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Abstract—By leveraging geolocation and contextual informa-
tion for mobile users, the prediction of the future throughput
becomes more and more feasible. Many approaches on context-
aware content delivery have been explored to balance the
operators’ limited resources with users’ requirements. However,
the perfect knowledge of the future context cannot be easily
performed in real world, which represents a hurdle for most
context-aware approaches. In this paper, we address a context-
aware delivery algorithm for adaptive video streaming (NEW-
CAST) that have already been explored in [1] under perfect
knowledge of future capacity, to balance the user’s perception
of the video and the cost of network usage. In order to make
NEWCAST more resistant to eventual throughput prediction
errors and adapt it to short-term horizons, we propose 4
algorithms that efficiently reduce the number of stalls by at
least 75%.

I. INTRODUCTION

The strong emergence of smartphones on daily life as
well as the high broadband access supplied by operators
have triggered pervasive demand on video streaming mobile
services, requiring the exploration of novel approaches on
video content delivery. To afford video streaming services at
sustainable costs, the idea of adjusting the bit rate of video
traffic depending on the (time-varying) available bandwidth
(called adaptive streaming technologies) has been actively
investigated during the recent years. In industry, many adap-
tive video streaming solutions exist and are now undergoing a
standardization toward DASH (Dynamic adaptive streaming
over HTTP), such as Microsoft’s smooth streaming, Adobe’s
HTTP dynamic streaming and Apple’s live streaming. One of
the key challenges that DASH presents for content providers,
operators and device manufacturers, is to accurately assess
the users’ perceptions in order to enhance service pro-
visioning and to optimize network adaptation. Since the
users’ perceptions on the video quality directly impacts
their engagement in video streaming sessions, many interests
are being given to the user’s quality of experience (QoE).
Actually, most of DASH solutions manage the video quality
based on some predefined key QoE factors such as video
freezing frequency, data prefetching delay, total number of
switches, etc. These solutions mostly rely on the information
of the available link/path bandwidth during the latest time
interval to predict the available bandwidth during the next

interval. Predicting the available bandwidth accurately is
important for a good QoE in video streaming since the video
quality changing too often or too severely will negatively
affect the users’ perception [2].

To overcome this hurdle, context-aware content delivery
approaches have been initiated in this sense, steering re-
searchers toward new context-predictive techniques on users’
mobility and throughput. At the core, lies the idea of exploit-
ing the strong correlation between users’ rates and locations
[3], [4] in order to design radio maps where historical average
signal strength are geographically mapped [5]. Actually, the
main idea behind predicting users’ future contextual infor-
mation is to proactively counter possible service fluctuations
and to wisely exploit available resources in the future. Studies
on users’ mobility patterns have also shown that people daily
routes exhibit a high degree of spatial and temporal regularity,
especially on public transportation [6] or on road ways
to/from frequently visited places. Coupled with radio maps,
these mobility patterns can give higher accuracy on average
throughput predictability along users’ trips. [7] addressed
other contextual factors such as user speed, time of day,
and humidity to predict users’ future throughput with more
accuracy based on measurement studies.

Many works on video quality adaptation have been per-
formed since the appearance of adaptive video streaming
solutions. In the literature, adaptive streaming protocols are
classified in two major classes: throughput-based approaches
and buffer-based approaches. While the first class estimates
the throughput from previously downloaded segments to
adapt the quality of the current segments [8], the second
class only sees the playback buffer state evolution to decide
whether increasing or decreasing the video bitrate [9]. More
and more interests are being steered today toward combining
the two latter classes [10].

Despite the richness of research and the very large number
of articles that can be found in the literature on video delivery
techniques, only few works have exploited the knowledge of
future throughput variations for QoE. In [11], authors present
a threshold-based transmission schedule which optimizes
network utilization while guaranteeing users’ QoE for simple
classical video streaming. This framework was generalized
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in [1] to strike a balance between network utilization and
users’ QoE for adaptive video streaming. In particular, [1]
proposes a proactive video content delivery algorithm, called
NEWCAST, that adjusts the video quality over a long future
horizon, assuming a perfect throughput prediction. Further
work in [10], assumes the knowledge of the future and copes
with long term throughput prediction to periodically optimize
the users QoE.

From a practical point of view, perfect throughput predic-
tion is not always possible [6]. This paper aims at showing
the impact of inaccurate bandwidth prediction on some QoE
key performance indicators (KPIs), such as average video
quality, average bitrate switching number and average video
freezing (also referred to as video stalls) number. While
in [1], we assume a perfect knowledge of the future, in
this paper, we assume an inaccurate throughput prediction
and propose 2 algorithms to make NEWCAST robust to
throughput prediction errors. The first algorithm Adaptive
ShorT-tERm Newcast (A-STERN) is a direct application of
NEWCAST on successive short-term moving horizons to the
future and aim at reducing the number of stalls, whereas the
second algorithm Short TeRm Enslaved nEwcasT (STREET)
aims at reducing the number of quality switching. The
obtained results lead us to believe that these algorithms can
be efficient and robust in realistic environment network even
if the prediction of the capacity variation is not accurate.

