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AN ALE THREE-DIMENSIONAL MODEL
OF ORTHOGONAL AND OBLIQUE METAL

CUTTING PROCESSES
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AnArbitraryLagrangianEulerian (ALE) approachisusedinthispaper tomodel continuous
three-dimensional orthogonal and oblique steady-state metal cutting processes. The thermo-
mechanical coupled model includes the effects of elastoplasticity, high strain and strain rates,
heat generation and friction between the chip and the tool. A thermal-viscoplastic constitutive
equation associated with the Johnson-Cook flow law is adopted for the workpiece. A classic
Coulombfrictionlawassociatedwithheat generationandheat transfer isused tomodel thetool-
chip contact. Themodel issuitablefor predicting thermo-mechanical quantities, chip geometry
and the cutting forces from a set of cutting data, material and contact parameters. Cutting
experiments and numerical simulations were performed on a 42CD4 steel and comparisons
show a reasonable level of agreement.

KEYWORDS: machining, finiteelements, finitevolumes, ALE, thermo-mechanical
coupling

1. Introduction

Experimental observations of metal cutting processes show that the phenomena
associated with chip formation are full of complexities. The cutting material is sub-
jected to high strains, high strain rates and high temperatures while the cutting tool
is subjected to wear as a consequenceof very localized high pressures and high tem-
perature gradients. The inf luence of cutting temperature distribution on tool wear is
a well known fact since Taylor’s works. Tay [TAY 93] shows that the craterization of
the tool f lank face is directly related to the temperature distribution. Even though a
lot of experimental research about tool f lank facetemperaturemeasurementshasbeen
done in recent years [LEZ 90], the issue is still full of complexities. Yet the issue is
full of complexities. Theaim of our study is thereforeto develop apredictivenumeri-
cal model suitable for obtaining stressesand temperaturedistributions in thetool-chip
contact zone, from theset of cutting and material parameters.



Many research projectsabout numerical simulation of cutting processeshavebeen
done in the last few years, and a number of models are presented in the literature.
Over the last five years, friction and wear effects have been included in numerical
models like the one presented by Komvopoulos et al. [KOM 91] where the authors
study the inf luenceof thecoefficient of friction and thecraterization of the tool f lank
face on the resulting geometry and cutting forces. Another interesting model is the
one presented by Younis et al. [YOU 92] where the authors’ interest is to develop a
numerical model suitable for predicting thermal and mechanical stresses in the tool
from athermal and mechanical set of dataasboundary conditions. Tay et al. [TAY 91]
havedeveloped apurely thermal model, from aset of experimental results, to predict
mechanical variationsof thetool characteristics. Uedaet al. [UED 93] present athree-
dimensional model (suitable for predicting the chip geometry and the cutting forces)
based on a rigid-plastic finite element method. Oblique cutting process simulations
arepresented in this paper.

Rakotomalala et al. [RAK 93] present a predictive ALE two-dimensional model
suitable for predicting geometry and cutting forces from a set of material and cutting
parameters. The model presented in our paper is based on the same approach and
constitutes thenext step of this study.

One of the earlier models is that presented by Marushich et al. [MAR 95] where
theauthorspresent anumerical two-dimensional model of anorthogonal metal cutting
process including crack propagation, suitable for modelling non continuous chip for-
mation.

In thispaper, wepresent athree-dimensional numerical model of orthogonal andof
obliquemetal cutting processes. Both arebased on an Arbitrary Lagrangian Eulerian
(ALE) approach, generally dedicated to f luid simulations. The ALE formulation has
been used by several authors [HUE 90] in metal forming simulations in order to over-
comeproblemsencountered whileusing apurely Lagrangian or Eulerian method. But
this model is one of the first application of such an approach to cutting simulation.
Brief ly speaking, the use of this approach combines the advantages of both classic
representations in a single description which can be considered as an automatic and
continuousrezoning method.

In thispaper wefirst present abrief review of theALE governingequationsand the
associated forms of the conservation laws. We will then present the constitutive law
andthecontact algorithmusedinthemodel followedby spatial andtimediscretization.
Two applicationswill thenbepresented. Thefirst concernsathree-dimensional model
of orthogonal metal cutting process, whereas thesecond deals with an obliquemodel
simulation. Comparisonswith experimental results arealso given in this part.

