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AN ALE THREE-DIMENSIONAL MODEL
OF ORTHOGONAL AND OBLIQUE METAL
CUTTING PROCESSES

Olivier Pantalét, Roger Rakotomalala®, Maurice Touratier*

T L.G.PCM.A.O-EN.LT, 47 Av d’ Azereix BP 1629 - 65016 Tarbes cedex
* LM2SUA CNRS 1776, ENSAM, 151 bd de |’ hdpital 75013 Paris

An Arbitrary Lagrangian Eulerian (ALE) approachisusedinthispaper to model continuous
three-dimensional orthogonal and oblique steady-state metal cutting processes. The thermo-
mechanical coupled model includes the effects of e astoplagticity, high strain and strain rates,
heat generation and friction between the chip and the tool. A thermal-viscoplastic congtitutive
equation associated with the Johnson-Cook flow law is adopted for the workpiece. A classic
Coulomb friction law associ ated with heat gener ation and heat transfer isused to model thetool -
chip contact. The model is suitable for predicting thermo-mechanical quantities, chip geometry
and the cutting forces from a set of cutting data, material and contact parameters. Cutting
experiments and numerical simulations were performed on a 42CD4 steel and comparisons
show a reasonable level of agreement.

KEYWORDS machining, finite e ements, finite volumes, ALE, thermo-mechanical
coupling

1. Introduction

Experimental observations of metal cutting processes show that the phenomena
associated with chip formation are full of complexities. The cutting material is sub-
jected to high strains, high strain rates and high temperatures while the cutting tool
is subjected to wear as a consequence of very localized high pressures and high tem-
perature gradients. The influence of cutting temperature distribution on tool wear is
awell known fact since Taylor's works. Tay [TAY 93] shows that the craterization of
the tool flank face is directly related to the temperature distribution. Even though a
lot of experimental research about tool flank face temperature measurements has been
done in recent years [LEZ 90], the issue is still full of complexities. Yet the issue is
full of complexities. The aim of our study istherefore to devel op a predictive numeri-
cal model suitable for obtaining stresses and temperature distributionsin the tool-chip
contact zone, from the set of cutting and material parameters.



Many research projects about numerical simulation of cutting processes have been
done in the last few years, and a number of models are presented in the literature.
Over the last five years, friction and wear effects have been included in numerica
models like the one presented by Komvopoulos et al. [KOM 91] where the authors
study the influence of the coefficient of friction and the craterization of the tool flank
face on the resulting geometry and cutting forces. Another interesting model is the
one presented by Younis et a. [YOU 92] where the authors’ interest is to develop a
numerical model suitable for predicting thermal and mechanical stresses in the tool
from athermal and mechanica set of data as boundary conditions. Tay et d. [TAY 91]
have devel oped a purely therma model, from a set of experimental results, to predict
mechanical variations of thetool characteristics. Uedaet a. [UED 93] present athree-
dimensional model (suitable for predicting the chip geometry and the cutting forces)
based on a rigid-plastic finite element method. Oblique cutting process simulations
are presented in this paper.

Rakotomada et a. [RAK 93] present a predictive ALE two-dimensional model
suitable for predicting geometry and cutting forces from a set of material and cutting
parameters. The model presented in our paper is based on the same approach and
constitutes the next step of this study.

One of the earlier modelsis that presented by Marushich et al. [MAR 95] where
the authors present anumerical two-dimensional model of an orthogonal metal cutting
process including crack propagation, suitable for modelling non continuous chip for-
mation.

In this paper, we present athree-dimensional numerical model of orthogonal and of
obligque metal cutting processes. Both are based on an Arbitrary Lagrangian Eulerian
(ALE) approach, generdly dedicated to fluid ssmulations. The ALE formulation has
been used by severa authors [HUE 90] in metal forming simulationsin order to over-
come problems encountered while using a purely L agrangian or Eulerian method. But
this model is one of the first application of such an approach to cutting simulation.
Briefly speaking, the use of this approach combines the advantages of both classic
representations in a single description which can be considered as an automatic and
conti nuous rezoning method.

