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Abstract

This paper studies competitive allocations under adverse selection. We first provide
a general necessary and sufficient condition for entry on an inactive market to be
unprofitable. We then use this result to characterize, for an active market, a unique
budget-balanced allocation implemented by a market tariff making additional trades
with an entrant unprofitable. Motivated by the recursive structure of this allocation,
we finally show that it emerges as the essentially unique equilibrium outcome of a
discriminatory ascending auction. These results yield sharp predictions for competitive
nonexclusive markets.
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1 Introduction

It has long been recognized that markets subject to adverse selection can unravel to a

no-trade equilibrium. As shown by Akerlof (1970), this can occur even when trade would

always be mutually beneficial if the quality of the goods traded were commonly known.

This failure of the price mechanism has been recently invoked to explain phenomena such

as insurance rejections (Hendren (2013)) and to justify public intervention in the presence

of liquidity or credit freezes (Philippon and Skreta (2012), Tirole (2012)). In this paper,

we build on this insight to provide a new characterization of competitive allocations under

adverse selection, based on the standard premise that a perfectly competitive market should

be immune to entry.

To this end, we consider a general adverse-selection economy in which little structure is

imposed on the buyers’ preferences. This setting encompasses insurance economies as well

as standard trade environments, with or without wealth effects. The main restrictions are

a single-crossing condition and a monotonicity condition on costs implying weak adverse

selection, in the sense that buyer types who are more willing to make larger purchases are

on average more costly to serve. The corresponding expected costs turn out to play a key

role in the description of market outcomes, as in Akerlof (1970).

In this context, entry-proofness provides a tractable and detail-free alternative to the

strategic approaches adopted in the literature. We apply this requirement to prove two

theorems that respectively pertain to active and inactive markets, depending on whether or

not trade opportunities are available on the market. At the core of our approach is a unified

treatment of these two cases.

Theorem 1 states a necessary and sufficient condition for entry to be unprofitable on

an inactive market, which generalizes the market-unraveling condition first formulated by

Akerlof (1970) and recently extended by Hendren (2013) to Rothschild and Stiglitz (1976)

insurance economies. The intuition is as follows. Under weak adverse selection, the cost of

selling a unit of the good depends on the buyer types who purchase it; on average, the cost is

the upper-tail conditional expectation of unit costs, starting from the first type who purchases

this unit. Our entry-proofness (EP) condition then simply states that the willingness-to-pay

of each type at the no-trade point should not exceed this cost. The necessity of Condition

EP for entry-proofness is straightforward and only requires the use of single-contract offers.

By contrast, its sufficiency must account for an entrant’s ability to offer a menu of contracts;

we identify a weak but tight assumption on the buyers’ preferences under which entry with

a menu of contracts is unprofitable as soon as entry with a single contract is unprofitable.
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We next turn to active markets. Rothschild and Stiglitz (1976) have characterized the

set of exclusive contracts preventing an entrant from making a profit; we perform a similar

analysis for the case of nonexclusive contracts, whereby each buyer can privately trade with

several sellers.

It should be stressed from the outset that we assume trade to be nonanonymous: that is,

each seller can perfectly monitor all the trades each buyer makes with him, although he can

monitor none of the trades this buyer makes with his competitors.1 Therefore, the notion of

nonexclusivity we use in this paper differs from the traditional one, akin to anonymity; in

particular, nonanonymity enables price discrimination.

However, price discrimination is harder under nonexclusivity than under exclusivity as

a seller does not observe a buyer’s aggregate trade: for instance, a buyer may purchase a

large quantity by splitting it between several sellers. Under weak adverse selection, this is of

concern to the sellers, because buyer types with higher demands are on average more costly

to serve. One way to hedge against this risk is for each seller to post a convex tariff that

prices successive marginal quantities at an increasing rate.

Our analysis initially abstracts from the determination of individual tariffs and directly

imposes three properties on the market tariff obtained from them by aggregation. First, we

require that the market tariff be convex, which is true if each seller posts a convex tariff.

Second, we require that the market tariff implement a budget-feasible allocation, which must

be the case if each seller on the market is to earn a nonnegative expected profit. Third, we

require that the market tariff be entry-proof, which is our stability condition for market

outcomes. Under nonexclusive contracting, this means that no entrant can make a profit by

offering a menu of contracts, given that each buyer is free to combine a contract offered by

the entrant with a trade along the market tariff.

The convexity assumption is analytically convenient because it allows us to use Theorem

1 to characterize entry-proof markets tariffs. The basic idea is to factor all the trade

opportunities available on the market into the buyers’ preferences. Indeed, from an entrant’s

viewpoint, everything happens as if he were facing an inactive market on which the buyers’

preferences for additional trades are represented by indirect utility functions incorporating

their optimal trades along the market tariff. The key point is that, when this tariff is convex,

these indirect utility functions inherit single-crossing from the primitive utility functions.

This, in turn, implies that the entrant faces weak adverse selection, exactly like on an

inactive market. As we argue in Section 4, the convexity assumption can nevertheless be

1For instance, an insurance company selling life-insurance or annuity contracts can perfectly identify each
of its customers, and thus is fully aware of all of their mutual contractual obligations; it does not, however,
observe the contracts its customers may enter into with other companies.
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significantly relaxed without affecting our results.

Theorem 2 singles out a unique budget-feasible allocation implemented by an entry-proof

convex market tariff, and an essentially unique such tariff; existence obtains under very

general conditions. This market tariff is typically nonlinear, reflecting the nonanonymity of

trade. Specifically, each layer along this tariff is priced at the expected cost of serving the

types who optimally choose to trade it, so that the corresponding expected profit is zero;

under weak adverse selection, this cost is equal to the upper-tail conditional expectation

of unit costs, starting from the marginal type. When the buyers’ preferences are linear,

subject to a capacity constraint, these properties lead to Akerlof (1970) pricing and to the

competitive-equilibrium allocation that maximizes the gains from trade. When the buyers’

preferences are strictly convex, these properties lead to a marginal version of Akerlof (1970)

pricing and to an allocation generalizing those highlighted, in specific contexts, by Jaynes

(1978), Hellwig (1988), and Glosten (1994). We will accordingly refer to the JHG allocation

and to the JHG tariff.

A noticeable feature of the JHG allocation is its recursive structure. On the first layer,

the price is the expected cost of serving all types, and the quantity supplied is exactly

the demand of the first type at this price. Indeed, supplying less would inefficiently ration

demand, while supplying more would entail losses on the excess quantity. On the second

layer, the first type is no longer active, and the same reasoning applies: the price is the

expected cost of serving all types except the first, and the quantity supplied is exactly the

residual demand of the second type at this price—and so on. Overall, the quantity supplied

on each layer matches the residual demand of the marginal type, at a price equal to expected

cost. In short, the JHG allocation is competitive.

The existence, uniqueness, and competitive features of the JHG allocation are arguably

strong arguments in favor of using entry-proofness as a conceptual tool for predicting the

outcomes of nonexclusive markets under adverse selection. However, this approach remains

silent on how to implement this allocation in a decentralized way, because it does not explain

how the JHG tariff comes into existence. It is thus natural to ask whether the JHG allocation

and the JHG tariff can be derived as the equilibrium outcome of a game in which strategic

sellers compete to serve the buyers’ demand.

In this respect, the recursive structure of the JHG allocation suggests a setting in which

competition takes place sequentially, layer by layer. To validate this intuition, we model

the strategic interactions between sellers as a discriminatory ascending auction. Prices

are quoted sequentially, in increasing order, and according to a discrete price grid with

a minimum tick size. Each time a new price is quoted, each seller publicly announces the
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maximum quantity he stands ready to trade with each buyer at this price. Once this process

is completed, each buyer selects the quantity she wishes to purchase from each seller at each

price, according to her type. As it is optimal to take up the best price offers first, each buyer

effectively faces a convex market tariff.

These simple trading rules define a standard extensive-form game with almost-perfect

information. Our main results are encapsulated in two theorems. Theorem 3 exhibits a

simple equilibrium in which, at each price and in each subgame, the sellers equally share the

profitable residual demand. The resulting aggregate equilibrium allocation converges to the

JHG allocation when the tick size goes to zero. Theorem 4 then reinforces this result by

showing that, modulo a natural refinement, any sequence of aggregate equilibrium allocations

converges to the JHG allocation when the tick size goes to zero. Thus the JHG allocation

emerges as the essentially unique outcome of competition when each seller can quickly react

to his competitors’ offers. These positive results invite us to reconsider the role of sequential

trading for financial and insurance markets.

Contributions to the Literature

Theorem 1 generalizes results obtained by Akerlof (1970), Glosten (1994), and Mailath and

Nöldeke (2008) in the quasilinear case, and by Hendren (2013) in the case of a Rothschild

and Stiglitz (1976) economy. Our contribution is to state a general necessary and sufficient

condition for an inactive market to be entry-proof, to point out a technical condition on

preferences that has been so far overlooked, and to provide a comprehensive yet elementary

proof that may be useful for pedagogical purposes.

The unique allocation that survives entry in a nonexclusive market on which supply is

described by a convex tariff corresponds to the allocations characterized by Akerlof (1970)

in the case of an indivisible good, and by Jaynes (1978), Hellwig (1988), and Glosten (1994)

in the case of a divisible good. Beyond extending these results to general preferences, our

contribution is to apply our results on inactive markets to active markets, exploiting the

idea that a nonexclusive tariff is entry-proof if and only if no additional trades are both

incentive-feasible and profitable. This approach allows for a unified treatment of active and

inactive markets, and of linear and strictly convex preferences.

Entry-proofness in exclusive markets has been well understood since Rothschild and

Stiglitz (1976). The unique candidate is the Riley (1979) allocation, characterized by the

absence of cross-subsidies between types and downward-binding local incentive-compatibility

constraints. However, this allocation generally fails to be entry-proof when there are many

types (Riley (1985)). The main difference with the nonexclusive markets studied in this
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paper is that the buyers’ indirect utility functions induced by an exclusive tariff do not

satisfy single-crossing, so that an entrant can engage in cream-skimming without worrying

about adverse selection. By contrast, single-crossing is satisfied under nonexclusivity as long

as the market tariff is convex; as a result, cream-skimming is impossible, and this explains

why an entry-proof market tariff always exists.

Despite the renewed interest for nonexclusive markets under adverse selection, there is

no consensus in the literature about the corresponding competitive outcomes. Early work

was based on the idea that nonexclusivity is best represented by assuming linear pricing.

Applying this idea in the context of insurance, Pauly (1974) generalizes Akerlof (1970) by

showing that the equilibrium price of coverage is equal to the average riskiness of consumers,

weighted by their demands for coverage.2 Linear pricing follows from the usual argument

that consumers can avoid price discrimination by trading many small contracts with different

sellers (Chiappori (2000)). Notice that this requires a form of anonymity, which creates

difficulties of its own; for instance, Bisin and Gottardi (1999, 2003) argue that the existence

of a competitive equilibrium may require a minimal degree of nonlinear pricing in the form

of bid-ask spreads or entry fees.

An alternative route towards the characterization of equilibrium trades has been recently

taken by considering competitive-screening games in which sellers simultaneously offer menus

of contracts, or nonlinear tariffs, from which a buyer is free to choose according to her private

information (Peters (2001), Martimort and Stole (2002)). One of the goals of this oligopolistic

approach was to build a strategic model of a discriminatory limit-order book in which market

makers place limit orders that are executed in order of price priority.

