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State-feedback design for nonlinear saturating

systems
G. Valmorbida and A. Papachristodoulou

Abstract—This paper presents strategies for state-feedback
control law design of non-linear control laws with saturating
inputs. The input constraints are handled by considering a gener-
alized local sector inequality allowing the study of non-symmetric
saturation bounds. A numerical formulation is presented for
polynomial systems and is based on the solution of Lyapunov
inequalities with sum-of-squares programming.

I. INTRODUCTION

The design of feedback control laws for nonlinear input-

affine systems is a challenging problem for which different

constructive solutions have been proposed, such as the back-

stepping method [22] and nonlinear dynamic inversion [12].

An important subclass of nonlinear input-affine systems is that

of polynomial systems. Polynomial vector fields can model

biological systems (such as predator-prey dynamics [17]),

DC-DC converters [18], and also describe, in the simple

instance of quadratic systems, truncated models of infinite-

dimensional systems with energy-preserving terms [7]. The

interest in polynomial systems was also prompted by Sum-

of-Squares programming (SOSP), whereby Lyapunov-based

stability conditions can be efficiently solved with semi-definite

programming. These polynomial Lyapunov inequalities es-

tablish conditions for both global and regional stability [5].

Unfortunately, polynomial Lyapunov functions (LF) for poly-

nomial systems may not exist globally [1]. Also, the exact

characterisation of the region of attraction of stable equilibria

requires LFs that blow up on its boundary [27], suggesting the

use of rational LFs instead of polynomial ones.

Methods based on SOSP for state-feedback design were

proposed (see [4], [20]) and have attempted to generalise meth-

ods for linear state feedback design. To this aim, quadratic-

like representations of the LF have been adopted [6], [11],

[20], [30]. Due to the product between LF variables and

state feedback gain coefficients, the computational solutions

adopted by [4], [13], are based on iterations between the LF

and the feedback gains. The LF structure of [20] was also

studied in [32], where the inverse of the Lyapunov matrix

is assumed to be polynomial, thus defining a rational LF and

rational state-feedback laws. A different path was taken by [21]

where density functions, a notion dual to LFs, were used. More
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recently, algebraic geometry has been used in [16] to solve

Lyapunov equations associated with polynomial systems and

parameterise polynomial feedback laws.

A desired feature of control design methods is the ability to

handle input saturations, a ubiquitous nonlinearity. A standard

approach is to handle the saturation using sector inequalities.

Generalisations of sector inequalities have been proposed to

study linear saturating systems in [25, Lemma 1.6], [9] and

have been used in analysis and design problems [25], [31].

Importantly, these local sector inequalities are crucial for com-

puting regions of attraction of stable equilibria. For polynomial

systems, these sector inequalities were used in [28], [30].

In [10], a generalisation of the differential inclusion approach

of [8] was considered.

A. Contribution

In this paper, we propose conditions for the stabilisation of

input-affine saturating systems in Section IV. Using dissipation

inequalities, we also present conditions to characterise reach-

able sets with bounded disturbances and to certify induced

gains. These conditions are obtained thanks to a generalised

sector condition for the saturation function with non-linear

arguments, which is presented in Section III.

In Section V, the stabilisation inequalities are applied to

polynomial systems. From their solution, we obtain polyno-

mial and rational state feedback control laws. Importantly,

no transformation of the polynomial vector field is required,

which is in contrast to the approaches proposed in [6], [11],

[20], [29], [30], [32], where a linear-like representation of the

vector field needs to be computed first. No particular structure

for the input matrices must be assumed, as required in [20].

The polynomial inequalities are then cast as Sum-of-Squares

constraints of optimization problems. However, products be-

tween the LF and a set of multipliers are handled with an

iterative procedure. These results are illustrated with examples

taken from the literature in Section VI.

Notation. The Euclidean space of dimension n is denoted

R
n, R≥0 denotes the set of non-negative real numbers, R>0

denotes the set of positive real numbers. The set of symmetric

matrices of dimension n with real entries is given by S
n, the

set of symmetric, positive semi-definite matrices of dimen-

sion n is denoted S
n
≥0 and the set of diagonal matrices of

dimension n is denoted D
n. For a vector x ∈ R

n we denote

‖x‖ =
(
∑n

i=1 x
2
i

)
1

2 . The ρ level set of a positive semi-definite

function V : Rn → R≥0, {x ∈ R
n | V (x) ≤ ρ}, is denoted

E(V, ρ). The set of continuously differentiable functions with

continuous derivatives is denoted C1. The gradient of a C1



scalar function φ : R
n → R is given by ∇φ(x) :=

[ ∂φ
∂x1

∂φ
∂x2

...
∂φ
∂xn ]

⊤
; the Jacobian matrix of a C1 vector function

ζ : Rn → R
d is given by ∇ζ(x) = [∇ζ1(x) ∇ζ2(x) ... ∇ζd(x) ]

⊤
.

We use Hc to denote the complement of a set H ⊆ R
n.

The ring of the vector of polynomials of dimension n on

variable x is denoted Pn[x], the ring of polynomial matrices of

dimension n×m is denoted Pn×m[x] and the set of vectors of

sum-of-squares (SOS) polynomials of dimension n on variable

x is denoted Σn[x]. The decentralized saturation sat : Rm →
R

m, sat(u) = [ sat1(u1) sat2(u2) ... satm(um) ]⊤ has its entries

sati(ui) defined by sati(ui) = max(min(ui, ui), ui). We

assume that the vectors of upper- and lower-bounds u ∈ R
m,

u ∈ R
m of the saturation nonlinearity satisfy ui ≥ 0, ui ≤ 0

and we define the deadzone function as dz(u) := u− sat(u).