Inthis paper wefirst present a brief review of the ALE governing equationsand the
associated forms of the conservation laws. We will then present the congtitutive law
and the contact al gorithm used inthemode followed by spatia and time discretization.
Two applicationswill then be presented. Thefirst concerns athree-dimensional model
of orthogonal metal cutting process, wheress the second deals with an oblique model
simulation. Comparisons with experimental results are a so given in this part.

2. ALE formulation

An Arbitrary Lagrangian Eulerian formulation is an extension of both classic La
grangian and Eulerian ones where grid points may have an arbitrary motion. In such



adescription, materia points are represented by a set of Lagrangian coordinates )_f
spatial points with a set of Eulerian coordinates ', and reference points (grid nodes)

with a set of Arbitrary coordinates ? We illustrate this graphically in Figure 1. At
— —
timet, 2 issimultaneously the image of X by the material motion =" = W(X 1),
— ~—
and ¢ by thegrid motion =" = W( & ,¢).

material domain Y(X,t)
spatial domain

Q,

Q,
— X
X e

referential domain

Q.

3

Figure 1. Motion description in ALE

All physical quantities are computed at geometrical points z at timet. All con-
servation laws must be expressed taking into account the meshing evol ution during the
calculation. Considering a space and time dependent quantity f, one must express al

the conservation laws using the materia (J"), spatial (f') and mixed (]Of) derivatives of
aquantity f defined below:
. af _ d_f o af

f:_ ) .f, ) f:EH [1]

. ot )A(>=cte B ot z =cte ¢ =cte
Conservation laws are usually written using material derivatives in an Eulerian
formulation. Therefore, Hughes [HUG 81] introduced the rel ationship bel ow between
material and mixed derivatives as.

I=f+fci (2]

where ¢; = v; — U; isa convective term representing the rel ative vel ocity between

the material (v;) and mesh (2;) velocities and f ; represents the derivative of f with
respect to direction :.

It is easy to establish the following relationship between material (I'() and mixed

(K) derivatives of avolumeintegral of afunction f as:
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Therefore, ALE integral forms of the conservation laws are directly obtained from
classical Eulerian ones using [3], and local ALE forms with [2] as shown below, for
examplein Cartesian coordinates (initial and boundary conditions have of courseto be
added):

p +pui i + pici =0 (mass) [4]
0V, +pv;j cj = fi+0i5,; (momentum) [5]
petpeici=r—q+0i;vi; (energy) [6]

Inthese equations, p isthe mass density, ¢ the heat flux, 7 the body force vector
(taken equal to zero hereafter), O the Cauchy stresstensor, » the body heat generation
(taken equal to zero hereafter) and e the specific internal energy.

3. Congtitutive and contact laws

A thermo-el astopl astic constitutive equati on associated with the Johnson-Cook flow
law is adopted for the workpiece while a Coulomb friction law including heat genera-
tion and heat transfer is used for the tool-chip contact.

3.1. Constitutive equation

A constitutive equation used in cutting models must take into account plasticity
or visco-plasticity, temperature, strain rate and damage, if we want to simulate dis-
continuous chip formation. In this paper, the numerical model adopted is suitable for
simulating continuous steady-state metal cutting processes as a thermo-elastoplastic
constitutive equation associated with the Johnson Cook flow law has been adopted.
In large strain formulations, the well known strain rate decomposition isn't allowed.
One must introduce an intermediate configuration obtained by stress relaxation, and
the partition of the strain rate gradient tensor L is then given by Lee et al. [LEE 80]
as.