2. ALE formulation

An Arbitrary Lagrangian Eulerian formulation is an extension of both classic La-
grangian and Eulerian ones where grid points may have an arbitrary motion. In such



a description, material points are represented by a set of Lagrangian coordinates
� ��

,
spatial points with aset of Eulerian coordinates

� � �
, and referencepoints (grid nodes)

with a set of Arbitrary coordinates
� � 	 


We illustrate this graphically in Figure 1. At

time � ,
� � �

is simultaneously the image of
� ��

by the material motion
� � � � 
 � � �� � � � ,

and
� � 	

by thegrid motion
� � � � �
 � � � 	 � � � .

Figure1. Motion description in ALE

All physical quantities are computed at geometrical points
� � �

at time � . All con-
servation lawsmust beexpressed taking into account themeshingevolutionduring the
calculation. Considering aspaceand timedependent quantity � , onemust express all

theconservation lawsusing thematerial ( �� ), spatial ( � � ) and mixed ( �� ) derivativesof
aquantity � defined below:�� � � �� � ���� � �� � � � � � � � � � �� � ���� � � � � � � � � �� � � �� � ���� � �  � � � � [1]

Conservation laws are usually written using material derivatives in an Eulerian
formulation. Therefore, Hughes[HUG 81] introduced therelationship below between
material and mixed derivatives as: �� � �� ! � " # 
 $ # [2]

where
$ # � % # � �% # isaconvectiveterm representing therelativevelocity between

the material (
% # ) and mesh ( �% # ) velocities and � " # represents the derivative of � with

respect to direction & .
It is easy to establish the following relationship between material

� �' � and mixed� �' � derivatives of avolumeintegral of a function � as:



() * + , - .) * + , / 0 1 2 * 3 4 5 , 6 5 7 8 9
[3]

Therefore, ALE integral formsof theconservation lawsaredirectly obtained from
classical Eulerian ones using [3], and local ALE forms with [2] as shown below, for
examplein Cartesiancoordinates(initial and boundary conditionshaveof courseto be
added): .: / : ; 5 6 5 / : 6 5 4 5 - < * = > ? ? ,

[4]: .; 5 / : ; 5 6 @ 4 @ - 3 5 / A 5 @ 6 @ * = B = C D + E = ,
[5]: .C / : C 6 5 4 5 - F G H 5 6 5 / A 5 @ ; 5 6 @ * C D C F I J ,
[6]

In theseequations, : isthemassdensity,
G K H

theheat f lux,
G K 3

thebody forcevector
(taken equal to zero hereafter), L theCauchy stresstensor,

F
thebody heat generation

(taken equal to zero hereafter) and
C

thespecific internal energy.

3. Constitutiveand contact laws

A thermo-elastoplasticconstitutiveequationassociatedwith theJohnson-Cook f low
law isadopted for theworkpiecewhileaCoulomb friction law including heat genera-
tion and heat transfer isused for the tool-chip contact.

3.1. Constitutive equation

A constitutive equation used in cutting models must take into account plasticity
or visco-plasticity, temperature, strain rate and damage, if we want to simulate dis-
continuous chip formation. In this paper, thenumerical model adopted is suitable for
simulating continuous steady-state metal cutting processes as a thermo-elastoplastic
constitutive equation associated with the Johnson Cook f low law has been adopted.
In large strain formulations, the well known strain rate decomposition isn’t allowed.
One must introduce an intermediate configuration obtained by stress relaxation, and
the partition of the strain rate gradient tensor M is then given by Lee et al. [LEE 80]
as: M - M N / O N M P * O N , Q R

[7]
where

O N is the pure strain tensor associated with the relaxed configuration (i.e.S N - O N T N ). When an elastic deformation is small, Equation [7] can be written asM U M N / M P , leading to thestrain rate tensor V decomposition below:V - V N / V P W X + Y Z V N - ? J = * M N ,V P - ? J = * M P , [8]

In order to satisfy objectivity, the constitutive law is written using the Jaumann



derivative of the Kirchhoff stress tensor [\
and the strain rate tensor ] . When elastic

strains are small (
\ ^ _

) constitutive equations can be expressed using ] and [_
.

