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Abstract

Clustering conceptually reveals all its interest when the dataset size considerably increases since there
is the opportunity to discover tiny but possibly high value clusters which were out of reach with
more modest sample sizes. However, clustering is practically faced to computer limits with such high
data volume, since possibly requiring extremely high memory and computation resources. In addi-
tion, the classical subsampling strategy, often adopted to overcome these limitations, is expected
to heavily failed for discovering clusters in the highly imbalanced cluster case. Our proposal first
consists in drastically compressing the data volume by just preserving its bin-marginal values, thus
discarding the bin-cross ones. Despite this extreme information loss, we then prove identifiability
property for the diagonal mixture model and also introduce a specific EM-like algorithm associated
to a composite likelihood approach. This latter is extremely more frugal than a regular but unfea-
sible EM algorithm expected to be used on our bin-marginal data, while preserving all consistency
properties. Finally, numerical experiments highlight that this proposed method outperforms subsam-
pling both in controlled simulations and in various real applications where imbalanced clusters may
typically appear, such as image segmentation, hazardous asteroids recognition and fraud detection.

Keywords: Imbalanced clustering, Large size data, Gaussian mixture models, Binned data, Random
subsampling, Frugal learning

1 Introduction

In many contexts it is possible to collect data
grouped in classes, for which two statistical analy-
ses are of common interest, depending on the fact
whether true classification is provided or not. In
the first one, named classification, the aim is to
assign to the right class each data record. If class

labels are not available, the objective is to recover
a partition of the dataset whose groups are ho-
mogeneous according to a certain criterion: this
operation is named clustering. Both tasks could be
difficult if there is a class represented by very few
elements in comparison to the others: in this case
the dataset is said to be imbalanced. This is usual
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in several fields, such as credit card fraud detec-
tion (Chan and Stolfo 1998), cancer recognition
(Yu et al. 2012), fraudulent calls (Fawcett and
Provost 1997), where typically very few “abnor-
mal” objects have to be recognised among a large
amount of “normal” ones. Due to this presence of
various applications, imbalanced datasets are the
object of study in the rest of the paper.

Usually imbalanced datasets are analyzed
in classification settings, where class labels are
known. The most employed techniques consist
in the creation of an artificial balanced dataset
in the pre-preprocessing stage by oversampling
the minority class (Chawla et al. 2002) or un-
dersampling (Tahir et al. 2009) the majority
one. Here, we focus on solving the correspond-
ing clustering problem motivated by the fact that
labelling records could be sometimes difficult, es-
pecially when sample size is large. Our purpose
has been ultimately strengthened by the explo-
sion of Big Data, which has made possible the
availability of very large datasets, mostly imbal-
anced (Leevy et al. 2018; Fernández et al. 2017).
A quick tour on one of the best-known datasets
repository, the UCI Machine Learning Repository,
currently shows several dozens of datasets with
more than 1 million records. In presence of these
huge datasets, classical methods are difficult to use
because of the dramatic increase of time, memory
and energy consumption. Although a possible so-
lution consists in employing powerful computers
or distributed architectures, such as MapReduce
(Dean and Ghemawat 2008), here we focus on
those strategies, named frugal, that use only the
resources of a single ordinary laptop.

In this context, a common procedure to save
computational resources is random subsampling,
which consists in analyzing a small randomly se-
lected portion of the original dataset. We find
this approach critical in clustering, as the subsam-
ple could not contain any information about the
small classes, especially if its size is really small.
For example, if the subsampling size is fixed to
100 and the real small class proportion is equal
to 0.001, the probability of extracting a subsam-
ple without one of its representatives is equal to
0.91, which is really hazardous. For this reason,
we propose a new data-reduction technique based
on a marginal construction of binned data. Such
compressed dataset will consist in the marginal

counts of the original (or raw) observations. They
will be a collection of D univariate binned data,
where D is the dimension of the original dataset.
In virtue of its particular formulation, we name
our approach bin-marginal.

Clustering is historically performed using ge-
ometrical heuristics, such as distances between
the data points. A more recent way of clustering,
the model-based clustering, has become popular
because it allows a well-posed mathematical def-
inition of the clusters. Indeed, it is principally
based on likelihood estimation of Gaussian Mix-
ture Models by using the EM algorithm (Dempster
et al. 1977). Model-based clustering has also
proved to be successful in case of moderate size
datasets and typically it is applied on huge ones
using random subsampling (Banfield and Raftery
1993; Fraley and Raftery 2002; Tsapanos et al.
2016; Xia et al. 2019). However, for the reasons
explained before, it is inappropriate if the dataset
contains small classes. Therefore, our aim is to
make model-based clustering able to frugally de-
tect them by using our bin-marginal approach.
However, while subsampling does not need any
changes in the EM formulation, the only usage
of binned data requests particular versions of it
(McLachlan and Jones 1988; Cadez et al. 2002).
In addition, the further data-reduction given by
marginalization requires a new EM algorithm to
optimize bin-marginal likelihood, but this pro-
cedure is computationally unfeasible, as we will
show in Section 3. This leads us to propose the
optimization of the composite likelihood (Lindsay
1988) instead of the full one, providing a feasible
EM-like algorithm. This final step finally defines
our frugal Gaussian clustering proposal based on
the bin-marginal approach. However, the usage of
composite likelihood is not new in mixture mod-
els (Gao and Song 2011) and it has already
been used in combination with bivariate marginal
binned data in Whitaker et al. (2020) and Ranalli
and Rocci (2016). But in our paper we go fur-
ther, proposing an harder data-reduction where
only univariate marginal binned data are used.

In proposing our bin-marginal technique, we
will adopt the subsampling method as our main
competitor, due to its prominency in the field. We
will compare both methods under identical com-
putational constraints, assuring they will use the
same amount of computer memory. Full dataset
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result will be use as a benchmark, even if it is far
from being competitively frugal. Indeed, relatively
to our proposal, it will confirm to consume a huge
amount of resources without substantially improv-
ing the quality of clustering. Moreover, we will
also establish theoretical results for binned mix-
ture identifiability. In fact, we noted this problem
was omitted, with the exception of Ranalli and
Rocci (2016), where a necessary condition on bi-
variate marginal binned mixtures is provided. We
will establish this theoretical property under the
hypothesis of diagonal covariance matrices, due to
the theoretical impossibility of estimating covari-
ance parameters, as it will be shown in Section 4.3.
This diagonal restriction is in fact common in liter-
ature, as it is employed in some popular clustering
methods, as k-means (MacQueen et al. 1967), or
in the so-called parsimonious Gaussian mixture
models (McNicholas and Murphy 2008).

The paper is organized as follows: in Section 2,
we specify the notations and the computational
motivations justifying our proposal. Section 3
presents our bin-marginal data-reduction proposal
and the associated results about identifiability of
binned mixtures. In Section 4, we describe the
composite likelihood EM algorithm necessary to
frugally perform clustering on the new highly-
compressed dataset. In Section 5, we train our
methodology in several simulation settings involv-
ing large sample imbalanced data, comparing it
to the subsampling strategy. In Section 6, the
method is tested on real large data sets, spac-
ing from image segmentation to fraud detection.
Finally, in Section 7, we conclude with a dis-
cussion giving also ideas for further research. In
Appendix A, all proofs regarding the principal
theoretical results are provided.

