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Abstract 

Statistical properties of line spectrum pairs 

Jean-Yves Tourneret* 

ENSEFJHT GA !'SE, l nœ Camichc-1. 3 f()7 J Toulouse. France 

An original mcthod for computing the Probability Density Function (PDF) of the Line Spectrum Pair (LSP) 

coefücient vector as a fonction of the PDF of the AutoRegressive (AR) parameter vector is derived. Being linked by 
non-linear relations. AR parameters and LSP coefficients cannot both be Gaussian. This strict theoretical result could 

hide an approximately Gaussian distribution for the LSP parametcrs. Sorne distances bctwccn the LSP paramctcr 
PDF and its asymptotic Gaussian PDF arc then studicd. In a pattern recognition application. the LSP paramctcr 

statistics allow us to study the convcxity of LSP point clusters. conditioned to each class: the LSP parameters seem to be 

attractive for pattern recognition when uscd with the centroid distance rulc. <' 1998 Elsevier Science B.V. Ali rights 

rcscrvcd. 

Zusammenfassung 

In dicscm Artikel wird cinc neuc Methodc zur Bcrcchnung der Wahrsehcinlichkeitsdichtefunktion (engl. prohahilit_r 

dc11sit_rfi111ctiu11. PDF) des Koeffizientenvcktors von Linicnspektrumpaaren ( LSP) abgeleitet. Die neue Dichte ergibt sich 

dabei ais Funktion der Dichte des Parametervektors eines autoregressiven (AR) Prozcsses. Da AR Parameter und LSP 
Koeltizienten durch nichtlineare Beziehungen miteinander verknüpft sind. konnen nicht beide GroBen Gauss-verteilt 

sein. Diescs striktc thcoretischc Rcsultat konntc eine approximative Gaussverteilung der LSP Parametcr vcrbcrgen. 

DarauOlin wcrdcn cinige Distanzmalk zwischcn den LSP Paramcterdichten und ihre asymptotischcn Gaullschen 

Dichten untcrsucht. Bei Anwendung auf ein M ustcrerkennungsproblem erlauben die Vertcilungscigenschaften der LSP 

Parameter die Untersuchung der Konvexitiit der LSP Punkthaufen. die die vorliegenden Klassen bestimmen. Daher 

bieten sich LSP Parameter ais gccignctc Werkzeuge hei der Mustercrkennung an, wenn sic im Zusammenhang mit der 
centroid ,/ist1111ce rnle eingesetzt werdcn. < l 99� Elsevier Science B. V. Ali rights rcserved. 

Résumé 

Nous présentons une méthode originale permettant de calculer la densité de probabilité des coefficients LSP en 

fonction de celle des paramètres AR. La relation liant ces deux ensembles de paramètres étant non-linéaire, ils ne peuvent 

être simultanément gaussiens. Ce résultat purement théorique peut cacher une loi très proche de la loi normale pour les 
coefficients LSP. Plusieurs distances entre la loi des coefficients LSP et la loi normale asymptotique associée sont alors 
étudiées. La statistique des coefficients LSP nous permet d'analyser la convexité des nuages de points obtenus lors d'une 

*Tel.: (33) 5 61 58 83 14: fax: (33) 5 61 58 82 .n: e-mail: tourncrcfr1,1e117.cnsceiht.fr.



classification avec ces coefficients: les coefficients LSP semblent bien adaptés à la reconnaissance des formes avec la règle 
de la distance au barycentre.

Keywords: AR parameters: Line spectrum pairs; Non-Gaussian: Non-linear; Distances: Pattern recognition; Estimation 

1. Introduction

Many sets of parameters equivalent to AutoReg­
ressive (AR) parameters have been used for quan­
tization and coding. Reflection coefficients or 
PAR COR coefficients have shown interesting prop­
erties which make them attractive for quantization. 
They ensure stability of the AR filter after quantiz­
ation and there cxists a natural order in thcsc 
parameters [10]. Log-Area Ratios (LARs) and arc­
sine reflection coefficients have then been shown to 
be optimal in the sense of minimizing a maximum 
spectral deviation [7]. Recently, the Line Spectrum 
Pair coefficients (LSP) have been shown to outper­
form these AR parameter representations in many 
speech processing applications [12,15,16]. This re­
sult is mainly due to an uncorrelated propcrty of 
these coefficients [5,6]. 

This paper derives some statistical propertics of 
the LSP parameters in the case of a Gaussian AR 
parameter vector denoted as a with mean m

a 
and

covariance matrix C
a
. The Gaussian assumption

for AR parameters can be justified in threc applica­
tions [19-21]: 
• In Estimation theory. AR parameters are deter­

ministic and have to be estimated. According to
the Mann and Wald theorem, most commonly
used AR parameter estimators can be assumed
to be Gaussian when the parameters are esti­
mated for sufficiently large data records
[8]. Moreover. most of these estimators are
asymptotically efficient. It means that, for large
number of samples, the covariance matrix of
a can be approximated by the Cramer Rao
bound

2 

Cu�(J"R- 1 

n 

Œ; is the driving noise variance, n is the number
of samples and R is the AR process covariance
matrix.

