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Statistical properties of line spectrum pairs

Jean-Yves Tourneret*

ENSEEIHT GAPSE, 2 ruce Camichel, 31071 Toulouse. France

Abstract

An original method for computing the Probability Density Function (PDF) of the Line Spectrum Pair (LSP)
coefficient vector as a function of the PDF of the AutoRegressive (AR) parameter vector is derived. Being linked by
non-linear relations. AR parameters and LSP coeflicients cannot both be Gaussian. This strict theoretical result could
hide an approximately Gaussian distribution for the LSP parameters. Some distances between the LSP parameter
PDF and its asymptotic Gaussian PDF are then studied. In a pattern recognition application. the LSP parameter
statistics allow us to study the convexity of LSP point clusters. conditioned to each class: the LSP parameters seem to be
attractive for pattern recognition when used with the centroid distance rule. ¢ 1998 Elsevier Science B.V. All rights
rescerved.

Zusammenfassung

In diesem Artikel wird eine neue Methode zur Berechnung der Wahrscheinlichkeitsdichtefunktion (engl. probability
density function. PDF) des Koeflizientenvektors von Linienspektrumpaaren (LSP) abgeleitet. Die neue Dichte ergibt sich
dabei als Funktion der Dichte des Parametervektors eines autoregressiven (AR) Prozesses. Da AR Parameter und LSP
Koeffizienten durch nichtlineare Bezichungen miteinander verkniipft sind. konnen nicht beide Groflen Gauss-verteilt
sein. Dieses strikic theoretische Resultat konnte eine approximative Gaussverteilung der LSP Parameter verbergen.
Daraufhin werden cinige DistanzmafBie zwischen den LSP Parameterdichten und ihre asymptotischen Gaufischen
Dichten untersucht. Bei Anwendung auf ein Mustererkennungsproblem erlauben die Verteilungseigenschaften der LSP
Parameter die Untersuchung der Konvexitit der LSP Punkthaufen. die dic vorliegenden Klassen bestimmen. Daher
bicten sich LSP Parameter als geeignete Werkzeuge bei der Mustererkennung an, wenn sic im Zusammenhang mit der
centroid distance rule eingesetzt werden. ¢ 1998 Elsevier Science B.V. All rights reserved.

Résumé

Nous presentons une méthode originale permettant de calculer la densite de probabilite des coeflicients LSP en
fonction de celle des parametres AR. La relation liant ces deux ensembles de parametres ¢tant non-lineaire, ils ne peuvent
¢tre simultanement gaussiens. Ce résultat purement théorique peut cacher une loi trés proche de la loi normale pour les
cocflicients LSP. Plusieurs distances entre la loi des coeflicients LSP et la loi normale asymptotique associce sont alors
¢tudicées. La statistique des coefficients LSP nous permet d'analyser la convexité des nuages de points obtenus lors d'une
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classification avec ces coeflicients: les coefficients LSP semblent bien adaptés 4 la reconnaissance des formes avec la régle

de la distance au barycentre. ¢

Keywords: AR parameters: Line spectrum pairs; Non-Gaussian; Non-linear; Distances: Pattern recognition; Estimation

1. Introduction

Many sets of parameters equivalent to AutoReg-
ressive (AR) parameters have been used for quan-
tization and coding. Reflection coefficients or
PARCOR coefficients have shown interesting prop-
erties which make them attractive for quantization.
They ensure stability of the AR filter after quantiz-
ation and there exists a natural order in these
parameters [10]. Log-Area Ratios (LARs) and arc-
sine reflection coefficients have then been shown to
be optimal in the sense of minimizing a maximum
spectral deviation [7]. Recently, the Line Spectrum
Pair coefficients (LSP) have been shown to outper-
form these AR parameter representations in many
speech processing applications [12,15,16]. This re-
sult is mainly due to an uncorrelated property of
these coefficients [5.6].

This paper derives some statistical properties of
the LSP parameters in the case of a Gaussian AR
parameter vector denoted as a with mean m, and
covariance matrix C,. The Gaussian assumption
for AR parameters can be justified in three applica-
tions [19-217:

e In Estimation theory, AR parameters are deter-
ministic and have to be estimated. According to
the Mann and Wald theorem, most commonly
used AR parameter estimators can be assumed
to be Gaussian when the parameters are esti-
mated for sufficiently large data records
[8]. Moreover. most of these estimators are
asymptotically efficient. It means that, for large
number of samples. the covariance matrix of
a can be approximated by the Cramer-Rao
bound

0_2
(‘a = _(‘R7 1.

n
o2 is the driving noise variance, n is the number
of samples and R is the AR process covariance

matrix.

e In Pattern Recognition, AR parameters are ran-
dom. To derive the optimal Bayesian Classifier.
the Probability Density Function (PDF) of the
AR parameter vector “a’ has to be known, condi-
tioned on each class. According to [4] (p. 22). the
multivariate normal density is an appropriate model
for an important situation, viz., the case where the
features vectors for a given class are continuous
valued, mildly corrupted versions of a single typical

- or prototype mean vector. When the features are
statistically independent and have the same vari-
ance ¢”. the covariance matrix of each class is of
the form &1 (I being the identity matrix). When
the features are not independent, the covariance
matrix of each class is no longer diagonal. It can
then be expressed as C, = ¢”C. C is a unit norm
matrix and o is the variancc of the class (some-

times called within-class scatter) [4] (p. 26).

e In the theory of random coefficient AR models,
many methods have been developed using the
Gaussian assumption [11].