L =Le+VeLP(Ve) ! [7]
where V¢ is the pure strain tensor associated with the relaxed configuration (i.e.
Fe = V°R*®). When an elastic deformation is small, Equation [7] can be written as
L « L° + L7, leading to the strain rate tensor ) decomposition below:
. . D¢ = sym(LL°
D= D°+ DP with DP — sngLp)) [8]
In order to satisfy objectivity, the constitutive law is written using the Jaumann



derivative of the Kirchhoff stress tensor 1% and the strain rate tensor . When elastic
o
strains are small (T~ ) constitutive equations can be expressed using D and O .

Therefore, in large strain formul ations, the following congtitutive equation is given by
the set of relationships:

< .
§=C:D; O=PI+§ [9]
where S isthe deviatoric part of the stresstensor O, P the hydrostatic pressure, I
the second order identity tensor and C the constitutive tensor defined by:

CZCEZQ/L(J—%H@H) iff:Ocmd].”<0,o7“f<0
C=C?=2u(J-31@l-y(N@N)) if f=0and f>0

[10]

where J isthe fourth order identity tensor, 1« the Lamé coefficient, -y the tangentia

hardening coefficient, N = % and f =6 —R the flow law with & the Von-Mises
equivaent stressand R given by the Johnson-Cook criterion [JOH 83]:

m|e

R=(A+B2")(1+Cln<)(1— (ﬂ) ) [11]
€0 Tmslt - TO

where € isthe equivalent strain, & the equivaent strain rate, 7' the temperature and
A, B, C, Ty, Tmeir, 7, m, e._oare materia coefficients given in Table 1.

Using the fundamental relation [2] linking material and mixed derivatives, we may
obtain the ALE form of the congtitutive equation below:

§=C:D— ¢ .VS+ WS —SW
P=P—¢.VP
where W is the spin tensor and V the gradient operator symbol. On the one hand,
relationships [12] insure the objectivity of the constitutive equation, and on the other
hand they allow the stress tensor transport (by the term c .VS) resulting from the
motion between materia and grid points.

[12]



3.2. Contact law

Inameta cutting process, because of high stresses, high strain rates and high tem-
peratures, a high mechanical power is dissipated in the tool-chip interface thusleading
to many structural modifications of the contacting pieces. Therefore, Shih [SHI 93]
shows that no universal contact law exists which can predict friction forces among a
wide range of cutting conditions. Experience actually showsthat stick and dip zones
along the interfacial zone between the chip and the tool depend on cutting conditions,
pressure, temperature, etc [CHI 90].

In our model, aclassic Coulomb friction law is assumed to model the tool-chip and
the tool-workpiece contact zone. The stick/dlip conditions are given by:

gick |73 < Cy |Th|
sip  [1)| = Cy|13]

where T, and T; represent respectively the normal and tangential components of
the surface traction at the interface and C' is the coefficient of friction assumed as a
constant depending on the nature of the contacting bodies.

The explicit integration algorithm used in our model allows taking the contact be-
tween the two bodies into account by adding an external force vector to the contacting
nodes. This can be done by the introduction of an F¢** vector in the right member
of the momentum conservation law. Normal components of this force vector are set
equal so asto prevent penetration and the tangential component is set with respect of
the Coulomb friction law defined above.

The contact algorithm also includes thermal capacities. Heat generation and hest
transfer at the interface are taken into account. The heat generation in the slipping
contact surface is given by:

where V; isthe tangential slip velocity (i.e. relative velocity between the two con-
tacting bodies). According to the explicit scheme, calculated heat flux isthen reintro-
duced as an external thermal flux for each contacting node.

Generated heat flux isdivided among piecesin contact in aratio depending on the
thermal features of both pieces, geometry and diding conditions. Therefore, to model
thermal behavior, one may introduce a thermal resistance R, (to model the thermal
discontinuity at the interface) and a sharing coefficient o (to model the ratio), but the
experimental identification of such a coefficient is full of complexities. Experimen-
tal studies [BAR 94] about thermal resistance show that the affected value may vary
within a wide range with contact conditions and dipping speed V;. In the simplest
case, when solids arein perfect contact, the Viernotte rel ation may be used to determine
the o coefficient as a function of material effusivities. Numerical simulations about
the relative importance of o and R, have been done and show that avariation of Ry,
has no significant effect on the result, and on the contrary, the model is quite sensi-
tive to the o coefficient. In our model we assumed a thermal resistance and a sharing
coefficient of 0.0 and 0.5 respectively.