• In Pattern Recognition, AR parameters arc ran­
dom. T o derive the optimal Bayesian Classifier.
the Probability Density Function (PDF) of the
AR parameter vector •a' has to be known, condi­
tioned on each class. According to [ 4] (p. 22), the
multivariate normal densit_1· is an approprime mode/
fè1r an important situation, L"i::., the case wherc the
features vectors for a qiven class are continuous
i,a/ued, mildly corrupted rersions of"a siny/e typirnl
or prototype mean vector. When the features are
statistically independent and have the same vari­
ance Œ2

, the covariance matrix of each class is of
the form Œ

2 I (I being the identity matrix). When
the features are not independent, the covariance
matrix of each class is no longer diagonal. lt can
then be expressed as C" = 0"

2 C. C is a unit norm
matrix and 0"

2 is the variance of the class (some­
times called within-class scatter) [4] (p. 26).

• In the theory of random coefficient AR models,
many methods have becn developed using the
Gaussian assumption [11].

The paper focused on the pattern recognition case. 
Consequently, in what follows, the parameter vector 
of an AR process will be considered as a Gaussian 
variable denoted by a with mean m" = E(a) 
and covariance matrix C., = 0"

2 C, C being a unit
norm matrix independent of Œ. Note that 
ail results can be extended to the estimation case 
with 

and 
R-1 

C=-�
�IR 1 !i'

In the first part of the paper, an original method
for determining the LSP parameter PDF, as a func­
tion of the PDF of the AR parameter vector. is 
proposed. 

A statistical study can show that the LSP para­
mcter PDF tends to the Gaussian PDF when 0"2 

__, O 
(pattern recognition) or 11 -➔ + cr~ (estimation) (the 
proof is given in [8] for reflection coefficients). 
However, for non-zero values of Œ

2
, due to their 



non-linear relationship, AR parameters and LSP

coefficients cannot both be Gaussian. This strict 
theoretical result could hide an approximately 
Gaussian distribution for the LSP parameters. This 
is very important, since a fine knowledge of the 
LSP parameter PDF is not necessary for most 
applications (optimal vector quantization, Bayesian 
classification, etc.). Thus, determining under which 
conditions the Gaussian approximation is valid or 
not, is of major importance. Usual distances, such 
as the Kullback divergence or the Bhattacharyya 
distance, are effective tools for measuring the close­
ness between two PDFs. Thus, they can be used to 
determine the distance between the LSP parameter 
PDF (determined in the first part of the paper) and 
its asymptotic Gaussian PDF. However, due to the 
very complicated expression of the LSP parameter 
PDF, these distances do not lead to closed-form 
expressions. A new distance (denoted as M-distance) 
has revealed to be an effective tool for measuring 
the closeness between two random variables [21]. 

ln the second part ol the paper, the M-distance is 
used to determine a simple closed-form expression 
of the closeness between the LSP parameter PDF 
and its asymptotic Gaussian PDF. 

Non-Gaussian parameters can lead to surprising 
results when they are used for pattern recognition. 
For instance, it is well-known that the centroid 
distance rule has to be used with parameters whose 
PDF is convex [ 4]. Recent works have shown that 
the PDF of reflection and cepstrum coefficients 
could be non-convex [18,19], which makes them 
unattractive for pattern recognition (when used with 
the centroid distance rule). 

ln the third part qf the paper, the shape of LSP 
parameter clusters is studied: LSP parameters seem 
to be well suited to classification with the centroid 
distance rule. 

The paper is organized as follows. Section 2 
reminds the reader of some LSP parameter defini­
tions and properties. Section 3 presents a recursive 
way of determining the LSP parameter PDF as 
a function of the PDF of the AR parameter vector. 
An original method for determining the 'closeness' 
between the LSP parameter statistics and its asymp­
totic Gaussian distribution is studied in Section 4. 
Section 5 studies some LSP parameter properties for 
classification. Conclusions are reported in Section 6. 

2. LSP coefficient properties

For a given mth-order minimum phase AR
polynomial Am(z) = 1 + LT= 1a;z-\ two LSP 
polynomials denoted by P m(z) and Qm(z) can be 
constructed by setting the (m + l)th reflection coef­
ficient (PAR COR coefficient) km+ 1 to + 1 or - l: 

(1) 

(2) 

For speech signais, the conditions km+ 1 = + 1 and 
km+ 1 = - l correspond to a complete clos ure and 
a complete opening of the glottis in the acoustic 
tube mode!, respectively. Let 

m+l 

Pm(Z) = L p;Z-i, 
i=O 

m +- 1 

Qm(z) = L q;z-;
i=O 

(3) 

(4) 

with Po= 1,Pm+I = -1 and lJo = 1,qm+I = + 1. 
With these conditions, the coefficients of the LSP 
polynomials P m(z) and Qm(z) are linked to the AR 
parameters by the following relations: 

P; = ll; - am+ 1 -i, ÎE {1 .... ,m]. 

lj;=a;+llm+l-i• iE[l, ... ,m). 