The paper focused on the pattern recognition case.

Consequently, in what follows, the parameter vector

of an AR process will be considered as a Gaussian

variable denoted by « with mean m, = E(«)

and covariance matrix C, = ¢>C, C being a unit

norm matrix independent of ¢. Note that
all results can be extended to the estimation case
with
2 -1
o =ZR Y and €=~
n IR

In the first part of the paper, an original method
for determining the LSP parameter PDF, as a func-
tion of the PDF of the AR parameter vector. is
proposed.

A statistical study can show that the LSP para-
meter PDF tends to the Gaussian PDF when ¢° — 0
(pattern recognition) or n —» + o (estimation)(the
proof is given in [8] for reflection coefficients).
However, for non-zero values of ¢, due to their



non-linear relationship, AR parameters and LSP
coefficients cannot both be Gaussian. This strict
theoretical result could hide an approximately
Gaussiandistribution for the LSP parameters. This
is very important, since a fine knowledge of the
LSP parameter PDF is not necessary for most
applications (optimal vector quantization, Bayesian
classification, etc.). Thus, determining under which
conditions the Gaussian approximation is valid or
not, is of major importance. Usual distances. such
as the Kullback divergence or the Bhattacharyya
distance, are effective tools for measuring the close-
ness between two PDFs. Thus, they can be used to
determine the distance between the LSP parameter
PDF (determined in the first part of the paper) and
its asymptotic Gaussian PDF. However, due to the
very complicated expression of the LSP parameter
PDF, these distances do not lead to closed-form
expressions. A new distance (denoted as M-distance)
has revealed to be an effective tool for measuring
the closeness between two random variables [21].

In the second part of the paper, the M-distance is
used to determine a simple closed-form expression
of the closeness between the LSP parameter PDF
and its asymptotic Gaussian PDF.

Non-Gaussian parameters can lead to surprising
results when they are used for pattern recognition.
For instance, it is well-known that the centroid
distance rule has to be used with parameters whose
PDF is convex [4]. Recent works have shown that
the PDF of reflection and cepstrum coefficients
could be non-convex [18,19], which makes them
unattractive for pattern recognition (when used with
the centroid distance rule).

In the third part of the paper, the shape of LSP
parameter clusters is studied: LSP parameters seem
to be well suited to classification with the centroid
distance rule.

The paper is organized as follows. Section 2
reminds the reader of some LSP parameter defini-
tions and properties. Section 3 presents a recursive
way of determining the LSP parameter PDF as
a function of the PDF of the AR parameter vector.
An original method for determining the ‘closeness’
between the LSP parameter statistics and its asymp-
totic Gaussian distribution is studied in Section 4.
Section 5 studies some LSP parameter properties for
classification. Conclusions are reported in Section 6.

2. LSP coefficient properties

For a given mth-order minimum phase AR
polynomial A,(z) =1+ Y7 az"', two LSP
polynomials denoted by P,(z) and Q,(z) can be
constructed by setting the (m + 1)th reflection coef-
ficient (PARCOR coefficient) k,,, ; to + 1 or — 1:

P,,,(Z} = Am(z) - Zi(m+ l)Am(z i l)a (1)
Qm(z) = Am(z) + Z.i(m ’ “Am(zu 1)- (2)

For speech signals, the conditions k,,, ;, = + 1 and
k,.+1 = — 1 correspond to a complete closure and
a complete opening of the glottis in the acoustic
tube model, respectively. Let

m+ 1

Pulz2)= Y pz ', (3)
i=0
mt+ 1 )

Onlz)= ) qz"" (4)
i=0

with po =1, pyr1= —land go=1,4p+1 = + 1.

With these conditions, the coefficients of the LSP
polynomials P,(z) and Q,,(z) are linked to the AR
parameters by the following relations:

o .
Pi= i — iy P€(1 . my, (3)
i =@ + amyy - i€, m}. (6)

For m even (the cases of m odd and m even only
differ in some details), the LSP polynomials can be
expressed as

Pm(Z):(l-“Zil). H

(1 —2z 'cosw; +z ?),

(7

= (1 +z’]). 11 (1 =2z 'cosw; + 2z 2.
(8)

The parameters {w;};=, ., are the LSP para-

meters. For a stable AR polynomial 4,,(z), the LSP

polynomials have very interesting properties for

quantization and coding [15,16]:

e all roots of P,(z) and Q,(z) lic on the unit circle.

e all roots of P,(z) and Q,,(z) alternate with each
other on the unit circle: the LSP parameters {w;}



satisfy the ‘ordering property’

O<m <mwy; < - < Wy <y <T

In what follows, w» = T(u) denotes the LSP para-
meter vector and T the non-linear relation
between AR parameters and LSP coefficients.