2 Finite mixture models with
binned data

2.1 Mixtures with raw data

Gaussian mixtures assume data come from K dif-
ferent Gaussian sub-populations. Let consider a
set of n observations with D variables. We sup-
pose that the observations x = {xi ∈ RD, i =
1, . . . , n} are i.i.d. and generated according to a
D-dimensional Gaussian mixture with K compo-
nents, whose probability density function is:

f(x; ψ) =

K∑
k=1

πkφ(x; µk,Σk)

K∑
k=1

πk = 1, πk > 0 (k = 1, . . . ,K),

(1)

where, for each component k = 1, . . . ,K,
µk = (µk1, . . . , µkD) is the vector of
means and Σk is the covariance matrix,
with diagonal (σ2

k1, . . . , σ
2
kD). In addition,

ψ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) is the
vector of parameters contained in a real space
Ψ. The set of all possible vectors of proportions
π = (π1, . . . , πK) will be denoted as ΠK . Often,
an EM algorithm (Dempster et al. 1977) is used
for estimating ψ.

2.2 Mixtures with binned data

Sometimes, raw data xi are unobservable and
instead of knowing them, the only available infor-
mation is a vector n = (n1, . . . , nB). Here, each nb
represents the number of observations lying inside
a certain region Bb, belonging to a partition {Bb ⊂
Rd, b = 1, . . . , B} into which the original sample
space can be divided. Thus, nb = #{x i ∈ Bb}.

The vector n contains what we call binned
data. According to Cadez et al. (2002), n arises
from a multinomial model with probability mass
function

p(n; ψ) ∝
B∏
b=1

( K∑
k=1

πk

∫
Bb

φ(x; µk,Σk)dx
)nb

.

In the same paper, the authors also provide an
estimate of ψ using a binned version of the
EM algorithm, whose time and memory complex-
ity depends linearly on B. For this reason, if
B � n, there is a considerable gain in terms of
computational time and storage. Thus, a first scal-
able method involves an artificial generation of
binned data, typically obtained by imposing a D-
dimensional Cartesian grid G = G1 × . . . × GD
such that Gd is a univariate grid with Rd + 2 cut
points (ad0, . . . , ad(Rd+1)), where ad0 = −∞ and
ad(Rd+1) =∞. This grid, whose refinement is de-

fined as R =
∏D
d=1Rd, divides the sample space
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into B =
∏D
d=1(Rd + 1) real intervals of dimen-

sion D. Each interval (or bin) is defined as Bb =∏D
d=1[adbd , ad(bd+1)), where (b1, . . . , bD) is the vec-

tor containing the numerical indices varying in∏D
d=1{0, . . . , Rd} and satisfying the relation

b = 1 + b1 +

D∑
d=2

bd

d−1∏
d′=1

(Rd′ + 1).

2.3 Curse of dimensionality for
binned data

In a univariate context this methodology works
well if B = R+ 1� n, where R is the refinement
of the only grid considered. But, we have to point
out the arising of some issues when D increases.
Indeed, as the number of non-empty bins depends
exponentially on the dimension D, it is impossible
to obtain a manageable amount of binned data, as
depicted in Figure 1. Thus, in the D-dimensional
context, a classical approach with binned data
vanishes any kind of gain.

3 Bin-marginal model

3.1 Compressed binned data:
bin-marginal solution

In the previous section we pointed out the stor-
age issues linked to a classical use of binned
data. Our first idea consists in using what we call
marginal counts, that are the collection of binned
data obtained on each dimension separately. In the
present section we illustrate a full likelihood esti-
mation of the model generating marginal counts,
highlighting its complexity, which motivates com-
pletely our final proposal in Section 4 based on an
alternative composite likelihood approach.

Let define m = {m1, . . . ,mD}, where md is
the binned data vector referring to the projection
on the axis d of the observations xi after impos-
ing the grid Gd, which produces Bd = Rd + 1
bins. It means that, for each d = 1, . . . , D, md =
(md1, . . . ,mdBd

), where each component is defined
as mdbd = #{xid : ad(bd−1) ≤ xid < adbd} and
xid is the d-th component of xi. Thus, the col-
lection m contains the marginal counts of n. To
facilitate the comprehension of the specific data
compression mechanism and its related notation,
a simple bivariate situation is depicted in Figure 2.

Here, a 3 × 3 grid overlaps 20 raw individuals
x = (x1, . . . ,x20) and both the bivariate binned
data n and marginal counts m are highlighted.

The introduction of marginal counts makes re-
source savings possible: in fact, it is clear that
storing them instead of the full grid is convenient
for computer memory, as we have to save at most∑D

d=1Bd elements instead of
∏D
d=1Bd ones. So, a

first attempt could be the estimation of the bin-
marginal model whose probability mass function
is:

pm(m; ψ) =
∑

n′∈Fm

p(n′; ψ), (2)

where Fm is the set of tables n′ sharing the same
marginals m. Formally:

Fm = {n′ : m′ = m},

wherem′ are the marginal counts of each table n′.
But now we need to assess three important is-

sues before proposing this model as a useful frugal
method:

• Identifiability of the model. We wonder if dif-
ferent parameters index different bin-marginal
probability mass functions. This question will
be treated in Section 3.2.

• Mathematical complexity of the log-likelihood
`m(ψ; m) = log pm(m; ψ). From (2) we note
that the computation of this log-likelihood is
intractable, because we need to calculate a con-
siderable number of complete tables. Section 4
will be dedicated to overcome this specific issue.

• Optimization of the likelihood. In Section 3.3 we
give a version of the EM algorithm to do this
task. We will show it does not solve all the is-
sues appeared in 2.3 and, again, Section 4 will
propose a specific solution.

3.2 Requirements for identifiability

Typically, before proceeding with the estimation
of any statistical model P = {p(x; ψ),x ∈ X ,ψ ∈
Ψ}, statisticians are interested in knowing if it
is identifiable, i.e. if any different value of the
model parameter ψ indexes different elements in
P. In case of continuous model, these elements are
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Figure 1: Number of non-empty bins depending on both space dimension D and grid refinement (per
axis) generated by a single D-variate standard Gaussian.
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densities, while they are probability mass func-
tions if the model is discrete, as in our binned
data case. Gaussian mixtures are identifiable up
to a labelling permutation (Yakowitz and Spra-
gins 1968), but this is proved only in the raw data
case. Surprisingly, to the best of our knowledge,
there is no reference to Gaussian mixtures identi-
fiability with binned data, neither in the seminal
works of McLachlan and Jones (1988) and Cadez
et al. (2002), which pass directly to the estimation
phase. In this section we cover partially this lack,
giving some conditions on the grid assuring identi-
fiability, both in full binned data and bin-marginal
cases and under hypothesis of diagonal covariance
matrices. However, this apparent restriction does
not affect our proposal, because this assumption is
common in several clustering approaches, even for
the raw data case, as k-means (MacQueen et al.
1967) and parsimonious Gaussian mixture mod-
els (Celeux and Govaert 1995), and because, in
Section 4, our proposal will be presented under
these conditions. As regarding the identifiability
of the complete model, intuitively a quite dense
grid could be sufficient, because the binned model
tends to the raw one when the number of cut
points goes to infinity. However, a precise theo-
retical result could be useful to know what is the
coarsest identifiable grid. This is important, es-
pecially in our context, where coarser grids mean
bigger memory.