(5) 

(6) 

For m even (the cases of m odd and m even only 
differ in some details), the LSP polynomials can be 
expressed as 

i=2,4 . .. , m 

(7) 

TI 
i=l.3 ... . m-1 

(8) 

The parameters { w;) i= 1. . m are the LSP para­
meters. For a stable AR polynomial Am(z), the LSP 
polynomials have very interesting properties for 
q uantization and coding [ 15,16]: 
• ail roots of P m(z) and Qm(z) lie on the unit circle.
• ail roots of P m(z) and Qm(z) alternate with each

other on the unit circle: the LSP parameters { w;)



satisfy the ·ordering property' 

0 < w 1 < w2 < · · · < w,,, _ 1 < <•J111 < rr. 

In what follows, w = T(a) denotes the LSP para­
meter vector and T the non-linear relation 
between AR parameters and LSP coefficients. 

3. LSP coefficient PDF

This part presents a recursive method for deter­
mining the PDF of the LSP coefficient vector 
as a function of the PDF of the AR parameter 
vector a= [a 1, .•• ,a,.,t. Define two polynomials 
H (-) - , 111-111 - ; ·1nd K (-) - '"' 1,. ---; 

m--2 - - L.)=O i- <. m-2,.., - �i=o 1'-i-

such that 

According to Eqs. (7) and ( 8), H111 2(::) and K 111 2(::) 

satisfy the following equations: 

i= 2.-+. , Ill 2 

(11) 

= ( 1 + z - 1 l TI ( 1 -2:: - 1 cosw, + :: 2 ). 
i = I .3 . m 3 

( 12) 

These two equations show that H
11

1 2(::) and 
K,,, _ 2(z) are LSP polynomials of order 111 -- 2. The 
AR parameters corresponding to these t wo LSP

polynomials will be denoted h 1, ...• h,,, 2. Eqs. ( 9) 
and (10) show that the coefficients of H

111 2(::) and 
K,11 2(z), for i = 1. .... m/2, satisfy 

with Pi = Cl; - (lm� 1--i, l/; = li;+ a,,,_ 1 ;, 

iE : L. .. ,m], and

ho = k0 = 1. h 1 = k 1 = O. 

hj = hj - h,,, _ J )· kj = /J j + h,,, 1 i· 

jE :1, ... ,111-2;. 

( 13) 

(14) 

( 15) 

( 16) 

These relations allow the determination of the PDF

of the vector V
,,, 2 = [h 1, ... , h

,,, 2, Wm _ 1, wmJl as 
a function of the PDF of the AR parameter vector 
a = [a 1 , ••• ,a,,,JI = V"' (sce AppendixA). In a 
similar way, the PDF of the vector V111 4 = 
[t1, .. ·, Cm-4, Wm-· 3• Wm- 2, Wm - i, wmlr can be deter­
mined as a function of the PDF of the vector 
V,,, 2 (c 1, .•. , c,,, _ 4 are the AR parametcrs of 
a (m - 4)th order LSP polynomial). With m/2 iter­
ations (assuming the AR parameter vector PDF is 
known), the LSP parameter vector PDF can he 
computed. As an example, the second- and fourth­
order LSP parameter vector PDFs are derived in 
Appendix B.

For simplicity, simulations are performed for 
a second-order Gaussian AR parameter vector. with 
two conjugale poles p 1 = pei 'P and p2 = pe-i'". The 
mean and covariance matrix of this random vector 
are 

( 17) 

( 18) 

C is a unit norm matrix and <T
2 characterizes the 

intra-class scattering. Simulations are performcd 
with p = 0.8. 1p = rr/4 and 

C,-10 - - 2[ 1 0.9
10.9 1 

Fig. 1 shows a comparison hetween the theoretical 
and estimatcd LSP parameter PDF with 95% 
confidence intervals. The thcoretical LSP para­
mcter PDF is detcrmined using Eq. (8.9) (see Ap­
pendix B). The computation of 95% confidence 
intervals is made following [ 13] (p. 251 ). The LSP

parameter histograms arc computed from 1000 
Gaussian AR parameter vectors. Fig. 1 shows that 
the LSP parameter PDFs and histograms are in 
good agreement. 

