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Abstract—Security is crucial for information systems. In a
company, security management is traditionally controlled via a
centralized single-point. However, when we deal with multiple
computer systems interconnected in a wide area networks (WAN),
the use of a central authority for security management is
completely meaningless. In this paper, we propose a distributed
decision-making designed to thwart viruses in a WAN. A key
aspect is whether owners of devices are willing to update their
anti-virus in order to protect their computers or not to pay
for an anti-virus update and take the risk to be contaminated.
Given the fact that computers are interconnected via networks
and the Internet, the risk of being infected does not only
depend on each computer’s strategy, but also on the strategies
chosen by other computers in the network. This makes the virus
protection problem much more challenging. To do so, we model
the interaction between nodes as a non-cooperative game in which
each node decides individually whether to update the anti-virus
or not. The virus spread is assumed to follow a biologically
inspired epidemic model in which the dynamic of sources that
disseminate the virus evolves as function of the popularity of
virus using the influence linear threshold model. We first provide
a full characterization of the equilibria of the game and then we
investigate the impact of the update cost. In particular, we study
the performance of the strategies at the equilibrium in terms
of the update cost and the network size on both the security
management system and the anti-virus producers. These results
give some helpful insights on how secure is decentralizing anti-
virus update decisions.

I. INTRODUCTION

The Internet continues to grow exponentially and many
applications continue to appear on the Internet, with imme-
diate benefits to end users. However, these network-based
applications and services can pose security risks to devices.
Recently, many attacks have been launched against business,
users and governments that are attributed to some decentral-
ized online communities acting anonymously in a coordinated
manner. Despite the important efforts spent by many security
companies, researchers, and government institutes, information
system security is still of great concern [1], [2]. One of the
important security risks is the propagation of some sophis-
ticated virus throughout the internet, in which each infected
node becomes a new source of infection. The problem of virus
propagation has been studied through huge number of papers
focusing mainly on epidemic thresholds and immunization
policies [3]–[5]. Recently, many papers proposed biological

models to characterize the behavior of virus spread and study
how to immune the computer system [6].

To manage the network security, a lot of efforts have
been devoted to study virus propagation and its characteristics
[7]. Nodes (which could be either smartphones, machines or
tablets) can use some anti-virus software with curing tools
to ensure protection from the spread of virus throughout the
network [8]. A key issue for protecting nodes from new viruses
and other threats is the frequency of the anti-virus update.
Many of the anti-virus products are client/server, in which the
system may have a plan for how often nodes should update
their anti-virus.

A fundamental source of difficulty in developing efficient
protection is to fully observe and control the network. As
a consequence, full control and observability is impossible,
leading to systems that are vulnerable to local as well as
remote attacks. On the other hand, distributing the anti-virus
update decision throughout the network has to meet several
constraints when evaluating the security risk. Indeed, a major
source of complication in network security is the typically
autonomous nature of decision making in the network. The
performance of such a security solution is usually made under
the assumption that nodes are willing to use an anti-virus for
protection. In this setting, a crucial aspect is whether owners
of devices are willing to update their anti-virus in order to
be protected, or to avoid the payment for an anti-virus update
and take the risk to be contaminated. Any successful security
solution should consider those factors. Given the fact that
computers are interconnected via networks and the Internet,
the risk of being infected not only depends on each computer’s
strategy, but also on the strategies chosen by other computers
in the network. This makes the virus protection problem much
more challenging.

In this paper, we study the influence of the system
parameters on the equilibrium performance to provide
better strategies to the security management system and the
anti-virus producer. To address these issues, we model the
problem as a non-cooperative game. We consider a source S

which propagates the virus through the network. The virus
spread is assumed to follow a biologically inspired epidemic
model in which the dynamic of sources that disseminate the
virus evolves as function of the popularity of virus using
the Homogeneous Influence Linear Threshold (HILT) model
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[9]. The HILT model focuses on the threshold behavior in
influence propagation. One key example is when enough
of our friends bought a product, we may be influenced
and converted to follow the same action. In our context,
when a virus reaches some level of popularity, other sources
may participate in the dissemination of the virus. We first
study the dynamic of both the infection process and the
activation process. Then, we conduct a thorough analysis on
the existence and the uniqueness of different types of Nash
equilibria where both the security management system and
the anti-virus producer strategies are addressed.