Therefore, in largestrain formulations, thefollowing constitutiveequation isgiven by
theset of relationships: [` a b c ] d [_ a ef g h [`

[9]
where

`
is thedeviatoric part of thestress tensor

_
,

f
thehydrostatic pressure,

g
thesecond order identity tensor and

b
theconstitutive tensor defined by:ij k b a b l a m n o p q rs g t g u v w w a x y z { ew | x } ~ � w | xb a b l � a m n o p q rs g t g q � � � t � � u v w w a x y z { ew � x

[10]
where

p
is the fourth order identity tensor,

n
theLamécoefficient,

�
thetangential

hardening coefficient,
� a �� � � � and

w a � q �
the f low law with

�
the Von-Mises

equivalent stressand
�

given by theJohnson-Cook criterion [JOH 83]:� a � � h � � � � � � � h � � � e� e� � � � � q � � q � �� � l � � q � � � � �
[11]

where
�

is theequivalent strain,
e�

theequivalent strain rate, � thetemperatureand� } � } � } � � } � � l � � } z } � } e� �
arematerial coefficientsgiven in Table1.

Using thefundamental relation [2] linkingmaterial andmixed derivatives, wemay
obtain theALE form of theconstitutiveequation below:� �` a b c ] q � � �   ` h ¡ ` q ` ¡�f a ef q � � �   f [12]

where
¡

is thespin tensor and
 

thegradient operator symbol. On theonehand,
relationships [12] insure the objectivity of theconstitutiveequation, and on the other
hand they allow the stress tensor transport (by the term

� � �   `
) resulting from the

motion between material and grid points.



3.2. Contact law

In ametal cutting process, becauseof high stresses, high strain ratesand high tem-
peratures, ahighmechanical power isdissipated in thetool-chip interfacethusleading
to many structural modifications of the contacting pieces. Therefore, Shih [SHI 93]
shows that no universal contact law exists which can predict friction forces among a
wide rangeof cutting conditions. Experienceactually shows that stick and slip zones
along the interfacial zonebetween thechip and the tool depend on cutting conditions,
pressure, temperature, etc [CHI 90].

Inour model, aclassic Coulomb friction law isassumed to model thetool-chipand
the tool-workpiececontact zone. Thestick/slip conditionsaregiven by:

stick ¢ £ ¤ ¢ ¥ ¦ § ¢ £ ¨ ¢
slip ¢ £ ¤ ¢ © ¦ § ¢ £ ¨ ¢

where £ ¨ and £ ¤ represent respectively the normal and tangential components of
the surface traction at the interface and ¦ § is the coefficient of friction assumed as a
constant depending on thenatureof thecontacting bodies.

Theexplicit integration algorithm used in our model allowstaking thecontact be-
tween thetwo bodies into account by adding an external forcevector to thecontacting
nodes. This can be done by the introduction of an ª « ¬ ¤ vector in the right member
of the momentum conservation law. Normal components of this force vector are set
equal so as to prevent penetration and the tangential component is set with respect of
theCoulomb friction law defined above.

The contact algorithm also includes thermal capacities. Heat generation and heat
transfer at the interface are taken into account. The heat generation in the slipping
contact surface is given by: ­ ® § ¯ ° ± © ¢ £ ¤ ¢ ¢ ² ¤ ¢ ­ ³

where ² ¤ is the tangential slip velocity (i.e. relativevelocity between the two con-
tacting bodies). According to theexplicit scheme, calculated heat f lux is then reintro-
duced asan external thermal f lux for each contacting node.

Generated heat f lux isdivided among pieces in contact in aratio depending on the
thermal featuresof both pieces, geometry and sliding conditions. Therefore, to model
thermal behavior, one may introduce a thermal resistance ´ ¤ µ (to model the thermal
discontinuity at the interface) and a sharing coefficient ¶ (to model the ratio), but the
experimental identif ication of such a coefficient is full of complexities. Experimen-
tal studies [BAR 94] about thermal resistance show that the affected value may vary
within a wide range with contact conditions and slipping speed ² ¤ . In the simplest
case, whensolidsarein perfect contact, theVernotterelationmay beused todetermine
the ¶ coefficient as a function of material effusivities. Numerical simulations about
therelative importanceof ¶ and ´ ¤ µ havebeen doneand show that avariation of ´ ¤ µ
has no significant effect on the result, and on the contrary, the model is quite sensi-
tive to the ¶ coefficient. In our model weassumed a thermal resistanceand asharing
coefficient of 0.0 and 0.5 respectively.