4. Distance between the LSP parameter PDF and
its asymptotic Gaussian PDF

ln what follows, the variables i X,,.,] converge in 
probability to zero when a2 tends to zero. written 
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X
a

, = o
p
(l) [2] (p. 198), if

'ï/1: > O lim P[IXa,I > i:J = O.
(12. -0 

(19)

The variables ; X a') are bounded in probability,
written X"' = O

P
(l), if 

'ï/1: > 0 :lb(i:) > 0 such that

P[IX,,,I > ô(1;JJ < 1: for ail Œ
2

. (20)

In the pattern recognition case, the covariance
matrix of the AR process a is of the form Ca = Œ

2 C,
C being a unit norm matrix, such that 

which means that (1/Œ)(a -m
11
) is bounded in

probability. Denote T'(a) and T"(a) the first- and

second-order derivatives of T(a). The computation
of the second-order derivative T"(a) can be made
from the Hessian H(a) of the transformation T (see
[3] (p. 143), or Appendix C for an example). For
instance, for a transformation from lllm into Ill, T"(a)

is defined by 

T"(a)(u,v) = u r H(a)v, (22)

with [H(a)] ii = ê2 T/Da;êai
. According to [2] (p.

202), w = T(a) admits the following Taylor expan­
s10ns: 

w = T(a) = T(ma) + T'(ma)(a -mil) + Op(Œ), 

w = T(a) = T(m11) + T'(m11
)(a -m11 )

(23)

+ ½T"(ma)(a -m.,,a -m11) + Op(Œ
2

), (24)

which means that the random vectors

�[w - T(m11) - T'(ma)(a - mil )
(J� 

-� T"(ma)(a -m11,a -ma)]

converge in probability to zero. Denote

G(Œ) = T'(ma)(a - m11),

NG(Œ) = ½T"(m11)(a -m11, a -- ma)-

(25)

(26)

(27)

(28)

G(a) is a zero-mean Gaussian vector with covariance
matrix a2 DC Dr, where D is a matrix defined in [2] 
(p. 211 ). It is interesting to note that (1/Œ)G(a) is
a zero-mean Gaussian vector with covariance
matrix DCDr whose PDF is independent of Œ. 

NG(a) is quadratic in a and thus is non-Gaussian.
ln what follows, to make shorter, we will write
G and NG, instead of G(rr) and NG(a). Eq. (23)
shows that the vector ( 1/a) [w - T(m11)] converges
in Probability to the Gaussian vector (1/a)G(Œ)
which is . 1 (0, DC Dr). This section addresses the
problem of determining the distance between the
distribution of (1/a) [w - T(m11 )] and its asymptotic
Gaussian distribution _ l (0, DC D1). 

The Kullback divergence [IJ has been shown to
be an efficient tool to measure the 'closeness' be­
tween the PDFs of two random vectors. The Kull­
hack divergence between two random vectors with 



PDFs p1 and p2 is defined by 

dK(P1,P2) = [pi(x) - P1(x)] ln-- dx.l 
P2(x) 

w· pi(x) 
(29) 

This distance can be used to determine the closeness 
between the LSP parameter vector PDF (computed 
from the previous section) and the Gaussian PDF

. 1 '(O, DCDT)_ However, this distance depends on 
ma and Ca through non-linear relations which are 
difficult to study. The next part of the paper presents 
a new way of measuring the closeness between the 
distribution of(l/a) [w - T(ma)J and its asymptotic 
Gaussian distribution. 1 (O,DCDr). 

For small values of cr, the development (24) 
reduces to w � T(mu) + G: the distribution of the 
LSP parameter vector (1/cr) [w - T(ma)] is close to 
the distribution of(l/Œ)G, which is. 1 '(O, DCDr). On 
the other hand, when the second-order term NG is 
not negligible, the distribution of the LSP parameter 
vector (!/cr) [w - T(mu)] � (1/a)(G + NG) is close 
to the distribution of (1/a)(G + NG), which is not 
. 1 (0, DC D 1). The validity of the approximations 
(!) - T(mal :,,, Gand w - T(m,,) :,,, G + NG depends
on the closeness between the random vectors G and
G + NG. The next part of the paper defines a new 
distance between random variables, denoted as 
.IH-distance. This distance is then used to give 
a measure of the closeness between Gand G + NG. 

For simplicity, the study is restricted to random 
variables: for a mth order AR mode), instead of 
studying the transformation 

w = T(a) = [T 1(a), ... , T m(a)] 1 
(30) 

from IRm into IRm, the m transformations(!); = T;(a),
i E [ 1, ... , m }, from IRm into IR are considered separ­
ately. Let 

G = [G1 , •.• ,G"']1 

and 

(31) 

(32) 

Define the set S of variables X satisfying the two 
following conditions: 

(33) 

(34) 

Variables satisfying conditions (33) and (34) are 
characterized by their moments [14] (p. 290). 

The M-distance between variables X and Y be­
longing to the set S is defined by [21 J 

d (X Y) = �-· IMi - M}I
M ' L. k' , 

k = 1 • 
(35) 

where Mi and M} are the kth-order moments of 
X and Y, respectively. This distance cornes from the 
/ 1 norm applied to infinite sequences of the form 

iM} Ul"Mx l,�1,_-, ... , 1 , ••• , 
n. (36) 

which appears naturally in the development of the 
characteristic fonction in terms of its moments. In 
general, dM is not a distance because two different 
random variables can have the same moments [9] 
(p. 12). However, variables satisfying conditions 
(33) and (34) are characterized by their moments
such that dM is a distance on S.