II. PROBLEM STATEMENT

Consider the system ẋ = f(x) + G(x)sat(u) + Gw(x)w
where x(0) = x0 ∈ R

n, f : Rn → R
n, f(0) = 0, G : Rn →

R
n×m, Gw : Rn → R

n×p where w is an exogenous signal

and u is the control input. Using the definition of the deadzone

nonlinearity, we obtain

ẋ = f(x) +G(x)u −G(x)dz(u) +Gw(x)w. (1)

In this paper, we propose sufficient stabilization conditions

and numerical methods to compute state-feedback control laws

that solve the following problem for system (1).

Problem 1: Design a state-feedback law u : Rn → R
m and

obtain a set D such that the solutions to (1) satisfy

1) (Asymptotic stability without disturbances) If w ≡ 0
the origin is (locally) asymptotically stable and the set

D, 0 ∈ D, is included in its region of attraction. Namely

∀x0 ∈ D and w ≡ 0, limt→∞ x(t) = 0.

2) (Boundedness for zero initial conditions) Given

W̃w : R
p → R≥0 and ρ > 0 defining W :=

{

w ∈ R
p
∣

∣

∣

∫∞

0
W̃w(w(τ))dτ ≤ ρ

}

, if x0 = 0 and w ∈ W
then x(t) ∈ D ∀t ≥ 0.

3) (Nonlinear gains) Given W̃w : Rp → R≥0, W̃x : Rn →
R≥0, if x0 = 0 and w ∈ W then x(t) ∈ D ∀t ≥ 0 and

∫ ∞

0

W̃x(x(τ))dτ ≤
∫ ∞

0

W̃w(w(τ))dτ. (2)

A solution to the above problem can be obtained from the

solution to dissipation inequalities as in the following lemma

Lemma 1: Given W (x,w) If there exists V : Rn → R>0,

V (0) = 0, positive scalars βℓ, γℓ, satisfying

βℓ‖x‖γℓ ≤ V (x) (3)

and a mapping u : Rn → R
m such that

−V̇ (x,w) +W (x,w) > 0 ∀x ∈ E(V, ρ), (4)

along the trajectories of (1), then u(x) and D = E(V, ρ), with

W (x,w) = 0, solve Problem 1.1; with W (x,w) = W̃w(w),
solve Problem 1.2, and, with W (x,w) = W̃w(w) − W̃x(x),
solve Problem 1.3.

Proof. We have: 1) for w ≡ 0 and W (x,w) = 0, following

the steps in [15, Theorem 4.9], the origin of (1) is uniformly

asymptotically stable for all trajectories starting in E(V, ρ);

2) for W (x,w) = W̃w(w), W̃w : Rp → R≥0 integrate (4)

over [0, T ] and use x(0) = 0, V (0) = 0 to obtain

V (x(T )) <

∫ T

0

W̃w(w(τ))dτ.

Since W̃w(w(t)) ≥ 0 ∀t ≥ 0, if w ∈ W , we have V (x(T )) <
∫ T

0
W̃w(w(τ))dτ ≤ ρ thus x(T ) ∈ E(V, ρ) ∀T ∈ R≥0;

3) for W (x,w) = W̃w(w) − W̃x(x), integrate (4) over [0, T ]
and use x(0) = 0, V (0) = 0 to obtain

V (x(T )) +

∫ T

0

W̃x(x(τ))dτ <

∫ T

0

W̃w(w(τ))dτ.

which implies that V (x(T )) <
∫ T

0 W̃w(w(τ))dτ for all T

since W̃x(x) ≥ 0 for all x. We thus have V (x(T )) < ρ for

all w in W . From (3), V (x) > 0 ∀x ∈ R
n \ {0}, we have

∫ T

0
W̃x(x(τ))dτ <

∫ T

0
W̃w(w(τ))dτ for all T > 0, thus T →

∞ gives (2). �

Remark 1: The supply rate W (x,w) defines the dissipation

inequality used to assess properties of the closed-loop system.

The reachable sets for bounded disturbances are characterized

according to the function W̃w, thus the setW . Gain properties

of the closed-loop can be specified by the functions W̃w

and W̃x. For instance, the induced input-to-state L2 norm is

bounded by a positive scalar η provided the inequality (2) is

defined by W̃w(w) = η2w⊤w and W̃x(x) = x⊤x. ⋆

III. GENERALISED SECTOR INEQUALITIES

To cope with asymmetric input saturation in the local

analysis (i.e. in a set containing the origin), we propose

generalizations of local sector conditions for non-linear control

laws in terms of inequalities. We also provide conditions for

the inclusion of level sets of positive functions in the sets

where sector inequalities hold.

Consider u : Rn → R
m, a function h : Rn → R

m and the

vectors of saturation bounds u ∈ R
m
<0 and u ∈ R

m
>0 defining

H1j(u, h) :=
{

x | uj ≤ uj(x) ≤ uj
}

,
H2j(u, h) :=

{

x | (uj(x) − uj) < 0, (hj(x)− uj) ≥ 0
}

,
H3j(u, h) := {x | (uj(x) − uj) > 0, (hj(x)− uj) ≤ 0} .

(5)

j = 1, . . . ,m. Let us also define Hj(u, h) := H1j(u, h) ∪
H2j(u, h) ∪H3j(u, h) and

H(u, h) = ∩mj=1Hj(u, h). (6)

The lemma below is akin to the local sector condition of [9],

[26], where u and h are linear functions.