In case of mixture models with full binned
data, given the density p(·; ψ) indexed by a pa-
rameter ψ belonging to the parametric space Ψ,
generic identifiability is assured if, up to a null
measure set:

∀ψ,ψ∗ ∈ Ψ : p(n; ψ) = p(n; ψ∗) ∀G,n
⇒ ψ = ψ∗.

(3)

In case of mixture models with marginal
binned data the previous statement becomes

∀ψ,ψ∗ ∈ Ψ : pm(m; ψ) = pm(m; ψ∗) ∀G,m
⇒ ψ = ψ∗.

(4)

The identifiability of D-variate binned mixture
models is assured by the following proposition,
whose proof is given in Appendix A.

Proposition 1 (Full binned Gaussian diag-
onal mixtures). Under hypothesis of diagonal
covariance matrices, binned D-variate mixtures of
K components are identifiable if Rd > 4K − 3,
d = 1, . . . , D, up to labels permutations.

Proposition 1 is important not only for its
prominence in the field, but also because it is
crucial for proving identifiability of bin-marginal
Gaussian mixtures themselves. Indeed, Proposi-
tion 2 establishes below that bin-marginal mix-
tures are identifiable if binned mixtures are iden-
tifiable (proof in Appendix A). This result is of
central interest in this work, since we will consider
only the bin-marginal data in order to preserve
computer memory.

Proposition 2 (Bin-marginal Gaussian di-
agonal mixtures). Bin-marginal D-variate mix-
tures of K components are identifiable if binned
D-variate mixtures are identifiable. So, under di-
agonal covariance matrices hypothesis, identifia-
bility is achieved if Rd > 4K−3, d = 1, . . . , D, up
to labels permutation.

3.3 EM algorithm

It is possible to formulate a specific EM al-
gorithm in order to maximize the bin-marginal
log-likelihood `m(m; ψ) = log pm(m; ψ) asso-
ciated to the bin-marginal dataset. Therefore, we
introduce the complete log-likelihood

`c(ψ; x, z) =

K∑
k=1

n∑
i=1

zik log(πkφ(xi,µk,Σk)),

where z is an n×K matrix whose generic element
zik is equal to 1 if xi belongs to population k, it
is 0 otherwise. Thus, z contains the hidden class
membership of the raw data x = {x1, . . . ,xn}.
More precisely, at each iteration j ≥ 0, given the
current estimate ψ(j), the complete log-likehood
is used in the so-called E-step, where the following
quantity is calculated

Qm(ψ,ψ(j)) = Eψ(j) [`c(ψ; X,Z)|m], (5)

taking the expectation with respect to
p(x, z|m; ψ(j)). Note that X and Z denote, re-
spectively, the random variables generating x and
z.
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Let rewrite (5):

Qm(ψ,ψ(j))

=
∑
n∈Fm

p(n|m; ψ(j))Eψ(j) [`c(ψ; X,Z)|n]

where

p(n|m; ψ(j)) =
p(n; ψ(j))∑

n′∈Fm
p(n′; ψ(j))

1{n∈Fm}.

(6)

After few calculus this expression reduces to:

Qm(ψ,ψ(j))

=
∑
n∈Fm

p(n|m; ψ(j))

×
K∑
k=1

B∑
b=1

nbEb[τ (j)k (X) log[πkφ(X; µk,Σk)]]

where Eb refers to the expectation with respect to

the density g
(j)
b (x) = f(x; ψ(j))∫

Bb
f(y; ψ(j))dy

and τ
(j)
k (x) =

π
(j)
k φ(x; µ

(j)
k ,Σ

(j)
k )

f(x; ψ(j))
. Before proceeding with the M-

step, we introduce the following quantities to
simplify the notations:

α(j)(n) = p(n|m; ψ(j))

A
(j)
kb =

∫
Bb

τ
(j)
k (x)g

(j)
b (x)dx

B
(j)
kb =

∫
Bb

xτ
(j)
k (x)g

(j)
b (x)dx

C
(j)
kb =

∫
Bb

(x− µk)(x− µk)tτ
(j)
k (x)g

(j)
b (x)dx.

Then, in the M-step we maximize Qm(ψ,ψ(j)),
obtaining the following update formulas for each
component k = 1, . . . ,K:

π
(j+1)
k =

1

n

∑
n∈Fm

α(j)(n)

B∑
b=1

nbA
(j)
kb

µ
(j+1)
k =

∑
n∈Fm

α(j)(n)
∑B

b=1 nbB
(j)
kb∑

n∈Fm
α(j)(n)

∑B
b=1 nbA

(j)
kb

Σ
(j+1)
k =

∑
n∈Fm

α(j)(n)
∑B

b=1 nbC
(j)
kb∑

n∈Fm
α(j)(n)

∑B
b=1 nbA

(j)
kb

.

Unfortunately, both previous E and M steps
involve the computation of all “crossed” tables
Fm sharing the same marginals, coming back to a
memory issue (and also a time computation one).
Therefore, an estimation based on the full likeli-
hood of the bin-marginal model is not numerically
tractable. For this very reason we will provide in
the following section estimates following a com-
posite likelihood approach, after having given a
brief introduction of this concept.

4 Estimation strategy

In this section we present the estimation part of
our contribution, working with diagonal Gaussian
mixtures (i.e., matrices Σk in (1) are diago-
nal). Before, it is necessary to briefly introduce
the marginal composite likelihood, on which our
estimation proposal is based.

4.1 Marginal composite likelihood

Marginal composite likelihood is a pseudo-
likelihood used to obtain asymptotically consis-
tent estimates (see Varin et al. (2011) for instance)
when the optimization of the full likelihood is too
burdensome. The marginal composite likelihood
relies only on univariate marginal likelihoods and
it is a special case of composite likelihood (Lindsay
1988), where more general multivariate marginal
likelihoods can take into account.

Let x be a D-dimensional sample with
n observations xi = (xi1, . . . , xiD), i =
1, . . . , n, generated by a Gaussian diagonal mix-
ture model with parameter ψ ∈ Ψ, as in
Section 2. Denoting with xd = (x1d, . . . , xnd)
the component d of the whole raw dataset,
Ld(ψd; xd) is the likelihood of the univariate
Gaussian mixture at dimension d with parame-
ter ψd = (π1, . . . , πK , µ1d, . . . , µKd, σ

2
1d, . . . , σ

2
Kd).

Then, the marginal composite likelihood is defined
as

L̃(ψ; x) =

D∏
d=1

Ld(ψd; xd).