Since a is Gaussian, variables G; and G; + NG;

belong to the set S (and are characterized by their 
moments). The M-distance can then be used to 
measure the closeness between G; and G; + NG;. It 
can be shown that 

\:/iE [1, ... ,mj. (37) 

This means that the M-distance between 
(1/cr)(G; + NG;) and the Gaussian variable (1/cr)G; 
tends to zero when a2 -> O. For small values 
of cr2

, the distribution of (1/a)[w; - T ;(mu)] � 
(1/cr)(G; + NG;) is very close to the distribution of 
the Gaussian variable (licr)G;. 

Note that this result can be easily extended to the 
estimation case (for which Ca = (cr;/n)W 1

) by 

'diE{l, ... ,m). (38) 

This case illustrates the asymptotic normality of 
any parameter obtained from a 'regular' one-to-one 
transformation of the estimated AR parameter 
vector [8]. 



The next part of the paper studies. for a fixed 
value of CJ2 , the M-distance between variables 
G; + NG; (whose distribution approximates the 
LSP parameter distribution) and G; as a function of 
the position of the AR mode! poles in the unit 
circle. Since ais Gaussian, dM(G;, G; + NG;) can be 
expressed as 

M 

dM( G;, G; + NG;) = L d;(k) + O(CJ2M). (39) 

with d;(k) = 0(CJ2k). For small values of CJ2 , 

d,,,t(G;,G; + NG;) can be approximated by the first 
few terms d;(k) in Eq. (39) such that 

M 

dM(G;, G; + NG;) '.::,: L d;(k). 
k = 1 

(40) 

The lower dM(G;,G; + NG;), the lower the distance 
between the distribution of the ith LSP parameter 
w; and the distribution of the Gaussian variable G;.

For simplicity, the previous second-order Gaussian 
AR parameter vector, with two poles p 1 = pei<{) and 
p2 = pe -· i"', is considered. According to Appendix 
C, the following results are obtained: 

[
d i (l)

J 
CJ2 [4 - xf] 3 2

d( 1) = = - , ( 41) [

(c11 + c22 + 2c12)lx1l

l 
d2(1) 2 (c11 + C2 2 - 2cu)lx2I

[ 
4 _ X�]

3l2

with 

x1 = p
2 -2p cos1.p-l and x2 = l -2p cos1.p-p

2.

Higher order terms d(k), with k > 1, could be derived 
in a similar way. However, Figs. 2 and 3 show that 
the variations of d(l) (continuous line) and 
d( 1) + d(2) (dashed line), for the two LSP coefficients, 
as a function of the modulus p and the phase 1.p, are 
very similar: for k > 1, the d(k) = 0(CJ2k) are negli­
gible with respect to d(l) = Ü(CJ2). In that case, the 
difference between the higher-order moments of 
G; + NG; and G, is small when compared to the 
difference between the means. Consequently, when 
E(G; + NG;) '.::,: E(G;), the second-order term NG; 
can be neglected in the Taylor expansion (24): the 
ith LSP parameter distribution is close to the 
distribution of G; (which is Gaussian). 
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The results obtained with the M-distance are 
then compared with the Kullback divergence be­
tween the LSP parameter PDF and the Gaussian 
PDF. V(O, DC Dr). Figs. 2 and 4 (respectively Figs. 3 
and 5) show that the qualitative behavior of the 
two approaches is very similar. However, the 
main advantage of the M-distance is a very simple 
closed-form expression (given in Eq. (41)) for the 
closeness between the LSP coefficient PDF and its 
asymptotic Gaussian PDF. V(O,DCD1\ The con­
vergence of the LSP coefficient PDF to its asymp­
totic Gaussian distribution depends on the AR

mode! pole position inside the unit circle. The 
closed-form expression of dM describes precisely the 
convergence dependence on the AR mode! poles. 
The smaller dM, the smaller the distance between 
the LSP coefficient PDF and the Gaussian PDF
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The variations of the M-distance, as a function of 
the modulus and the phase of the AR model (for 
a fixed variance <T2 

= 0.01 and for the two LSP 
coefficients), are plotted in Fig. 6. Fig. 6 shows that 
the 1H-distancc is always very small when the AR 
mode! potes are close to the origin. 

As a conclusion, the convergence of the LSP 
coefficient PDF to its asymptotic Gaussian distri­
hution depends upon the AR model pole position 
inside the unit circle: for a fixed variance <T

1 , the 
faster convergence occurs when the AR model potes 
arc close to the origin. 
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An analysis was given here for a second-order 
AR model but it could be extended to higher-order 
models. For instance, consider a fourth-order AR 
model with potes p1 = pe1 'P, p2 = pe-Jq,, p3 = ôei"'
and p4 = ôe ii/t_ Fig. 7(a-d) shows the M-distance 
for the four LSP coefficients as a fonction of p and 
<(),for a  fixed (Ô, i/J) = (0.2, rc/3), <T 2 

= 0.01 and C = I

(identity matrix): the convergence of the LSP coef­
ficient PDF to its asymptotic Gaussian distribution 
is fast when the two potes p 1 and p2 are close to the 
ongm. 