Lemma 2 (Sector Inequalities): For every T : Rn × R
m →

D
m
≥0, the inequality

−(dz(u(x)))⊤T (x, dz(u(x))) (dz(u(x))− u(x) + h(x)) ≥ 0
(7)

holds in the set H(u, h).
Proof. Since T (x, dz(u(x))) is a diagonal matrix for all

x, we can rewrite (7) as (omitting the arguments of the

matrix T (x, dz(u(x))) and the deadzone function)

−
m
∑

j=1

(dz)jTjj ((dz)j − uj(x) + hj(x)) ≥ 0. (8)



From the definition of the deadzone function,

we have (dz)jTjj ((dz)j − uj(x) + hj(x)) =
(dz)jTjj (−satj(u(x)) + hj(x)) . We now show that

−(dz)jTjj (−satj(u(x)) + hj(x)) ≥ 0 j = 1, . . . ,m (9)

hold in (5) for any non-negative Tjj :

I) In H1j(u, h), we have uj ≤ uj(x) ≤ uj , which implies

(dz)j = 0, hence (9) holds;

II) For uj(x) − uj < 0, we have (dz)j < 0 and

satj(u) = uj , thus (dz)jTjj (−satj(u) + hj(x)) =
(dz)jTjj

(

−uj + hj(x)
)

. Hence, for uj(x) − uj < 0,

the inequality −(dz)jTjj (−satj(u) + hj(x)) ≥ 0 holds

only if
(

−uj + hj(x)
)

≥ 0, that is, if x ∈ H2j(u, h).
III) For uj(x) − uj > 0, we have (dz)j > 0 and

satj(u) = uj , thus (dz)jTjj (−satj(u) + hj(x)) =
(dz)jTjj (−uj + hj(x)). Hence, for uj(x) − uj > 0,

the inequality −(dz)jTjj (−satj(u) + hj(x)) ≥ 0 holds

only if (−uj + hj(x)) ≤ 0, that is, if x ∈ H3j(u, h).

Therefore the inequalities in (9) hold in the union Hj(u, h) of

the disjoint sets (5). Since each term in (9) holds in Hj(u, h)
they also hold in the intersection of the sets Hj(u, h), thus we

have that (8) holds in the set H(u, h). �

From (5), (6) we clearly have that h(x) = 0 yields

H(u, h) = R
n, and we retrieve the global sector inequality

[15, Sec. 6.1] as a particular case of Lemma 2.

Remark 2: In [28] and [30], the inequality (8) is

used by considering it holds in the set Hb(u, h) :=
{

x | uj ≤ hj(x) ≤ uj , j = 1, . . . ,m
}

. Figure 1 illustrates

both sets H and Hb for x ∈ R, the identity function u(x) = x
and a nonlinear function h(x).
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Fig. 1: Sets H(u, h) (red solid line on top of the x axis), and

Hb(u, h) (black dashed line on top of the x axis) obtained with

u(x) = x, a nonlinear function h(x) and saturation bounds

u = −1.7 and u = 2. The connected subset of H(u, h)
containing the origin clearly contains the connected subset of

Hb(u, h) containing the origin. The grey shaded area contains

points with x coordinate on the set H1j(u, h) of (5).

With symmetric saturation bounds u = −u = u0 we have

(uj − hj(x))(−uj + hj(x)) = −(h2j(x) − u20j) and u20j −
h2j(x) ≥ 0 ⇔ h2

j(x)

u2

0j

≤ 1. We can thus express Hb(u, h) =
{

x | h
2

j (x)

u2

0j

≤ 1
}

as in [9], [26]. ⋆

The following lemma presents a condition to check whether

level sets of radially unbounded functions are contained in the

set H(u, h).

Lemma 3 (Inclusion Conditions): For ω : Rn → R, ω(x) ≥
β‖x‖γ −C, C > 0, ρ > 0, u : Rn → R, h : Rn → R, if there

exists suu : Rn → R
m
≥0, shu : Rn → R

m
≥0, suu : Rn → R

m
≥0,

shu : Rn → R
m
≥0 such that

ψuj(ω, ρ, u, h, suuj , shuj) :=
(ω(x) − ρ)+suuj(x)(uj(x)− uj)+shuj(x)(hj(x)− uj) ≥ 0
ψuj(ω, ρ, u, h, suuj , shuj) :=

(ω(x) − ρ)+suuj(x)(uj − uj(x))+shuj(x)(uj − hj(x)) ≥ 0
∀x ∈ R

n, j = 1, . . . ,m
(10)

then E(ω(x), ρ) ⊂ H(u, h).
Proof. We show that (10) implies E(ω(x), ρ) ⊂ H(u, h) by

showing that E ∩Hc = ∅. From the definition of H in (6) we

have that Hc = ∪mj=1Hc
j , hence

E ∩Hc = E ∩
(

∪mj=1Hc
j

)

= ∪mj=1

(

E ∩Hc
j

)

. (11)

For ∪mj=1

(

E ∩ Hc
j

)

= ∅ ⇔ E ∩ Hc
j = ∅ j = 1, . . . ,m, it

suffices to show that E ∩ Hc
j = ∅ j = 1, . . . ,m. Following

the definitions in (5), let us write the sets Hc
j(u, h),

Hc
j(u, h) =

{

x|(uj(x)− uj) < 0, (hj(x)− uj) < 0
}

∪ {x|(uj − uj(x)) < 0, (uj − hj(x)) < 0} .