II. NETWORK MODEL

Consider a WAN that consists of a large population of
N computer systems (CS) or nodes. We represent the users
network by a connected graph G = (N,Ns, E) where N

is the number of nodes in the network, Ns is the number
of sources (hackers) in the network and E is the set of
edges. The sources S generate a virus and nodes in the
network become susceptible to be infected by this virus.The
distance di,j between two nodes i and j in a graph is the
number of edges in a shortest path. Each node i decides
individually to protect himself from the virus by installing an
anti-virus. Obviously, all nodes have an incentive to protect
themselves until the virus extinction. However, every anti-
virus update costs a price Uc. Hence, the strategy adopted
by a node corresponds to a certain utility it receives and this
utility depends on actions performed by N nodes. Nodes with
outdated anti-virus are vulnerable to the virus spread process,
and lose an infection cost Ic if they were infected. An infected
node can recover after a curing time using various tools (e.g.,
through a clean-up software). Under this setting, nodes shall
immunize themselves during the period of the virus spread
while minimizing the anti-virus update cost. We denote the
users strategies by µ = (µ1, µ2, . . . , µN ). Let N(µ) the set of
users who choose not to update their anti-virus and thus are
susceptible to the infection.

A. Modeling active sources evolution

A source S can infect a target user i regardless of the
distance dS,i. A source is said to be active if it disseminates
the virus in the network, otherwise it is said inactive. We
associate the dynamic of active sources As with the popularity
of the virus which is measured by the number of nodes
infected by this virus. We model this influence process using
HILT model. The evolution of the number of active sources
is modeled following a given evolving in continuous time
process. Each source j chooses a threshold ✓j 2 [0, 1] from
an arbitrary threshold distribution with a cumulative density
function (c.d.f) F . Hence, a source becomes active if the
popularity, which is measured by the number of infected
nodes, exceeds ✓j . Sources’ decisions are based on a function
of the set of nodes that are infected. Let T be a monotone
threshold function. The diffusion process follows a general

structure of the Linear Threshold Model.
From [9], we have :

T (x) = hf (x) =
f(x)

1� F (x)

where hf is the hazard function [10] for the c.d.f and f is the
survival distribution (Uniform, Exponential,Weibull...).
A source j becomes active in step t if

T

0

@
X

i2N(µ)

vi(t� 1)

1

A � ✓j , (1)

where vi(t) is the probability to be infected.
Under the HILT model, the following proposition describes
the dynamic of the number of actives sources at time t.

Proposition 1. The dynamic of the number of active sources
that disseminate the virus, is given by

Ṡ(t) = ��SS(t) + �

f(X̄(t))

1� F (X̄(t))
(Ns � S(t)), (2)

where X̄(t) is the number of infected nodes till time t,
and �SS(t) is the set of the sources which are no longer
interested to the virus and move from the active state to the
susceptible state. A source is influenced by the cumulative
infection process with a rate �.

Due to the lack of space, all the proofs and complementary
analysis can be found in the technical report [11].