5. Application to pattern recognition

A major problem in pattern recognition is the 
detcrmination of the ·optimal' classification rule for 
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a given parameter vector. A solution to this problem 
is given by the Bayes classifier when the parameter 
vector statistics are known. However. implementation 
of the Bayes classifier is often difficult because of its 
complexity. The Bayes decision rule reduces to a cen­
troid distance rule for Gaussian parameter vectors. 
leading to a simple classifier. For non-Gaussian 
parameter vectors with non-convex PDFs. surprising 
results can be obtained with the ccntroid distance 
rule. For instance, in Fig. 8 (non-convex classes). ail 
points belonging to the first class highlighted with 
a star will be mis-classified with the ccntroid distance 
rule. A statistical analysis of the reflection and 
cepstrum coefficients has shown that their PDF can 
be non-convex. Thus. the centroid distance rule is 
not an effective classifier for these coefficients [ 18. 19]. 
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d(G,.G, f- NG,i lfirst coeflicient). ib) d(G2.G2 + NG2 1 !second 

cocf1icient). 

U nfortunately, it is not easy to theoretically prove 
the LSP point cluster convexity (or non-convexity) 
for any order. However. in supervised learning 
pattern recognition applications, parameter esti­
mates 111,, and C,, can be performed for each class. 
The LSP parameter distribution can then be deter­
mined (as a function of m" and Cu), conditioned on 
each class. Thus. LSP point cluster convexity can 
be studied qualitatii•ely by plotting the level lines 
for J;>(<•J 1 , • • •  , wm) derived in Appendix A. For in­
stance, Fig. 9(a, b) shows the 3D PDF and the level 
lines of a specific example: the second-order LSP 
parameter vector studied in the first section. The 
LSP parameter vector PDF is convex, yielding 
a case for which the centroid distance rule can be 
used. 

ln any case, simulations are not sufficient 
to prove the convexity property. However, the 
simulations provide (on every specific example) 
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qualitative information about the LSP point cl uster 
convexity (sufficient in most pattern recognition 
applications). No counter example has been exhib­

ited to date which shows the non-convexity of LSP 

point clusters. Consequently, LSP coefficients seem 

to be well suited to classification, contrary to retlec­

tion and cepstrum coefficients [ 17,19]. 

6. Conclusion

A recursive method, to compute the LSP coeffi­

cient PDF as a fonction of the AR parameter PDF, 

was derived. 

Since they are non-linearly related, LSP coeffi­

cients and AR parameters cannot both be Gaussian. 

The M-distance was used to measure the closeness 

between the LSP coefficient distribution and its 
asymptotic Gaussian PDF. Othcr distances (such 
as the Kullback divergence) or other methods (such 
as expansions in Edgeworth or Gram Charlier 

series) could be used to measure these deviations 

from normality. However, the main advantage of 
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the M-distance was a very simple closed-form ex­
pression of these deviations as a fonction of the AR

parameter mean and covariance matrix. This 
closed-form expression showed that the distance 
between the LSP coefficient distribution and its 
asymptotic Gaussian distribution depends on the 
position of the AR mode! poles in the unit circle: 
the distance is very small when the AR mode! poles 
are close to the origin. 

In a supervised learning pattern recognition ap­
plication, the AR parameter PDF can be estimated 
conditioned on each class. The LSP coefficient PDF 
can then be determined conditioned on each class. 
The LSP coefficient PDF was used, on a specific 
example, to study qualitatively the LSP point cluster 
convexity. This kind of study can be performed in 
every pattern recognition application. No counter­
example which shows the non-convexity of LSP 
coefficient point clusters has been exhibited to date. 
Thus, LSP seem to be well suited to pattern recog­
nition with the centroid distance rule. 

Appendix A. Recursive determination of the LSP coefficient PDF 

This appendix describes the different steps necessary to determine the LSP coefficient PDF as a fonction of 
the PDF of the AR parameter vector. The concatenation of the following equations: 

for i = L ... , m, with p; = a; -a'"+ 1 __ ;, q; = a; + am+ 1 ; and 

h0 = k0 = 1, h - 1 = k -- 1 = 0, 

leads to 

a 1 = h 1 - cos Ulm ... 1 - cos Wm, 

am = hm ·-2 - cos Wm - 1 + cos W,n, 

a2=h2-(h1 +h,,,-2)COSWm-1-(h1 -hm-2)coswm+ 1, 

am-1 =hm-3-(h1 +h,,,.z)COSWm-1 +(h1 -h,,,_2)cosw,,,, 

a;= h; -(h;-1 + hm_;)cos Wm -1 -(h; - 1 - hm ;)COS Wm + h;-2, 

am-i+ 1 = hm i- 1 -(h;--1 + hm_;)cos Wm-1 + (h; 1 -hm ;)coswm + hm-i+ i, 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 