Since suuj ≥ 0, shuj ≥ 0, if (10) holds then

(ω(x) − ρ) ≥ (ω(x) − ρ)
+ suuj(x)(uj(x)− uj) + shuj(x)(hj(x)− uj) ≥ 0

for all x ∈
{

x|(uj(x) − uj) < 0, (hj(x)− uj) < 0
}

. Simi-

larly, since suuj ≥ 0, shuj ≥ 0 we have

(ω(x) − ρ) ≥ (ω(x) − ρ)
+ suuj(x)(uj − uj(x)) + shuj(x)(uj − hj(x)) ≥ 0

for all x ∈ {x|(uj − uj(x)) < 0, (uj − hj(x)) < 0}. Thus

x ∈ {x | ω(x) ≥ ρ} for every x ∈ Hc
j(u, h), j = 1, 2, and

hence for all x ∈ Hc(u, h) that is E(ω(x), ρ)∩Hc(u, h) = ∅,

which implies E(ω(x), ρ) ⊂ H(u, h). �

IV. STABILITY AND STABILIZATION CONDITIONS

Following Lemma 1, the solution to (3)-(4) yields a solution

to Problem 1. The results in this section use Lemma 2 to

formulate inequalities (3)-(4), where the dz function appears

since V̇ is taken along the trajectories of system (1). We

present a result for the stability analysis of saturating systems.

Its proof relies on Lemma 3 and on the lemma below, which

gives sufficient conditions for the non-negativity of a mapping

in sets defined by inequalities and equalities.

Lemma 4: Given s0 : Rnξ → R, s : Rnξ → R
ni , r : Rnξ →

R
ne , if there exist mappings s : Rnξ → R

ni

≥0, and r : Rnξ →
R

ne such that s0(ξ) − s⊤(ξ)p(ξ) + r⊤(ξ)q(ξ) > 0 ∀ξ ∈
R

nξ then s0(ξ) > 0 ∀ξ ∈ {ξ ∈ R
nξ | pi(ξ) ≥ 0, qj(ξ) = 0,

i = 1 . . . ni, j = 1 . . . nj} .



A. Stability Conditions

To simplify the notation, we drop the arguments of the

deadzone function.

Theorem 1 (Stability Analysis): Given a state feedback law

u : Rn → R
m, and W : Rn×Rp → R if there exist V : Rn →

R≥0, βℓ > 0, γℓ > 0 satisfying (3), a function h : Rn → R
m,

a non-negative matrix function T : Rn × R
m → D

m
≥0, and a

non-negative functions s, suct that

−∇V (f(x) +G(x)u(x) −G(x)dz +Gw(x)w)+W (x,w)

+s(x)
(

‖x‖γℓ − β−1
ℓ ρ

)

+dz⊤T (x, dz)(dz−u(x)+h(x)) > 0

∀x ∈ R
n, ∀dz ∈ R

m, ∀w ∈ R
p (12)

and non-negative functions suu, shu, suu, shu

ψuj(V, ρ, u, h, suu, shu) ≥ 0 ψuj(V, ρ, u, h, suu, shu) ≥ 0

∀ x ∈ R
n, j = 1, . . . ,m (13)

then u(x) and D = E(V, ρ) satisfy 1)-3) in Problem 1.

Moreover if (12) holds with s = 0 and h = 0 then u(x)
and D = R

n satisfy 1)-3) in Problem 1.

Proof. Since V̇ = ∇V (f(x) +G(x)u−G(x)dz +Gw(x)w)
and since, from Lemma 2, we have−dz⊤T (x, dz)(dz−u(x)+
h(x)) ≥ 0 ∀x ∈ H(u, h), (12) implies

− V̇ (x,w) +W (x,w) + s(x)
(

‖x‖γℓ − β−1
ℓ ρ

)

> 0

∀x ∈ H(u, h), ∀w ∈ R
p.

Provided (3) holds and since s(x) ≥ 0 ∀x, we have

β−1
ℓ s(x)V (x) ≥ s(x)‖x‖γℓ and we obtain

− V̇ (x,w) +W (x,w) + β−1
ℓ s(x) (V (x) − ρ) > 0

∀x ∈ H(u, h), ∀w ∈ R
p.

Using Lemma 4 we have

−V̇ (x,w)+W (x,w) > 0 ∀x ∈ H(u, h)∩E(V, ρ), ∀w ∈ R
p.

From Lemma 3, (13) implies H(u, h)∩E(V, ρ) = E(V, ρ) we

have −V̇ (x,w) + W (x,w) > 0 ∀x ∈ E(V, ρ). Following

Lemma 1, u and D = E(V, ρ) satisfy 1)-3) in Problem 1.

Moreover if h = 0, we have H(u, 0) = R
n (the sector

inequality holds globally) and if s = 0 we obtain

−V̇ (x) +W (x,w) > 0 ∀x ∈ R
n, ∀w ∈ R

p

hence u and D = R
n satisfy 1)-3) in Problem 1. �

B. Stabilization Conditions

This section presents three conditions for the stabilization

of system (1) by considering different structures for the LF

and the feedback law.

Theorem 2 (Stabilization with structured LF): Given a func-

tion ζ : Rn → R
nζ , ζ ∈ C1, ζ(0) = 0, and W : Rn×Rp → R,

if there exist P ∈ S
nζ

≥0, βℓ > 0, γℓ > 0, satisfying (3) with

V (x) = α−1ζ⊤(x)Pζ(x), (14)

κ : Rn × R
nζ → R

m, h : Rn × R
nζ → R

m, s : Rn × R
nζ →

R≥0, α > 0 and N : Rn × R
nζ → R

nζ , satisfying

−2y⊤∇ζ(x)(f(x)+G(x)κ(x, y)−G(x)dz+Gw(x)w)+W (x,w)

+s(x, y)
(

‖x‖γℓ − β−1
ℓ ρ

)

+dz⊤T (x, dz)(dz−κ(x, y)−h(x, y))
+N(x, y)(αy − Pζ(x)) > 0

∀ x ∈ R
n, ∀ y ∈ R

nζ , ∀ dz ∈ R
m, ∀ w ∈ R

p (15)

and Nuj : Rn × R
nζ → R

nζ , Nuj : Rn × R
nζ → R

nζ and

non-negative functions suu, shu, suu, shu satisfying

ψuj(V, αρ, κ, h, suu, shu) +N⊤
uj(x, y)(αy − Pζ(x)) ≥ 0,

ψuj(V, αρ, κ, h, suu, shu) +N⊤
uj(x, y)(αy − Pζ(x)) ≥ 0,

∀x ∈ R
n, ∀ y ∈ R

nζ j = 1, . . . ,m,
(16)

then, the feedback

u(x) = κ(x, α−1Pζ(x)), (17)

and D = E(V, ρ), solve Problem 1.