4. Discretization

A finiteelement method (FEM) isadopted for thediscretization of themomentum
equation, while a finite volume method (FVM) is used for the discretization of the
mass and the energy equations because of simplicity. An explicit integration scheme
is adopted for timediscretization.

4.1. Momentum equation

Theassociatedweak formof themomentumequationisdeducedby pre-multiplying
the equation [5] by a weighting function · ¸¹ over the spatial domain º » ¼ ½ with the
boundary ¾ » ¼ ½ . We then use the divergence theorem so as to include surface forces
and a classic Galerkin approach to discretize the equation. The presence of convec-
tive terms in theALE form of themomentum equation leads to numerical diff iculties
linked to thenon symmetric character of theconvectiveoperators. Therefore, theuse
of anon centered integration scheme (upwind technique) for the discretization of the
convectiveterm isadopted in themodel instead of the introduction of anumerical dis-
sipation. Also, when usinganexplicit integrationscheme, thecost of thecalculation is
directly linked to theefficiency of thenumerical integration scheme. Oneof themost
efficient methodsisto useasinglepoint integrationelement associated withastability
algorithm to prevent hourglassmodes. Thepolicy in our model is to add an hourglass
resisting forcevector, asKoslov [KOS 78] in themomentum equation.

After taking into account theseremarks, thecorresponding matrix form of themo-
mentum equation isgiven by:¿ ¸ À ÁÂ Ã Ä Å Æ Ç È Ä ¹ É Ç È Ä Ê Ë Ä Ì Í Î [13]

where Â is the material speed, Ä Å Æ Ç is the external force vector, Ä ¹ É Ç is the inter-
nal forcevector (including thecontact forces), Ä Ê is theconvectivevector, Ä Ì Í Î is the
hourglass resisting forcevector and

¿ ¸ is the lumped form of the mass matrix. Con-
vectivevector force Ä Ê is defined as a weighted function of the convective tensor Ï Ê
by an upwind coefficient matrix Ð Å¹ Ñ .

Ä Ê¹ Ã Ò Å Ð Å¹ Ñ À Ï Ê Å¹ Ñ Â Ñ with ÓÔÔÔÕ
ÔÔÔÖ

Ï Ê Å¹ Ñ Ã × Ø ÙÚ » Û Ü Ý ¹ Ü Ý Ñ Þ ß à ß ½ á º ÌÅÐ Å¹ Ñ Ã â Ë ã ä å æ ç × Ø ÙÚ » Ü ¹ Ñ Þ ß à ß ½ á º ÌÅ è [14]

where Ü isdefined by theshapefunctions, ã é ê ë ì â í represents theupwind coeffi-
cient (ã Ã ë definesacentered integration scheme, ã Ã â definesa full-upwind one).
Weighting functions Ð Å¹ Ñ defined in Equation [14] includerelativemotionbetweenma-
terial and grid points from the introduction of theconvective term

È î à .



4.2. Mass and energy equations

Massandenergy equationsarebothdiscretizedusingafinitevolumemethod(FVM).
Thedomain is discretized into aset of cells (seeFigure2) and quantities areassumed
as constant over the volume integrals. A total compatibility between FVM and FEM
is ensured by setting identical control volumes and finiteelements.
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Figure2. A finitevolumecell and 6 neighbours

Discretized forms of conservation laws are obtained directly from Equations [4]
and [6] by using a finitevolumeformulation:ïð ñ ò ó ôõ ö ÷ ø ù ø ú ø û ø ü ø ý þ õ ð õ ÿ � � � ÿ �� õ � � [15]ï� ð ñ � ñ � ò � ò � 	 
 � � 
 � � ñ ó ôõ ö ÷ ø ù ø ú ø û ø ü ø ý þ õ 
 ÿ � � ÿ ð õ � õ ÿ � � � � ÿ �� õ [16]

where ò is the volume of the cell, þ õ is the surface of the lateral face � , � õ is
theexternal normal of the lateral face � , ð ñ and � ñ arevaluesof ð and � computed at
point P (poleof the cell). ð õ and � õ are the values of ð and � calculated at the center
of each face of the cell. In order to treat convective terms, one may use an upwind
techniqueto evaluatethesequantities. Asan exampleand according to thenotation of
Figure2, thecalculation of the ð ú valuecorresponding to theeast face isgiven by the
relationship below:ð ú � �� � ð ñ 
 � ÿ � � � � � 
 ÿ � � � ÿ �� ú � � ó ð � 
 � ó � � � � � 
 ÿ � � � ÿ �� ú � � � [17]

where � � � � � � � is an upwind coefficient. � � � gives a centered integration
schemewhile � � � correspondsto a full upwind scheme.