The Jacobian matrix corresponding to the transformation from V111 = a = (a 1 •.••• am)r to V,,, 2 -
[h 1 •... , hm _ 2, <0111 _ 1• w,,,

t, denoted as J( V111
• V

111 2), can then be computed. If C denotes the ith column of this 
matrix, the following results are obtained: 

1 

0 

0 

_l"m I 

() 

() 

- Xm 1 + Xm

_l'm -- ifh 1 + h,,,_ 2) 

Ym( -h i + h,,, 2) 

c"' 1 

and, for iE [l .... ,m/2:: 

C;(i - 2) 

C;U 1) --
Xm I - .\"' 

C;(i) 

C; = 

C;(m-i) - -'m I 
+ Xm 

C,(m- 1) _l'm 1(h;- I + h"' 

C;(m) r"'(h; I -- h,,, ;) 

C,,,-;-1 l 

Cm -isdi-1)

c,,, i+ 1(111 -i - 1). 

cm-i ,. i(m -i) 
C;(m-i+ 1) 

,) 

- .\m t + Xm 

- -'m 
--- Xm 

--'111 I + -'111 

() 

() 

-- Xm 1 - Xm 

_ r"' dh1 + h"' 2) 

r"'( -h1 + h"' 2l 

C;(m-1) 

C;(m) 

.\'m - i(h; 1 + h,,, ;)

- _\'111(h; I - h/11 ;) 

0 

c,,, 
=

() 
(A.6) 

.l'm 1 

- _\' 

(A.7) 

(A.8) 

The terms which are not specitied in C; and C111 ; • 1 are equal to zero and x,,, 1• x111• _1·
111 1• _r,11 are defined by 

-'m-1 =COSW,,,-J, X111 = COS0J111, _\'111 I = Slll/'J111 I• _\'111
= SinW,n , (A.9) 

Denote by h;"(rm - 2) the dosed-form expression of a; as a function of the parameter vector 
r,,,_2 = (h 1 , .  . . . h,,,.2.UJ,,, 1 ,wm)1 defined in Eq.(A.5). Denotef�,(rm) andfm-2(1',n -2) the PDFs of vectors 
V,,, = (a 1 • . • . • a,,,)r and V

111 2 respectively. The PDF of Vm _ 2 satisfies the following equation: 

(A.JO) 



Using similar developments, the Jacobian matrix corresponding to the transformation from Vi to Vi 2 1s 
shown to have the following form: 

0 ·!J . (. )1 
IE 

l
m. ···•~

J· 

In Eq. (A.11 ), J m i 1 is the (m - i) x (m - i) identity matrix and M; is ai x i matrix similar to J(V mYm _ 2). The 
PDF of V;- 2, denotedf;_ 2(1';- 2), can then be determined as a function of the PDF of V;, denotedf;(r;): 

(A.12) 

Appendix B. LSP coefficient PDFs for a second- and fourth-order Gaussian AR parameter vector 

This appendix derives the second- and fourth-order LSP coefficient PDFs for a Gaussian AR parameter 
vector. 

B./. Ordcr 2 

The two LSP coefficients are linked to AR parameters by the following relations: 

COSWz = ½(a2 - ll1 - 1), 

cosw 1 = !O - il1 - llz), 
which lead to 

ll1 = - COSW1 - COSUh = ?Ji(W), 
ll2 = 1 - COSW1 + COSW2 = !-/z(W). 
The Jacobian matrix corresponding to the transformation from li = (a 1 ,a 2)

1 to w = (w 1,<1Ji)T is 

lSll1W1 
J= 

S111 UI 1 

with determinant 

det(J) = -- 2 sin w 1 sin UJi. 

The PDF of a Gaussian vector li with mean 11111 = (m 1, 1112)
1 and covariance matrix C11 is 

f(x) = r-- exp Q(x). x E 

2rr✓det Ca 

where Q(x) is the quadratic form 

Q(x) = - ½ex - maf1c"- l(.\'. - 111,J 

The PDF of the LSP coefficient vector (!J = (w 1 ,u12)1 can then be determined 

. Sll1 W1Sll1 Uh 
./((!))= �-·expQ(o(u1))/ 1 (w), PJEIR 2

• 

n"\./deŒ 

with q(w) = [qi(w),?h(w)]T and 

I 1(W) = 1 if O ,s; (1)1 ,s; (!)z ,s; 1[, 

I 1 ((1)) = 0 else. 