Proof. Set U(x, y, w) = 2ζ⊤(x)α−1P∇ζ(x) (f(x)
+G(x)κ(x, y) +G(x)dz +Gw(x)w). Following Lemma 3

we have that if (16) holds then E(V, ρ) ⊂ H(u, h) holds. Thus

we use (7) in (15) and use (3) to obtain

− U(x, y, w) +W (x,w) + β−1
ℓ s(x, y) (V (x) − ρ)

+N(x, y)(αy − Pζ(x)) > 0

∀ x ∈ E(V, ρ), ∀ y ∈ R
nζ , ∀ w ∈ R

p.

Since s(x, y) ≥ 0, following Lemma 4, we have

−U(x, y, w) +W (x,w) > 0, ∀(x, y) ∈ {x ∈ R
n, y ∈ R

nζ |
x ∈ E(V, ρ), y = α−1Pζ(x)

}

, ∀ w ∈ R
p.

Replacing y = α−1Pζ(x) in the above inequality, we obtain

V̇ (x,w) = U(x, α−1Pζ(x), w) to obtain

−V̇ (x,w) +W (x,w) > 0, ∀x ∈ E(V, ρ), ∀ w ∈ R
p.

Hence, according to Lemma 1 we solve Problem 1 with u as

in (20) and D = E(V, ρ). �

The corollary below is the particular case of the above

theorem using (18) with y = α−1Pζ(x). Its proof is obtained

by replacing

κ(x, y) = −1

2
S(x, y)G⊤(x)∇ζ⊤(x)y, (18)

S : Rn × R
nζ → S

m
>0 in (15) and (16).

Corollary 1: Given a vector function ζ : Rn → R
nζ , ζ ∈ C1,

and W : Rn × R
p → R, if there exist P ∈ S

nζ

≥0, βℓ > 0,

γℓ > 0, satisfying (3) with V as in (14), a matrix function

S : Rn×Rnζ → R
m×m, h : Rn×Rnζ → R

m, s : Rn×Rnζ →
R≥0, α > 0 and N : Rn × R

nζ → R
nζ , satisfying

− 2y⊤∇ζ(x) (f(x)−G(x)dz +Gw(x)w)

+ y⊤∇ζ(x)G(x)S(x, y)G⊤(x)∇ζ⊤(x)y +W (x,w)

+ s(x, y)
(

‖x‖γℓ − β−1
ℓ ρ

)

+ dz⊤T (x, dz)(dz − S(x, y)G⊤(x)∇ζ⊤(x)y + h(x, y))

+N⊤(x, y)(αy − Pζ(x)) > 0

∀ x ∈ R
n, ∀ y ∈ R

nζ , ∀ dz ∈ R
m, ∀ w ∈ R

p (19)



and Nuj : Rn × R
nζ → R

nζ , Nuj : Rn × R
nζ → R

nζ and

non-negative functions suu, shu, suu, shu satisfying (16) then

the feedback u(x) = κ(x, α−1Pζ(x)), with κ as in (18), and

D = E(V, ρ), solve Problem 1.

The theorem below provides stabilization conditions with a

generic function V (x). Inspired by control laws from solutions

to the Hamilton-Jacobi-Bellman equation [14], [22, Sec. 3.5],

we consider the state-feedback

u(x) = −R−1(x)G⊤(x)∇V (x). (20)

with R : Rn → D
m
>0 and we impose T (x) = R(x) in the

sector inequality (7).

Theorem 3 (Stabilization): Given W : Rn × R
p → R, if

there exist V : Rn → R≥0, V (0) = 0, positive scalars βℓ, γℓ
satisfying (3), a matrix functionR : Rn → D

m, h : Rn → R
m,

s : Rn × R
m → R≥0, N : Rn × R

m → R
nζ satisfying

−∇V (x)(f(x)−G(x)dz+Gw(x)w)+u
⊤R(x)u+W (x,w)

+s(x, u)
(

‖x‖γℓ−β−1
ℓ ρ

)

+dz⊤
(

R(x)dz−G⊤(x)∇V (x)+h(x)
)

+N⊤(x, u)(R(x)u +G⊤(x)∇V (x)) > 0

∀ x ∈ R
n, ∀ u ∈ R

m, ∀ dz ∈ R
m, ∀ w ∈ R

p (21)

and

(V (x) − ρ) + (G⊤(x))j∇V (x) + hj(x)− 2Rjj(x)uj ≥ 0,
(V (x) − ρ)− (G⊤(x))j∇V (x)− hj(x) + 2Rjj(x)uj ≥ 0,

∀ x ∈ R
n, j = 1, . . . ,m,

(22)

then, provided R−1(x) is well-defined in
{

x ∈ R
n | ‖x‖γℓ ≤ β−1

ℓ ρ
}

the feedback (20) solves

Problem 1 with D = E(V, ρ). Moreover if (21) holds

with s(x) ≡ 0 and h(x) ≡ 0 then u(x) solves Problem 1

with D = R
n.