3. LSP coefficient PDF

This part presents a recursive method for deter-
mining the PDF of the LSP coefhicient vector
as a function of the PDF of the AR parameter
vector ¢ = [uy, ... ,u,]". Define two polynomials
Hy 2(2) =YY" ghz ' and K,oa(z) =310 k!
such that

P.z)=H, -z}l —2z ‘cosm,, + 2 7). (9)
Qu(z) = Kpoal2d1 = 227 cosw,, ( +2 %) (10)

According to Eqgs. (7) and (8), H,, - »(z) and K,,, . 2(2)
satisfy the following equations:

fllrn - 2(:)
=(l—-z" 11 (1 —2z 'coswy; +z ),
(=240 m2
(11
Km*’ 2{:)
=(1+z" ] (1 — 22" "cosw; + 2 7).

=13 .m~3

(12)
These two equations show that H,, . .(z) and
K, - »(z) are LSP polynomials of order m -- 2. The
AR parameters corresponding to these two LSP
polynomials will be denoted h,..... b, . Egs.(9)
and (10) show that the coefficients of H,,. »(z) and
K,, s(z) fori=1,....m/2, satisfy

pi = h; — 2h; _cosey, + i s, (13)
g;i = ki — 2k;_cosm,, -1 + ki s (14)
with p;=d; — dp- i i =i + Uy -1 -
ietll....m}, and

hy=ko=1 h =k =0, (15)

hj=b;—bu i jki=hj+bu 1

jell, ..., m— 2. (16)

These relations allow the determination of the PDF
of the vector V,o» =[P1.....hy 2.0p—1.0]" as
a function of the PDF of the AR parameter vector
a=1[ay.....,a,,]" =V, (sce Appendix A). In a
similar way, the PDF of the vector V, , =
(€1 ey Cone 2y Wy 3 W — 2, W 1, W] T can be deter-
mined as a function of the PDF of the vector
Vi 2 (CiseeoiCm-4 are the AR parameters of
a (m — 4)th order LSP polynomial). With m/2 iter-
ations (assuming the AR parameter vector PDF is
known), the LSP parameter vector PDF can be
computed. As an example, the second- and fourth-
order LSP parameter vector PDFs are derived in
Appendix B.

For simplicity, simulations are performed for
a second-order Gaussian AR parameter vector. with
two conjugate poles p, = pe’ and p, = pe #*. The
mean and covariance matrix of this random vector
are

— 2pcos
m, = [ f ) (p]’ (17)
- .

C,=aC. (18)

C is a unit norm matrix and o> characterizes the
intra-class scattering. Simulations are performed
with p = 0.8. ¢ = n/4 and

1 09
C,=10"? .
09 1

Fig. 1 shows a comparison between the theoretical
and estimated LSP parameter PDF with 95%
confidence intervals. The theoretical LSP para-
meter PDF is determined using Eq. (B.9) (see Ap-
pendix B). The computation of 95% confidence
intervals is made following [13] (p. 251). The LSP
parameter histograms arc computed from 1000
Gaussian AR parameter vectors. Fig. 1 shows that
the LSP parameter PDFs and histograms are in
good agreement.

4. Distance between the LSP parameter PDF and
its asymptotic Gaussian PDF

In what follows, the variables { X .} converge in
probability to zero when ¢° tends to zero. written
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Fig. 1. Theoretical and estimated LSP paramcter PDFs with
95% confidence intervals. (a) Coefhicient ;. (b) Coethicient .

X, = oy(1) [2] (p. 198), if

Ve>0 lim P[X,]>¢]=0. (19)

a0

The variables | X,:} are bounded in probability,
written X - = O,(1), if

Ve>0 Jo(¢) > 0 such that
P[IX,:| > d(¢)] <« for all ¢°. (20)

In the pattern recognition case, the covariance
matrix of the AR process a is of the form C, = ¢°C,
C being a unit norm matrix, such that

a—m, =040) = é(a—mu):Op(l), (21)

which means that (1/o)(a —m,) is bounded in
probability. Denote T'(a) and T'(a) the first- and

second-order derivatives of T(a). The computation
of the second-order derivative T"(a) can be made
from the Hessian H(a) of the transformation T (see
[3] (p. 143), or Appendix C for an example). For
instance, for a transformation from R™ into R, T"(a)
is defined by