In this spirit, Biais, Martimort, and Rochet (2000) construct an equilibrium in convex

tariffs in a setting where the buyer has strictly convex preferences and the distribution of

types is continuous. The equilibrium market tariff is not entry-proof, but it converges to

the JHG tariff when the number of sellers grows large. This sounds promising, but Attar,

Mariotti, and Salanié (2014, 2019) argue that discretizing the distribution of types leads to

a completely different picture: the unique candidate-equilibrium allocation is now the JHG

allocation, but it can be supported in equilibrium only in the extreme case where it features

a single layer.3 These discontinuity and existence problems make the equilibrium predictions

of competitive-screening games somewhat fragile, as they ultimately hinge on fine modeling

details.4 By contrast, focusing on entry-proof market tariffs leads to a sharp and robust

2This formula is popular in the annuity literature (Sheshinski (2008), Hosseini (2015), Rothschild (2015)).
3As shown by Attar, Mariotti, and Salanié (2011), this special case notably arises when the buyer’s

preferences are linear, subject to a capacity constraint.
4The findings in Back and Baruch (2013) and Biais, Martimort, and Rochet (2013) illustrate that the
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prediction for nonexclusive competitive markets, which may be seen as a natural extension

of Akerlof (1970) to the case of a divisible good and general preferences.

The recursive structure of the JHG allocation has motivated us to design an ascending

discriminatory auction in which the market tariff is built sequentially. This contrasts with

competitive-screening games, which can be interpreted as discriminatory auctions in which

sellers simultaneously bid at all prices. The advantage of a sequential auction lies in its

transparency, a point emphasized in other contexts by Milgrom (2000) and Ausubel (2004):

each seller can directly react at each stage of the auctioning phase to the past supply decisions

of his competitors. This allows for a richer set of punishments than in competitive-screening

games—in which deviations can only be punished through the buyer’s decisions—and this

guarantees the existence of an equilibrium. Our contribution is to provide a fully strategic

foundation for the JHG allocation, a result that has so far eluded the literature.5

An alternative derivation of the JHG allocation is provided by Beaudry and Poitevin

(1995), who study a sequential game in which a risk-averse entrepreneur whose project can be

of low or high riskiness can repeatedly solicit financing from successive cohorts of uninformed

lenders, thereby signaling the type of her project. In comparison, a realistic feature of our

auction format is that the set of sellers is fixed throughout the auctioning phase, so that each

seller must anticipate the future consequences of his supply decisions at any price. Moreover,

signaling plays no role in our analysis, whereas it requires an appropriate selection of lenders’

beliefs off the equilibrium path in Beaudry and Poitevin (1995).

The paper is organized as follows. Section 2 describes the model. Section 3 analyzes

inactive markets. Section 4 extends the analysis to active markets. Section 5 studies the

discriminatory ascending auction. Section 6 concludes. The main appendix provides the

proofs of Theorems 1–4. The online appendices A–F collect supplementary material.

2 The Economy

Consider a buyer (she) endowed with private information, and whose type can take finitely

many values i = 1, . . . , I with strictly positive probabilities mi. Type i’s preferences are

represented by a utility function ui(q, t) that is continuous and weakly quasiconcave in (q, t)

and strictly decreasing in t, with the interpretation that q is the nonnegative quantity of a

equilibrium constructed by Biais, Martimort, and Rochet (2000) only exists under rather stringent joint
restrictions on the cost function and the distribution of types.

5To be fair, Attar, Mariotti, and Salanié (2019) show that, as the number K of sellers grows large, a
standard competitive-screening game admits an ε-equilibrium, with ε of the order of 1/K2, that supports
the JHG allocation. The results in this paper are significantly stronger in that they rely neither on a notion
of approximate equilibrium nor on the consideration of a fictitious competitive limit.
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divisible good she purchases and t is the payment she makes in return. Types are ordered

according to the weak single-crossing condition (Milgrom and Shannon (1994)), which states

that higher types are at least as willing to increase their purchases as lower types are:

For all i < j, q < q′, t, and t′, ui(q, t) ≤ (<)ui(q
′, t′) implies uj(q, t) ≤ (<)uj(q

′, t′).

For future reference, we also state the slightly stronger, strict single-crossing condition:

For all i < j, q < q′, t, and t′, ui(q, t) ≤ ui(q
′, t′) implies uj(q, t) < uj(q

′, t′).

To define marginal rates of substitution without assuming differentiability, let τi(q, t) be the

supremum of the set of prices p such that

ui(q, t) < max{ui(q + q′, t+ pq′) : q′ ≥ 0}.

Thus τi(q, t) is the slope of type i’s indifference curve at the right of (q, t). Quasiconcavity

ensures that τi(q, t) is finite, except possibly when q = 0, and that it is nonincreasing along

an indifference curve of type i. We additionally make the intuitive assumption that, in the

absence of transfers, a positive endowment of q reduces this marginal rate of substitution.

Assumption 1 For all i and q > 0, τi(q, 0) ≤ τi(0, 0).

Our assumptions on the buyer’s preferences hold in a Rothschild and Stiglitz (1976)

insurance economy, which is the case studied by Hendren (2013); then i indexes the buyer’s

riskiness, q is the amount of coverage she purchases, and t is the premium she pays in return.

As we illustrate in Appendix C, they also hold under many alternative specifications, allowing

for multiple loss levels or various forms of nonexpected utility. Finally, they encompass a

broad variety of other applications, such as financial and labor markets. It should be noted

that we do not require strict single-crossing nor strict convexity of preferences. This choice is

not motivated by an idle desire for generality, but is meant to pave the way for the analysis

of active markets provided in Section 4.

Each seller (he) is risk-neutral and thus maximizes his expected profit. All sellers have

access to the same linear technology. We denote by ci > 0 the unit cost of serving type i,

and by ci the corresponding upper-tail conditional expectation of unit costs,

ci ≡ E[cj |j ≥ i] =

∑
j≥imjcj∑
j≥imj

.

Adverse selection occurs if the unit cost ci is nondecreasing in i. Here, and unless indicated

otherwise, we make the slightly weaker assumption that ci is nondecreasing in i. This weak

adverse-selection condition is exactly equivalent to

For all j ≤ i, cj ≤ ci. (1)
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A contract between a seller and the buyer specifies a nonnegative quantity and a transfer to

be made in return by the buyer.

Our analysis can be extended to the case of multiple buyers by assuming in addition that

trade is nonanonymous, contracting is bilateral, and buyers’ types are i.i.d. Nonanonymity

of trade enables price discrimination by preventing a buyer from making concealed repeat

purchases from the same seller. Contracting is bilateral if trade between a seller and a buyer

is only contingent on the information reported by the buyer to the seller. Together with the

linearity of costs, the independence of types across buyers then implies that the interactions

between a seller and each of his potential customers can be studied separately. Finally, if the

buyers’ types are identically distributed, we can assume, using a symmetry argument, that

each seller offers the same contracts to each buyer and that each type of each buyer facing

the same choices behaves in the same way. In this way, the multiple-buyer case reduces to a

replication of the single-buyer case.

3 Entry-Proofness in Inactive Markets

In this section, we describe the circumstances under which private information impedes trade

altogether. We say that a market is inactive if only the null contract (0, 0) is available, and

we say that an inactive market is entry-proof if, for any menu of contracts offered by an

entrant, the buyer has a best response such that the entrant earns at most zero expected profit.

Our goal is to characterize the inactive markets that are entry-proof.

Let us first analyze the simple case where the entrant offers a single contract, designed

so as to attract some type i. To do so, the entrant can choose some unit price p slightly

below τi(0, 0). Then, by definition of τi(0, 0), there exists a quantity q that strictly attracts

type i at this price, that is, ui(q, pq) > ui(0, 0). As types are ordered according to the weak

single-crossing condition, we also have uj(q, pq) > uj(0, 0) for all j > i. Thus any type j ≥ i

is strictly attracted by the offer (q, pq), and the entrant bears an expected unit cost ci when

trading with these types. Finally, some other types j < i may also be attracted, but the

weak adverse-selection condition (1) ensures that this can only reduce the entrant’s expected

unit cost.6 This simple reasoning shows that the following condition is necessary for entry

to be unprofitable.

Condition EP For each i, τi(0, 0) ≤ ci.

Notice that Condition EP does not rule out gains from trade, in the usual first-best sense

6Alternatively, if we assume strict single-crossing, then we can design (q, pq) so that types j < i are not
attracted; as a result, condition (1) is no longer needed for this argument.
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of the term; that is, it may well be that τi(0, 0) > ci for some i. The following theorem, a

formal proof of which is provided in the main appendix, states that this necessary condition

is also sufficient, even when menus of contracts are allowed.

Theorem 1 An inactive market is entry-proof if and only if Condition EP is satisfied.

The key to the proof lies in the following remark. Suppose the entrant offers an arbitrary

menu of contracts. Under weak single-crossing, a standard monotone-comparative-statics

argument implies that the buyer has a best response with nondecreasing quantities; that is,

the entrant ends up trading (qi, ti) with every type i, with qi ≤ qj for all i < j. Then his

expected profit is ∑
i

mi(ti − ciqi),

which, using a summation by parts in the spirit of Wilson (1993), we can rewrite as

∑
i

(∑
j≥i

mj

)
[ti − ti−1 − ci(qi − qi−1)], (2)

where (q0, t0) ≡ (0, 0). Because qi ≥ qi−1 and type i is willing to trade (qi− qi−1, ti− ti−1) in

addition to (qi−1, ti−1), each bracketed term in (2) is at most

[τi(qi−1, ti−1)− ci](qi − qi−1)

and thus is nonpositive if the marginal rate of substitution is lower than the upper-tail

conditional expectation of unit costs,

τi(qi−1, ti−1) ≤ ci.

To show that this holds, recall that, by construction, type i − 1 prefers her optimal choice

(qi−1, ti−1) to the no-trade contract (0, 0). Under weak single-crossing, the same property is

satisfied by type i, and thus (qi−1, ti−1) lies in the nonnegative orthant, below the indifference

curve of type i that goes through the origin. (That we can focus on menus with nonnegative

transfers is established in the main appendix.) As illustrated in Figure 1, we can use, in turn,

the concavity of the indifference curve of type i, then Assumption 1, and finally Condition

EP to obtain the desired inequality:

τi(qi−1, ti−1) ≤ τi(qi, 0) ≤ τi(0, 0) ≤ ci. (3)

This concludes the proof of Theorem 1.
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τi(qi−1,ti−1)

Figure 1: A graphical illustration of (3).

A noticeable feature of this proof is that it does not consider each contract (qi, ti) in

isolation. Instead, the key role is played by layers of the form (qi − qi−1, ti − ti−1). Under

weak single-crossing, the ith layer can be thought of as traded by all types j ≥ i, and

thus has expected unit cost ci. Condition EP then states that, at this price, type i is not

strictly willing to trade, so that each layer must yield a nonpositive expected profit. By

contrast, some of the contracts proposed in a menu may yield positive profits. For instance,

although the condition t1 ≤ c1q1 ensures that the expected profit on the first layer (q1, t1) is

nonpositive, it may well be that t1 > c1q1.

The assumptions of Theorem 1 can be weakened in three directions. First, the finiteness

of the type distribution is not crucial: we show in Appendix B that the result holds for an

arbitrary type distribution with bounded support over the real line. Second, the convexity

of preferences can be relaxed if we reinforce Assumption 1 into τi(q, t) ≤ τi(0, 0) for all (q, t)

such that t ≥ 0 and ui(q, t) ≥ ui(0, 0). Third, the weak adverse-selection condition (1) is not

needed if we assume that types are ordered according to the strict single-crossing condition.7

Appendix D illustrates this point for a variant of Leland and Pyle’s (1977) model of equity

issuance in which an entrepreneur faces a background risk.