The proof follows the same steps as the proof of Theorem 2.

Remark 3: It is straightforward to modify the inequalities

in the above theorems to address the case of systems without

saturation, namely system (1) with dz ≡ 0. Indeed, it suffices

to drop the inequalities (13), (16) and (22) related to the

inclusion conditions from Lemma 3 and to remove the terms

containing dz in (12), (15), (19), and (21). ⋆

V. COMPUTATION OF FEEDBACK LAWS FOR POLYNOMIAL

SYSTEMS

In this section we assume that f , G, Gw , S, R and V
in (1), (14), (18) and (20) are polynomials, yielding a poly-

nomial state-feedback for (18) and a rational state-feedback

for (20). The propositions below give, respectively, particular

cases of conditions in Corollary 1 and Theorem 3.

Proposition 1: Given ζ ∈ Pn[x], ζ(0) = 0, W ∈ P [x,w],
and ρ > 0, if there exist P ∈ S

nζ

≥0, βℓ > 0, γℓ > 0, such that

V (x)− βℓ‖x‖γℓ ∈ Σ[x] (23)

with V as in (14), and there exist α > 0, S ∈ Pm×m[x, y]
and s ∈ Σ[x, y] , T ∈ Σm[x, dz], a positive scalar ǫA, and a

positive integer δx, satisfying

− 2y⊤∇ζ(x) (f(x)−G(x)dz +Gw(x)w)

+ y⊤∇ζ(x)G(x)S(x, y)G⊤(x)∇ζ⊤(x)y +W (x,w)

+N⊤(x, y)(αy − Pζ(x)) + s(x, y)
(

‖x‖γℓ − β−1
ℓ ρ

)

+ dz⊤T (x, dz)(dz − S(x, y)G⊤(x)∇ζ⊤(x)y + h(x, y))

+ ǫA(‖x‖δx) ∈ Σ[x, y, dz, w] (24)

and suu, shu, suu, shu ∈ Σ[x, y], N ∈ Pnζ [x, y], satisfying

ψuj(V, αρ, κ, h, suu, shu)+N
⊤
uj(x, y)(αy − Pζ(x))∈Σ[x, y],

ψuj(V, αρ, κ, h, suu, shu)+N
⊤
uj(x, y)(αy − Pζ(x))∈Σ[x, y],

j = 1, . . . ,m,
(25)

then the feedback u(x) = κ(x, α−1Pζ(x)), with κ as in (18),

and D = E(V, ρ), solve Problem 1.

Remark 4: The use of quadratic-like representations as

V (x) := ζ⊤(x)Pζ(x) for polynomial LFs has been proposed

for the synthesis of state feedback laws for polynomial systems

without saturating inputs in [6], [11], [20], [30], [32]. Instead

of establishing conditions in terms of polynomial scalar con-

straints as in the above propositions, the synthesis conditions

in [6], [11], [20], [30] are formulated in terms of polynomial

matrix inequalities. These stabilization conditions are obtained

from linear-like representations of (1) with dz ≡ 0 as

ẋ = (A(x) + E(x) +G(x)K(x)) ζ(x) (26)

where A(x)ζ(x) = f(x), the controller structure as u(x) =
K(x)ζ(x) is imposed, and E ∈ P [x] satisfies E(x)ζ(x) = 0.

With the LF (14) the time-derivative along the trajectories of

system (1) is given by V̇ (x) = 2ζ⊤(x)P (x)(∇ζ(x))⊤(A(x)+
E(x) +G(x)K(x))ζ(x). Introducing variable y(x) = Pζ(x),
and defining Q := P−1 which gives ζ(x) = Qy(x) and

L(x) := K(x)Q, one obtains

V̇ (x, y) = 2y⊤(x)(∇ζ(x))⊤(A(x)Q+G(x)L(x))y(x). (27)

Clearly, for given A(x) and E(x), if the matrix inequality

2(∇ζ(x))⊤(A(x)Q + E(x)Q +G(x)L(x)) < 0 (28)

holds for all x ∈ R
n then (27) holds for all x ∈ R

n. However,

the satisfaction of (28) is only a sufficient condition for (27)

since, for a matrix M(x), y⊤M(x)y < 0 ∀x, ∀y implies

ζ(x)⊤M(x)ζ(x) < 0 ∀x but the converse does not necessarily

hold. To mitigate the conservativeness introduced by solving

the inequalities with fixed A(x) and E(x), [30] proposes a

strategy to solve a sequence of semi-definite programs where

either Q or E(x) are taken as a decision variables and a

representation of the ζ̇(x), instead of (26) is considered. At

each iteration a bound for the closed-loop L2 performance is

optimized. The non-uniqueness of state-dependent linear-like

representation as (26) has also been studied in the context of

solutions to state-dependent Riccati Equations [23]. ⋆
Proposition 2: Given W ∈ P [x,w] and ρ > 0 if there exist

V ∈ P [x], V (0) = 0, βℓ > 0, γℓ > 0, satisfying (23), N ∈



Pm[x, u], s ∈ Σ[x, u], a diagonal polynomial matrix R ∈
Pm×m[x], ǫA > 0, and δx > 0 satisfying

−∇V (x)(f(x) −G(x)dz +Gw(x)w) +W (x,w)

+s(x, u)
(

‖x‖γℓ−β−1
ℓ ρ

)

+dz⊤
(

R(x)dz−G⊤(x)∇V (x)+h(x)
)

+u⊤R(x)u+N⊤(x, u)(R(x)u+G⊤(x)∇V (x))+ǫA(‖x‖δx)
∈ Σ[x, u, dz, w] (29)

and

(V (x)− ρ) + (G⊤(x))j∇V (x) + hj(x)− 2Rjj(x)uj ∈Σ[x],
(V (x)− ρ)− (G⊤(x))j∇V (x)− hj(x) + 2Rjj(x)uj ∈Σ[x],

j = 1, . . . ,m,
(30)

then, provided that R−1(x) exists in
{

x ∈ R
n | ‖x‖γℓ ≤ β−1

ℓ ρ
}

, the feedback law (20) solves

Problem 1 with D = E(V, ρ).
An advantage of the inclusion conditions (30) of Proposi-

tion 2 over (25) of Proposition 1 is that they do not present

products of unknowns.