T (a)(u,v) = u"H(a)v, (22)

with [H(a)];; = ¢*T/éa;ca;. According to [2] (p.
202), w = T(a) admits the following Taylor expan-
sions:

w0 = T(a) = T(ma) + T,(mu)(a - mu) + Op(0)9 (23)

w = T(a) = T(m,) + T'(m,)(a— m,)
+3T"(m)a—m,a—m,) + 0,c?), (24)

which means that the random vectors

;i_—[u) - T(’na) - T,(ma)(a - ’na)]’ (25)
l ’
?[w — T(m,) — T'(m)a — m,)

1 -
- :)—T”(ma)(a - myd — ma) (26)

converge in probability to zero. Denote
Glo) = T'(my)(a — m,), (27)
NG(U) = %T”(ma)(a — My, d — ma)~ (28)

G(o)is a zero-mean Gaussian vector with covariance
matrix ¢2DCD", where D is a matrix defined in [2]
(p. 211). It 1s interesting to note that (1/0)G(o) is
a zero-mean Gaussian vector with covariance
matrix DCD" whose PDF is independent of .
NG(o) is quadratic in a and thus is non-Gaussian.
In what follows, to make shorter, we will write
G and NG, instead of G(s) and NG(o). Eq. (23)
shows that the vector (1/0)[w — T(m,)] converges
in Probability to the Gaussian vector (1/0)G(0)
which is . +'(0, DCD"). This section addresses the
problem of determining the distance between the
distribution of (1/¢) [ — T(m,)] and its asymptotic
Gaussian distribution . +(0, DCD").

The Kullback divergence [ 1] has been shown to
be an efficient tool to measure the ‘closeness’ be-
tween the PDFs of two random vectors. The Kull-
back divergence between two random vectors with



PDFs p; and p, is defined by

dg(p1,p2) = j [p2(x) — pi(x)] Inpi(x—) dx. (29)
R pi(x)

This distance can be used to determine the closeness
between the LSP parameter vector PDF (computed
from the previous section) and the Gaussian PDF
. 17(0,DCD"). However, this distance depends on
m, and C, through non-linear relations which are
difficult to study. The next part of the paper presents
a new way of measuring the closeness between the
distribution of (1/0)[w — T(m,)] and its asymptotic
Gaussian distribution .4 (0, DCD").

For small values of o. the development (24)
reduces to w ~ T(m,) + G: the distribution of the
LSP parameter vector (1/g) [ — T(m,)] is close to
the distribution of (1/5)G, which is . +7(0, DCD"). On
the other hand, when the second-order term NG is
not negligible, the distribution of the LSP parameter
vector (1/0) [w — T(m,)] ~ (1/0)(G + NG) is close
to the distribution of (1/6)(G + NG), which is not
_1°(0,DCD"). The validity of the approximations
w — T(m,) ~ Gand w — T(m,) ~ G + NG depends
on the closeness between the random vectors G and
G + NG. The next part of the paper defines a new
distance between random variables, denoted as
M-distance. This distance is then used to give
a measure of the closeness between G and G + NG.

For simplicity, the study is restricted to random
variables: for a mth order AR model, instead of
studying the transformation

w=T() =[Tia),...Tya)]' (30)
from R™ into R™, the m transformations «; = T(a),
ie{l,....,m}, from R™ into R are considered separ-
ately. Let

G:[Gli'-'ma]T (31)
and

NG = [NGy,...,NG,]" (32)

Define the set S of variables X satisfying the two
following conditions:

VkeN MY=EXY< + o, (33)

. M4\ A
EZI;Tiu,p (l k!X,> < 4+ «. (34)

Variables satisfying conditions (33) and (34) are
characterized by their moments [14] (p. 290).

The M-distance between variables X and Y be-
longing to the set S is defined by [21]
& MY — My

du(X,Y) = )

T (35)
k=1 .

where M% and M% are the kth-order moments of
X and Y, respectively. This distance comes from the
[y norm applied to infinite sequences of the form

iMy  (i)'M%
1l

(36)

which appears naturally in the development of the
characteristic function in terms of its moments. In
general, dy, is not a distance because two different
random variables can have the same moments [9]
(p. 12). However, variables satisfying conditions
(33) and (34) are characterized by their moments
such that d,, is a distance on S.

Since a is Gaussian, variables G; and G; + NG;
belong to the set S (and are characterized by their
moments). The M-distance can then be used to
measure the closeness between G; and G; + NG, It
can be shown that

1 1 :
llm dMI:* G,‘,_(G,‘ + NG,)J = O,
G ,

g’

Viell,....m). (37)

This means that the M-distance between
(1/6)(G; + NG,) and the Gaussian variable (1/0)G;
tends to zero when o> —0. For small values
of ¢?, the distribution of (1/0)[w; — T{m,)] ~
(1/0)(G; + NG;) is very close to the distribution of
the Gaussian variable (1/0)G;.