Similarly, the marginal composite log-likelihood is
˜̀(ψ; x) =

∑D
d=1 `d(ψd; xd), with `d(ψd; xd) =

logLd(ψd; xd).
The estimator ψ̃ maximizing L̃(ψ; x) is

named maximum marginal composite likelihood
estimator. It has proved to be consistent and
asymptotically normally distributed under very
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mild conditions about the regularity of the
marginal densities (see Molenberghs and Verbeke
(2005) for instance).

4.2 Bin-marginal composite
likelihood

Having given the necessary notation in the pre-
vious paragraphs, we can now complete our pro-
posal, in which we will combine the memory
reduction offered by bin-marginal data with the
computational advantages of marginal composite
likelihood. Actually, more general but less fru-
gal versions of composite likelihood have already
been used in the area of mixture models. Indeed,
a formalization of EM algorithm with composite
likelihood could be seen in Gao and Song (2011).
They also established three fundamental proper-
ties of the associated so-called CL-EM algorithm:
ascent property, convergence to a stationary point
and a quantification of its rate of convergence. An
application of composite likelihood on binned data
appeared in Ranalli and Rocci (2016), where these
ones arose from a discrete data problem. This is
quite similar to the technique we are about to de-
scribe, but it is different as it uses bivariate grids
and it does not build artificially binned data as a
solution for scalability, because they were already
given in the problem statement.

Assuming a marginal D-dimensional Cartesian
grid G as defined in Section 3 and diagonal co-
variance matrices, instead of maximizing the too
complex bin-marginal log-likelihood `m(ψ; m),
we aim to maximize the following bin-marginal
composite log-likelihood:

˜̀m(ψ; m) =

D∑
d=1

`d(ψd; md)

=
D∑
d=1

Bd∑
bd=1

mdbd log
(∫
Bd

bd

fd(xd; ψd)dxd

)
.

(7)

Here, `d(ψd; md) is the binned log-likelihood for a
univariate Gaussian mixture with K components
of density fd(xd; ψd) indexed by the parameter
ψd. The expression of (7) motivates why we work
with diagonal mixtures: it is impossible to esti-
mate any kind of covariance parameter, since none
of them appear in ψd.

4.3 Properties of the bin-marginal
composite likelihood

The asymptotic identifiability of the optimization
criterion for the maximum marginal composite
likelihood estimator (i.e., the asymptotic crite-
rion is maximized at the unique value of the true
parameter) is a necessary condition to prove its
consistency (Wald 1949; Lindsay 1988). In this
section we prove that this property is fulfilled al-
most everywhere, except in a null measure set,
as the following Proposition 3 assures (proof in
Appendix A). Moreover, the same proposition also
defines precisely the null measure set, which turns
out to be composed by those mixtures with two
equal proportions or two components sharing the
projection on the same axis.

Proposition 3. Assuming the true model is out-
side the null measure set Ψ∗∗ = Π′K × R2k ×
R+2k ∪ Ψ′ , where Π′K = {π ∈ ΠK : ∃i, j :
πi = πj} and Ψ′ = {ψ ∈ Ψ : ∃k, k′, d : µkd =
µk′d, σ

2
kd = σ2

k′d}, the optimization criterion of
the bin-marginal composite log-likelihood, using a
grid G = G1 × . . . × Gd with

∏D
d=1Rd cut points

is asymptotically identifiable if Rd > 4K − 3,
d = 1, . . . , D up to labels permutation.

4.4 Bin-marginal CL-EM algorithm

We can now maximize (7) using an EM-like ap-
proach. At each data md, d = 1, . . . , D we asso-
ciate the missing vectors (xd, zd), d = 1, . . . , D,
where xd contains the component d of the raw
data x and zd is the indicator membership ma-
trix for xd. Thus, it is an n × K matrix whose
generic element zdik is equal to 1 if xid belongs to
population k, 0 otherwise.

To simplify the notation, we set z̃ =
{z1, . . . , zD}: the couple (x, z̃) is named complete
data. Then, we introduce the complete marginal
composite log-likelihood :

˜̀c
m(ψ; x, z̃) =

D∑
d=1

`cd(ψd; xd, zd), (8)

where `cd(ψd; xd, zd) denotes the complete log-
likelihood for the d-th marginal couple of data
(xd, zd).
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Algorithm 1 Bin-marginal CL-EM algorithm for D-dimensional Gaussian diagonal mixtures

1. Initialization phase: provide an initial guess ψ(0).
2. For j ≥ 0:

• Binned CL-E Step: Given the estimate ψ(j), calculate Q̃m(ψ,ψ(j));

• Binned CL-M Step: Obtain the new estimate ψ(j), maximizing Q̃m(ψ,ψ(j)).

For d = 1, . . . , D :
For bd = 1, . . . , Bd :

g
(j)
dbd

(xd) =
f(xd; ψ

(j)
d )∫

Bd
bd

f(yd; ψ
(j)
d )dyd

For k = 1, . . . ,K and d = 1, . . . , D :

τ
(j)
kd (xd) =

π
(j)
k φ(xd; µ

(j)
kd , σ

2(j)
kd )

f(xd; ψ
(j)
d )

π
(j+1)
k =

∑D
d=1

∑Bd

bd=1mdbd

∫
Bd

bd

τ
(j)
kd (xd)g

(j)
dbd

(xd)dxd

Dn

µ
(j+1)
kd =

∑Bd

bd=1mdbd

∫
Bd

bd

xdτ
(j)
kd (xd)g

(j)
dbd

(xd)dxd∑Bd

bd=1mdbd

∫
Bd

bd

τ
(j)
kd (xd)g

(j)
dbd

(xd)dxd

σ
2(j+1)
kd =

∑Bd

bd=1mdbd

∫
Bd

bd

(xd − µ(j)
kd )2τ

(j)
kd (xd)g

(j)
dbd

(xd)dxd∑Bd

bd=1mdbd

∫
Bd

bd

τ
(j)
kd (xd)g

(j)
dbd

(xd)dxd

Stop if (9) is verified, continue otherwise.

At iteration j ≥ 0, ψ(j) denotes the current
estimate for ψ. Then, denoting respectively with
Xd and Zd the random variables generating xd
and zd, we now define the quantity:

Q̃m(ψ,ψ(j)) =

D∑
d=1

E
ψ

(j)
d

[`cd(ψd; Xd,Zd)|md],

where the expectations are taken with respect to

the conditional densities f(xd, zd|md; ψ
(j)
d ), d =

1, . . . , D.
Let re-write Q̃m(ψ,ψ(j)), indicating with Xd×

Zd the integration domain of (xd, zd). We have

Q̃m(ψ,ψ(j)) =

D∑
d=1

∫
Xd×Zd

`cd(ψd; xd, zd)

× f(xd, zd|md; ψ
(j)
d )dxddzd.

Now, we can define our bin-marginal CL-EM
algorithm, whose fundamental steps are resumed
in Algorithm 1. Therein Bdbd indicates the bd−th
interval bin on the d−th dimension.