B. The Security Game

We consider a security game [12], in which nodes choose
individually whether to invest in the anti-virus protection
by updating their anti-virus versions. Each node has two
strategies: either to invest in the anti-virus protection, i.e.,
pure strategy update (U ), or not to invest, i.e., pure strategy
not update (NU ). Mixed strategies, i.e., probability distribu-
tion over the two actions, are also possible. Each strategy
corresponds to certain payoff for the node. We denote the
users strategies by µ. Notice that nodes may prefer not to
invest in an anti-virus update when the network is protected
enough, i.e., there is enough nodes in the network that have
the anti-virus update. Indeed, a node may also be protected by
other nodes’ update. This means that the risk to be infected
decreases with the number of anti-virus activated throughout
the network. Accordingly, the payoff of a node depends on
the actions performed by the N � 1 nodes.
We denote by Vj(⇠, kU ) the long term fitness of a node j,
given that it plays the strategy ⇠ 2 {U,NU}, and that kU is
the number of updated anti-virus. The fitness is given by

Vj(⇠, kU ) =

⇢
�Uc j /2 N(µ)
�vj1Ic j 2 N(µ)

(3)

where vj1 is the probability to be infected until the virus
extinction.
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C. Modeling infection dynamic

To model the spreading process under the influence of a
curing process, we choose the Susceptible Infected Susceptible
(SIS) model, which is one of the most studied epidemic models
[13], [14]. Each node in the network is either infected or
healthy. A node i can be infected by a neighbor with an
infection rate �i or by a source with an infection rate �i, and
is cured with a curing rate �. Once cured and healthy, the node
is again prone to the virus. Denote by A the adjacency matrix
of the graph. The state of a node at time t is represented by
the vector x(t) which is equal to 1 when node i is infected
(with probability vi(t)), and 0 when node i is healthy (with
probability 1 � vi(t)). When a node updates its anti-virus, it
is assumed to be directly immune to the virus and not part of
the epidemic process anymore. In this case, we consider that
a source S is influenced by the cumulative number of infected
nodes X̄ and it will be active when

X̄(t) � ✓ (4)

We consider the symmetric case for sources and nodes . We
assume that a node contacts an active source with a rate � and
other nodes with a rate �. Before evaluating the dynamics of
the the infected nodes X(t), we study the dynamic of sources
S(t) under the activation process.
A source S is active when the number of infected nodes X̄(t)
reaches the target value ✓. Let X̄(t) be the dynamic of infected
nodes disregarding the curing process. The sources contact
(N � kU �X(t)) susceptible nodes with a rate �. Therefore,
we can write the dynamics of X̄(t) as follows

˙̄
X(t) = (�X(t) + �S(t))(N � kU �X(t)) (5)

Recall that S(t) is the set of active sources which participate
in the infection process by time t. By applying Condition (4),
we can write the sources dynamics as follows

Ṡ(t) = ��SS(t) + �hF (X̄(t))(Ns � S(t)) (6)

The dynamics of X(t) is given by:

Ẋ(t) = ��X(t) + (�X(t) + �S(t))(N � kU �X(t)) (7)

The above equation gives the dynamics of infected nodes
under the sources activation process. All nodes aim to be
enough protected during the lifetime of the virus. In the steady-
state the infection probability vi1 can be expressed as [15]:

vi1 =
� | N(µ) | v1 + �Ns

f(v̄)
f(v̄)+�s

� | N(µ) | v1 + �Ns
f(v̄)

f(v̄)+�s
+ �

(8)

where v̄ =
P

k2N(µ) vk1 and | N(µ) | stands for the number
of elements that choose not to update their anti-virus.

III. CHARACTERIZATION OF THE EQUILIBRIUM

In this section, we will study and characterize the different
Nash equilibrium types for our security game.

1) Pure Nash Equilibrium:

Definition 1. At a Nash equilibrium (NE), no player
can improve its fitness by unilaterally deviating from the
equilibrium.

For the proposed game a NE in pure strategies exists if and
only if the following two conditions are satisfied

81  j  N ;

⇢
Vj(NU, kU � 1)  Vj(U, kU )
Vj(NU, kU ) � Vj(U, kU + 1)

(9)

We are interested in the existence and uniqueness of the
pure NE which is characterized by the number  of players
investing in the anti-virus.
A unique pure NE exists for the proposed security game when
Vj(NU, ) = Vj(U, ).