By contrast, the weak single-crossing condition and the seemingly innocuous Assumption

1 are tight. The key role of the weak single-crossing condition in the proof of Theorem 1 is to

ensure that the quantity profile chosen by the buyer in the entrant’s menu is nondecreasing

in her type. As for Assumption 1, Example 1 in Appendix E shows that, in its absence,

7See Footnotes 6 and 24 for the only changes needed in the proof.
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entry with a menu of contracts can be profitable even though Condition EP is satisfied—the

intuition being that type i’s marginal rate of substitution can then take values higher than

τi(0, 0) in the relevant area illustrated in Figure 1.

Condition EP ensures that there exists a best response for the buyer such that entry on

an inactive market is unprofitable. However, the literature often focuses on characterizing

market breakdown, defined as a situation in which any menu of contracts that strictly attracts

at least some type yields a strictly negative expected profit, even if the buyer’s best response

is most favorable to the entrant. Condition EP clearly remains necessary for this stronger

concept. We now argue that, under slightly stronger conditions on preferences, it remains

also sufficient. The proof of the following result is provided in the main appendix, and

Appendix E provides two examples showing that the additional conditions are tight.

Corollary 1 Suppose that the buyer’s preferences are strictly convex and that types are

ordered according to the strict single-crossing condition. Then there is market breakdown if

and only if Condition EP is satisfied.

Mailath and Nöldeke (2008) obtain a related result for an economy in which the buyer

has quadratic quasilinear preferences, as in Glosten (1989), Biais, Martimort, and Rochet

(2000, 2013), and Back and Baruch (2013). Hendren (2013) studies a Rothschild and Stiglitz

(1976) insurance economy, and his Theorem 1 is the analogue of Corollary 1 in this particular

setting. As emphasized by the author, an implication of Condition EP is that the highest-risk

type I must not be willing to purchase coverage at the actuarially fair rate cI . Given that

her preferences have an expected-utility representation, this is possible only if type I incurs

a loss with certainty. In that case, type I’s preferences are no longer strictly convex, and the

above result becomes that all types except perhaps type I must be excluded from trade, as

in Akerlof’s (1970) classic example of market breakdown.

4 Entry-Proofness in Active Markets

We now turn to active markets, on which nonnull contracts are available. In line with

Rothschild and Stiglitz (1976), our goal is to characterize when entry in such a market is

unprofitable, given the contracts available; in contrast with them, we suppose that the buyer

can trade with several sellers. That is, trade is nonexclusive.

To this end, the proper object of study is the market tariff, which describes the frontier

of the set of aggregate trades that can be achieved by trading on the market. Hence the

market tariff specifies, for any nonnegative q, the minimum aggregate transfer T (q) required
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to purchase an aggregate quantity q, with T (q) ≡ ∞ if this is impossible; notice that we

obviously have T (0) = 0.

The key restriction we impose in this section is that the market tariff be convex. A case

in point is when each seller k posts a convex tariff tk such that tk(0) = 0. As pointed out

in the Introduction, one reason to do so is to hedge against the risk of attracting high-cost

types buying large quantities.8 Then the market tariff T (q) ≡ min{
∑

k t
k(qk) :

∑
k q

k = q},
which incorporates the possibility of trading with several sellers on the market, is indeed a

convex function of the aggregate quantity q.9

We throughout assume that the domain of the market tariff T is a compact interval with

lower bound 0. Every type i selects qi so as to maximize ui(q, T (q)). We then say that the

allocation (qi, T (qi))
I
i=1 is implemented by the tariff T ; this allocation is budget-feasible if∑

i

mi[T (qi)− ciqi] ≥ 0. (4)

We assume that types are ordered according to the strict single-crossing condition, so that

the optimal quantities qi are nondecreasing in i.

Now, suppose an entrant can propose additional trades to the buyer, in the form of a

menu of contracts. We say that the tariff T is entry-proof if, for any menu of contracts

offered by an entrant, the buyer has a best response such that the entrant earns at most zero

expected profit, given that the buyer is free to combine any contract offered by the entrant

with a trade along the tariff T . The last clause of this definition is crucial, and captures

the nonexclusivity of trade. Our goal is to characterize the set of budget-feasible allocations

that are implemented by entry-proof convex market tariffs.

Let us first observe that, from the entrant’s viewpoint, everything happens as if he were

facing modified types with indirect utility functions

uTi (q′, t′) ≡ max{ui(q + q′, T (q) + t′) : q}, (5)

reflecting that the buyer is free to combine any contract (q′, t′) offered by the entrant with

a trade (q, T (q)) along the tariff T .10 In particular, uTi (0, 0) represents type i’s utility when

she only trades on the market and not with the entrant, and thus defines the relevant

individual-rationality constraint for type i from the entrant’s viewpoint.

8In the literature, convex tariffs are often used to model collections of limit orders placed by strategic
market makers and executed in order of price priority by an informed insider (Biais, Martimort, and Rochet
(2000, 2013), Back and Baruch (2013), Attar, Mariotti, and Salanié (2019), Baruch and Glosten (2019)).

9This is because T is the infimal convolution of the convex tariffs tk (Rockafellar (1970, Theorem 5.4)).
10Clearly, q in (5) should belong to the domain of T . The admissible set for q may also vary continuously

in (q′, t′), as, for instance, when the consumption set of the buyer is bounded. To simplify notation, we do
not explicitly mention such admissibility constraints in the maximization problems considered in this section.
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Because the tariff T is continuous over a compact domain, the maximum in (5) is attained

and uTi (q′, t′) is continuous in (q′, t′).11 Moreover, because the tariff T is convex and the

primitive utility functions ui(q, t) are weakly quasiconcave in (q, t) and strictly decreasing

in t, the indirect utility functions uTi (q′, t′) are weakly quasiconcave in (q′, t′) and strictly

decreasing in t′. As a result, we can define the marginal rates of substitution τTi (q′, t′)

associated to them exactly as we did in Section 2 for the primitive utility functions. Finally,

because the primitive types are ordered according to the strict single-crossing condition, the

modified types are ordered according to the weak single-crossing condition.12

Thus, to apply Theorem 1, there only remains to ensure that Assumption 1 holds for the

indirect marginal rates of substitution τTi (q′, 0). A convenient way to proceed is to require

that each type’s family of primitive indifference curves satisfy a slightly stronger fanning-out

condition than in Assumption 1.

Assumption 2 For all i and t, τi(q, t) is nonincreasing in q.

That is, a higher quantity traded reduces the buyer’s willingness-to-pay. As we illustrate

in Appendix C, this assumption is satisfied by a large variety of preference relations. The

following result is established in Appendix A.

Lemma 1 If Assumption 2 holds for the primitive marginal rates of substitution τi(q, t),

then Assumption 1 holds for the indirect marginal rates of substitution τTi (q′, 0).

We can now deduce from Theorem 1 that the tariff T is entry-proof if and only if

For each i, τTi (0, 0) ≤ ci. (6)

To see what this abstract condition entails for the tariff T and the allocation (qi, T (qi))
I
i=1

it implements, recall from (5) that τTi (0, 0) is the supremum of the set of prices p such that

ui(qi, T (qi)) = uTi (0, 0) < max{uTi (q′, pq′) : q′} = max{ui(q + q′, T (q) + pq′) : q, q′}.

Thus, according to (6), we have

For each i, ui(qi, T (qi)) ≥ max{ui(q + q′, T (q) + ciq
′) : q, q′}. (7)

Fixing q0 ≡ 0 and applying (7) to q ∈ [qi−1, qi] and q′ = qi − q yields

For all i and q ∈ [qi−1, qi], T (qi) ≤ T (q) + ci(qi − q). (8)

11This follows from Berge’s maximum theorem (Aliprantis and Border (2006, Theorem 17.31)).
12This follows from Attar, Mariotti, and Salanié (2019, Supplementary Appendix, Proof of Lemma 1).
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In particular, for q = qi−1, we have

T (qi) ≤ T (qi−1) + ci(qi − qi−1). (9)

Now, rewriting the expected profit (4) as in (2) and imposing that the allocation (qi, T (qi))
I
i=1

be budget-feasible, we have

∑
i

(∑
j≥i

mj

)
[T (qi)− T (qi−1)− ci(qi − qi−1)] ≥ 0.

The only possibility is thus that the inequalities (9) hold as equalities,

For each i, T (qi) = T (qi−1) + ci(qi − qi−1), (10)

which, in turn, implies, according to (7),

For each i, ui(qi, T (qi)) = max{ui(qi−1 + q′, T (qi−1) + ciq
′) : q′}. (11)

Finally, because T is convex and satisfies both (8) and (10), it must be that T is affine with

slope ci over the interval [qi−1, qi]. The following theorem, a formal proof of which is provided

in the main appendix, summarizes this discussion and states that the necessary conditions

(10)–(11) for entry-proofness are also sufficient.

Theorem 2 An allocation (qi, T (qi))
I
i=1 is budget-feasible and is implemented by an entry-

proof convex market tariff T with domain [0, qI ] if and only if they jointly satisfy the following

recursive system:

(i) (q0, T (q0)) ≡ (0, 0).

(ii) For each i, qi − qi−1 ∈ arg max{ui(qi−1 + q′, T (qi−1) + ciq
′) : q′}.

(iii) For each i, if qi−1 < qi, then T is affine with slope ci over the interval [qi−1, qi].

In particular, any such allocation is exactly budget-balanced.

Let us first comment on each item of this result. First, it is natural to focus on tariffs

defined up to the maximum quantity qI ; one can build other entry-proof tariffs by suitably

prolonging T beyond this point, but this is in no way needed. Next, (i) is merely a convention.

Finally, (ii)–(iii) are substantial, and indicate how to recursively build a complete family of

quantities, as well as a tariff that by construction is convex, because the upper-tail conditional

expectation of unit costs is nondecreasing in the buyer’s type.13

13Thus the weak adverse-selection condition (1), which is not needed for Theorem 1 under strict single-
crossing, is essential for Theorem 2.
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Existence of an entry-proof convex market tariff obtains as soon as each maximization

problem in (ii) admits a solution. This is, for instance, ensured by the following Inada

condition, which states that demand is finite when the price is positive:

For all i, (q, t), and p > 0, arg max{ui(q + q′, t+ pq′) : q′} <∞. (12)

Therefore, under nonexclusivity, budget-feasibility and entry-proofness are not conflicting

requirements, in contrast with the pervasive nonexistence problems arising under exclusivity

(Rothschild and Stiglitz (1976)).14

Uniqueness of an entry-proof convex market tariff also follows if the solution to each

maximization problem in (ii) is unique. This is the case if the buyer’s preferences are strictly

convex. If they are only weakly convex, multiple solutions may appear if the marginal rate

of substitution of some type i equals ci over a whole interval of quantities, but this is clearly

a nongeneric phenomenon.

Theorem 2 thus characterizes an essentially unique allocation. Following Attar, Mariotti,

and Salanié (2014, 2019), we label this allocation, which was originally introduced in different

contexts by Jaynes (1978), Hellwig (1988), and Glosten (1994), the JHG allocation, and we

denote it by (q∗i , t
∗
i )
I
i=1. Similarly, the JHG tariff consists of a sequence of layers with unit

prices ci, and features an upward kink at any quantity q∗i ∈ (0, q∗I ) such that q∗i+1 > q∗i and

ci+1 > ci.
15 The JHG allocation is exactly budget-balanced, because each marginal quantity

is priced at the expected cost of serving the types who purchase it. This property can be

interpreted as a marginal version of Akerlof (1970) pricing.