Initialization

We adopt a uniform random initialization for pro-
portions, means and variances. In particular, for
each dimension, means are values extracted from
the range of values of the data and variances are
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positive uniform values lower than the variance of
the data.

Stopping rule

Binned CL-EM algorithm stops as soon as

∣∣∣ ˜̀m(ψ(j); m)− ˜̀
m(ψ(j); m)

˜̀
m(ψ(j); m)

∣∣∣ < ε, (9)

where ε is a chosen threshold.

Obtaining the final clustering partition

Once obtained the final estimate of ψ provided
by our CL-EM algorithm, namely ψ̂, we recover
the final clustering partition using a maximum a
posteriori probability (MAP) rule. It means that
the estimated labels ẑ = (ẑ1, . . . , ẑn) are given by:

ẑi = arg max
1≤k≤K

π̂kφ(xi; µ̂k, Σ̂k) i = 1, . . . , n.

We highlight this algorithm involves only D
binned vectors of dimension Bd = Rd + 1, d =
1, . . . , D and only univariate integrals. Thus, our
proposal is able to solve our initial issues linked to
storage and complexity.

5 Numerical experiences on
simulated data

In this section we apply the methodology to dif-
ferent simulated datasets in order to show in
controlled frameworks its ability to recognize the
minority class.

Our second aim is also to compare it to two
possible competitors: classic estimation with the
full dataset and a subsampling strategy. We will
evaluate their performances in terms of cluster-
ing quality, measured by the ARI score (Hubert
and Arabie 1985), and also in terms of both time
and memory consumption. In particular, the full
dataset will be our benchmark in terms of clus-
tering quality, but it will be discarded as it is too
much burdensome. The subsampling will prove to
cope with our computational constraints, but re-
sulting usually in bad clustering performances or
in, even, estimation failures.

5.1 Experimental settings

Simulation analyses are conducted on datasets
with 1 million data generated from several 3-
dimensional two classes mixtures, different in pro-
portions assigned to the minority class and also
in means, while both covariance matrices remain
equal to the identity matrix. These differences
are crucial because lowering proportion of the
smallest class corresponds to more difficulties in
detecting it and changing means helps us in con-
trolling classes separation and, thus, clustering
complexity.

We divide our simulations into two main parts:
in the first one, cluster separation is equal for all
axes, while, in the second one, clusters are well
separated only on one axis, while on the other
two they are not. This is useful to understand the
degree of separation needed by our technique. In
particular, in the first part, we gradually increase
the small class proportion three times from 10−4

to 10−2 and we also propose four separation de-
grees for cluster means, equal to 8, 6, 4, 2 in terms
of absolute difference between them. Their combi-
nation results in twelve different scenarios. Each
scenario is named by using two letters: the first
one (H, M, L, V) refers to the degree of separa-
tion of the scenario (respectively: high, medium,
low and very low); the second one (H, M, L) refers
to the imbalance of the dataset (high, medium
and low). Three additional scenarios consist in a
variation of scenarios HH-HM-HL where the first
two dimension have the lowest separation degree,
while there is a high separation on the third axis.
Their names are 1HH-1HM-1HL, reminding that
here high separation is present only on one axis.
Table 1 details all these fifteen settings.

Regarding the three analyzed methods, we
decide to compare subsampling and our bin-
marginal proposal under the same memory con-
straints. Bin marginal uses a grid refinement
R, leading to use a 2R memory space (binned
data itself and grid); hence, subsampling is con-
ducted with a subsample of size 2R to be fair.
At the same time, we also analyze the influence
of the grid refinement on the binned estimation
and, consequently, the effect of the subsample
size on the subsampling performance. In practice,
the refinement can be fixed to 50, 100, 200 and,
consequently, subsample sizes can be 100, 200 or
400. For each scenario, we simulated 20 different
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Table 1: Description of the fifteen scenarios. Covariance matrices Σ1 and Σ2 are equal to the identity
matrix I3 and π2 = 1− π1.

Scenario Separation Imbalance Small class proportion (π1) Means

HH
High

High 10−4
µ1 = (−4,−4,−4)

µ2 = (4, 4, 4)
HM Medium 10−3

HL Low 10−2

MH
Medium

High 10−4
µ1 = (−3,−3,−3)

µ2 = (3, 3, 3)
MM Medium 10−3

ML Low 10−2

LH
Low

High 10−4
µ1 = (−2,−2,−2)

µ2 = (2, 2, 2)
LM Medium 10−3

LL Low 10−2

VH
Very low

High 10−4
µ1 = (−1,−1,−1)

µ2 = (1, 1, 1)
VM Medium 10−3

VL Low 10−2

1HH
One separated

component

High 10−4
µ1 = (−1,−1,−4)

µ2 = (1, 1, 4)
1HM Medium 10−3

1HL Low 10−2

datasets of equal size (1 million) to have consistent
results. To evaluate its variability, subsampling
performances are evaluated on 100 different sub-
samples. Practical implementation, both of simu-
lations and real application as well, was done in
the R environment (R Core Team 2021). More
precisely, we used the routines of the R package
Rmixmod (Lebret et al. 2015) for the two competi-
tors and a self-written code for our bin-marginal
technique. We have chosen Rmixmod because its
initialization phase is stochastic, enabling a better
exploration of the parametric space. For this rea-
son Rmixmod was preferred to concurrency, notably
to mclust (Fraley et al. 2012), whose initialization
is based on a deterministic hierarchic clustering.

5.2 Results

Clustering quality and memory

Figures 3a-3o depict the results of the simulations.
Mostly, our proposal outperforms subsampling in
all the settings with good performance even with
the coarser grid. It encounters some difficulties
only in very hard scenarios where separation and
proportion are very small. Generally, it approaches
with a low consumption the results obtained with

the full dataset, which, on the contrary, uses a
huge amount of memory.

Failures

There is another virtue in binned strategy: in fact,
subsampling can fail, as reported in Figure 4. It
appears the probability of failure increases if sep-
aration increases and imbalance ratio decreases.
This is quite astonishing, as we expected more fail-
ures in a more imbalanced dataset, but it is not
completely incoherent: in fact, results show that
if subsampling does not fail (high imbalancement)
it works badly; if on the contrary it can provide
good results, it is prone to failures (low imbalance-
ment). In most of scenarios, failures surprisingly
increase according to subsample size. At this mo-
ment, we are not able to explain exactly the reason
of this unusual behaviour, that probably could be
resolved by changing the initial settings of EM
(implemented in Rmixmod). But, fortunately, this
does not affect directly our proposal based on
binned data.