For the energy equation, Fourier’s law is adopted for the conduction term and the
specific internal energy � is linked to the temperature � using the relationship � � � ! � � � , where

 !
is thespecific heat coefficient.



4.3. Time integration

Concerning time integration, a third order explicit central difference scheme is
used. The time increment " # is subjected to the Courant stability criteria defined by" # $ " # % & ' ( where " # % & ' ( isa function of thesound and convectivespeeds.

Arbitrary Lagrangian Eulerian formulation also requires theuseof an appropriate
gridmotioncontrol algorithm. Grid speed at node ) at theendof an increment isgiven
by theGiuliani [DON 82] relationship below:

*+ ( , - ./0 1 23
45

6 7 8 *+ ( 9 - ./6 : 23 ; <" #
45

6 7 8 = (0 6 45
> 7 8

*? (0 @ *? (>
= 0 > [18]

where
3

is thenumber of nodesconnected to node ) , = 0 6 is thedistancebetween
nodes ) and A ,

*?
is the grid displacement, and < is an upwind coefficient. Knowl-

edgeof thegrid speed
@ B *+ allows us to compute theconvectivespeed

@ B C
used in ALE

formulations and the four unknown vectors D % , D ' E ( , D F G ( , D H I & at any given time # .
Then, integrating successively the threeconservation laws (momentum, mass and en-
ergy) givestheunknown valuesof

@ B + J # : " # K , L J # : " # K , and M J # : " # K respectively.
Finally, integrating the constitutive law given by [12] allows us to determine stress
tensor N ' O J # : " # K using explicit elastic predictions and a radial return algorithm.

5. Numer ical simulations

Two numerical simulations arepresented in this paper to illustratesteady state or-
thogonal and oblique metal cutting of a 42CD-4 steel with a tungsten carbide tool
(SECOTPGN-160302 P10 tool). Theuseof athree-dimensional approachallowstak-
ing into account boundary effects in the transversedirection.

Figure3. Boundary conditions of thefiniteelement model



Neither geometry of thechip nor thecontact length areknown at thebeginning of
thecalculation. Inour model weintroducedanarbitrary initial geometry deducedfrom
a two-dimensional simulation which is updated during the computation with a view
to reducesimulation time. Here, theworkpieceismodeled using an ALE formulation
whilethetool isrigidandLagrangian(seeFigure3for details). WeusedaMaster/Slave
algorithm for the tool-chip contact.

In addition to theALE nodesof theworkpiece, a typical finiteelement mesh con-
tainspurely Eulerian or purely Lagrangian nodes. By definition, an Eulerian nodehas
a zero grid velocity ( PQ R S ) while a Lagrangian node moves with the corresponding
material node ( PQ R Q ). The description of the free-surfaces of the model uses nodes
which aresimultaneously Lagrangian in thenormal direction and Eulerian in the tan-
gential direction allowing a continuous update of the free surface location until the
steady-state condition is reached. This means that the normal component of the ma-
terial velocity reaches zero. In this sense, the model is equivalent to an Eulerian one
when thesteady statesolution is obtained (see [JOY 98] for futher details).

Concerning the thermal boundary condition, weassumed that all surfaces areadi-
abatic except for thecontact surfacewhere theheat f lux created by thefriction ispre-
scribed. In the discretized Equation [16], the calculated heat f lux is included in the
term T U V .

5.1. Orthogonal model

The first application concerns a three-dimensional steady-state simulation of the
orthogonal metal cutting process as illustrated in Figure 4a. The material properties
of the tool and workpiece are reported in Table 1, and the process characteristics are
given in Table2.