The JHG allocation and the JHG tariff are illustrated in Figure 2 in the case of three

types with strictly convex preferences.

We can also apply Theorem 2 to preferences that are only weakly convex. Consider, for

instance, linear utility functions ui(q, t) ≡ viq− t, subject to a capacity constraint q ∈ [0, 1];

such linear preferences generalize those in Akerlof (1970) to a divisible good, and strict

single-crossing requires that vi be strictly increasing in i. Each problem in (ii) admits a

unique solution if vi 6= ci for all i, and we then have two possibilities:

1. If vi < ci for all i, then, according to (ii), every quantity qi must be zero. Moreover,

14Our approach does not apply when competition is exclusive. The reason is that the buyer’s indirect
utility functions no longer satisfy single-crossing: by offering a cream-skimming contract, the entrant can
attract any type i without attracting types j > i, which allows him to target type i without worrying about
adverse selection. Thus the pervasive nonexistence problems arising under exclusivity are arguably not due
to private information or entry-proofness per se, but rather to this violation of single-crossing—or, to put it
more provocatively, to the fact that the exclusive model does not capture the full extent of adverse selection.

15In line with the literature cited in Footnote 8, this sequence of layers can be interpreted as a family of
limit orders with maximum quantities q∗i − q∗i−1 and unit prices ci.
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Figure 2: The JHG allocation and the JHG tariff for I = 3.

according to (iii), the essentially unique entry-proof convex market tariff is only defined

at zero, with T (0) = 0, and the market is inactive.

2. Suppose, alternatively, that vi > ci for some i, and let i∗ be the lowest such i. Then,

according to (ii), i∗ trades up to capacity at unit price ci∗ . By strict single-crossing, so

do types i > i∗, while types i < i∗ do not trade at all. Moreover, according to (iii), the

unique entry-proof convex market tariff is linear, with T (q) = ci∗q for all q ∈ [0, 1].

Thus, generically, the JHG allocation features a single layer when the buyer’s preferences

are linear, and corresponds to competitive-equilibrium allocation in Akerlof (1970) that

maximizes the gains from trade.

The property that the modified types be ordered according to the weak single-crossing

condition has played a key role in our analysis. This property itself resulted from the

two assumptions that the primitive types be ordered according to the strict single-crossing

condition and that the market tariff be convex. Because this second assumption effectively

constraints market outcomes, it is natural to ask to which extent it can be relaxed. In this

respect, it should first be noted that convexity of the market tariff can be dispensed with

altogether if the buyer has linear preferences, as above, or if there are only two buyer types.16

Second, and more generally, the JHG allocation turns out to be the only budget-feasible

allocation implemented by an entry-proof market tariff that is first convex and then concave;

the details of the argument are provided in Appendix F. Thus entry-proofness per se selects

16This follows from Attar, Mariotti, and Salanié (2011, 2020).
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a convex tariff in a large class of admissible tariffs, allowing for quantity discounts.

5 A Discriminatory Ascending Auction

5.1 Motivation

Our results so far illustrate the power of the entry-proofness requirement, which selects a

unique candidate for aggregate market outcomes. However, by design, the approach we

have followed, which imposes properties directly on the market tariff, eschews the question

of how this tariff can be derived as the equilibrium outcome of a game in which strategic

sellers compete to serve the buyer’s demand. That is, it does not explain how the sellers’

tariffs, from which the market tariff is ultimately obtained by aggregation, are determined

in a decentralized way. This question is especially pressing under nonexclusivity, because

the buyer is free to combine contracts issued by different sellers.17

The recursive construction of the JHG allocation suggests that it be implemented via

a dynamic process whereby trade first takes place at a low price until sellers stop serving

the demand at this price, after which the price moves up, making sellers willing to supply

additional quantities—and so on, until demand vanishes. We formalize this intuition by

designing a discriminatory auction in which prices are quoted in ascending order. Each time

a new price is quoted, each seller publicly announces the maximum quantity he stands ready

to trade at this price. Once this auctioning phase is completed, the buyer decides which

quantities to purchase from which sellers in a nonexclusive way.

This auction departs from the Walrasian tâtonnement process in that, at each price,

sellers cannot withdraw the quantities they supplied at lower prices. Because the buyer in

the end optimally selects the best price offers first, everything happens from her perspective

as if the sellers were posting convex tariffs; the fact that they do so sequentially is immaterial

to her. As a consequence, the auction discovers a convex market tariff instead of converging

to a single equilibrium price.

5.2 Timing and Assumptions

We throughout postulate a discrete price grid. This is first for the sake of realism; for

instance, prices quoted on financial markets come in multiples of a minimum tick size.

Second, an ascending auction with a discrete price grid can be modeled as a standard

extensive-form game, allowing us to avoid the conceptual difficulties raised by continuous-

time games (Simon and Stinchcombe (1989)). For a tick size ∆ > 0, we thus fix a price

17Under exclusivity, if an entry-proof tariff exists, there exists an equilibrium in which each seller posts it.
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grid {0,∆, 2∆, . . .}; to simplify the analysis, we assume that the upper-tail conditional

expectations of unit costs ci all belong to that grid.

The game unfolds in two phases.

In a first phase, the auctioneer quotes the prices in the grid in ascending order. When

a new price p is quoted, K ≥ 2 sellers simultaneously and publicly announce the maximum

quantities sk(p) ≥ 0, k = 1, . . . , K, they stand ready to trade at this price. The auctioneer

then goes on to the next price p+ ∆, and this process is repeated until all prices have been

quoted.18 Once this first phase is over, we can build a market tariff by aggregating the

quantities successively supplied, as follows. Let s(p) ≡
∑

k s
k(p) be the aggregate supply at

price p and S(p) ≡
∑

p′≤p s(p) be the aggregate supply at prices lower than or equal to p.

Then the market tariff T is defined recursively by T (0) ≡ 0 and

For each q ∈ [S(p−∆), S(p)], T (q) ≡ T (S(p−∆)) + p[q − S(p−∆)].

By construction, T is convex.

In a second phase, the buyer learns her type, and decides which quantities to buy from

which sellers. In the aggregate, she purchases a quantity q in exchange for a transfer T (q).

Therefore, the price p of the last purchased unit is the left-derivative ∂−T (q) of T at q. The

revenue earned by every seller k at any inframarginal price p′ < p is p′sk(p′), because it is in

the buyer’s interest to exhaust supply at any such price. The aggregate revenues earned by

the sellers at price p are p[q− S(p−∆)]. If q < S(p), the buyer is indifferent to the manner

she allocates this revenue among the sellers; her equilibrium strategy will specify how she

breaks these ties. Overall, each seller’s expected profit is the expected sum of his revenues

at all prices, minus the expected cost of sales.

To simplify the exposition, we assume that every type i has quasilinear, strictly convex,

and differentiable preferences satisfying the Inada condition (12), so that her demand Di(p)

at any price p > 0 is single-valued, finite, and continuous and strictly decreasing in p as long

as it is strictly positive. In particular, Di(p) goes to zero when p goes to∞. Finally, to avoid

nongeneric cases, we slightly strengthen the strict single-crossing condition by requiring that

Di(p) be strictly increasing in i for each p > 0 as long as it is strictly positive.

We denote by Γ the corresponding extensive-form game with almost-perfect information.

Our equilibrium concept is pure-strategy subgame-perfect Nash equilibrium. The remainder

of this section provides our characterization results.

18We do not need to specify a stopping rule for this phase, because our game is formally well-defined even
with infinitely many prices in the grid. In practice, one may end this phase when the aggregate supply
exceeds the highest possible demand at the current price. See also Footnote 19 for an alternative timing.
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5.3 A Simple Equilibrium

In our equilibrium construction, the sellers’ supply decisions at any history in the first phase

of Γ only depend on the current price p and on the aggregate quantity Q− supplied at prices

p′ < p. We call (p,Q−) the current state of the game, which starts in state (0, 0). In any state

(p,Q−), every type j has a residual demand [Dj(p) − Q−]+, where [x]+ is the positive part

of x. Under strict single-crossing, any quantity purchased at price p by some type i is also

purchased by types j > i. Thus, in any state (p,Q−) such that ci < p ≤ ci+1, maximizing

aggregate expected profits exactly requires serving the residual demand [Di(p) − Q−]+ of

type i, which we call the profitable residual demand in state (p,Q−). The following theorem,

a formal proof of which is provided in the main appendix, exhibits an equilibrium of Γ in

which sellers equally share this profitable residual demand in any state.

Theorem 3 There exists an equilibrium of Γ in which, in any state (p,Q−),

(i) If p ≤ c1, each seller supplies a zero quantity.

(ii) If c1 < p ≤ cI , each seller supplies an equal share of the profitable residual demand.

(iii) If p > cI , each seller supplies an infinite quantity.

These strategies induce the following equilibrium outcome. As soon as the price reaches

c1 + ∆, the sellers collectively serve the demand D1(c1 + ∆) of type 1, thereby satiating her

demand; this quantity will also be purchased by types i > 1. Then, as soon as the price

reaches c2 + ∆, the sellers collectively serve the residual demand [D2(c2 + ∆)−D1(c1 + ∆)]+

of type 2, thereby satiating her demand; this quantity will also be purchased by types i > 2.

This process is repeated until the price reaches cI + ∆, at which point the sellers flood the

market by supplying an infinite quantity. It is readily checked that the resulting aggregate

equilibrium allocation converges to the JHG allocation when ∆ goes to zero. We will establish

a general version of this result in the next section.

The proof of Theorem 3 relies on three arguments.

First, the game effectively stops when the price cI +∆ is reached. This allows us to apply

the one-shot deviation property in our analysis of the sellers’ deviations.

Second, a seller may try to increase his market share 1/K in state (p,Q−) by increasing

his supply. Given his competitors’ equilibrium strategies, however, all profitable types at

price p, that is, all types i such that p > ci, can choose to ignore this deviation and carry

on trading the same quantity with each seller. Hence the deviating seller will only succeed

at selling more to unprofitable types, which lowers his expected profit at price p. Moreover,
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because unprofitable types trade more at this price, their residual demands at higher prices

will also be reduced. Evaluating the overall impact on the continuation path, we show that

such upward deviations cannot be profitable.

Third, a seller may try to reduce his supply in state (p,Q−) by an amount δ, so that some

profitable type i is now rationed in this state. Her residual demand at the next price p+ ∆

thus increases, say, for simplicity, by exactly δ. From the deviating seller’s viewpoint, the

problem is that the main part of this increase will go to his competitors. Indeed, following

their equilibrium strategies, they will collectively react by increasing their supply at price

p + ∆ by (K − 1)δ/K, leaving only δ/K to him. Hence, instead of selling δ at price p, the

deviating seller ends up selling only δ/K at price p + ∆, which is less profitable as p > ∆

and K ≥ 2. Though this intuition is simple, the proof is more involved; indeed, as demand

is elastic, the reduction in supply at price p does not translate into an equivalent increase of

the residual demand at price p+∆. Evaluating again the overall impact on the continuation

path, we show that such downward deviations cannot be profitable.

Key to this existence result is the sequentiality of the ascending auction, which allows

each seller to condition his supply at each price on his competitors’ past supply decisions.