Note that this result can be easily extended to the
estimation case (for which C, = (¢2/n)R™ ') by

lim dM[nGi, n(Gi + NG,)] = 0,

vie{l,...,m. (38)

This case illustrates the asymptotic normality of
any parameter obtained from a ‘regular’ one-to-one
transformation of the estimated AR parameter
vector [8].



The next part of the paper studies, for a fixed
value of o2, the M-distance between variables
G; + NG; (whose distribution approximates the
LSP parameter distribution) and G; as a function of
the position of the AR model poles in the unit
circle. Since a is Gaussian, dy(G;, G; + NG;) can be
expressed as

M
dyu(G;,G; + NG)) = Y dik) + o(a*M), (39
k=1
with dik) = O(¢?*). For small values of o2
dy(G;,G; + NG,) can be approximated by the first
few terms di(k) in Eq. (39) such that
M
dw(GiG; + NG) = ) dik). (40)
k=1
The lower d\(G;,G; + NG;), the lower the distance
between the distribution of the ith LSP parameter
w; and the distribution of the Gaussian variable G;.
For simplicity, the previous second-order Gaussian
AR parameter vector, with two poles p, = pe'” and
p> = pe 1, is considered. According to Appendix
C, the following results are obtained:

(€11 + c22 + 2¢12)|xy]

d+(1 2 4 _ 22
d(l)z[ ) )J=G— (4 =il . @1
dy(1) 2| (¢1y + €22 — 2c12)Ix,|

@
with

C, = O'2[6'11 L'lz}
€21 C22
x;=p?—2pcose—1 and x,=1—2pcosp—p°.

Higher order terms d(k), with k > 1, could be derived
in a similar way. However, Figs. 2 and 3 show that
the wvariations of d(1) (continuous line) and
d(1) + d(2) (dashed line), for the two LSP coefficients,
as a function of the modulus p and the phase ¢, are
very similar: for k > 1, the d(k) = O(c**) are negli-
gible with respect to d(1) = O(c?). In that case, the
difference between the higher-order moments of
G; + NG; and G, is small when compared to the
difference between the means. Consequently, when
E(G; + NG;) ~ E(G,), the second-order term NG;
can be neglected in the Taylor expansion (24): the
ith LSP parameter distribution is close to the
distribution of G; (which is Gaussian).

(x102)

d(G.G+NG)

“o 02 0.4 0.6 038 !
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x 10%)
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Fig. 2. Variations of d (1) (continuous line) and d (1) + d,(2)
(dashed line) for the first LSP coefficient {a) as a function of
0 (¢ =1/3), (b) as a function of ¢ (p = 0.4).

The results obtained with the M-distance are
then compared with the Kullback divergence be-
tween the LSP parameter PDF and the Gaussian
PDF .4°(0,DCD"). Figs. 2 and 4 (respectively Figs. 3
and 5) show that the qualitative behavior of the
two approaches is very similar. However, the
main advantage of the M-distance is a very simple
closed-form expression (given in Eq. (41)) for the
closeness between the LSP coeflicient PDF and its
asymptotic Gaussian PDF ..+'(0,DCD"). The con-
vergence of the LSP coeflicient PDF to its asymp-
totic Gaussian distribution depends on the AR
model pole position inside the unit circle. The
closed-form expression of d,, describes precisely the
convergence dependence on the AR model poles.
The smaller d,,, the smaller the distance between
the LSP coefficient PDF and the Gaussian PDF
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Fig. 3. Variations of d>(1}) (continuous line} and d(1) + d(2)
tdashed line) for the second LSP coefticient (a) as a function of
plop = 176), (b) as a function of ¢ (p = 0.4).

1 (0,DCDT"). The smaller d,y, the faster the conver-
gence of the LSP coeflicient PDF to .1 (0.DCD").
The variations of the M-distance, as a function of
the modulus and the phase of the AR model (for
a fixed variance a? = 0.01 and for the two LSP
coeflicients), are plotted in Fig. 6. Fig. 6 shows that
the M-distance is always very small when the AR
model poles are close to the origin.

As a conclusion, the convergence of the LSP
coefficient PDF to its asymptotic Gaussian distri-
bution depends upon the AR model pole position
inside the unit circle: for a fixed variance ¢, the
faster convergence occurs when the AR model poles
are close to the origin.
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Fig. 4. Vanations of the Kullback divergence between the first
LSP coefficient PDF and the Gaussian PDF (a) as a function of
plo = 1:3). (b) as a function of ¢ (p = 0.4).

An analysis was given here for a second-order
AR model but it could be extended to higher-order
models. For instance, consider a fourth-order AR
model with poles p, = pe'’, p, = pe 1%, p; = del*
and p, = de . Fig. 7(a—d) shows the M-distance
for the four LSP coefficients as a function of p and
@. for a fixed (6,) =(0.2,1/3),6> =001 and C =1
(identity matrix): the convergence of the LSP coef-
ficient PDF to its asymptotic Gaussian distribution
is fast when the two poles p, and p, are close to the
origin.