4, Discretization

A finite element method (FEM) is adopted for the discretization of the momentum
equation, while a finite volume method (FVM) is used for the discretization of the
mass and the energy equations because of simplicity. An explicit integration scheme
is adopted for time discretization.

4.1. Momentum eguation

Theassociated weak form of the momentum eguati onisdeduced by pre-multiplying
the equation [5] by a weighting function v} over the spatial domain €(z) with the
boundary T'(¢). We then use the divergence theorem so as to include surface forces
and a classic Galerkin approach to discretize the equation. The presence of convec-
tive termsin the ALE form of the momentum equation leads to numerical difficulties
linked to the non symmetric character of the convective operators. Therefore, the use
of anon centered integration scheme (upwind technique) for the discretization of the
convective term is adopted in the model instead of the introduction of anumerical dis-
sipation. Also, when using an explicit integration scheme, the cost of the calculationis
directly linked to the efficiency of the numerical integration scheme. One of the most
efficient methodsisto use asingle point integration element associated with astability
algorithm to prevent hourglass modes. The policy in our model isto add an hourglass
resisting force vector, as Koslov [KOS 78] in the momentum equation.

After taking into account these remarks, the corresponding matrix form of the mo-
mentum equation is given by:

M*. ‘O,: Femt _ F»int _Te + thr [13]

where v is the material speed, Fe*! is the external force vector, Fi*¢ is the inter-

nal force vector (including the contact forces), F¢ is the convective vector, F*9" isthe

hourglass resisting force vector and M* is the lumped form of the mass matrix. Con-

vective vector force F¢ is defined as a weighted function of the convective tensor K¢
by an upwind coefficient matrix ;.

K5 =/ (PNui Nuj g cg) dQ2
, Qk
F$ :Z 75 Ki§v; with [14]
- zﬁj =1+4+mnsgn / (Nij,ﬁ C,B) dQZ
Qh

where N is defined by the shape functions, 7 € [0, 1] Fepr%nts the upwind coeffi-
cient (n = 0 defines a centered integration scheme, = 1 defines a full-upwind one).
Weighting functions¢; defined in Equation [14] include relative motion between ma-

terial and grid points from the introduction of the convective term ¢ .



4.2. Mass and energy equations

Massand energy equationsare both discreti zed using afinite volume method (FVM).
The domain is discretized into a set of cells (see Figure 2) and quantities are assumed
as constant over the volume integrals. A total compatibility between FVM and FEM
is ensured by setting identical control volumes and finite elements.
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Figure 2. Afinite volume cell and 6 neighbours

Discretized forms of conservation laws are obtained directly from Equations [4]
and [6] by using afinite volume formulation:
ppV+ > Aap, Cha=0 [15]

a=n,s,e,w,t,b

(ppep) V=V (UijD»ij)P—l- Z Ao (7 - paea?) -n_o: [16]

a=n,s,e,w,t,b

where V' is the volume of the cell, A, isthe surface of the lateral face «, n, IS
the external normal of thelatera face a, pp and ep are values of p and e computed at
point P (pole of the cdll). p, and e,, arethe values of p and e calculated at the center
of each face of the cell. In order to treat convective terms, one may use an upwind
techniqueto evaluate these quantities. As an example and according to the notation of
Figure 2, the calculation of the p, value corresponding to the east faceis given by the
relationship bel ow:
po =3 e (1= nsen (T 72)) + pp L+ nsen (T2)] (47
where € [0,1] is an upwind coefficient. 7 = 0 gives a centered integration
schemewhilen = 1 correspondsto a full upwind scheme.