The only constraint is subgame-perfection, but this constraint is mild as punishments take

the form of profitable increases in supply. By contrast, simultaneous models of nonexclusive

competition under adverse selection generally conclude to the nonexistence of equilibrium

when preferences are strictly convex (Attar, Mariotti, and Salanié (2014, 2019)). Indeed,

in such games, the natural candidate for equilibrium is similar to the one described in

Theorem 3: each seller supplies a share of the profitable residual demand at each price and,

therefore, is indispensable for serving that demand. The difference is that, in a simultaneous

game, a seller can reduce his supply at a given price without triggering a reaction by his

competitors. Indeed, the only available device to block such a deviation consists in the buyer

sending appropriate reports to the nondeviating sellers, translating into different choices in

the menus or tariffs they offer. Such reports, however, have to be sequentially rational from

the buyer’s viewpoint, which considerably restricts the set of available punishments. By

contrast, in our equilibrium construction for the discriminatory ascending auction, the main

thrust of punishments is borne by the sellers themselves, leaving for the buyer only the task

of breaking ties at the expense of the deviating seller.

5.4 Convergence of Equilibrium Allocations

We now show that the JHG allocation uniquely emerges as the limit of equilibrium allocations

when the tick size goes to zero, generalizing an insight of Theorem 3. To establish this result,
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we focus on equilibrium strategies for the buyer that satisfy a minimal robustness property.

Recall that, in equilibrium, every type i accepts all offers up to some price pi. At this last

price, the sellers’ aggregate supply s(pi) may exceed her residual demand, so that type i can

allocate it in different ways among the sellers; although she is indifferent between all such

allocations, her choice may matter to the sellers. We say that an equilibrium of Γ is robust

to irrelevant offers if any type i’s allocation of trades at price pi does not depend on offers

made at prices p > pi. Intuitively, we do not allow the buyer to punish a seller for deviating

at a price that is irrelevant to her as she is not willing to trade at this price. The equilibrium

constructed in Theorem 3 satisfies this refinement.19 The following theorem, a formal proof

of which is provided in the main appendix, encapsulates our convergence result.

Theorem 4 For each n ∈ N, fix an equilibrium robust to irrelevant offers of the ascending

auction Γn with tick size ∆n ≡ ∆/2n. Then the resulting sequence of aggregate equilibrium

allocations converges to the JHG allocation.

This result confirms the prominent role played by the JHG allocation under adverse

selection and nonexclusive competition. Although the proof of Theorem 4 is involved, its

logic follows from a generalized Bertrand argument that we sketch here, before turning to

technical difficulties. To this end, let us hypothetically place ourselves in the limiting case

∆ = 0. Recall that, in any state (p,Q−), type i’s residual demand is [Di(p)−Q−]+. When

the aggregate supply in this state is s, sellers collectively earn

B(p,Q−, s) ≡
∑
i

mi(p− ci) min{[Di(p)−Q−]+, s}.

Now, suppose, by way of contradiction, that there exists a state (p,Q−) reached on the

equilibrium path such that

B∗(p,Q−) ≡ max{B(p,Q−, s) : s ≥ 0} > 0. (13)

Because the highest price at which trade takes place turns out to be bounded along the

sequence of equilibria under consideration, let us, for the sake of the argument, focus on the

highest price p satisfying (13). At even higher prices, B∗ is at most zero. Notice, however,

that aggregate continuation profits beyond p must be nonnegative; otherwise, some seller

19A simple way to justify this refinement is to consider a slightly different timing for the game, as follows.
At any price p quoted by the auctioneer, the sellers announce their supplies sk(p), and the buyer immediately
reacts by choosing which quantities to purchase from which sellers. The game stops at price p if the buyer
purchases less than the aggregate supply s(p) at this price; otherwise, the auctioneer goes on to the next
price p+∆. It is easy to check that, in any perfect Bayesian equilibrium of this game, every type i optimally
selects quantities by accepting all offers below some threshold pi. At that threshold price, the game stops,
so that the allocation of trades cannot depend on offers that will never be made.

21



would find it profitable to stop making offers, without jeopardizing his profits at lower prices

as the equilibrium is robust to irrelevant offers. Because aggregate continuation profits are

an integral of aggregate expected profits B at all prices p′ > p, each lying by construction

below B∗, one must have B = B∗ = 0 at any such price.

Now, at price p, sellers collectively earn at most B∗(p,Q−) > 0. As a result, each seller

is tempted to appropriate these entire aggregate expected profits. The classical Bertrand

undercutting deviation consists in making a well-chosen offer at a price p′ < p arbitrarily

close to p at which the aggregate supply of his competitors is zero; such a price always

exists if ∆ = 0. The deviating seller is then certain to attract in priority the relevant

types, and to secure himself an expected profit at price p′ arbitrarily close to B∗(p,Q−).

Because continuation profits beyond p are zero and profits at lower prices are unaffected,

this deviation is thus profitable, a contradiction. Therefore, we can conclude that B∗ is at

most zero in every state reached on the equilibrium path, and thus, reasoning as above, that

B = B∗ = 0 in any such state. Finally, we show that this property actually characterizes

the JHG allocation and the JHG tariff, which concludes the proof of Theorem 4.

The technical difficulties in this reasoning should not be overlooked. First, we need to

establish a convergence result for supply functions and market tariffs when the tick size

goes to zero. To do so, we rely on Helly’s selection theorem. Second, it may well be that,

in the limit, there exists no highest price p such that (13) holds. This requires a careful

limiting argument. Third, with a discrete price grid, the choice of the price p′ < p used

for undercutting is more delicate, because the nondeviating sellers may also supply positive

quantities at any such price, making priority difficult to achieve. Fortunately, when the

tick size goes to zero, the number of available prices just below p grows without bounds.

This guarantees that the aggregate supply of nondeviating sellers becomes negligible in a

left-neighborhood of p, which validates the informal argument given above.

6 Concluding Remarks

In this paper, we have provided a unified perspective on entry-proofness under adverse

selection, which is relevant both for inactive markets and for active markets on which buyers

cannot be prevented from making additional trades with an entrant. These two scenarios

turn out to be intimately linked: indeed, the second one reduces to the first one when the

buyers’ utilities are modified to incorporate their optimal trades along the market tariff. Our

existence and uniqueness results suggest that entry-proofness is a simple and powerful way

to characterize the competitive outcomes of nonexclusive markets.
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The JHG allocation and the JHG tariff that implements it emerge as the extension of

Akerlof (1970) pricing to a rich class of preferences. The JHG allocation can be decomposed

into successive layers, each of them priced at the expected cost of serving those types who

trade it. This particular structure has motivated us to design a discriminatory ascending

auction. In contrast with the simultaneous competitive-screening games so far studied in

the literature, which generally conclude to the nonexistence of equilibrium, this sequential

auction essentially uniquely implements the JHG allocation. Beyond making a theoretical

point, this result offers a useful complement to studies that advocate a transformation of

continuous markets into batch auctions, so as to avoid inefficiencies linked to high-frequency

trading (Budish, Cramton, and Shin (2015)).

Although an empirical illustration is beyond the scope of this paper, our results suggest

new avenues for empirical work. In the context of insurance, nonexclusive markets have

been so far investigated through the lens of exclusive-competition models, exploiting the

observation that, under adverse selection, there should be a positive correlation between

the coverage purchased by a consumer and her risk (Chiappori and Salanié (2000)).20 An

alternative approach building on our analysis would be to exploit price and cost data to

compare the price of successive layers of insurance to their average cost, as measured by the

empirical loss frequency of the consumers who trade them. This approach would extend that

proposed by Einav, Finkelstein, and Cullen (2010) to richer environments where firms offer

insurance tariffs and consumers can combine different levels of coverage from different firms,

and that proposed by Hendren (2013) to the case of active markets. Estimates of upper-tail

conditional expectations of unit costs should arguably be a key variable for future tests of

adverse selection in nonexclusive insurance markets.

Finally, it is fair to acknowledge a limitation of our analysis. Following a time-honored

tradition initiated by Akerlof (1970), Pauly (1974), and Rothschild and Stiglitz (1976), we

have assumed that the buyers’ private information is one-dimensional and that their types

are ordered according to a single-crossing condition; moreover, we have assumed, in our

analysis of active markets, that higher buyer types are on average more costly to serve,

implying a weak form of adverse selection.21 These restrictions stand in contrast with the

important role of multidimensional private information documented in the recent empirical

literature.22 There are in comparison few theoretical analyses of this question, and they

20See, for instance, Cawley and Philipson’s (1999) on life insurance, Finkelstein and Poterba (2004) on
annuities, and Finkelstein and McGarry (2006) on long-term care.

21Recall that this last assumption is not needed for the analysis of inactive markets.
22See, for instance, Finkelstein and McGarry (2006), Fang, Keane, and Silverman (2008), and Einav,

Finkelstein, and Schrimpf (2010) for empirical analyses of insurance markets on which consumers differ both
in terms of riskiness and of risk-aversion.
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have so far focused on the case of exclusive markets;23 the main conceptual hurdle is that

the single-crossing condition is typically no longer satisfied. An important challenge for

future research is thus to understand the impact of multidimensional private information

on the functioning of nonexclusive markets. Our hope is that the general methodology

developed in this paper will prove useful to this end.

References

[1] Akerlof, G.A. (1970): “The Market for “Lemons”: Quality Uncertainty and the Market

Mechanism,” Quarterly Journal of Economics, 84(3), 488–500.

[2] Aliprantis, C.D., and K.C. Border (2006): Infinite Dimensional Analysis: A Hitchhiker’s

Guide, Berlin, Heidelberg, New York: Springer.

[3] Attar, A., T. Mariotti, and F. Salanié (2011): “Nonexclusive Competition in the Market

for Lemons,” Econometrica, 79(6), 1869–1918.
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Appendix

Proof of Theorem 1. The proof consists of three steps.
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Step 1 We first formulate the entrant’s problem. According to the revelation and taxation

principles, there is no loss of generality in letting the entrant offer a menu of contracts

{(q1, t1), . . . , (qI , tI)} that is incentive-compatible:

For all i and j, ui(qi, ti) ≥ ui(qj, tj),

and individually rational:

For each i, ui(qi, ti) ≥ ui(0, 0).

We claim that, for any such menu, the buyer has a best response with quantities that are

nondecreasing in her type. Indeed, if i optimally trades (qi, ti) and j > i optimally trades

(qj, tj), then it must be that ui(qi, ti) ≥ ui(qj, tj) and uj(qj, tj) ≥ uj(qi, ti). Now, suppose

that qi > qj. Because i < j, applying weak single-crossing to the first inequality yields

uj(qi, ti) ≥ uj(qj, tj), which, along with the second inequality, implies uj(qi, ti) = uj(qj, tj).

Hence type j could optimally trade (qi, ti) as well.24 The same reasoning applies to any such

pair (i, j) for which quantities are strictly decreasing, which proves the claim.

Because we want entry to be profitable no matter the buyer’s best response, we are thus

allowed to add the monotonicity constraint that quantities qi be nondecreasing in i to the

entrant’s profit-maximization problem. We can also relax this problem by focusing on the

downward local constraints, that is, the downward local incentive-compatibility constraints

of types i > 1 and the individual-rationality constraint of type i = 1. The entrant’s expected

profit is thus bounded above by

max

{∑
i

mi(ti − ciqi) : qi is nondecreasing in i and ui(qi, ti) ≥ ui(qi−1, ti−1) for all i

}
,

where (q0, t0) ≡ (0, 0). We call P this relaxed problem.