5. Application to pattern recognition

A major problem in pattern recognition is the
determination of the "optimal’ classification rule for
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Fig. 5. Variations of the Kullback divergence between the
second LSP coethicient PDF and the Gaussian PDF (a) as
a function of p (¢ = n;3), (b) as a function of ¢ (p = 0.4).

a given parameter vector. A solution to this problem
is given by the Bayes classifier when the parameter
vector statistics are known. However, implementation
of the Bayes classifier is often difficult because of its
complexity. The Bayes decision rule reduces to a cen-
troid distance rule for Gaussian parameter vectors.
leading to a simple classifier. For non-Gaussian
parameter vectors with non-convex PDFs. surprising
results can be obtained with the centroid distance
rule. For instance, in Fig. 8 (non-convex classes), all
points belonging to the first class highlighted with
a star will be mis-classified with the centroid distance
rule. A statistical analysis of the reflection and
cepstrum coeflicients has shown that their PDF can
be non-convex. Thus. the centroid distance rule is
not an effective classifier for these coeflicients [ 18.19].
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coeflicient).

Unfortunately, it is not easy to theoretically prove
the LSP point cluster convexity (or non-convexity)
for any order. However. in supervised learning
pattern recognition applications, parameter esti-
mates m, and C, can be performed for each class.
The LSP parameter distribution can then be deter-
mined (as a function of m, and C,), conditioned on
each class. Thus, LSP point cluster convexity can
be studied qualitatively by plotting the level lines
for foley. ..., wy,) derived in Appendix A. For in-
stance, Fig. 9(a, b) shows the 3D PDF and the level
lines of a specific example: the second-order LSP
parameter vector studied in the first section. The
LSP parameter vector PDF is convex, yielding
a case for which the centroid distance rule can be
used.

In any case, simulations are not sufficient
to prove the convexity property. However, the
simulations provide (on every specific example)
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qualitative information about the LSP point cluster
convexity (sufficient in most pattern recognition
applications). No counter example has been exhib-
ited to date which shows the non-convexity of LSP
point clusters. Consequently, LSP coefficients seem

to be well suited to classification, contrary to reflec-
tion and cepstrum coeflicients [17.197.

6. Conclusion

A recursive method, to compute the LSP coeffi-
cient PDF as a function of the AR parameter PDF,
was derived.

Since they are non-linearly related, LSP coeffi-
cients and AR parameters cannot both be Gaussian.
The M-distance was used to measure the closeness
between the LSP coefficient distribution and its
asymptotic Gaussian PDF. Other distances (such
as the Kullback divergence) or other methods (such
as expansions in Edgeworth or Gram Charlier
series) could be used to measure these deviations
from normality. However, the main advantage of



the M-distance was a very simple closed-form ex-
pression of these deviations as a function of the AR
parameter mean and covariance matrix. This
closed-form expression showed that the distance
between the LSP coefficient distribution and its
asymptotic Gaussian distribution depends on the
position of the AR model poles in the unit circle:
the distance is very small when the AR model poles
are close to the origin.

In a supervised learning pattern recognition ap-
plication, the AR parameter PDF can be estimated
conditioned on each class. The LSP coefficient PDF
can then be determined conditioned on each class.
The LSP coefficient PDF was used, on a specific
example, to study qualitatively the LSP point cluster
convexity. This kind of study can be performed in
every pattern recognition application. No counter-
example which shows the non-convexity of LSP
coefhicient point clusters has been exhibited to date.
Fig. 9. (a) Level lines and (b) 3D plot of a 2nd-order LSP vector T.h.US, LS,p seem 1o be .well' suited to pattern recog-
PDF. nition with the centroid distance rule.

Appendix A. Recursive determination of the LSP coefficient PDF

This appendix describes the different steps necessary to determine the LSP coefficient PDF as a function of
the PDF of the AR parameter vector. The concatenation of the following equations:

Di = 1,‘—211,'71005(0",4‘;7[72, (Al)
q; = ki - 21\',',, 1 COS Wy, ¢ + ki'*Z" (AZ)

fori=1.....m.withp;,=da; — a1 i §; = 4; + Ay, .; and

ho=ko=1. hoy=k_ =0, (A.3)
hi=b—b,_ 1 kij=bj+b, 1 ;. je{l....,m—2] (A4)
leads to

a; = hy — cOSwy,.-1 — COSW,,

m=bp-3— cOsm,_; + cosw,,

a; =b, —(by + b,—2)coswy,, -1 — (by — b, _2)cOsSw,, + 1,
Ay -1 = bm~3 - (hl + hm -.’_)COS(’)nr— 1+ (hl - bner)COS(Unn

(A.5)
a; = hi - (biAl + b,,,_,-)COS My -1 — (bi”l — hm...,-)COS Wy, + hi,,z_

i+ = bm i1 T (hiwl + hm*i)COSU)m*] + (hl 1 hm i)COSU)m + hm*i+ls
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The Jacobian matrix corresponding to the transformation from V,=a=(a,.....a,)" to V, .=