Algorithm 1 below applies to the conditions of Propo-

sitions 1 and 2 (the square brackets within the steps in-

dicate the steps for Proposition 1). The proposed iterative

method is required since (29) in Proposition 2 contains a

product between N and both V and R. On the other hand,

Proposition 1 presents products between all the multipliers

{N, T, suu, shu, suu, shu} and the control law parameters α,

S and P of (17)-(18). At each step of the algorithm we take

W (x,w) = ηw⊤w − x⊤x and we minimize η subject to

the SOS constraints of Propositions 1 and 2. This objective

function provides induced L2 gain bounds
‖x‖L2

‖w‖L2

≤ √η.
Remark 5: Initialization of Algorithm 1. It should be noted

that there is no guarantee of convergence to global optima in

iterative algorithms as Algorithm 1. Also, the proposed pro-

cedure relies on the existence of initial feasible values for the

LF and R. In the general case, these initial feasible solutions

may be difficult to obtain. For the case of systems without

input saturation, with stabilizable linear approximations, it is

possible to obtain quadratic LFs and linear gains as the starting

solution. Powers of quadratic LFs such as V (x) = (x⊤Px)2r

can be used as initial polynomial LF as suggested by the

converse results in [2]. ⋆

VI. EXAMPLES

This section presents three examples that illustrate the

results in Section V. Solutions to the proposed SOS constraints

are obtained with SOSTOOLS [19].

Example 1 In this example we illustrate the impact of

saturations in the closed loop system with a rational state

feedback. Consider the saturating system borrowed from [30,

Example 3]
{

ẋ1 = 1.5x2

1 + x2

2 − 0.5x3

1 + 0.3w − sat(u)
ẋ2 = −x2 + x1x2 + 0.3w − 0.5sat(u)

(31)

The saturation limits are [u, u] = [−1, 2]. We take P , the

solution to a Lyapunov equation for the linearized system with

a linear state-feedback and take the function V0(x) = x⊤Px+
(x⊤Px)2 + (x⊤Px)3, as the starting LF for the Algorithm 1,

applied to Proposition 2. As a solution to Algorithm 1 we

Algorithm 1 Control Design for saturating systems

1: Inputs: positive scalar δ, parameterised W , degrees of the

polynomial variables

2: STEP 0:

3: i← 0.

4: Fix ρ
5: V ← V0, R ← R0 [P ← P0 , α ← α0, h ← h0,

S ← S0].
6: γ0 ←∞.

7: STEP 1) Computation of multipliers:

8: Fix V and R [Fix P , α, S, h]
9: Minimize

N
η subject to (29), (30) [ Minimize

N,T,suu,shu,suu,shu

η subject to (24), (25) ]
10: N ← N∗; [N ← N∗; Ti ← T ∗; suu ← s∗uu; shu ←

s∗hu; suu ← s∗uu; shu ← s∗uu ].

11: STEP 2) Computation of LF:

12: Fix N [ Fix N, T, suu, shu, suu, shu
]

13: Minimize
V,R

η subject to (23), (29), (30), [ Minimize
P,S,h,α

η

subject to (23), (24), (25), ]
14: i← i+ 1.

15: V ← V ∗, R ← R∗ [P ← P ∗ , α ← α∗, S ← S∗,

h← h∗].
16: γi ←

√
η∗.

17: if γi−1 − γi < δ, STOP

18: else goto STEP 1.

obtain a rational state-feedback law as in (20) that guarantees

a local induced L2 gain of γ = 0.5. That is, the control law

guarantees that the trajectories satisfy ‖x‖2 ≤ 0.5ρ for x(0) =
0 and for all w ∈ L2 such that ‖w‖2 ≤ ρ, with ρ ≤ 0.4. We

first show trajectories of the closed loop without saturation

in Figure 2 (left). Figure 2 (right) depicts trajectories of the

saturated closed-loop and the sets related to the estimation of

the region of attraction of the origin of the saturating system,

that was obtained with the solution to the SOS relaxation of

inequalities of Theorem 1. The gray curve corresponds to the

boundary of the ERA of the origin. The dashed black curves

delimit the set H11 = {x ∈ R
n|u ≤ u(x) ≤ u} and the set

Hb = {x ∈ R
n|u ≤ h(x) ≤ u} is delimited by the dash-

dotted green curves. Note that the obtained ERA is included

in the set H(u, h) as in (6) (m = 1), which contains the union

of the sets H11 and Hb and where the sector inequality (7)

holds. Note also that the ERA is not fully included in Hb, thus

exploiting the generalization of the local sector condition of

Lemma 2 (see Remark 2).

Example 2 Consider the system defined by f(x) =
[

2x31 + x21x2 − 6x1x
2
2 + 5x(2)3 0

]⊤
and G(x) = [0 1]

⊤
.

Without saturation, [16, Example 1] shows that the control law

u = −(d21+4)x31+(2d21+4)x21x2+(3−2
√
15d1+4d21)x1x

2
2−

(10−4
√
15d1+8d21)x

3
2, with d1 =

√
15/10 globally stabilizes

the origin of the system. With saturation limits u = −1,

u = 1 the closed-loop system presents an unstable limit cycle.