For the energy equation, Fourier's law is adopted for the conduction term and the
specific interna energy e is linked to the temperature 1" using the relaionship de =
Cp.dT', where C,, isthe specific heat coefficient.



4.3. Timeintegration

Concerning time integration, a third order explicit central difference scheme is
used. Thetime increment At is subjected to the Courant stability criteria defined by
At < At Where At.,.;; isafunction of the sound and convective speeds.

Arbitrary Lagrangian Eulerian formulation also requires the use of an appropriate
grid motion control algorithm. Grid speed at node 7 at the end of anincrement isgiven
by the Giuliani [DON 82] relationship bel ow:

UI+At - Z Atf— N2 ~ Z - Z LIK [18]

where N isthe number of nodes connected to nodeI L 17 |sthe distance between
nodes 7 and J, 4 is the grid displacement, and « is an upwind coefficient. Knowl-
N

edge of thegrid speed & alows us to compute the convective speed ¢ used in ALE
formulations and the four unknown vectors Fe, Fint, Fezt, Fh9™ at any given timet.
Then, integrating successively the three conservation laws (momentum, mass and en-
ergy) givesthe unknown values of @' (t + At), p(t + At), and e(t 4 At) respectively.
Finaly, integrating the constitutive law given by [12] alows us to determine stress
tensor o (¢ + At) using explicit elastic predictions and aradial return algorithm.

5. Numerical simulations

Two numerical simulations are presented in this paper to illustrate steady State or-
thogonal and oblique metal cutting of a 42CD-4 steel with a tungsten carbide tool
(SECO TPGN-160302 P10 tool). The use of a three-dimensional approach allowstak-
ing into account boundary effects in the transverse direction.

free surtace

free surface

Tool

Lagrangian nodes  cutting speed

cutting speed
Ve
free surface

Ve /
. —
Workpiece —
ALE nodes
Lulerian nodes ‘ Lulerian nodes

Eulerian nodes

Figure 3. Boundary conditions of the finite element model



Neither geometry of the chip nor the contact length are known at the beginning of
thecalculation. In our model weintroduced an arbitrary initial geometry deduced from
atwo-dimensional simulation which is updated during the computation with a view
to reduce simulation time. Here, the workpiece is modeled using an AL E formulation
whilethetool isrigid and Lagrangian (see Figure 3for details). Weused aMaster/Slave
agorithm for the tool-chip contact.

In addition to the ALE nodes of the workpiece, atypica finite element mesh con-
tains purely Eulerian or purely Lagrangian nodes. By definition, an Eulerian node has
azero grid velocity (v = 0) while a Lagrangian node moves with the corresponding
material node (U = v). The description of the free-surfaces of the mode uses nodes
which are simultaneously L agrangian in the normal direction and Eulerian in the tan-
gentid direction alowing a continuous update of the free surface location until the
steady-state condition is reached. This means that the norma component of the ma-
terial velocity reaches zero. In this sense, the model is equivalent to an Eulerian one
when the steady state solution is obtained (see [JOY 98] for futher details).

Concerning the thermal boundary condition, we assumed that all surfaces are adi-
abatic except for the contact surface where the heat flux created by thefriction is pre-
scribeg In the discretized Equation [16], the calculated heat flux is included in the
term gq'.