[hivee by 2 0y 1.0, )", denoted as J(V ..V, ), can then be computed. If C; denotes the ith column of this
matrix, the following results are obtained:

1 — X1 T X — Xpo1 T Ny 0
0 1 0
0
‘ 0 :
Cl = C:’. = - (m = . Cm = 5 (A())
0 | 0
0 = Ny TNy, =X o1 — X 1
Ymo1 Vo - l(bl + bm' l) Ym l(hl + hm - 2) Y
_ .“m | ;‘.m( - h] + hm 2’_ ;l.m( - bl + bm 2)“ __ ,\.uu“
and. for ie {l....,m?2}:
Cii —2) 1
Cl“ -1 Xy — Xy
Cili) 1
C = . = . . (A.7)
Ci“” - I) — N1t Ny
Cl'“" - I) Vm 1(hi*'1 + bm l')
» (‘i“") L .llm(bi 17 b"l - /) !
Cm - i+ l(’ - 1) i + X
Cm —1+1(”7_i* 1) ]
Comivr=| Couivalm—i) |=| —xp X, | (A.8)
Cilm — i+ 1) 1
C,’“” - I) A\.m— l(hi 1 + hm*' i)
_ Ci“”) N _lvm(hi [ hm i)_

The terms which are not specified in C; and C,, ;. are equal to zero and x,,. |, X,,. v, 1. Vv are defined by
Nm—1 = €COS Wy, — 1, Ny =COSOy, Vi, = sin Oppcys Y = Sin @, (Ag)

Denote by #(r,. ) the closed-form expression of «a; as a function of the parameter vector
U2 = (b1 .. by sy 1.0,)" defined in Eq. (A.5). Denote f,(¢,) and f,,_»(r,..) the PDFs of vectors
Vw=a,.....a,)" and V,, , respectively. The PDF of V,, , satisfies the following equation:

./I‘H 'Z(PW - 2) :,/ﬁ.u(h']"“lm - 2)~ R ah;;:(l-m l)’l‘]( l/}m- Iﬂ’m 2)‘ (A ]0)



Using similar developments, the Jacobian matrix corresponding to the transformation from V;to V., is
shown to have the following form:

M, 0 . .
JWV, Vi) = 0 .odeim.. 2] (A1)
m-i— 1

In Eq. (A.11),1,, ., .y is the (m — i) x (m — i) identity matrix and M, is a i x i matrix similar to J(V,,.V,,_>). The
PDF of V,_,. denoted f; ,(v;_,). can then be determined as a function of the PDF of V,, denoted fi(t;):

fz 2t 3) :f;'(hil(l’i—z)- e -hf:(l’i—z)d')i' TORRD I | V[0 N PSS} (A.12)

Appendix B. LSP coefficient PDF's for a second- and fourth-order Gaussian AR parameter vector

This appendix derives the second- and fourth-order LSP coefficient PDFs for a Gaussian AR parameter
vector.

B.1. Order 2

The two LSP coefficients are linked to AR parameters by the following relations:
Cosm,y = 3(a; — dy — 1). (B.1)
cosm; = 3(1 —a; — ay). (B.2)
which lead to
4] = — COSm; — COSwr = ¢(w), (B.3)
a4, =1 —cosw; + cosw,; = g>(m). (B.4)
The Jacobian matrix corresponding to the transformation from « = (ay.a5)' to w = (w.0,)" is
;- [sfnwl s?n (uz“q (B5)
sinm; —sinw,_
with determinant
det(J) = — 2sin w;sin . (B.6)
The PDF of a Gaussian vector ¢ with mean m, = (m,. m,)" and covariance matrix C, is
flx) = %: expQ(x). xeR?. (B.7)
2ny/det C,
where Q(x) is the quadratic form
O(x) = — 3(x —m)'C; H(x — m,). (B.8)
The PDF of the LSP coefficient vector « = (w;.»,)" can then be determined
sin ), sinvmz

flw) = T? expQ(g() (w), meR?2. (B.9)
‘det

my/detX

with g(w) = [¢{w).g(w)]" and
Iiw)=1 if0<w; <m,; <,

I(w)=0 else.



B.2. Order 4

The fourth-order LSP polynomials are defined by

4 4
Pyz)=1+ Z (a; —as_)z ' — 273, O42)=1+ Z (a; + as_ )z "4+ 277 (B.10)
i=1

i=1
B.2.1. First iteration
The LSP polynomials can be expressed as

P4(z)=[l + > (b —by gz =z 3“[1 — 2z "tcoswy +z 7],

=1

2 - (B.11)
0.2)=|1+ i (b + by )z "+ 2" 3J[l —2z"'coswy + 2 7.
Thus o
dy —dy = — 2c08Swy + by, — bs,
d; + a4 = — 2cosws + by + b,
a: — uz =1 - 2cos (13)4(/’1 1— h3)~+ (b2 — by). (B.12)
as +day =1 —2coswslb; + by) + (h: + by).
The closed-form expressions of «; as a function of v, = (h,.h,.w3.m,)" are
@, = b, —cosmy — coswy = hi(t,),
s =1+ b, — coswilh; + bs3) — coswylby — b,) = h3(,),

(B.13)

a3 = h] — COSU)A(hl + hz) + COS(')4(h[ — hz) = lT?t(l'z)\
ay=bhr —cosw; + cosw, = hi(l‘z).

