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Un nouveau système de coordonnées pour les équations

de Darcy-Muskat diphasiques en milieux poreux hétérogènes isotropes à deux dimensions.

Abridged English Version

We study a two dimensional Darcy-Muskat (DM) two-phase flow model and introduce a new system of coordinates which permits one to generalised the unidimentional projection of the saturation equation of the (DM) model. Generalization of the Darcy law for two-phase flows with associated pressure gradient V P;, and Darcy flow ; ;, with gravity, reads (when neglecting the coupling between phases):

(l)
Where µ ; is the phase i viscosity, K the intrinsic porous media permeability, k ri and P; are the phase i relative permeability and density. We consider the relative permeability k ri = k ri ( S;) a fonction of the saturation S; only [11]. Coupling between phase saturation and the pressure difference between phases is described by some phenomenological single valued capillary pressure curves: P_(x, S 2 (X) ) = P i (x) -P 1 (X) = P c (t S i (x) ). This mode! can be expressed in short formula tion with the use of a global stream-fonction [START_REF] Bear | Introduction to modeling of transport phenomena in Porous Media[END_REF][START_REF] Blum | A generalized streamline method to predict reservoir flows[END_REF][START_REF] Chavent | Mathematical models and finite elements for rcservoir simulation[END_REF] or a global pressure [START_REF] Higgins | A computer method to calculate wo-phase flow in any irregular bounded porous medium[END_REF]. Since the total flux
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bas a free-divergence, a global stream-fonction 'P + can be defined

V x 'P +C x ) = v 1 + v 2 •
This mode] can be written with non-dimensional parameters following Leverett [l,[START_REF] Wooding | Multiphase flow through porous media[END_REF], we introduce a non-dimensional capillary pressure p_(x, S 2 ) = V(Ï0 P __ (x, S 2 )/a where ais the interfacial ten sion between fluids and ( K) the averaged permeability. We define a capillary number Ca= (µv -t:.. la) ( e1\f[Jf)) constructed from the averaged Darcy flux, V + = ( I l V x (j:, +Il), the mean viscosity µ is the ratio between the typical correlation length of the heterogeneity e and the typical pore size -v(K'). The saturation evolution is governed by a non-linear convection-diffusion equation which is usually [START_REF] Mehrabi | Coarsening of heterogeneous media: application of wavelets[END_REF][START_REF] Leverett | Capillary behavior in porous solid[END_REF] written:

(2)
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Where (/J is the rock porosity, V x 1/f + = V x 'P + /v + is a non-dimensional global stream fonction, F( S 2 ) and G ( S 2 ) are:

1 1 F(S 2 ) = (i + k ,2 µ 1 ) G (S 2 ) = (µ 1 + µ 2 ) k ,2 µ 2 k ,1 k ,2 (3) 
In two dimensions, Darcy-Muskat [equation (l)] imposes a coupling between the global stream fonction and the saturation. Let us now define the bidimensionsional stream fonction ; � ( x, y) = ( 0, 0, 1/f� ) and the adimensional global pressure p� ( x, y) at infini te capillary number where viscous forces dominate such that:

- ➔ o .._ o V x f// + = kkri S 2 ) V P + (4) kr 1 kr 2
Where kr + = -+-,and k = Kl(K). Darcy-Muskat relation (4) implies the orthogonality between µ 1 µ 2

--

the global strearn fonction V !fi� and the global pressure V p�. ( p�, 1/f� ) de fine an orthogonal curvilinear coordinate system which permits one to genernlised the 'stream-tube' projection method [START_REF] Chavent | Mathematical models and finite elements for rcservoir simulation[END_REF] to non-infinite capillary numbers. The non-linear right hand side of equation ( 2) is a perturba tion term due to capillary effects which is responsible for some variations of the saturation along the p� coordinate. These important capillary effects can be computed accurately by a projection in our coordinate system. Beyond this efficient and precise projecition for the resolution of the elliptic equation ( 2), the explicit dynamical computation of coordinates ( p�, 1/f� ) also allows for a better resolution of the advection-diffusion operator. This opera1:0r can be written in the proposed coordinates ( p�, 1./1� ) for which different properties can be rnoted.

-In the case of tensorised permeability in (p�, 1/f� ) coordinates, one can use a direct successive diagonal method to solve it.

-In the case of periodic permeability, one can keep the n first mode of the discrete Fourier transform of k in ( p�, 1/f� ) coordinates. This allows one to solve with direct method the discrete (( n + l) n + 1) diagonal linear system.

-In the general case, the projected operator is adapted to a new preconditionning for an iterative resolution that will be proposed in a future publication.

Nous introduisons un nouveau système de coordonnés pour le calcul des écoulements diphasiques de Darcy-Muskat (DM) en milieux poreux hétérogènes à deux dimensions, qui permet de généraliser la projection unidimensionnelle de la saturation (méthodes tubes de courant) aux nombres capillaires non infi nis.