Time

Finally, Figure 5 shows time performances for the
three strategies. Our CL-EM algorithm does not
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outperform subsampled EM in execution time,
while it is faster than full dataset EM. This result
is coherent with our expectations. Indeed, even if
both CL-EM and classic EM are linear with re-
spect to input size (R and n respectively), the
operations executed by CL-EM are more complex
due to the presence of integrals (see Algorithm 1).
Thus, if R and n are comparable (subsampling
case), CL-EM is slower than classic EM, while it
is faster if R � n (full dataset case). In analyz-
ing Figure 5 we also have to point out that the
Rmixmod package is well-optimized and written us-
ing Rcpp, which enables integration between R
and C++, while our code is completely written
in R and it may be improved even in the phase
of binning. According to Aruoba and Fernández-
Villaverde (2015), Rcpp is faster than R about
100 times, so our time performances has to be
scaled of at least a factor 100. The figure itself
pictures our predicted performance after code op-
timization (blue boxplots), showing a remarkable
improvement relatively to full dataset analysis.

6 Real datasets

The presented methodology is now applied to
several real imbalanced datasets. Here we show
three applications from different fields of inter-
est, which are image segmentation, fraud detection
and recognition of potentially hazardous asteroids.
In the last two cases, we have considered a subset
of three variables for each dataset. We have cho-
sen those ones whose histograms visually resulted
to be close to GMM hypotheses and with a low
percentage of missing values (less than the 5% of
the original data). A comprehensive view of the
used datasets is given in Table 2.

Table 2: Real datasets description.

Dataset n D Small class proportion

Cell-1 101,430 3 unknown

Cell-2 65,536 3 unknown

Cell-3 685,020 3 unknown

Comet 1,083,681 3 unknown

Asteroids 932,341 3 0.002

Credit card 284,807 3 0.0014

6.1 Datasets and methods

Image segmentation

Image segmentation (Pal and Pal 1993) consists
in partitioning an image into homogeneous parts
and it is useful to detect and locate objects. Here
we focus on those images where there are very
tiny objects: for this purpose we segment three cell
images available on Kaggle (To 2021) and an im-
age picturing a distant active comet observed by
NASA’s Hubble Space Telescope (NASA 2017).
After a brief pre-processing phase, these images
result in 3-dimension datasets with a number of
records ranging from 65,536 to 1,083,681. The
lines of these datasets correspond to RGB pixels,
that could be analyzed with our method.

Asteroids

Asteroid dataset is a collection of information
about asteroids available on Kaggle (Hossain
2020). It consists in 958,524 records of 45 vari-
ables. The purpose of the analysis is to detect
potentially hazardous asteroids (PHAs), which
are those asteroids approaching very close to the
Earth. In particular, an asteroid with small mag-
nitude (H) and Earth minimum orbit intersection
distance (moid) is considered a PHA (Quarta and
Mengali 2010). We use only a subset of the fea-
tures contained in this dataset, using these two
variables and adding information regarding orbit
eccentricity in order to remain in a more inter-
esting 3-dimensional problem where our method
has already been tested in the simulation phase.
Due to the presence of missing values, the ana-
lyzed dataset contains now 932,341 records out of
958,524. The rest of the variables were discarded
because they contain too many missing values (less
than the 5% of the original data) and their his-
tograms were judged not to be close to GMM
hypothesis.

Credit card fraud detection

Kaggle credit card dataset (ULB 2018) is a pub-
lic repository which was massively analyzed in
literature (Dal Pozzolo et al. 2017, 2014; Niu
et al. 2019) to detect frauds. This dataset contains
284,807 transactions, of which 492 are frauds,
made by credit cards in September 2013 by Eu-
ropean cardholders. All information given by 31
variables are anonymized and they are the result
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Figure 3: Clustering performances for subsampled EM (red boxplots) and bin-marginal CL-EM (black
boxplots), expressed in terms of ARI in dependence on grid refinement/subsample size under condition
of equal memory occupancy. Dotted lines represent full dataset performances. Imbalance is decreasing
from left to right and separation is decreasing from top to bottom.
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Figure 5: Scenario HH: execution time (in s) comparison between subsampled EM (red boxplots) and
bin-marginal CL-EM (black boxplots) in dependence on grid refinement/subsample size in condition of
equal memory occupancy. Blue boxplots show expected CL-EM time after optimization in language C++,
while dotted line represents time performance for the full dataset analysis.
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of a PCA transformation, so the original mean-
ing of the variables is missed. Following the same
ideas of the previous dataset, we kept only three
variables (V10-V14-V17), selecting those whose
histograms seemed to be closer to Gaussian as-
sumptions.

Methods

For image segmentation, we will simply use the K-
class partitions obtained with both our proposal
and subsampling. For Asteroids and Credit Card
datasets we perform a two-classes clustering com-
paring our method to both subsampled EM and
full dataset EM. Actually, true classification labels
are provided by the original datasets but we use
them only as a benchmark, as we want to follow
a completely unsupervised approach. In particu-
lar we will employ them to rank results based on
ARI score (Hubert and Arabie 1985). Similarly
to simulations, we used our self-written R code for
bin-marginal CL-EM and Rmixmod for all versions
of classical EM .

6.2 Results and discussion

Image segmentation

Figures 6-9 synthesize results obtained for the
image segmentation of the four images. Figures
marked with (a) represent the true images and
those denoted with (b) the segmentation obtained
with binned data. Finally, figures (c)-(d) are the
best and worst (respectively associated to the full
dataset likelihood of the estimated parameter)
segmentation obtained with classical subsampling
in condition of equal memory occupancy. It can
be seen that our method successfully detects the
objects, while subsampling results in very noisy
segmentations. Regarding the binning grid em-
ployed, we used marginal grids of refinement 20
for all Cell images and a finer ones with 400 in-
tervals for Comet. In addition for Cell images we
selected K = 4, where 4 colours are recognizable,
and K = 3 for Comet, as in this image there
is a consistent group of noise (represented in our
segmentation by black points)

Asteroids

Figure 10a reports the result of the comparison
between our bin-marginal CL-EM and classical
EM with both subsampling and full dataset. In

absolute terms, generically low ARI scores sug-
gest that a total unsupervised approach could be
very risky in this case. However, our objective is
to analyze the results of our proposal relatively
to our competitors. Concerning this, Figure 10a
shows that, despite the loss of information, bin-
marginal method (black circle) has globally better
performances than both subsampling (red box-
plot) and full dataset EM (blue circle). Moreover,
bin-marginal CL-EM is not prone to the variabil-
ity of subsampling, whose result highy depends on
subsample choice.

Credit card fraud detection

Following the same strategy used for Asteroids
dataset, we build a two-classes partition using our
bin-marginal technique to detect frauds among
the set of credit card transactions. Based on
Figure 10b, similar comments could be made. Our
method seems to be globally better with our di-
rect competitors, avoiding the high variability of
subsampling.

7 Conclusion

This work has introduced a method based on
Gaussian mixture models combining binned data
with marginalization, which is able to detect, in
an unsupervised way, imbalanced classes on large
datasets under hard memory constraints. The the-
oretical results presented in this paper have shown
that the model and the proposed estimation pro-
cedure have good statistical properties, such as
identifiability and consistency, despite the huge
loss of statistical information caused by our heavy
bin-marginal data compression.

Both simulations and real applications have
proved the competitiveness of our method with re-
spect to the traditional subsampling method, in
those cases where a full dataset clustering is out
of reach. In particular, it has revealed a great po-
tential in the context of image segmentation when
very tiny objects have to be detected.