The Jacobian matrix corresponding to the transformation from vy = (a, ... w4)" 10 t3 = (hy.ha, 5. w,)" is

1 —coswz —cosmy | —cosm; + coswy 0
[ ] I —coswy 4+ costy,  — COSm3 — COS Uy 1
JWVVy)=| . . ) . . (B.14)
SIn 3 (h; + by)sinwy (by + by)sinm; SIN )y
sin wy (h; — by)sinwy, (b, — by)sinmy —sinw,

with determinant

det J(V4,V,) = 2sinmssinwy(l + coswy + by — bs)(1 — 2cosms — by — b,). (B.15)
The PDF of V, is then given by

Fatva) = falhi(r2). h3(02). h3(v o), Havo)ldetd (Vo Vo), (B.16)
fala) being the PDF of a Gaussian vector ¢ with mean m, = (m;,m,)" and covariance matrix C,.

B.2.2. Second iteration
The parameters b, and h, are linked to the two first LSP coefficients w; and w5 by the following relations:

by —bs= —1—2cosw, by = —cosmy — cosm, = hi(w),
g (B.17)

by + by =1 —2cosw, b, =1 —cosw; + cosw, = hi(w).



The Jacobian matrix corresponding to the transformation from v, = (by, by, w3,w4)" 10 vy = =

(0,.02,03,04)7 18

Sin @, sinm, 0 0

—sinw, sinw, 0 0

JVo Vo) = 0 0 Lo
0 0 0 1

with determinant

det J(V,,Vy) = 2sinw;sin ws.

As a conclusion, the PDF of the fourth-order LSP parameter vector is given by
folerg, w2, 3, ) = fr(hH(w), KA (W), w3, w,)12sin o sinw, |l (w), ©eR2,

with

I(w)=1 f0<w, <w,<w;<w, <7,

I(w)=0 else.

Appendix C. Computation of d, for LSP coefficients

(B.18)

(B.19)

(B.20)

(B.22)

In this appendix, we determine the first moments of variables G and G + NG for LSP coefficients in the
case of a second-order AR model. Similar results can be obtained for higher-order AR models. AR

parameters and LSP coefficients are linked by the following relations:

(1 —a, — uz>
0, T (a) arccos| ———
w, T;(a) arccos(—za1+ a~>

The first- and second-order derivatives of T, and T, can then be computed:

1
Tia) = — : H
VAd-(l—a —a)ll

, 1 1
Tala) = 4 —(1+a ~a)2[“1}
v 1 2 -

-1+ ay + a, 11
T/r — ‘—m_-‘ A
1(a) [4_(1 —a, _(‘Z)2J3/2|:l 1

144, —a 1 =1
T(a) S [ ]

:[4—(1—01—02)2]3/2 —1 1

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)



Let x,= — 1 +m; +m, and x, = 1 + m,; — m,. Using Egs. (27) and (28), we obtain

1
G, = TimMNa —m,) = —/"—*";((l, +dy — my — ms), 6
VAR
. 1 7‘
Gy = TamNa — my) = —m===(ay — az — my + my). (C.7)
VA SRS
NG, = 3T (mNa — maa — m)) = Ha = m) T (mNa — m,) (C.8)
Xy . |
= W(u, + a; — myp — m,)°, o)
L 1 I ‘
NGy = 3T " ma)a — mea — my) = S{a —m) T m)Na — m,) (©.10)
X, , |
:9[ 47W(”1*“2*"11+mz) , o

The moments of G; and NG; can be determined as a function of the AR parameter covariance matrix

For instance

2

E(NGI):ﬁ(I—{é‘jﬁ((‘ll + ¢35 + 20q2) (C.12)
2[4 — Xy
E(NG,) = ﬁm("n + 22 — 2¢45) (C.13)
— X2
Hence
[xileyq 4+ a2 + 2045)
1,(1 2 4 — x3]%
d(l}ZI:“( )]:O'_ [ 1] . ((‘.]4)
ds(1) 21 |xallers + €22 — 2¢43)
[4 — x3]?

It is well known that the higher-order moments of the Gaussian distribution can be determined as a function
of its mean and covariance matrix. In particular, for ie {1,2} and je N:

Qi+

Efa = m) "] =0, Bt —m) ] = = (C15)

This allows us to compute the higher-order moments of G; and NG; as well as the d(k) for k > 1.
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