La généralisation de l'équation de Darcy aux écoulements d. e plusieurs phases i en milieu poreux s'écrit en préservant la proportionnalité entre le gradient de pression V P i dans chaque phase et la vitesse de filtration associé t ;, en présence de gravité (en négligeant les couplages entre phases)

K(x )k -+ ;lx ) = µ i " < v P;( l ) + Pi8 ) < 1 >
Où µ ; représente ]a viscosité de la phase i, K est la perméabilité intrinsèque du milieu poreux, k ri et Pi sont les perméabilités relatives de la densité de la phas, � i, g le champ de pesanteur. Nous considérons le cas où les perméabilités relatives k,;( S; ) dépendent seulement de la saturation S; qui est le taux de présence normalisé entre O et 1 de la phase i [l]. La conservation de la masse exprimée pour chaque phase s'écrit, pour des fluides isodensités:

(2)

où </J est la porosité. Dans le cas de deux phases 1 et 2, les champs de saturation vérifient :

(3) Nous noterons P_ la différence de pression entre les deux phases et P c la courbe de pression capillaire [START_REF] Higgins | A computer method to calculate wo-phase flow in any irregular bounded porous medium[END_REF] Celle-ci dépend dans le cas général de l'histoire du champ de saturation, mais nous ignorerons ces effets d'hystérésis. On sait depuis plusieurs années [2, 3) que le modèle (DM) défini par les équa tions (1), ( 2), ( 3) et (4) peut être réduit à l'aide de deux variables, dont l'une peut être soit lafonction de courant globale [START_REF] Higgins | A computer method to calculate wo-phase flow in any irregular bounded porous medium[END_REF][START_REF] Glimm | A front tracking oeservoir simulator, five spot validation studies and the water coning problem[END_REF][START_REF] Blum | A generalized streamline method to predict reservoir flows[END_REF] , soit la pression globale [2 , 3] . D'après (2) et (3), le flux global t 1 + t 2 est à divergence nulle : il y a conservation du débit total le long des lignes de -➔ courant. On peut donc définir une fonction de courant globale V x 'P + telle que 

- ➔ V x 'P +(. t) = t 1 (x) + t i <x
= ---et des densités compo- µ 1 µz µ 2 µ 1 sées P+ = Pi + Pz et P-= Pz -P1 1 -➔ ➔ 1 ( -➔ kr_----,► ➔ ( kr_ ) ➔) V x 'P/x)=-- 2 VP + Cx)+ -k VP_ (x, Sz) + P+ + p_-k g K(x )kr + r+ r+ ( 5 
!/!_ oS 2 -➔ - 1 - - V+ at + V X If/+• V F(S z) = Ca div (µG(S z) V p_)
où rp est la porosité et F( S 2 ) et G( S z ) sont définies par :

(8) (9) 
Les équations (6) -respectivement ( coordonnées ( p�, '1'2 ) permet de simplifier la résolution numérique des équations ( 7), ( 8) et [START_REF] Homsy | Viscous fingering in porous media[END_REF].

En effet, dans la limite hyperbolique de l'équation de transport (8) considérée ici, le membre de droite peut être traité comme une perturbation non linéaire agissant sur la variation unidimension nelle de la saturation. Cette propriété est implicitement prise en compte dans les méthodes « stream-tubes » [START_REF] Blum | A generalized streamline method to predict reservoir flows[END_REF] permettant la résolution dans la limite de Buckley-Leverett à nombre capillaire infini de [START_REF] Leverett | Capillary behavior in porous solid[END_REF]. L'utilisation numérique du système de coordonnées curvilignes proposé permet d'étendre l'esprit de cette méthode de projection à tous les régimes de grands nombres capillaires où les effets capillaires contenus dans le membre de droite jouent un rôle capital dans la mise en place des phases. Le système de coordonnées proposé s'adapte alors de façon dynamique à l'évolution temporelle du front de saturation par le couplage implicite de l'équation [START_REF] Dullien | Porous media: fluid transport and pore structure[END_REF]. Par ailleurs, le calcul explicite du système de coordonnées (PZ, 1/f� ) doit permettre, dans la mise en oeuvre numérique, un calcul plus rapide et plus précis de la projection du gradient de saturation, que les méthodes d'interpolation précédemment utilisé [START_REF] Blum | A generalized streamline method to predict reservoir flows[END_REF]. Examinons enfin l'avantage du système de coordonnées proposé pour la résolution de l'opérateur de transport intervenant dans les équations ( 7) et [START_REF] Homsy | Viscous fingering in porous media[END_REF]. Soient (h + 1 (p2, 'I'!( ),h + iPZ, 1/1� )), les éléments diagonaux du tenseur métrique associés au système de coordonnées curvilignes (PZ, '1'2 ). L'équation (11) écrite dans le système de coordon nées (PZ, 1/f� ) conduit à :

o o IIV 1J12 li h +1 kkri P + ,1/1 + ) = I IVp�II = h +2 (13) 
On en déduit que l'opérateur utilisé dans les équations (7) et O 0), appliqué à une fonction f s'écrit :

Cette écriture présente les avantages suivants.