2) Mixed Nash Equilibrium: Let us now discuss the case
when every node maintain a probability distribution over the
two actions (U,NU). The advantage of this mixed equilibrium
compared to the pure one is that a node can invest in protection
only for a fraction of the time and stay susceptible the rest of
the time. This kind of equilibrium is more efficient for our
case because we study a homogeneous population with fixed
update and infection cost. In a mixed strategy game, a node i

can decide to invest in protection (playing U ) with probability
pi or keep protected only by his neighbors (playing NU ) with
probability (1� pi).
p = (p1, p2, . . . , pN ), 8ipi � 0, is the mixed strategy profile.
For pi /2 {0, 1} we have a fully mixed strategy profile. We
note (pi, p�i) if node i uses strategy pi and other use p�i =
(p1, . . . , pi�1, pi+1, . . . , pN ).
We denote by Vi(p, p�i) the playoff of a node i which invest
in anti-virus with probability p.

Definition 2. A mixed strategy p

⇤
i 2 [0, 1] is a NE if for each

player i (where i = 1, . . . , N ) we have

Ui(p
⇤
1, . . . , p

⇤
i�1, p

⇤
i , p

⇤
i+1, ., p

⇤
N ) � Ui(p

⇤
1, . . . , p

⇤
i�1, pi, p

⇤
i+1, . . . , p

⇤
N )

(10)
for every mixed strategy pi 2 [0, 1].
If 8i, p⇤i /2 {0, 1} then we call p⇤ fully mixed NE.

Every finite strategic game has a mixed strategy NE [16].
There exists a unique fully mixed NE p

⇤ for the proposed
game and it is solution of

NX

k=1

C

N�1
k�1 (p⇤)k�1(1� p

⇤)N�k
V (U, k) = 0 (11)

3) Equilibrium with Mixers and Non-Mixers: The mixers
are the players that choose a mixed strategy. We suppose
that a part of the population chooses to play a pure strategy
U or NU and the rest of the players are mixers. We will
study the existence of the equilibrium in this case. Let
NU 2 {0, 1, . . . , N} be the number of players choosing the
pure strategy U , and NNU 2 {0, 1, . . . , N} be the number of
players choosing the pure strategy NU .
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The N � NU � NNU players use the mixed strategy. Let
p

⇤ 2 (0, 1) be the probability with which the mixers choose
the strategy U . Moreover, we denote by VU (NU , NNU , p)
the fitness of the node who updates its anti-virus and
VNU (NU , NNU , p) the fitness for the node who does not
update its anti-virus. A necessary condition for the strategy
(NU , NNU , p

⇤) to be a NE (with at list one mixer) is that the
mixer is indifferent whether it chooses a pure strategy U or
NU . This translates mathematically as follows

VU (NU + 1, NNU , p
⇤) = VU (NU , NNU + 1, p⇤) (12)

A unique NE of type (NU , NNU , p
⇤) exists for this case,

and is solution of

N�NU�NNUX

k=0

C

N�NU�NNU
k�1 (p⇤)k�1

· (1� p

⇤)N�NU�NNU�k
V (U,NU + k) = 0. (13)

We prove that this NE of type (NU , NNU , p
⇤) exists only

for NU <  and NU + NNU  N � 2. In this section, we
have studied different NE types under the activation process
S(t). We summarize the different NE types as following:

• Pure Nash Equilibrium: There exists a unique NE when
the utility of U is equal to the utility of NU and we must
update exactly  nodes to get this equilibrium,

• Mixed Nash Equilibrium: A unique fully mixed NE p

⇤

exists and it is solution of Equation (11),
• Mixer and Non-Mixer Nash Equilibrium: We charac-

terize this equilibrium by the necessary condition (12). A
unique NE exists and it is solution of Equation (13).