PostCopo v 2.01

a) Turning process associated with the or-
thogonal cutting simulation

b) Finite volume meshing used for the
simulation

Figure4. Turning process and associated model meshing



W X Y X Z [ \] X ^ _ Z [ \`
0.023 %WC 56 %a b
300c d %TiC 20 %a e f g h
1793c d %TaC 14 ij 13 %Co 9 %k 0.133 Young modulus l 630 m n \op b q _ r

Shear modulus G 1600
Z n \

massdensity s 7850 t u v j r
massdensity s 14950 t u v j r

specif ic heat
` w

358 x v t u c d specif ic heat
` w

198 x v t u c d
conductivity y 38 z v j c d conductivity y 100 z v j c d
Workpieceparameters (42CD4 steel) Tool parameters

Table1. Material parameters

cutting speed { | 4.0 j v } rake angle 5c
advancing speed { ~ 0.50 j j v � � � f lank angle 6c
depth of cut 2.0 j j

bevelled edge 0.07 j j
Machining conditions Tool geometry

Table2. Cutting parameters

The friction coefficient
` � � _ � � �

hasbeen obtained from an experimental appa-
ratus by applying anormal forceon a tool in contact with the rotating workpiece, and
measuring thecorresponding tangential forces[JOY 98]. Thethermal propertiesof the
tool aresupposed to bematched to thoseof theworkpiece, giving an equal proportion
of frictional heat allotted to thetool and thechip according to theVernotterelationship
linking the sharing coefficient � and the material effusivities of the two contacting
bodies.

The ALE explicit approach presented above has been adopted to solve the metal-
cuttingproblem. Figure4bshowsthemeshingusedfor thenumerical simulationwhere
only half of the structure is modelized because of the symmetry plane. The meshing
used here is about � � _ _

nodes and
X � _ _

elements. Concerning the convergence, the
accuracy of the finite element technique depends on the size of the mesh; a model
with more refined mesh in the contact and tip tool zones does not change the results
appreciably (3% of variation for themaximum temperaturebetween ’’5200 elements’’
and ’’5550 elements’’ models). Time steps are of the order of

X � q _ � � } which neces-
sitates

^ � q _ �
steps (i.e. a total CPU timebetween 3 and 4 days on aSilicon Graphics

R4000 Indigo). Numerical results are reported in Table3. Contact length � | � � h
, chip

inner radius � � � h
and lateral dilatation of thechip havebeen measured straight on the

meshing using home-madepost-processor facilities.
Figure 6 shows the lateral expansion of the material in the direction orthogonal

to the cutting plane (i.e. the plane formed by cutting and advancing speeds { | and{ ~ ). Figure 5 shows the time-history temperature plot of some selected nodes on the



tool f lank face. From the latter, we can see that all temperatures have reached their
stationary values (an average of � � � � � ) after 2 milliseconds of simulated machining
time. Figure 7a presents the temperature contour plot on the tool f lank face. Well
known experimental results show that maximum temperature is not located along the
edge but on the f lank face of the tool, at a distance � � � � � from the edge (more or
less equal to the advancing ’’depth of cut’’ value). Comparisons (reported in Table
3) of experimental measurements of the cutting and advancing forces with numerical
ones show a very good agreement. Table 3 also reports calculated temperatures in
thesecondary shear zone and comparison with an analytical result obtained using the
Oxley model. TheOxley model givesdirectly theaveragetemperaturein thesecondary
shear zone, therefore an average temperature computation in the corresponding area
hasbeen done in thenumerical model for comparison reasons.

Experimental three-dimensional mappings of the tool f lank face (see Figure 7b)
have also been done and measurements are reported in Table 4. Measured distance� � � � �   �

represents thedistance between the center of the crater on the tool f lank face
and theedgeof thetool, while � � � � � isthedistancebetween thecenter of theelement,
where ¡ ¢ � £

isreached, andtheedgeof thetool. Comparisonsof experimental valueof� � � � �   �
andcalculated � � � � � distance(reported inTable3) thereforeshow avery good

level of agreement. Comparing Figures 7a and 7b illustrates the existing correlation
given by Tay [TAY 93] between temperatureand wear on thetool f lank face.