-Si le champ de perméabilité peut s'écrire comme le produit de deux fonctions de p� et lfl� (cas des milieux stratifi és), alors on peut utiliser une méthode directe très efficace de diagonalisation successive pour résoudre l'opérateur (14).

-On peut toujours décomposer la transformée de la perméabilité k(p�, 1/1� ) périodique en modes de Fourier (e.g. n) discrets. Il est alors possible d'utifü.er une méthode directe efficace pour la résolution de l'opérateur (14), qui s'écrit dans l'espace de Fourier des variables (p�, If/�) comme un système linéaire (( n + 1) n + 1) diagonal couplant n modes. La réduction du champ de perméabilité à quelques modes caractéristiques est une vieille quête du calcul numérique en milieux poreux [START_REF] Mehrabi | Coarsening of heterogeneous media: application of wavelets[END_REF], qui est ici formulée sous un jour nouveau.

-Soulignons enfi n que, dans le cas général, la formulation (14) de l'opérateur se prête particuliè rement bien à un préconditionnement que nous proposerons dans une publication ultérieure. En conclusion, nous introduisons un nouveau système de coordonnées à deux dimensions qui permet une résolution numérique efficace de l'équation de transport hyperbolique de la saturation, généralisant les méthodes de projections de type « stream-tubes » aux nombres capillaires non infinis. Ce travail ouvre de nouvelles perspectives pour l'élaboration de codes numériques performants dans ce domaine.

) 6 ) 7 )

 67 Il est intéressant d'adimensionaliser le modèle (DM ) en introduisant suivant Leverett[7 , 8] une pression capillaire adimensionnelle p_(x, S z) = V(K'jP_(x, S 2 )/ u où u est la tension interfaciale entre les deux fl uides, et {K) la perméabilité moyenne de la roche. Soit le nombre capillaire Ca = ( µv !_u) ( fIV(K) ) bâti sur la vitesse moyenne de Darcy, v + = \ Il V x � + Il ), la viscosité moyenne µ, et le rapport entre l'échelle typique de corrélation du champ de perméabilité f et la taille moyenne V(K) d'un pore. Calculons le rotationnel de l'expression (5) en introduisant la fonction -➔ -➔ de courant sans dimension V x If/ + = V x 'P jv+• (Le terme V x Pc qui est lié à l'hétérogénéité capillaire dc!S roches rencontrées est une donnée du problème, le nombre Bo= p_ g{K) z lu est le nombre de Bond estimant le rapport entre effets gravitaires et effets capillaires, ê 8 la direction de la gravité, et nous avons adimensionalisé la perméabilité par sa valeur moyenne (k = Kl{K)). On définit de plus une pression globale P: dont le -• (-➔ kr_ -➔ -➔ ) gradient vérifie VP + = l/ 2 VP + (x)+ kr + (S z )(VP_(x, S 2 )-V x P c (x, S z )). L'équation (5) imposée à la pression globale sans dimension p: = P'.;t{V P:) permet d'écrire: (Il est par ailleurs usuel [9, 10] de compléter ce couplage par l'équation obtenue à partir des équations (2) , (3) et (4) sur la saturation :

  7) -et (8) constituent un jeu d'équations couplées non linéaires entre débit global -respectivement pression globale -et saturation, établi dans le cas général de milieux poreux à perméabilité et mouillabilité hétérogènes., à toute dimension. À très grand nombre capillaire, lorsque les effets visqueux sont prépondérants, le membre de gauche domine et la saturation est gouvernée par la «convection» de Buckley-Leverett [11, 12]. Nous allons maintenant montrer comment utiliser cette formulation pour mettre en place une technique numérique efficace dans le cas bidimensionnel. À deux dimensions, l'équation (6) sur la fonction de courant globale devient: (10) Définissons maintenant la fonction de courant ; � ( x, y) = ( 0, 0, 1/1� ) et la pression adimensionnelle p� ( x, y) associées à la limite des nombres capillaires infinis telles que : (11) Nous avons, à deux dimensions : (12) -La relation (11) implique l'orthogonalité entre la fonction de courant V 1/1� et le gradient de pression V PZ : V lflZ • V PZ = O. (PZ, 1/f� ) définit un système de coordonnées orthogonales curvilignes, --1 alors que (p:, If/ + ) vérifie: V 1/1 + • V p: ~-2 • Nous allons maintenant montrer que le système de Ca

  ). Exprimons la relation de Darcy-Muskat à l'aide des variables P + = P 2 + P 1 , P_, des mobilités composées , kr + = -+�:et kr_

	kr 1	kr,,	kr z	kr 1