5.1. Orthogonal model

The first application concerns a three-dimensional steady-state simulation of the
orthogonal metal cutting process as illustrated in Figure 4a. The material properties
of the tool and workpiece are reported in Table 1, and the process characteristics are
givenin Table 2.
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a) Turning process associated with the or-  b) Finite volume meshing used for the
thogonal cutting smulation simulation

Figure 4. Turning process and associated model meshing



A 595 Mpa

B 580 Mpa

C 0.023 %WC 56 %

To 300° K %TiC 20 %

Trnett 1793 K %TaC 14 %

m 13 %Co 9%

n 0.133 Young modulus £ 630 G Pa

% 103 Shear moduius G 1600 M Pa
massdensity p 7850 kg/m? mass density 0 14950 kg/m3
specificheat C, 358 J/kg° K specificheat C, 198 J/kg° K
conductivity A\~ 38 W/m° K conductivity A 100 W/m° K

Wérkpiece parameters (42CD4 steel) Tool parameters

Table 1. Material parameters

cutting speed V. 40m/s rakeangle 5°

advancingspeed V, 050 mm/rev  flank angle 6°

depth of cut 2.0mm bevellededge 0.07 mm
Machining conditions Tool geometry

Table 2. Cutting parameters

Thefriction coefficient C'y = 0.32 has been obtained from an experimental appa-
ratus by applying a normal force on atool in contact with the rotating workpiece, and
measuring the corresponding tangential forces[JOY 98]. Thethermal properties of the
tool are supposed to be matched to those of the workpiece, giving an equal proportion
of frictional heat alotted to the tool and the chip according to the Viernotte rel ationship
linking the sharing coefficient o and the material effusivities of the two contacting
bodies.

The ALE explicit approach presented above has been adopted to solve the metal-
cutting problem. Figure4b showsthe meshing used for the numerical simul ation where
only half of the structure is modelized because of the symmetry plane. The meshing
used here is about 6400 nodes and 5200 elements. Concerning the convergence, the
accuracy of the finite element technique depends on the size of the mesh; a model
with more refined mesh in the contact and tip tool zones does not change the results
appreciably (3% of variation for the maximum temperature between ” 5200 €l ements”
and ”5550 elements” models). Time steps are of the order of 5.10 °s which neces-
Sitates 8.10° steps (i.e. atotal CPU time between 3 and 4 days on a Silicon Graphics
R4000 Indigo). Numerical results are reported in Table 3. Contact length ..oy¢, Chip
inner radius R;,,; and lateral dilatation of the chip have been measured straight on the
meshing using home-made post-processor facilities.

Figure 6 shows the lateral expansion of the materia in the direction orthogona
to the cutting plane (i.e. the plane formed by cutting and advancing speeds V.. and
V,). Figure 5 shows the time-history temperature plot of some selected nodes on the



tool flank face. From the latter, we can see that al temperatures have reached their
gtationary values (an average of 800°C") after 2 milliseconds of simulated machining
time. Figure 7a presents the temperature contour plot on the tool flank face. Well
known experimental results show that maximum temperature is not located along the
edge but on the flank face of the toal, at a distance Lt from the edge (more or
less equal to the advancing " depth of cut” value). Comparisons (reported in Table
3) of experimental measurements of the cutting and advancing forces with numerical
ones show a very good agreement. Table 3 also reports calculated temperatures in
the secondary shear zone and comparison with an analytical result obtained using the
Oxley model. The Oxley model givesdirectly theaveragetemperaturein the secondary
shear zone, therefore an average temperature computation in the corresponding area
has been done in the numerical model for comparison reasons.

Experimental three-dimensional mappings of the tool flank face (see Figure 7b)
have aso been done and measurements are reported in Table 4. Measured distance
derater rEPresents the distance between the center of the crater on the tool flank face
and the edge of thetool, while L. ___ isthe distance between the center of the element,
whereT,, .. isreached, and the edge of thetool. Comparisons of experimental val ue of
derater and calculated L, distance (reported in Table 3) therefore show avery good
level of agreement. Comparing Figures 7a and 7b illustrates the existing correlation
given by Tay [TAY 93] between temperature and wear on thetool flank face.