These very encouraging results have to be more
developed in the future, proposing methods for
model choice and optimal strategies for binning
grids construction. The formulation of a model
choice criterion is important, as it allows the com-
plete automation of our technique and a more
precise clustering. Optimal binning strategies are
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(a) (b)

(c) (d)

Figure 6: Cell-1 segmentation: a) Original image; b) Segmentation obtained with bin-marginal CL-EM;
c-d) Worst and best segmentation obtained with two subsampled EM.



17

(a) (b)

(c) (d)

Figure 7: Cell-2 segmentation: a) Original image; b) Segmentation obtained with bin-marginal CL-EM;
c-d) Worst and best segmentation obtained with two subsampled EM.
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(a) (b)

(c) (d)

Figure 8: Cell-3 segmentation: a) Original image; b) Segmentation obtained with bin-marginal CL-EM;
c-d) Best and worst segmentation obtained with two subsampled EM.
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(a) (b)

(c) (d)

Figure 9: Comet image segmentation: a) Original image; b) Segmentation obtained with bin-marginal
CL-EM; c-d) Worst and best segmentation obtained with two subsampled EM.
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Figure 10: Two-classes clustering performances in terms of ARI for subsampled EM (red boxplots), bin-
marginal CL-EM (black circle) and full dataset EM (blue circle). Datasets: (a) Asteroids; (b) Credit card
fraud detection.
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as much crucial, because they could contribute to
design highly efficient frugal grids and to select
variables. Indeed, we can reasonably suppose that
the selection of a certain grid refinement degree for
a variable is correlated to the degree of importance
of the same variable for the clustering. According
to this heuristic, we could infer that uninforma-
tive variables are associated to very coarse grids.
Indeed, at the limit case when a marginal grid is
restricted to a single bin, we can recognize an out-
come equivalent to variable selection. Thus, such
an approach could provide a very appealing half-
way strategy instead of ”hard” classical variable
selection.

Optimal strategies are also required in bin-
marginal CL-EM initialization. For this reason, it
is necessary to investigate the theoretical prop-
erties of bin-marginal composite log-likelihood,
studying in particular its local maxima and the
rate of convergence of the related estimator to-
wards the true parameter. Indeed, we could expect
the particularly high information compression of
our method to have consequences on that.

In this paper we have not considered those
high-dimensional situations where several small
classes might appear. Actually, in a preliminary
simulated example not displayed here, we studied
a related problem where our technique encoun-
tered some issues, solved after having increased
the size of the simulated dataset from 1 mil-
lion to 10 million. Probably, this is caused by
the fact that our data-reduction is really extreme
and, maybe, a softer compression is needed to
save enough multivariate statistical information
to accomplish more complex tasks. Thus, possi-
ble solutions could be either an intelligent and
frugal usage of bivariate grids or hybrid methods
involving both bin-marginal and raw data. In all
of these cases, we will have to remain inside the
strong computational constraints of our context of
reference.

We are conscious that our proposal can be
used in several fields and for this reason we aim
to develop deeply our technique, proposing at the
same time practical applications of it in our fu-
ture works. We will also provide shortly an R
package that could be used by both experts and
practitioners.
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A Appendix

Preliminary results

In this paragraph we present two results neces-
sary for the proofs of the propositions contained
in the main text. The first proposition is proved
in Valiant (2012) and it helps to recover the
subsequent proposition, which assesses the identi-
fiability for univariate binned mixture models.

Proposition A.1 (Proposition 11.5 in
Valiant (2012)). Given the linear combi-
nation of K univariate Gaussian densities
f(x) =

∑K
k=1 πkφ(x; µk, σ

2
k), such that either

µk1 6= µk2 or σ2
k1
6= σ2

k2
for k1 6= k2 and for all k

πk ∈ R∗, the number of solutions to f(x) = 0 is
at most 2(K − 1).

Proposition A.2. Binned univariate mixtures of
K Gaussian distributions are identifiable if the
binning grid has R > 4K − 3 cut points.

Proof If X = R, the considered probability mass
functions reduces to p(n,ψ), thus it is to demonstrate
that statement

∀ψ,ψ∗ ∈ Ψ : p(n; ψ) = p(n; ψ∗) ∀G,n ⇒ ψ = ψ∗

(10)
hold almost everywhere expect for a set Ψ∗ ⊂ Ψ
whose Lebesgue’s measure is zero, respectively to the
dimension of the original space.

Denoting with Φ(·) the cumulative density func-
tion of a standard Gaussian, if G has R cut points
(a1, . . . , aR) then it is sufficient to prove that the
system

∑K
k=1 πkΦ(a1−µk

σk
) =

∑K
k=1 π

∗
kΦ(

a1−µ∗k
σ∗k

)∑K
k=1 πkΦ(a2−µk

σk
) =

∑K∗

k=1 π
∗
kΦ(

a2−µ∗k
σ∗k

)

...∑K
k=1 πkΦ(aR−µk

σk
) =

∑K
k=1 π

∗
kΦ(

aR−µ∗k
σ∗k

)

has only the trivial solution ψ = ψ∗ whatever the grid
is. Hence, the non-zero subset of non identifiability is
the one of the possible permutation of ψ.

It is also equivalent to discover how many zeros
can have the difference between the cumulative density
functions of two different Gaussian mixtures. If this
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number is a certain Z, identifiability is assured for
R > Z.

Again, considering the difference between two cu-
mulative functions with Z zeros, namely h(x), for
continuity and for the fact that limx→∞ h(x) =
limx→∞ h(x) = 0, it is necessary that this function
has at least Z + 1 critical points, i.e. the difference of
the two respective density functions has at least Z+ 1
zeros. So it is possible to formulate the problem in the
terms of maximum number of zeros of the difference
between the densities of two different mixtures.

Valiant’s theorem states that this maximum num-
ber is 4K − 2. Thus, if R > 4K − 3, identifiability
holds. �

Proofs of main text propositions

Proposition 1 The proof mostly relies on the two
previous prepositions. In dimension D, considering a
grid with

∏D
d=1Rd cut points and B =

∏D
d=1(Rd+ 1)

bins as defined in Section 2, the statement (10) holds
if the system

∑K
k=1 πk

∫
Bb
φ(x,µk,Σk)dx

=
∑K
k=1 π

∗
k

∫
Bb
φ(x,µ∗k,Σ

∗
k)dx

b = 1, . . . , B − 1

has only the trivial solutions ψ = ψ∗. Under hypoth-
esis of diagonal covariance matrices it is equivalent
to:



∑K
k=1 πk

∫
B1

b
φ(x,µk1, σ

2
k1)dx

× . . .×
∫
BD

b
φ(x,µkD, σ

2
kD)dx

=
∑K
k=1 π

∗
k

∫
B1

b
φ(x,µ∗k1, σ

2∗
k1)dx

× . . .×
∫
BD

b
φ(x,µ∗kD, σ

2∗
kD)dx

b = 1, . . . , B

It is clear every 1-d region Bdb coincide with a cer-

tain Bdbd , which is a bin on the d-th dimension, as
the D-dimensional bins are the result of the Carte-
sian product of certain 1-dimensional bins. Choose
every equation involving integrals on regions sharing
the same projection on the first axis B1b1 . We note

this is equivalent to consider
∏D
d=2(Rd + 1) systems

of B1 = R1 + 1 equations for two univariate mix-
tures with K components. We can rewrite the previous
system as:



∑K
k=1 πkb̃

∫
B1

b1

φ(x,µk1, σ
2
k1)dx

=
∑K
k=1 π

∗
kb̃

∫
B1

b1

φ(x,µ∗k1, σ
2∗
k1)dx

b1 = 1, . . . , B1

b̃ = (b2, . . . , bD) ∈
∏D
d=2{1, . . . , Bd}

where for each b̃:

πkb̃ = πk

D∏
d=2

∫
Bd

bd

φ(x,µkd, σ
2
kd)dx

π∗
kb̃

= π∗k

D∏
d=2

∫
Bd

bd

φ(x,µ∗kd, σ
2∗
kd)dx

As two or more components can share the same
projection on a univariate space, the true num-
ber of components for each mixture will be lower
or equal to K. In addition, it is a priori different
for each mixture. Let name the number of com-
ponents for the two projected mixtures K1 and
K∗1 . Let consider a partition I1 of K1 elements
of the set {1, . . . ,K}. Each element of I1 repre-
sents the subset of components sharing the same
projection on the first axis for the first mixture.
Similarly, each element of the K∗1 -partition I∗1 of
{1, . . . ,K} represents the totality of components
having the same projection for the second mix-
ture. Actually, the same argument of Proposition
A.2 demonstrates that the two projected mixtures
must have the same number of components, thus
K1 = K∗1 , and the same partition, thus I1 = I∗1 .
Moreover, as one-dimensional identifiability holds:



∑
k′∈I1k πk′b̃ =

∑
k′∈I1k π

∗
k′b̃

µk′1 = µ∗k′1 σ2
k′1 = σ2∗

k′1

k′ ∈ I1k,
k = 1, . . . ,K1

b̃ = (b2, . . . , bD) ∈
∏D
d=2{1, . . . , Bd}

Using the definition of πkb̃ and π∗
kb̃

, the en-

tire collection of the equation
∑

k′∈I1k πk′b̃ =∑
k′∈I1k π

∗
k′b̃

forms a system of identifiability for a
mixture of dimension D − 1 and number of com-
ponents given by the cardinality Ik, which is lower
than K. We can then iterate the same procedure,
until we obtain only one-dimensional equations of
identifiability for which Proposition A.2 is valid.
In this way we obtain:
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

πk = π∗k
µkd = µ∗kd
σ2
kd = σ2∗

kd

k = 1, . . . ,K d = 1, . . . , D

This completes the proof. �

Proposition 2 Let consider two probability mass
functions pm(m; ψ) and pm(m; ψ∗). Our aim is to
demonstrate

∀ψ,ψ∗ ∈ Ψ : pm(m; ψ) = pm(m; ψ∗) ∀G,m
⇒ ψ = ψ∗.

We can consider a grid of dimension R1 ×
. . . × RD as defined in Section 3 and the vectors
mb = (mb1

1 , . . . ,m
bD
D ), where b = (b1, . . . , bd) ∈∏D

d=1{1, . . . , Bd}. Each vector mbd
d is defined as

mbd
d =

{
n for an index bd ∈ {1, . . . , Bd}
0 otherwise

So each mbd
d is a vector of counts representing the

situation in which observation are concentrated in the
bd−th bin on the d-th dimension. Moreover, for each
possible mb we have:

pm(mb; ψ) =
∑

n′∈F
mb

p(n′; ψ) = k(mb)Pb

pm(mb; ψ∗) =
∑

n′∈F
mb

p(n′; ψ∗) = k(mb)P ∗b

where k(mb) is a constant and Pb (and P ∗b ) is the
probability for the bin whose marginal bin on the d-
th is indexed by the d-th element of b. Choosing every
possible value for b we obtain the same system of iden-
tifiability equation for a multivariate binned mixture
model. There are no other equation to satisfy because
the other probabilities for other vectors m are com-
binations of Pb (or P ∗b ). Thus if multivariate binned
mixture models are identifiable the binned marginal-
conjoint model is identifiable. Moreover, under the
hypothesis of Proposition 1 diagonal binned conjoint-
marginal multivariate mixtures are identifiable. �

Proof of Proposition 3 Let X = (X1, . . . , XD) be
a mixture random variable with pdf f(x,ψ) and define
the

∑
dBd–dimensional random variable M with com-

ponents (1ad(bd−1)≤Xd<adbd
)d=1,...,D; bd=1,...Bd

, mar-

gins of the raw observation X on the D-dimensional
grid. Thenm is the sum of n outcomes of i.i.d. random

variables having M law. Hence, 1
n

˜̀m(ψ; m) con-
verges in probability to the contrast function F (ψ) =
Eψ∗ [˜̀m(ψ; M)] when n → ∞, uniformly in the
parameter.

We have to show that the following inequality
holds:

Eψ∗ [˜̀m(ψ; M)] ≥ Eψ∗ [˜̀m(ψ∗; M)] ∀ψ 6= ψ∗

(11)

In this case we will say that there is asymptotic iden-
tifiability. Suppose there is a point ψ 6= ψ∗ such that
Eψ∗ [˜̀m(ψ; M)] = Eψ∗ [˜̀m(ψ∗; M)]. Then we have:

Eψ∗ [˜̀m(ψ∗; M)]− Eψ∗ [˜̀m(ψ; M)]

= Eψ∗1 [`1(ψ∗1; M1)]− Eψ∗1 [`1(ψ1; M1)] + . . .

+ Eψ∗D [`D(ψ∗D; MD)]− Eψ∗D [`D(ψD; MD)] = 0

where Md is a Bd dimensional random variable with
components (1ad(bd−1)≤Xd<adbd)bd=1,...,Bd

. For all
log-likelihoods `d, d = 1, . . . , D, inequality (11) holds.
Thus, for all ψ1,ψ2:

Eψ∗1 [`1(ψ∗1; M1)] ≥ Eψ∗1 [`1(ψ1; M1)]

...

Eψ∗D [`2(ψ∗D; MD)] ≥ Eψ∗D [`D(ψD; MD)]

and equality holds for ψ1 = ψ∗1, . . . ,ψD = ψ∗D.
As it is well-known for mixtures, each equality hold

up to a permutation: so we can define a set of D per-
mutations named ρ1, . . . , ρD. In the hypothesis of our
proposition, which assures that the marginal mixtures
have the same number of components of the original
ones and different proportions, we can match uniquely
the two components thanks to proportions matching.
Therefore, the D permutations reduce to only one
(named ρ) and ψ∗ is equal to ψ after ρ. So, in this
case, asymptotic identifiability is fulfilled. �
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