¤ �
2.209 ¥ ¦ ¡ � § § ¨ © ª «

740� � ¤ �
2.150 ¥ ¦¤ �

0.690 ¥ ¦ ¡ � ¬ ­ ® © ª «
910� � ¤ �

0.720 ¥ ¦� � § ¯ �
1.00 ° ° � � © ª «

533 ± ° � � � � �   �
530 ± °² ­ ¯ �

2.25 ° ° dilatation 14% ¡ � ¬ ­ ® ³ � ´ µ ¶ 936� �
Numerical results Experimental results

Table3. Comparison of numerical resultsand experimental measurements

analysed surface 2.412 x 4.020 ± °
depth of crater 41 ± °
width of crater 620 ± °
measured

� � � � �   �
530 ± °

Table4. Experimental measurements from the3D mapping of the tool flank face



Figure5. Time-history of the temperatures along the tool-chip contact zone for 5 se-
lected points
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Figure6. Lateral expansion in theorthogonal direction to thecutting plane
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a) Numerical temperaturecontour plot on thetool f lank face(only half of thetool isrepresented
here)

b) Experimental three-dimensional mapping of the tool f lank face

Figure7. Temperaturecontour plot and wear effects



5.2. Oblique model

The second application concerns the numerical simulation of an oblique cutting
process. In the presented model, we introducean angle ½ ¾ ¿ À Á , having in mind that½ is the angle between the edge of the tool and the cutting speed direction ( ½ ¾ Â Ã Á
in orthogonal cutting). The ½ angle is best explained by referring to Figure8. All the
cutting parameters are the same as those used in the orthogonal model (see Table 1).
Numerical resultsarereported inTable5. Inour model, Ä istheaverageanglemeasured
between the chip f low and the cutting plane. The introduction of 15Á oblicity in the
model ( ½ ¾ ¿ À Á ) hasan inf luenceon all theresultsof themodel. Thiscausesthechip
to f low in thedirection Ä ¾ Å Æ Á . Proportionality between the ½ and Ä angles is quite
linear and might be approximated by the relationship Ä ¾ Ç È É Ê Ë ½ Ì . Temperatures
arequitethesameasthoseobtainedwith theorthogonal model. Cuttingandadvancing
forces Í Î and Í Ï havebeen reduced, but thelateral force Í Ð increasesby awiderange.

Figure8. Representation of theobliquecutting process

Í Î 1.811 Ñ Ò Ó Ô Õ Õ Ö × Ø Ù 700Á ÚÍ Ï 0.381 Ñ Ò Ó Î Û Ü Ý × Ø Ù 900Á ÚÍ Ð 0.539 Ñ Ò Þ ß × Ø Ù 320 à áÞ Î Õ â Ô 0.98 á á Ä 48Á
Table5. Numerical results of theobliquemodel



Figure9 showsfour representationsof thechip at theend of thecalculation. From
thiswecanseethethree-dimensional character of our model. Figure10representsVon-
Mises’ contour plot on the chip and the workpiece. Figure 11 shows the temperature
contour plot on therear faceof thechip (thetool hasbeen removed in thisfigure). The
figure illustrates thehelicoidal form of thechip induced by obliquecutting.

PostCopo v 2.01 PostCopo v 2.01
ã

PostCopo v 2.01 PostCopo v 2.01
ã

Figure9. Three-dimensional representations of theobliquecutting simulation results



Von Mises stresses time : 4.00 ms
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Figure10. Von Mises contour plot of theobliquemodel with ä å æ ç è
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Figure11. Temperature contour plot of the oblique model with ä å æ ç è (the tool has
been removed in this figure)



6. Conclusion and perspectives

We developed a three-dimensional numerical model of an orthogonal and oblique
metal cutting processbased on an Arbitrary Lagrangian Eulerian approach. This pro-
videsasolution to remedy theproblemslinked to theclassic Lagrangian and Eulerian
formulations: severemeshingdistortionsin theLagrangiandescription, unknownbound-
ariesand contact conditions in theEulerian approach. Different observationsdeduced
from numerical results have been compared with available experimental results and
giveagood level of agreement. Theoriginality of such astudy isshown by theuseof
theALE formulation and thedevelopment of athree-dimensional model. Comparison
of thismodel with an analytical oneshowstheadvantagesof thenumerical simulation
based on less restrictivehypotheses. In addition, extensions of this work will include
abetter definition of the tool-chip contact law, including wear effects.
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