Step 2 We now prove that we can focus in P on menus with nonnegative transfers. Indeed,

suppose that a menu {(q1, t1), . . . , (qI , tI)} satisfies all the constraints in P , and is such that

at least one type makes a strictly negative payment. Let i be the lowest such type. Then

we can build a new menu by assigning (qi−1, ti−1) to both types i− 1 and i. We claim that

this new menu satisfies all the constraints in P . First, because the original menu displays

nondecreasing quantities, so does the new menu. Second, the downward local constraint for

type i is now an identity. Third, the downward local constraint for type i + 1, if such type

exists, now writes as ui+1(qi+1, ti+1) ≥ ui+1(qi−1, ti−1), which follows from observing that the

24Assuming strict single-crossing would enable us to reach a contradiction at this point, so that any best
response of the buyer would feature nondecreasing quantities.
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initial menu satisfies ui+1(qi+1, ti+1) ≥ ui+1(qi, ti), qi ≥ qi−1, and ui(qi, ti) ≥ ui(qi−1, ti−1),

and from applying weak single-crossing to the last inequality. This proves the claim. The

resulting variation in expected profit is, up to multiplication by mi,

(ti−1 − ciqi−1)− (ti − ciqi) = ti−1 − ti + ci(qi − qi−1),

which is strictly positive as ti−1 ≥ 0 > ti by construction and qi ≥ qi−1. It follows that the

initial menu cannot be solution to P . The entrant’s expected profit is thus bounded above

by the value of the problem P+ obtained by adding to P the constraints ti ≥ 0 for all i.

Step 3 Fix a menu {(q1, t1), . . . , (qI , tI)} that satisfies all the constraints in P+ and, for

any type i, consider the trade (qi−1, ti−1). For i = 1, we clearly have ui(qi−1, ti−1) ≥ ui(0, 0)

as (q0, t0) = (0, 0). For i > 1, we know that type i − 1 weakly prefers (qi−1, ti−1) to (0, 0).

By weak single-crossing, so does type i. Thus, in any case, we have ui(qi−1, ti−1) ≥ ui(0, 0).

Because ti−1 ≥ 0, this shows that the indifference curve of type i going through (qi−1, ti−1)

must cross the q-axis at some point (qi, 0), with qi ∈ [0, qi−1]. The argument in the text then

shows that
∑

imi(ti − ciqi) ≤ 0. Hence the result. �

Proof of Corollary 1. According to Footnote 24, strict single-crossing implies that any best

response of the buyer features nondecreasing quantities. Suppose, by way of contradiction,

that the entrant trades, so that qi > qi−1 for some type i. Because any such type’s preferences

are strictly convex and ui(qi, ti) ≥ ui(qi−1, ti−1), the inequalities (3) now imply

ti − ti−1 − ci(qi − qi−1) < 0.

Thus the expected profit (2) is strictly negative, a contradiction. Hence the result. �

Proof of Theorem 2. The necessity part is shown in the text. Assume now that (i)–(iii)

hold. According to (iii), T is defined over [0, qI ], and it is convex because ci is nondecreasing

in i. The proof consists of two steps.

Step 1 We first check that T implements the quantities qi, in the sense that, for each i, qi

maximizes ui(q, T (q)) with respect to q. This is easily shown by induction. First, according

to (ii), type 1 optimally chooses q1 when facing the tariff T1(q) ≡ c1q. Because T1 ≤ T and

T1(q1) = T (q1), it follows that q1 is indeed an optimal choice for type 1 when facing T . Next,

suppose that type i− 1 optimally chooses qi−1 when facing T . By weak single-crossing, for

type i we can then focus on quantities q ≥ qi−1. According to (ii), type i optimally chooses

qi when facing the tariff Ti that coincides with T for quantities q ≤ qi−1 and has slope ci

beyond qi−1. Because Ti ≤ T and Ti(qi) = T (qi), it follows that qi is indeed an optimal

choice of type i when facing T . This concludes the induction step.

29



Step 2 To conclude the proof, we only need to check that (6) holds for the tariff T defined

by (i)–(iii). For each i, τTi (0, 0) is the supremum of the prices p such that

ui(qi, T (qi)) < max{ui(q + q′, T (q) + pq′) : q, q′} ≡ UT
i (p). (14)

Let us compute UT
i (ci). Because ∂−T (q) ≤ ci for q < qi−1 and ∂−T (q) ≥ ci for q > qi−1,

there exists for p = ci a solution to the maximization problem in (14) such that q = qi−1. It

then follows from (ii) that UT
i (ci) = ui(qi, T (qi)). Thus (14) does not hold for p = ci, which

implies τTi (0, 0) ≤ ci as UT
i (p) is nonincreasing in p. Hence the result. �

Proof of Theorem 3. We throughout set min ∅ ≡ ∞ and
∑

j<0 =
∑

j>I ≡ 0. The proof

consists of two steps.

Step 1 We first compute each seller’s continuation profit in state (p,Q−), which is the

sum of all the expected profits he earns at prices p′ ≥ p by trading with every type i such

that Di(p) > Q−. In any of her best responses, any such type purchases Q− at prices p′ < p.

Case 1: p > cI According to (iii), for any value of Q−, each seller supplies an infinite

quantity in state (p,Q−). The best response we select for every type i is to equally split her

residual demand in state (p,Q−) between the sellers. Because each type can purchase her

demand at price p, she makes no purchases at prices p′ > p. Thus each seller’s continuation

profit in state (p,Q−) is ∑
i

mi(p− ci)
[Di(p)−Q−]+

K
. (15)

Case 2: ci < p ≤ ci+1 According to (ii), for any value of Q−, each seller supplies an equal

share of type i’s residual demand in state (p,Q−). The best response we select for every type

j < i is to equally split her residual demand in state (p,Q−) between the sellers. Next, by

strict single-crossing, every type j ≥ i purchases [Di(p)−Q−]+/K from each seller at price p.

Finally, each seller earns a continuation profit, which is the sum of all his expected profits at

prices p′ > p. Because type i can purchase her demand at price p, she makes no purchases at

prices p′ > p. To characterize the types who make purchases in excess of max{Di(p), Q
−},

we rank the demands Dj ≡ Dj(cj + ∆) according to the following recursive definition.

Definition 1 Let r(1) ≡ 1 and, for each ι, let r(ι+ 1) ≡ min{j : j > r(ι) and Dj > Dr(ι)};
finally, let ι ≡ max{ι : r(ι) <∞} and D∞ ≡ ∞.

Now, let ιi(p,Q
−) ≡ min{ι : r(ι) > i and Dr(ι) > max{Di(p), Q

−}}. According to (ii),

cr(ιi(p,Q−)) + ∆ is the first price at which a quantity in excess of max{Di(p), Q
−} is supplied,
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and r(ιi(p,Q
−)) is the first type willing to purchase some of it. By strict single-crossing,

every type j ≥ r(ιi(p,Q
−)) purchases (Dr(ιi(p,Q−)) − max{Di(p), Q

−})/K from each seller

at price cr(ιi(p,Q−)) + ∆, so that the expected margin on these trades is ∆. Next, every

type j ≥ r(ιi(p,Q
−) + 1) purchases (Dr(ιi(p,Q−)+1) −Dr(ιi(p,Q−)))/K from each seller at price

cr(ιi(p,Q−)+1) + ∆—and so on. Thus each seller’s continuation profit in state (p,Q−) is∑
j<i

mj(p− cj)
[Dj(p)−Q−]+

K

+

(∑
j≥i

mj

)
(p− ci)

[Di(p)−Q−]+

K

+

 ∑
j≥r(ιi(p,Q−))

mj

∆
Dr(ιi(p,Q−)) −max{Di(p), Q

−}
K

+
ι∑

ι=ιi(p,Q−)+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
. (16)

Case 3: p ≤ c1 Let ι0(Q−) ≡ min{ι : Dr(ι) > Q−}. According to (i)–(ii), cr(ι0(Q−)) + ∆

is the first price at which a quantity in excess of Q− is supplied, and r(ι0(Q−)) is the first

type willing to purchase some of it. Thus each seller’s continuation profit in state (p,Q−) is ∑
j≥r(ι0(Q−))

mj

∆
Dr(ι0(Q−)) −Q−

K
+

ι∑
ι=ι0(Q−)+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
.

Step 2 We now check that no seller can strictly increase his continuation profit by

deviating from the candidate-equilibrium strategy. As the buyer’s decisions to purchase

from each seller at prices p′ < p do not depend on the offers he makes at prices p′ ≥ p, this

implies that no deviation is profitable.

Case 1: p > cI According to (iii), for any value of Q−, each seller supplies an infinite

quantity in state (p,Q−). If a seller deviates to a finite supply s, then the best response we

select for every type i is to purchase min{s, [Di(p)−Q−]+/K} from him at price p. Because

p > cI ≥ ci for all i, (15) implies that the deviating seller cannot thereby strictly increase

his continuation profit. Thus no seller has an incentive to deviate, and the game ends in

state (p+ ∆,∞). In particular, whatever the sellers’ decisions at prices p′ ≤ cI , the highest

price at which trade can take place is cI + ∆. This allows us to apply the one-shot deviation

property at prices p′ ≤ cI .

Case 2: ci < p ≤ ci+1 According to (ii), for any value of Q−, each seller supplies an equal

share of type i’s residual demand in state (p,Q−). If a seller deviates and supplies s, the
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aggregate supply at prices p′ ≤ p becomes

S(p,Q−, s) ≡ Q− +
K − 1

K
[Di(p)−Q−]+ + s. (17)

We consider two types of deviations in turn.

Downward Deviations If Di(p) > Q−, a seller can deviate to s < [Di(p) − Q−]/K.

We compute his continuation profit from doing so by using the one-shot deviation property.

First, the best response we select for every type j < i is to purchase min{s, [Dj(p)−Q−]+/K}
from him at price p. Next, type i is rationed at price p because the aggregate supply at

prices p′ ≤ p is S(p,Q−, s) < Di(p) by (17). Hence, by strict single-crossing, every type

j ≥ i purchases s from the deviating seller at price p. Finally, the deviating seller earns

a continuation profit, which is the sum of all his expected profits at prices p′ > p and can

be computed as in (16), with p replaced by p + ∆ and Q− replaced by S(p,Q−, s). Thus

each seller’s continuation profit from deviating to s < [Di(p)−Q−]/K in state (p,Q−) and

returning to equilibrium play afterwards is∑
j<i

mj

[
(p− cj) min

{
s,

[Dj(p)−Q−]+

K

}
+ (p+ ∆− cj)

[Dj(p+ ∆)− S(p,Q−, s)]+

K

]

+

(∑
j≥i

mj

)
(p− ci)s

+

(∑
j≥i

mj

)
(p+ ∆− ci)

[Di(p+ ∆)− S(p,Q−, s)]+

K

+

 ∑
j≥r(ιi(p+∆,S(p,Q−,s)))

mj

∆
Dr(ιi(p+∆,S(p,Q−,s))) −max{Di(p+ ∆), S(p,Q−, s)}

K

+
ι∑

ι=ιi(p+∆,S(p,Q−,s))+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
. (18)

To compare this to (16), we use the definition (17) of S(p,Q−, s). As Dj(p+∆) > S(p,Q−, s)

implies Dj(p) > Q−, we first obtain that the coefficient of s in each term of the first sum in

(18), when different from zero, is at least

(p− cj)
(

1− 1

K

)
− ∆

K
≥
(

1− 2

K

)
∆ ≥ 0

because p ≥ ci + ∆ ≥ cj + ∆ for j < i, and K ≥ 2. Similarly, by distinguishing whether

Di(p+ ∆) is higher or lower than S(p,Q−, s), we obtain that the coefficient of s in the next

three terms in (18) is at least(∑
j≥i

mj

)[
(p− ci)

(
1− 1

K

)
− ∆

K

]
≥

(∑
j≥i

mj

)(
1− 2

K

)
∆ ≥ 0
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because p ≥ ci + ∆ and K ≥ 2. Hence supplying s′ ∈ (s, [Di(p)−Q−]/K] instead of s never

decreases the deviating seller’s continuation profit as long as ιi(p+ ∆, S(p,Q−, s′)) remains

constant. Eventually, however, this index may jump up, in which case the last sum in (18)

jumps down. When s′ is close to but below the value at which such a jump occurs, then

max{Di(p+ ∆), S(p,Q−, s′)} = S(p,Q−, s′) becomes close to Dr(ιi(p+∆,S(p,Q−,s′))), and hence

the third and fourth terms in (18) vanish while the second term in (18) becomes close to(∑
j≥i

mj

)
(p− ci)

{
Dr(ιi(p+∆,S(p,Q−,s′))) −Q− −

K − 1

K
[Di(p)−Q−]

}
.