IV. NUMERICAL EVALUATION

In this section, we provide a numerical analysis of the
performances of the proposed security game. We first evaluate
the infection probability at the equilibrium. To do so, we
solve Equation (11) to get the activation probability at the
equilibrium. We show how the activation and the infection
process depend on the system parameters, such as the number
of nodes N and the update cost Uc.

A. System characteristics

Fig. 1 and Fig. 2 illustrate the behavior of the infected
nodes X(t) and the sources S(t) as function of the time for
different activation probabilities (0.01, 0.1, 0.5) and a contact
rate � = 10�3. We further take X(0) = 0 and S(0) = 5. As
expected, we remark a cause-effect phenomenon between the
nodes and sources. The number of infected nodes increases as
a result of the virus spread till reaching a given infection rate.
Then, when the virus popularity reaches a certain level, the
participating in the virus spread increases yielding an increase
in the number of sources.
In the proposed game model, activation probability is a
fundamental parameter and is related to how many nodes
install the new anti-virus software. To analyze effects of
the activation probability, p is set to three different values
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Fig. 1. The infection process for different activation probabilities p, where
N = 100, Ns = 50, � = 1 ⇥ 10�3, � = 1 ⇥ 10�3, � = 1 ⇥ 10�1,
�S = 1 ⇥ 10�1, � = 5 ⇥ 10�6, X(0) = 0, S(0) = 5, Ic = 1 and
Uc = 0.1.
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Fig. 2. Sources behaviour for different activation probabilities.

(0.01, 0.1, 0.5). Fig. 1 shows that the number of infected nodes
X(t) slightly fluctuates before reaching a stable (absorbing)
state. In general, the higher the activation probability is, the
faster X(t) decreases. This is due to the fact that increasing the
activation probability implies a decrease in the risk of being
infected for susceptible nodes. Notice that, depending on the
activation probability, the virus may disappear completely or
become scars. We will discuss this point later in the paper.
Fig. 2 depicts the dynamics of the interested sources in the

virus spread for different p. We clearly notice that, for low
activation probability values, e.g., p = 0.01, S(t) decreases
until the virus popularity reaches a target value. When the
activation probability increases to p = 0.5, we can see that
the number of sources are decreasing gradually to vanish
eventually.

Fig. 3 illustrates the time evolution of the infection probabil-
ity for different activation probabilities p. We remark that, from
p = 0.495, the infection probability monotonically decreases
till completely vanishing at t = 230. This suggests that using
an activation probability higher that 0.495 is worthless as,
from p = 0.495, the virus is going to disappear in any case.
Unless otherwise stated, we will use the following parameters:
N = 500, Ns = 50, � = 1 ⇥ 10�4, � = 1 ⇥ 10�3, � = 0.1,
�S = 0.1, � = 1 ⇥ 10�4, X(0) = 0, S(0) = 10, Ic = 1 and
Uc = 0.1. We notice by tf the time of epidemic extinction
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Fig. 3. The infection probability for different activation probabilities, where
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Fig. 4. The activation probability for increasing number of nodes.

corresponding to the time for which we have X(t) = 0. For
this parameters, a virus extinction time tf exists and we can
compute the infection probability in [0, . . . , tf ].

B. System performances at the equilibrium

1) Fully mixed equilibrium : Let us now evaluate the
performances of the proposed security game. We characterize
the equilibrium in Section III by solving the polynomial
Equation in (11). We solve (11) to get a unique solution
p

⇤ = 0.29 at the equilibrium.
2) Mixer and non-mixer equilibrium: Here, we have NU

nodes that always update their anti-virus (pure strategy update)
and NNU that never update their anti-virus (pure strategy not
update). The N�NNU�NU mixers update the anti-virus with
an activation probability p. Verifying Condition (12), we vary
the NU and the NNU to find the activation probability for the
mixers at the equilibrium. For N = 500 and Uc = 0.1, we get
p

⇤ = 0.19 for all the mixers when NU = 50 and NNU = 70.

