣
s=1

= −
∑

` χ(`) log `
`−1

=
∑

` log `
(

1
`−1 −

χ(`)+1
`−1

)
.

By Dirichlet’s theorem, inside the set of primes π such that π ≡ a (mod c), the subset of
these π such that ‖ π − 1 ‖ ≡ 0 (mod `)k is the density of random elements of K not divisible
by inert primes whose norm is divisible by `k. This last density is 2/`k if ` is split and 0 if ` is

inert. We conclude that the average valuation in ` of #E(Fp) is χ(`)+1
`−1 .

�
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Remark 17. In the study of smoothness of binary forms, Murphy [Mur98] associated a function
to irreducible polynomials f ∈ Z[x] as follows

for a prime ` α`(f) = (log `) · (En(val` n)− E(a,b)=1(val` b
deg(f)f(a/b))),

α(f) =
∑

` prime α`(f),

where E(a,b)=1 is the average (in the sense of Chebotarev density) for randomly chosen pairs of
integers (a, b) which are relatively prime. Hence α(E) has a very similar expression to α(K),
the difference being made by the condition (a, b) = 1.

7.2. Heuristics for non-CM elliptic curves. From [DW12b], the function wE is computed
from Galois representations associated to E. Serre’s open image theorem implies that for all
but finitely many primes, which depend on E, α(E) is equal to the value in Theorem 15. A
recent result [BS21] makes the list of all the infinite families of elliptic curves whose α(E) is
different from the generic value, under Serre’s uniformity conjecture.

Proposition 18. Let E be an elliptic curve without CM. Let Pn be the multiplicative function
such that Pn = Prob(n | #E(Fp)) when n is a prime power. Let h(n) = µ(n)Pn.

Then there exists a constant c(E) such that∑
n ≤ x

P−(n) > y

h(n) = τ(E)xρ(u)

(
1 +O

(
log(u+ 1)

log y

))
.

As a consequence, if one assumes Hypothesis 14, then

ψE(x, y)/x = τ(E)ρ(u)

(
1 +O

(
log(u+ 1)

(log y)

))
.

Proof. Let us show that Theorem 10 applies to H(s) =
∑

n
Pn
ns and let us compute the constants

a0 and a1 in the statement of that theorem. By Equation (2.3) of [DW12b], Serre’s open image
theorem implies that there exists an integer S(E) such that, for any two integers m and n such
that (mn,SE) = 1, we have Pmn = PmPn. By Lemma 2.3 of [DW12b] there exists a constant
M(E) such that, uniformly on ` and k, we have

∀` - S(E),∀k ≥ 0, |P`k −
1

`k
| ≤ M(E)

`k+1
.

Let us set

τ(E) := (
∑

n|S(E)∞

Pnn
−s) ·

∏
`|S(E)

(1− `−s).

Then H(s) − τ(E)ζ(s) is holomorphic in a neighbourhood of 1 and Theorem 10 applies. We
have directly that ord(H)1 = 1 and

a0 = res1H = τ(E) res1 ζ = τ(E).

Hence Theorem 10 applies and we have the asymptotic formula for
∑
h(n). Hypothesis 14

allows to replace
∑
h(n) by ΨE(x, y) and obtain

ψE(x, y)/x = τ(E)ρ(u)

(
1 +O

(
log(u+ 1)

(log y)

))
.(24)

�

The value of τ(E) can be made explicit for every family of elliptic curves. Recall that a Serre
curve is an elliptic curve such that, for all primes `, ρ` is surjective and [GL2(Z) : Im(ρE)] = 2.

Corollary 19. If E is a Serre then τ(E)/
∏
`|S(E)(1− 1/`) =

∑
i, j,m, n
m | n | d∞

P2im,2jn
1

2i+jmn
, where

P2im,2jn is given by Equations (27),(26) and (25).
12



Proof. For any integers a, b ≥ 1 such that a | b we call Pa,b the probability that Z/aZ×Z/bZ ⊂
E(Fp) when p is a random prime.

By Theorem 2.19 in [BBB+13], applied to a prime level `, not necessarily odd, in the case
Im(ρE,`) = GL2(Z/`Z) we have

P`i,`j =

{
c

max(j−i−1,0)
3 c

sgn(j−i)
2 P`,` when i ≥ 1

c
max(j−i−1,0)
3 P1,` when i = 0 < j,

(25)

where c1 = 1/`4, c2 = (` − 1)(` + 1)2/`4, c3 = 1/`, P`,` = 1/(`(` − 1)2(` + 1)) and P1,` =
(`3 − 2`− 1)/(`(`+ 1)(`− 1)2).

Let d := Disc(E). Since [GL2(Z) : Im(ρE)] = [GL2(Z/2dZ) : Im(ρE,2d)], for all odd integers
m and n one has

Pm,n =
∏

`|d,` 6=2

P`val`(m),`val`(n) .(26)

For any integers i, j ≥ 0 and odd integers n,m we have

P2im,2jn =

{
2P2i,2jPm,n if d | 2im and i ≥ 1
P2i,2jPm,n otherwise

(27)

Indeed, if d - 2im then the injection Im(ρE,2jn) → GL2(Z/2jnZ) ' GL2(Z/2jZ) × GL2(Z/nZ)
is surjective. Then one has directly P2im,2jn = P2i,2jPm,n.

Write d = 2i0m0 and assume that m0 | m and i0 ≤ i or equivalently d | 2im. Let H be the
unique subgroup of index 2 in GL2(Z/2Z) ' S3. Then the proportion of matrices having 1 as
an eigenvalue is the same in H as in GL2(Z/2Z) ' S3. This extends to the unique subgroup of
index 2 of GL2(Z/2i0Z). Hence one has P2im,2jn = P1,2j−in/mPm/m0,m/m0

P2im0,2im0
.

Finally, we have P2im0,2im0
= Pm0,m0 if i = 0. If i ≥ 1 we have a different equation

P2im0,2im0
= 1/|ImρE,2im0

| = 2/(|ImρE,2i | · |ImρE,m0 |) = 2P2i,2iPm0,m0 ,

which implies Equation (27). �

Remark 20. ECM-friendly curves without CM have τ(E) 6= 1 in general. Hence they keep
their advantage asymptotically compared to random integers of the same bit size.
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