As the first sum in (18) is at most equal to the first sum in (16), this reasoning shows that

all we need to prove is that π ≥ π(ι̂) for all ι̂ = ιi(p+∆, S(p,Q−, s)), . . . , ιi(p,Q
−)−1, where

π ≡

(∑
j≥i

mj

)
(p− ci)

Di(p)−Q−

K

+

 ∑
j≥r(ιi(p,Q−))

mj

∆
Dr(ιi(p,Q−)) −Di(p)

K
+

ι∑
ι=ιi(p,Q−)+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K

and, for any such ι̂,

π(ι̂) ≡

(∑
j≥i

mj

)
(p− ci)

{
Dr(ι̂) −Q− −

K − 1

K
[Di(p)−Q−]

}

+
ι∑

ι=ι̂+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
.

For each ι̂ = ιi(p+ ∆, S(p,Q−, s)) + 1, . . . , ιi(p,Q
−)− 1, we have

π(ι̂)− π(ι̂− 1) =

(∑
j≥i

mj

)
(p− ci)−

∑
j≥r(ι̂)

mj

∆

K

(Dr(ι̂) −Dr(ι̂−1)),

which is strictly positive because r(ι̂) > i, p ≥ ci + ∆, K ≥ 2, and Dr(ι̂) > Dr(ι̂−1). Hence, to

conclude, we only need to check that π ≥ π(ιi(p,Q
−)− 1). We have

π − π(ιi(p,Q
−)− 1) =

(∑
j≥i

mj

)
(p− ci)−

 ∑
j≥r(ιi(p,Q−))

mj

∆

K

[Di(p)−Dr(ιi(p,Q−)−1)],

which is nonnegative because r(ιi(p,Q
−)) > i, p ≥ ci + ∆, K ≥ 2, and Di(p) ≥ Dr(ιi(p,Q−)−1)

by definition of ιi(p,Q
−). This concludes the proof that no deviation to s < [Di(p)−Q−]/K

can increase a seller’s continuation profit in state (p,Q−).

Upward Deviations A seller can deviate to s > [Di(p) − Q−]+/K. We compute his

33



continuation profit from doing so by using the one-shot deviation property. First, the best

response we select for every type j ≤ i is to purchase [Dj(p)−Q−]+/K from him at price p.

Next, the best response we select for every type j > i is to purchase

min

{
s, [Dj(p)−Q−]+ − K − 1

K
[Di(p)−Q−]+

}
≥ 1

K
[Di(p)−Q−]+ (19)

from him at price p, reflecting that any such type can first purchase [Di(p)−Q−]+/K from

each of the nondeviating sellers and then purchase any additional quantity she is willing to

purchase at price p from the deviating seller, within the limit s. Finally, the deviating seller

earns a continuation profit, which can be computed as in the case of downward deviations.

Thus each seller’s continuation profit from deviating to s > [Di(p)−Q−]+/K in state (p,Q−)

and returning to equilibrium play afterwards is∑
j<i

mj(p− cj)
[Dj(p)−Q−]+

K

+
∑
j≥i

mj(p− cj) min

{
s, [Dj(p)−Q−]+ − K − 1

K
[Di(p)−Q−]+

}

+

 ∑
j≥r(ιi(p,S(p,Q−,s)))

mj

∆
Dr(ιi(p,S(p,Q−,s))) − S(p,Q−, s)

K

+
ι∑

ι=ιi(p,S(p,Q−,s))+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
. (20)

The first sum in (20) is the same as in (16). Next, using a summation by parts and (19), we

obtain that the second sum in (20) is of the form

∑
j≥i

(∑
k≥j

mk

)
(p− cj)(qj − qj−1)

for nondecreasing quantities (qj)
I
j=i−1 such that qi−1 ≡ 0 and qi ≡ [Di(p)−Q−]+/K. Because

p ≤ cj for all j > i, this sum is at most equal to its first term corresponding to j = i,

which itself is equal to the second term in (16). Finally, S(p,Q−, s) > max{Di(p), Q
−} and

ιi(p, S(p,Q−, s)) ≥ ιi(p,Q
−) imply that the last two terms of (20) are at most equal to the

last two terms of (16). This concludes the proof that no deviation to s > [Di(p)−Q−]+/K

can increase a seller’s continuation profit in state (p,Q−).

Case 3: p ≤ c1 According to (i), for any value of Q−, each seller supplies a zero quantity

at price p. Thus no downward deviation is feasible. The proof that no upward deviation can

increase a seller’s continuation profit in state (p,Q−) is similar to that provided in Case 2

and is thus omitted. Hence the result. �
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Proof of Theorem 4. Every type i’s preferences can be represented by Ui(q)− t for some

strictly concave utility function Ui that is differentiable over R++. The Inada condition (12),

which is here equivalent to limq→∞ U
′
i(q) ≤ 0, ensures that Di(p) < ∞ except perhaps for

p = 0. We will often use the property that, when facing a convex market tariff, each type

optimally purchases the sellers’ aggregate supply until her demand is satisfied at some price

or, equivalently, until the price exceeds her willingness-to-pay. Therefore, if type i trades at

price p, then she overall purchases at most Di(p); if she at least purchases q > 0, then she is

not willing to trade at prices p > U ′i(q).

We first dispose of the case where the JHG allocation (q∗i , t
∗
i )
I
i=1 is degenerate, that is,

q∗I = 0. Then, by Theorems 1–2, Condition EP is satisfied. As the buyer’s preferences

are strictly convex and types are ordered according to the strict single-crossing condition,

it follows from Corollary 1 that there is market breakdown. Thus no trade takes place

in any equilibrium of any game Γn, and each equilibrium implements the degenerate JHG

allocation. Hence the result.

From now on, we assume that the JHG allocation is nondegenerate, that is, q∗I > 0.

By Theorem 2, this amounts to assuming that there exists some i such that U ′i(0) > ci or,

equivalently, that Di(ci) > 0.

Our first task is to show that we can put uniform bounds on equilibrium prices and

quantities. The proof of the following lemma—and of all the intermediary results used in

the proof of Theorem 4—is provided in Appendix A.

Lemma 2 There exist a finite price p and finite quantities q > q > 0 such that, for n high

enough, in any equilibrium of Γn type I is not willing to trade at prices strictly higher than

p and purchases an aggregate quantity in [q, q].

Thanks to this result, we can in what follows consider that the auction ends when price

p is reached, that supply functions are defined over [0, p] and bounded above by q, and that

tariffs are defined over [0, q]. This makes no difference for the quantities chosen by the buyer

on the equilibrium path, and the profitability of the deviation we shall soon consider does

not depend on the values of these functions at higher arguments. Hence, for n high enough

and for any equilibrium of Γn, there exists a finite highest price pi,n at which type i trades on

the equilibrium path; we set pi,n ≡ U ′i(0) if type i does not trade. By strict single-crossing,

p1,n ≤ p2,n ≤ . . . ≤ pI,n < p. Let qi,n be the aggregate quantity purchased by type i on the

equilibrium path. By strict single-crossing again, q1,n ≤ q2,n ≤ . . . ≤ qI,n ≤ q.

From now on, we fix a sequence of equilibria of (Γn)n∈N that are robust to irrelevant

offers. For each n, the following objects are defined on the equilibrium path:
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• skn(p), seller k’s supply at price p;

• sn(p) ≡
∑

k s
k
n(p), the aggregate supply at price p;

• s−kn (p) ≡ sn(p)− skn(p), the aggregate supply of sellers other than k at price p;

• Sn(p) ≡
∑

p′≤p sn(p′), the aggregate supply at prices lower than or equal to p;

• πkn(p), seller k’s expected profit at price p;

• γkn(p) ≡
∑

p′≥p π
k
n(p′), seller k’s continuation profit at price p.

In any equilibrium of Γn that is robust to irrelevant offers, each seller anticipates that

deviating at prices p′ ≥ p will not affect the buyer’s decisions at prices p′ < p. We can

thus focus on continuation profits as in the proof of Theorem 3. This, in particular, implies

that γkn(p) ≥ 0 for all k and p; otherwise, seller k could strictly increase his expected profit

by withdrawing his offers at prices p′ ≥ p.

To formulate our convergence result, we extend the supply functions (Sn)n∈N to the whole

of [0, p] by letting

For all n and p, Sn(p) ≡ Sn(∆nbp/∆nc),

where bp/∆nc is the integer part of p/∆n. By construction, for each n, the function Sn

is nondecreasing and right-continuous; moreover, for n high enough, Sn(p) ∈ [0, q] for all

p ∈ [0, p]. Therefore, by Helly’s selection theorem (Billingsley (1995, Theorem 25.9)), there

exists a nondecreasing right-continuous function S∞ and a subsequence of (Sn)n∈N that

converges pointwise to S∞ over [0, p] at the continuity points of S∞. In what follows, and

with no loss of generality, we take this subsequence to be the original sequence (Sn)n∈N. The

marginal tariffs associated to Sn and S∞ are their generalized inverses

For each q ∈ [0, q], tn(q) ≡ inf {p : q ≤ Sn(p)} and t∞(q) ≡ inf {p : q ≤ S∞(p)},

with inf ∅ ≡ p; they are nondecreasing and left-continuous. It follows from the proof of

Skorokhod’s representation theorem (Billingsley (1995, Theorem 25.6)) that the sequence

(tn)n∈N converges pointwise to t∞ at the continuity points of t∞, that is, everywhere over

[0, q] except at countably many points. Letting Tn and T∞ be the convex tariffs obtained by

integrating the marginal tariffs tn and t∞, we then have

sup
q∈[0,q]

|Tn(q)− T∞(q)| = sup
q∈[0,q]

∣∣∣∣∫ q

0

[tn(x)− t∞(x)] dx

∣∣∣∣ ≤ ∫ q

0

|tn(x)− t∞(x)| dx,

which converges to zero by the bounded convergence theorem as the functions (tn)n∈N are
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uniformly bounded by p and converge pointwise to t∞ except at countably many points.

Thus the sequence (Tn)n∈N converges uniformly to T∞. This implies that the graph of T∞

is the closed limit of the graph of Tn when n goes to ∞ (Aliprantis and Border (2006,

Definition 3.80)). As a result, and because every type i has strictly convex preferences,

we can conclude from Berge’s maximum theorem (Aliprantis and Border (2006, Theorem

17.31)) that qi,∞ ≡ limn→∞ qi,n is well-defined and is the unique optimal choice of type i

against the limit tariff T∞. By Lemma 2, we have qI,∞ ≥ q > 0.