To estimate the region of attraction of the origin, we solve

the inequalities of Theorem 1 with SOS relaxations, similar

to the relaxations carried out in Propositions 1 and 2. With
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Fig. 2: Closed-loop trajectories for Example 1. Trajectories

converging to the origin are depicted in blue and diverging

trajectories in red. On the left we have the trajectories for

the unsaturated system with a rational state feedback that

locally optimize the L2 gain. On the right the trajectories of

the saturated feedback. The dashed black lines delimit the set

H11, that is, the set where the input lies within the saturation

limits. The dash-dotted green lines delimit the set Hb, where

the function h(x) is within the saturation bounds.
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Fig. 3: Trajectories for Example 2 are indicated in green.

The dashed blue lines indicate the boundary of the set

H11 = {x | u ≤ u(x) ≤ u}, namely the set of control values

within the saturation bounds. The dashed red lines indicate

the boundary of the set Hb(u, h) := {x | u ≤ h(x) ≤ u}
The figure on the right highlights the sets (5) in H1 =
H11 ∪H21 ∪H31 with H11 in yellow and H21, H31 in green.

The red arrow in this figure indicates that the largest level set

of the LF within H1 includes points in the green areas.

the computed V and h, Figure 3 illustrates the obtained RA

(solid black line) and the set H. For the obtained function h,

the set Hb (see Remark 2) corresponds to the area between

the dashed red lines. The largest level set of the computed

Lyapunov function within the set Hb is given by the black

dashed line.
Example 3 [Cart and Pendulum] We consider the cart and

pendulum system given in [3, eq. (1)-(2), (5)]. We consider
u = Vin, w = −Tfric and Ffric = 0 and set state variables

as x1 = x; x2 = θ, x3 = ẋ, and x4 = θ̇ (x is the cart position
and θ the pendulum position). By using the approximations
sin(x2) ≈ x2 and cos(x2) ≈ 1 we obtain model (1) with

f(x)=







x3

x4

M̄−1

[

mLx2x
2

4 − c2x3

mgLx2

]






;G=







0
0

M̄−1

[

c1
0

]






;

Gw =







0
0

M̄−1

[

0
1

]






with M̄ =

[

Mt mL
mL Jm

]

.

the parameters are L = 0.32, m = 0.231 Mt = 1.142,

Jm = 0.03153, c1 = 1.3290, c2 = 5.561. The input saturation

limits are −12V , +12V . We have designed a control law
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Fig. 4: Trajectories of the positions, angular positions and the

corresponding control signals for Example 3. Two simulations

starting in the same initial condition are depicted: for a state-

feedback computed using standard linear saturating systems

design (dashed red line) and a rational state feedback law

obtained using Proposition 2 (solid blue line).

following Algorithm 1 applied to Proposition 2 and another

control law for the linearized system with input saturations

using the local sector conditions of [25, Lemma 1.6]. We

simulate trajectories starting from the initial condition x =
[

0 −0.7225 0 0
]

(only the initial angular positions is

not zero) and the trajectory for variable θ as well as the

control laws are presented in Figure 4. The rational control

obtained with Proposition 2 gives a faster convergence and

smaller overshoot for variable θ for very similar time interval

in saturation. Note that the control does not converge to

zero during the simulation time as the other variables (x in

particular) present dynamics slower than for θ.

Example 4 [Attitude Control of a Rigid Body] Consider the

model for the attitude of a rigid body [24, eqs. (330), (358)]

studied in [20, Section V]

{

ψ̇ = 1

2

(

ω − ω × ψ + (ω⊤ψ)ψ
)

Jω̇ + ω × Jω = sat(u)
(32)

where ω ∈ R
3 is the angular velocity described a body frame,

ρ ∈ R
3 is the Rodrigues parameter vector and u ∈ R

3

is the control torque. The matrix J ∈ R
3×3 represents the

inertia matrix described in the body frame. We use J =
diag(

[

4 2 1
]

). In this example we consider that the three

control inputs signals with bounds ui = −10, ui = 10.

Using an initial quadratic LF obtained for the linearized sys-

tem, we increase the value of parameter ρ for the constraints

of Propositions 1 and 2 by alternating the search between the

LF and control parameters, and the multipliers. A quadratic

function and parameters S and R in the control functions of

degree zero result in a linear control law, obtained for the

nonlinear system while taking into account the saturations.
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Fig. 5: Angular positions and the control signals for Example

4. Two simulations starting in the same initial condition are

depicted Proposition 1 (solid lines) Proposition 2 (dashed

lines). The variables correspond to the lines starting at

φ1(0) = −2, φ2(0) = 1, φ3(0) = 0.

The simulation results for the three angular position as well

as the three input signals are illustrated in Figure 5 for an ini-

tial condition starting at x0 =
[

−2 1 0 −1 2 −3
]

.

Even if the saturation occurs for a short period, this initial

condition could not be scaled by a factor larger than 1.3
preserving convergence to the origin. This example shows that

the SOSP strategies presented in the paper can handle a system

of degree 3 with 6 state variables.

VII. CONCLUSION

We have presented conditions for the stabilization of satu-

rating nonlinear input-affine systems. To cope with (possibly

asymmetric) magnitude saturation, we have introduced the

nonlinear extension of the generalised sector condition pre-

sented in [9], [26]. For the class of polynomial nonlinear sys-

tems, we obtain SOS programs allowing for the computation of

polynomial or rational control laws. Four numerical examples

illustrate the proposed analysis and feedback strategies and the

numerical method to compute the controller parameters.
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