C. Effects of the network size

To proceed further with the analysis, we resort to evaluate
the impact of the network size on the system behavior at the
equilibrium.

In Fig. 4, we plot the activation probability as function
of the network size. It is clearly shown that the activation
probability increases when the network is larger which is
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Fig. 5. The overall cost gain as function of the number of nodes.

somehow obvious as a larger network tends to provide greater
risk of infection among nodes. On the other hand, we know
from [17] that the relation between the epidemic threshold
⌧c and the transmission to disease-induced mortality ratio �

�
translates to the following conditions

• if �
� < ⌧c, the virus dies out over time,

• if �
� > ⌧c, the virus survives and the infection becomes

an epidemic.
In the particular case of a complete graph, the epidemic
threshold is given by ⌧c = 1

N�1 . Thus, in the proposed

network, the infection dies when N <

�
� +1. Increasing �

� , the
number of nodes satisfying the epidemic threshold is larger.
This result gives incentive to manage their network parameters
(� ,�, N ) so that the infection dies out over time.
To evaluate the performance of the equilibrium, we compare,
in Fig. 5, the overall cost gain, defined as G = UcN�p⇤UcN

UcN
to

simpler policies where one may activate a given percentage of
the nodes in the system depending on the general policy of the
company. For instance, a conservative policy is more likely to
update 90% of the nodes, whereas a lax policy is more likely
to update 10% of the entire nodes in the system.
So far, we have been interested in the influence of network
parameters (�, �, N ) on the the security management system.
Now, we will study how the network parameters influence the
anti-virus producers decision.

D. Effects of the update cost

Let us now study the impact of the update cost on the system
behavior at the equilibrium.
Fig. 6 gives the time evolution of the activation probability
considering different values of �/�. We find the update cost
U

⇤
c for which the probability of activation is equal to 0. This

specific value U

⇤
c is very important for the anti-virus producers

to manage the Uc, as approaching Uc the this limit value U

⇤
c .

The U

⇤
c increases with �/�, as the risk of infection increases

with �/�.
Fig. 7 illustrates the infection probability in [0, . . . , tf ] as

function of the update cost. At the equilibrium, the infection
probability increases with the update cost. This is justified
by the fact that the number of nodes participating in the
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anti-virus activation decreases as the update cost increases,
yielding a higher infection risk. In Fig. 8, we plot the infected
node evolution in time at the equilibrium considering different
update costs Uc. We observe that X(t) increases until a certain
t

⇤ and then it decreases till the epidemic extinction, i.e., when
X(t) = 0. It is shown that the more the update cost is lower,
the more the t

⇤ and the epidemic extinction are lower. This
result helps the anti-virus producers to manage the update cost.
Increasing the Uc, we have more infected nodes in the network.
Reaching Uc

⇤, no node is interested in the update. The anti-
virus producers are interested to reach a target performance of
update cost to maximize the gain.

V. CONCLUSION

We have studied a game theoretic model for network
virus protection under an activation process. The virus spread
dynamics is modeled as an epidemic process. We have first
studied the dynamic of both the infection process and the
activation process. Then, we have established the existence
and the uniqueness of different types of Nash equilibrium.
Both the the security management system and the anti-virus
producer strategies have been addressed. Notably, it has been
shown that, depending on the network topology, one has
incentive to manage the network parameters in such a way
we ensure that the infection dies out at finite-time horizons.
The proposed approach goes toward the vision of a computer

0 50 100 150 200 250 300
0

5

10

15

t

X
(t

)

 

Uc=0.1

Uc=0.2

Uc=0.3

Fig. 8. Infected nodes for different update costs with N = 100, Ns = 50,
� = 1 ⇥ 10�4, � = 1 ⇥ 10�3, � = 0.1, �S = 0.1, � = 1 ⇥ 10�4,
X(0) = 0, S(0) = 10 and Ic = 1.

immune system, whereby the decision to update the anti-virus
or not is taken in a distributed way across the nodes.
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