With these preliminaries at hand, we turn to our main argument. As limn→∞ qi,n = qi,∞

and the sequence (Tn)n∈N converges uniformly to T∞, limn→∞ Tn(qi,n) = T∞(qi,∞). Our

goal is to show that (qi,∞, T∞(qi,∞))Ii=1 is the JHG allocation. We will rely on the following

characterization of the JHG allocation, which is of independent interest.

Lemma 3 The allocation implemented by a convex tariff T is the JHG allocation if and

only if it is budget-feasible and

For all p and s, B(p, s) ≡
∑
i

mi(p− ci) min{[Di(p)− S(p−)]+, s} ≤ 0, (21)

where S is the supply function associated to T and S(p−) ≡ limp′↑p S(p′).

We denote by Bn and B∞ the functions B in (21) obtained for S = Sn and S = S∞,

respectively. A key observation is that the functions πkn, Bn, and sn are related as follows:

For each p,
∑
k

πkn(p) = Bn(p, sn(p)). (22)

The allocation (qi,∞, T∞(qi,∞))Ii=1 is budget-balanced as it is the limit of the equilibrium

allocations (qi,n, Tn(qi,n))Ii=1. Hence, by Lemma 3, it coincides with the JHG allocation if

and only if (21) holds for B∞. Thus suppose, by way of contradiction, that there exists some

p such that B∗∞(p) ≡ max{B∞(p, s) : s ≥ 0} > 0, and let p̂∞ the supremum of such p. Our

next result gathers useful properties related to this threshold.

Lemma 4 The following holds:

(i) p̂∞ ≤ p.

(ii) B∗∞(p) > 0 if and only if there exists some i such that p > ci and Di(p) > S∞(p−).

(iii) The highest i satisfying the property in (ii) is equal to a constant ι̂∞ for all p in an

open left-neighborhood V of p̂∞ and

For each p ∈ V , Dι̂∞(p)− S∞(p−) ∈ arg max{B∞(p, s) : s ≥ 0}. (23)
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Using Lemma 4 along with the definition of B∞ and the left-continuity of the mapping

p 7→ S∞(p−), we can select p0 arbitrarily close to p̂∞ such that: (1) B∗∞(p0) > 0; (2) p0 ∈ V ;

(3) p0 is a continuity point of S∞; (4) p0 is a multiple of ∆n for n high enough. Any seller k

can then deviate in Γn when price p0 is quoted by supplying

ŝkn ≡ [Dι̂∞(p0)− Sn(p−0 )− s−kn (p0)]+

at price p0 and nothing afterwards. Because p0 ∈ V , we have Dι̂∞(p0) > S∞(p−0 ). Moreover,

because p0 is a continuity point of S∞, we have S∞(p−0 ) = S∞(p0) = limn→∞ Sn(p0). Finally,

for each n, Sn(p0) ≥ Sn(p−0 ) + s−kn (p0) by definition. Thus, for n high enough, ŝkn is strictly

positive, and this deviation is nontrivial.

How do the different types react to this deviation, and what is the impact on seller k’s

continuation profit at price p0? Observe first that trading with any type i ≤ ι̂∞ at price p0

is always profitable as ci ≤ cι̂∞ < p0. Thus, from seller k’s perspective, any such type will

at worst first exhaust his competitors’ supply s−kn (p0) at price p0 before purchasing anything

from him. That is, her residual demand for the quantity ŝkn supplied by seller k at price p0

is [Di(p0) − Sn(p−0 ) − s−kn (p0)]+. In particular, type ι̂∞ has a unique best response at price

p0 that involves purchasing ŝkn from seller k. By strict single-crossing, this a fortiori holds

for types i > ι̂∞. Therefore, we can conclude that every seller k’s continuation profit γkn(p0)

at price p0 is at least An(s−kn (p0)), where

For each s, An(s) ≡
∑
i

mi(p0 − ci)[min{Di(p0), Dι̂∞(p0)} − Sn(p−0 )− s]+.

We now aggregate these profits. Because An(s) is convex in s, we have∑
k

An(s−kn (p0)) ≥ KAn

(
1

K

∑
k

s−kn (p0)

)
= KAn

(
K − 1

K
sn(p0)

)
by Jensen’s inequality. As p0 is a continuity point of S∞, limn→∞ Sn(p−0 ) = S∞(p0) = S∞(p−0 )

and limn→∞ sn(p0) = 0. Thus

lim
n→∞

An

(
K − 1

K
sn(p0)

)
=
∑
i

mi(p0 − ci)[min{Di(p0), Dι̂∞(p0)} − S∞(p−0 )]+

=
∑
i

mi(p0 − ci) min{[Di(p0)− S∞(p−0 )]+, Dι̂∞(p0)− S∞(p−0 )}

= B∞(p0, Dι̂∞(p0)− S∞(p−0 ))

= B∗∞(p0),

where the fourth equality follows from (23). Hence the aggregate equilibrium continuation

profits at p0 satisfy

lim inf
n→∞

∑
k

γkn(p0) ≥ KB∗∞(p0) > 0. (24)
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Our goal in the remainder of the proof consists in deriving an upper bound on aggregate

continuation profits that contradicts (24) for an appropriate choice of p0.

To this end, we first provide an alternative expression for those profits. For each n,

summing over the multiples p ≥ p0 of ∆n and taking advantage of Lemma 2 and (22) yields∑
k

γkn(p0) =
∑
p≥p0

∑
k

πkn(p)

=
∑

p≥p≥p0

Bn(p, sn(p))

=
∑

p≥p≥p0

∑
i

mi(p− ci) min{[Di(p)− Sn(p−)]+, Sn(p)− Sn(p−)} (25)

=
∑

p≥p≥p0

∑
i

mi(p− ci)[min{Di(p), Sn(p)} − Sn(p−)]+

=
∑
i

∫
[p0,p]

mi(p− ci)σi,n(dp),

where σi,n is the measure with finite support defined by

For each p ∈ [0, p], σi,n({p}) ≡ [min{Di(p), Sn(p)} − Sn(p−)]+. (26)

This is a Borel measure over [0, p] of at most mass q. As is customary, let us endow the space

of such measures with the weak∗ topology generated by all continuous real-valued functions.

The following lemma then characterizes the weak∗ limit of the sequence (σi,n)n∈N.

Lemma 5 Let pi,∞ ≡ inf {p ∈ [0, p] : S∞(p) ≥ Di(p)}. Then the unique measure σi,∞ over

the Borel sets of [0, p] such that

For each p ∈ [0, p], σi,∞([0, p]) ≡ min{S∞(p), Di(pi,∞)} (27)

is the weak∗ limit of the sequence (σi,n)n∈N.

Because p0 is a continuity point of S∞ and hence not an atom of σi,∞ for all i, it follows

from (25) and Lemma 5 that

lim
n→∞

∑
k

γkn(p0) =
∑
i

∫
[p0,p]

mi(p− ci)σi,∞(dp). (28)

The idea is now to cut this integral into two pieces. The following lemma reflects the intuitive

idea that there are no profits to be earned at prices p > p̂∞ as B∗∞(p) = 0 for any such p.

Lemma 6 If p1 > p̂∞, then∑
i

∫
(p1,p]

mi(p− ci)σi,∞(dp) ≤ 0.
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Fix some p1 > p̂∞. Lemma 6 together with (24) and (28) implies

KB∗∞(p0) ≤
∑
i

∫
[p0,p1]

mi(p− ci)σi,∞(dp)

≤
∑
i

mi(p1 − ci)σi,∞([p0, p1])

=
∑
i

mi(p1 − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p1)− S∞(p0)},

where the equality follows from (27) along with the continuity of S∞ at p0. Because p1 > p̂∞

is arbitrary and S∞ is right-continuous, it follows that∑
i

mi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p̂∞)− S∞(p0)} ≥ KB∗∞(p0),

where p0 can be arbitrarily close to p̂∞. We now prove that this inequality leads to a

contradiction, which completes the proof of Theorem 4. Observe that, because B∞(p, s) is

left-continuous in p, we have limp0↑p̂∞ B
∗
∞(p0) = B∗∞(p̂∞). We distinguish two cases.

Case 1 Suppose first that B∗∞(p̂∞) > 0. Letting p0 converge to p̂∞ from below, we have∑
i

mi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p̂−∞)]+, S∞(p̂∞)− S∞(p̂−∞)} ≥ KB∗∞(p̂∞). (29)

If pi,∞ = p̂∞, then it is obvious that each minimum in the left-hand side equals

min{[Di(p̂∞)− S∞(p̂−∞)]+, S∞(p̂∞)− S∞(p̂−∞)}.

The same equality actually holds in all other cases. Indeed, if pi,∞ < p̂∞, then S∞(p̂−∞) ≥
S∞(pi,∞) ≥ Di(pi,∞) > Di(p̂∞), and both minima are equal to zero, while, if pi,∞ > p̂∞,

then Di(p̂∞) > Di(pi,∞) ≥ S∞(p−i,∞) ≥ S∞(p̂∞) ≥ S∞(p̂−∞), and both minima are equal to

S∞(p̂∞)− S∞(p̂−∞). It follows that the left-hand side of (29) equals∑
i

mi(p̂∞ − ci) min{[Di(p̂∞)− S∞(p̂−∞)]+, S∞(p̂∞)− S∞(p̂−∞)}

= B∞(p̂∞, S∞(p̂∞)− S∞(p̂−∞))

≤ B∗∞(p̂∞),

which contradicts (29) as K ≥ 2. This case is thus impossible.

Case 2 Suppose next that B∗∞(p̂∞) = 0. Then, proceeding as in Lemma 4, we obtain

Dι̂∞(p̂∞) = S∞(p̂−∞). We have, for p0 arbitrarily close to p̂∞,

R(p0) ≡
∑

imi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p̂∞)− S∞(p0)}∑
imi(p0 − ci) min{[Di(p0)− S∞(p0)]+, Dι̂∞(p0)− S∞(p0)}

≥ K, (30)
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using (23) along with the continuity of S∞ at p0. It follows from Dι̂∞(p̂∞) = S∞(p̂−∞) that

pι̂∞,∞ = p̂∞ and pi,∞ < p̂∞ for all i < ι̂∞. Hence, for any such i, Di(p0) ≤ Di(pi,∞) < S∞(p0)

for p0 close enough to p̂∞. This, in turn, implies that, for any such p0, the denominator of

R(p0) is equal to (∑
i≥ι̂∞

mi

)
(p0 − cι̂∞)[Dι̂∞(p0)− S∞(p0)], (31)

while the numerator of R(p0) is equal to∑
i≥ι̂∞

mi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p̂∞)− S∞(p0)}.

Because ci ≥ p̂∞ for all i > ι̂∞ by definition of ι̂∞ andDι̂∞(p̂∞) = Dι̂∞(pι̂∞,∞) ≤ S∞(pι̂∞,∞) =

S∞(p̂∞), the numerator of R(p0) is bounded above by(∑
i≥ι̂∞

mi

)
(p̂∞ − cι̂∞)[Dι̂∞(p̂∞)− S∞(p0)]. (32)

Combining (30)–(32), we obtain

(p̂∞ − cι̂∞)[Dι̂∞(p̂∞)− S∞(p0)]

(p0 − cι̂∞)[Dι̂∞(p0)− S∞(p0)]
≥ R(p0) ≥ K,

a contradiction as K ≥ 2 and p0 can be arbitrarily close to p̂∞. Hence the result. �
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