F, 2209 kN | Tioor,,,. T140°C F, 2150 kN
r, 0.690 kN | Tehip,,.. 910°C F, 0.720 kN
Leone 1.00mm | L, 533 um derater 530 um
Rinte  225mm | dilatation  14% Tehipogre, 936°C
Nurmerical results Experimental results

Table 3. Comparison of numerical results and experimental measurements

analysed surface  2.412 x 4.020 um
depth of crater 41 um

width of crater 620 pm
measured d.,.qser 530 um

Table 4. Experimental measurements from the 3D mapping of the tool flank face



temperature in °C

time in milliseconds

Figure 5. Time-history of the temperatures along the tool-chip contact zone for 5 se-
lected points

displacement along the x axis
Mo ez Mz 7ze02 Mo sseo02 Mo sse02 [1 21601
s Maere02 M7.47602 Mi1ose0r izieo1

M2 soe02 Mls coe02 Ms a0e02 112601 14001

time : 4.00 ms

Figure 6. Lateral expansion in the orthogonal direction to the cutting plane
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Temperatures contourplot (kelvins) time : 4.00 ms

Ml sser02 M2 ooero2 M6 33e+02 7. 758102 [Jo. 18502
Ml oscv02 M5 3802 o soer02 s 23e+02 [ o, 65E+02
. s3ev02 B s gser02 [ 7. 288002 8. 70ev02 [ 1. 016403

a) Numerical temperature contour plot on thetool flank face (only half of thetool isrepresented
here)

d crater

b) Experimental three-dimens onal mapping of the tool flank face

Figure 7. Temperature contour plot and wear effects



5.2. Oblique model

The second application concerns the numerical simulation of an oblique cutting
process. In the presented model, we introduce an angle xk = 75°, having in mind that
k is the angle between the edge of the tool and the cutting speed direction (x = 90°
in orthogonal cutting). The x angleis best explained by referring to Figure 8. All the
cutting parameters are the same as those used in the orthogonal model (see Table 1).
Numerical resultsarereportedin Table5. Inour model, § isthe average angle measured
between the chip flow and the cutting plane. The introduction of 15° ablicity in the
model (x = 75°) has an influence on al the results of the model. This causesthe chip
to flow in the direction 6 = 48°. Proportionality between the x and 6 anglesis quite
linear and might be approximated by the relationship 6 = 3 (3 — x). Temperatures
are quite the same asthose obtained with the orthogonal model. Cutting and advancing
forces F,, and F, havebeen reduced, but the latera force F), increases by awiderange.

\ >
2 ¢
[

Figure 8. Representation of the oblique cutting process

F, 1811 kN | Tionl 700°C

max

F, 0381 kN | Tenipn.. 900°C
F, 0539 kN | Lt 320 um

max

Leont 098mm | 6 48°

Table 5. Numerical results of the oblique model



Figure 9 shows four representations of the chip at the end of the calculation. From
thiswe can seethethree-dimensional character of our model. Figure 10 represents Von-
Mises contour plot on the chip and the workpiece. Figure 11 shows the temperature
contour plot on the rear face of the chip (thetool has been removed inthisfigure). The
figureillustrates the helicoidal form of the chip induced by oblique cutting.

[PostCopq v 2.01

Figure9. Three-dimensional representations of the oblique cutting simulation results
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Figure 10. \bn Mises contour plot of the oblique model with k = 75°
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6. Conclusion and per spectives

We devel oped a three-dimensional numerical model of an orthogonal and oblique
metal cutting process based on an Arbitrary Lagrangian Eulerian approach. This pro-
vides a solution to remedy the problems linked to the classic Lagrangian and Eulerian
formulations: severe meshing distortionsin the Lagrangian description, unknown bound-
aries and contact conditions in the Eulerian approach. Different observations deduced
from numerical results have been compared with available experimenta results and
giveagood level of agreement. The originality of such a study is shown by the use of
the AL E formulation and the development of athree-dimensional model. Comparison
of this model with an analytical one shows the advantages of the numerica simulation
based on less restrictive hypotheses. In addition, extensions of this work will include
abetter definition of the tool-chip contact law, including wear effects.
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