(B.]) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(8.6) 

(B.7) 

(B.8) 

(B.9) 



B.2. Order 4

The fourth-order LSP polynomials arc dcfincd by

P4(z) = 1 + L (a; - a5 _;)z-; - ::: 5 

i==l 
Q4(z) = 1 + L (a;+ as -;)z-

; 
+ z-s_ 

i= 1 

B.2.1. Firsr irerarion
The LSP polynomials can be expresscd as

P4(Z)=[I +t (h;-h3-;)z-i-z 3 J[l-2:- 1COSW4+z-2]. 
1 - 1 � 

Q4(Z) = [ 1 + J
l 

(h; + h3
-

;)Z i + z 3ll - 2: - JCOSW3 + z 2].

Thus 

a 1 - C14 = - 2cosw4 + h 1 - h2• 

a 1 + C14 = - 2cosoJJ + h 1 + h2• 

a2 - a3 = 1 - 2cosw4(h 1 - h2) + (h2 - h i ). 

a2 + a3 = 1 - 2cosw3(h 1 + h2) + (h2 + h i ).

The closed-form expressions of a; as a function of r2 = (h 1 .h2.w3 .w4)
T are 

ll1 = h 1 - COSUJ3 - COSW4 = hi(t2 ),
a;, = 1 + h2 - cosuJJ(h 1 + h2) - cosw4(h 1 - h2) = hi(r2). 

a3 = h 1 - cosw_,(h 1 + h2) + cosuJ4(h 1 - h2) = hj(r2), 
C/4 = h2 - cos W3 + cos W4 = hi(1·2 )-

(B.10) 

(B.11) 

(B.12) 

(B.13) 

The Jacobian matrix corresponding to the transformation from v4 = (a 1, ... ,a4)
1 to i:2 = (h 1• h2, w3• w4)r is 

J(V4.V2) = [ . � 
SlllW3 

SlllW4 

with determinant 

- COS W3 - COS W4 

J - COSW3 + COSU/4 

(h 1 + h2 )sinw3 

(h 1 - h2)sin w4 

- cos (1) .l - cos (1)4 

(h 1 + h2)sin ro 3 

(h2 - h i )sin w4

det J(V4 ,V2) = 2 sinuJJsinw4(1 + cosc1J4 + h 1 - h2)(1 -- 2 cosuJ3 - h 1 - h2). 

The PDF of V 2 is then given by

./�( t:2) = fihi(Z-2), hi(1:2), hj(i:2), h!(1'2))ldetJ( V 4, V 2ll,

.f�(a) being the PDF of a Gaussian vector a with mean m" = (m 1 ,m2)
1 and covariance matrix Ca-

B.2.2. Second iteration 

(8.14) 

(B.15) 

(B.16) 

The parameters h 1 and h2 are linked to the two first LSP coefficients w 1 and Oh by the following relations: 

{
h 1 - h2 = - 1 - 2cosw2 

h 1 + h2 = 1 -- 2cos w 1 

{h 1 = - COS('J1 - cosro2 = hî(c,J), 
<=> h2 = 1 - cos w 1 + cos UJi = h�(w). 

(B.17) 



The Jacobian matrix corresponding to the transformation from v2 = (b i ,b2,w3 ,w4)T to v0 = w = 

(w1,Wz,W3,W4)
T is [ s,n '"' SlllW1 0 

�] -SlllU.Ji sm w2 0
Jf V,. V,1- � 

0 1 0 
0 0 1 

with determinant 

detJ(V 2 ,V 0) = 2sin w 1 sin w2 . 

As a conclusion, the PDF of the fourth-order LSP parameter vector is given by 

with 

I i(w) = 1 if O::::; UJ 1 ::::; w2 ::::; w3 ::::; w4 ::::; rr, 
I 1(w) = 0 else. 

Appendix C. Computation of dk for LSP coefficients

(B.18) 

(8.19) 

(B.20) 

(8.22) 

In this appendix, we determine the first moments of variables G and G + NG for LSP coefficients in the 
case of a second-order AR mode!. Similar results can be obtained for higher-order AR models. AR

parameters and LSP coefficients are linked by the following relations: 

[ ] [ ] [ 
(

1 - 01 -- Ch) 

] 
w 1 

= 

T 1 (a) arccos 
2 

-
. 

(
- J - Cl1 + Clo

)w2 
T i(a) arccos 

2 
-

(C.1) 

The first- and second-order derivatives of T 1 and T 2 can then be computed: 

(C.2) 

(C.3) 

,, -l+a 1 +a2 [' 
Ti(a) = [4 - (1 - a

1 
- a

2
J2]312 1

(C.4) 

(C.5) 



Let x 1 = - 1 + m 1 + m2 and x2 = 1 + m 1 - m 2 . Using Eqs. (27) and (28), we obtain 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(C.10) 

(C.11) 

The moments of G; and NG; can be determined as a function of the AR parameter covariance matrix 

C"t 21· 
C22 

For instance 

(C.12) 

(C.13) 

Hence 

(C.14) 

It is well known that the higher-order moments of the Gaussian distribution can be determined as a function 
of its mean and covariance matrix. In particular, for i E [ 1,2] and JE N: 

(C.15) 

This allows us to compute the higher-order moments of G; and NG; as well as the d(k) for k > 1. 
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