The paper is organized as follows: in the second section
we present our optimization framework as developed in [1],
we give a short overview on the optimal solution and a short
description of NEWCAST. In the third section, we highlight
the shortcoming of NEWCAST in real environment under
throughput (also called capacity) prediction errors, whereas
in the fourth and the fifth sections we present A-STERN and
STREET algorithms.

II. PROBLEM FORMULATION

We consider a video streaming server where each video
file is divided into 𝑁 small segments of the same number
of frames 𝑆 according to the group of pictures (GoP) DASH
parameter. Each segment is encoded with 𝐿 different bitrates
representing the video quality-levels . Let 𝑙𝑗 be the video
quality-levels 𝑗, and 𝑏𝑗 its associated bitrate, where 𝑏𝑖 <
𝑏𝑗 for 𝑖 < 𝑗. Assume that, while streaming a video, the
client requests segments from the server such that only one
quality-level can be selected at a certain time. Let 𝑏(𝑡) be
the video bitrate streamed at time 𝑡. In order to characterize
this bitrate with respect to the best quality-level , we define
𝛾(𝑡) as 𝛾(𝑡) = 𝑏𝐿

𝑏(𝑡) . At the client side, we assume that the
playback buffer is of sufficiently large size to avoid buffer
overflows. We further assume that the playback frame rate
𝜆 (in fps) is the same for all quality-levels. To avoid video
stalls, a prefetching state is introduced at the beginning of the
streaming session, i.e., before starting the video, the media
player prefetches a number of frames 𝑄0, which we call
hereafter the start-up frames.

In our problem, we aim at optimizing system utilization
and video quality, while taking into account user’s perception
on the playback buffer stalls. This optimization problem
exploits the prediction of the future network capacity over a
finite horizon. Let 𝑐(𝑡) be the predicted network capacity and
𝑟(𝑡) be the user’s bitrate at time 𝑡, such that 0 ≤ 𝑟(𝑡) ≤ 𝑐(𝑡).
Next, we define the objective cost function, which is the sum
of two terms: the average system utilization cost and the
weighted average quality of the video. We define the network
utilization cost as in [11], namely

𝜎 =
1

𝑇

∫ 𝑇

0

𝑟(𝑡)

𝑐(𝑡)
𝑑𝑡 (1)

In the expression above, 𝑟(𝑡)
𝑐(𝑡) stands for the proportion of

resources used at time 𝑡, and 𝑇 defines the video length in
seconds.

During the session, the number of frames streamed with
quality-level 𝑗 is given by∫ 𝑇

0

𝛿{𝑏(𝑡)=𝑏𝑗}𝑟(𝑡)𝜆
𝑏(𝑡)

𝑑𝑡 =

∫ 𝑇

0

𝛾𝑗(𝑡)𝑟(𝑡)𝜆

𝑏𝐿
𝑑𝑡 (2)

where

𝛾𝑗(𝑡) =

{
𝛾(𝑡) if 𝑏(𝑡) = 𝑏𝑗 , 𝑗 ∈ [1 . . . 𝐿]
0 otherwise

(3)

Let us denote by 𝑤𝑗 the weight associated to quality-level
𝑗, where 𝑤𝑖 < 𝑤𝑗 for 𝑖 < 𝑗. The value of 𝑤𝑗 represents
the user’s perception on the video quality-level 𝑗. It actually
models the user’s preference. Hence, we express the average
normalized quality of the video as

𝜌 =

∑𝑗=𝐿
𝑗=1 𝑤𝑗𝑏𝑗

𝑏𝐿
(4)

which is equivalent to

𝜌 =

∑𝑗=𝐿
𝑗=1 𝑤𝑗

∫ 𝑇

0
𝛾𝑗(𝑡)𝑟(𝑡)𝜆𝑑𝑡

𝑏𝐿 ⋅ (𝑁 ⋅ 𝑆) =

∑𝑗=𝐿
𝑗=1 𝑤𝑗

∫ 𝑇

0
𝛾𝑗(𝑡)𝑟(𝑡)𝑑𝑡

𝑆𝐿 (5)
where 𝑆𝐿 is the video total size in bits when it is coded
with the highest bitrate 𝑏𝐿.

It goes without saying that higher QoE comes at higher
system utilization. However, it may happen that a user wishes
to reduce his system utilization cost in return for a better
video quality, or that a content provider wishes to reduce
delivery cost at the expand of a minimal video quality that
guarantees clients’ engagement. Another interesting example
is when an operator prefers saving network resources for
further usage. All these situations are covered by the model
we adopted. To do so, we define a positive constant parameter
𝜋 that allows to balance between system utilization (at the
network side) and QoE (at the client side). Our optimization
cost function can then be formulated as

ℱ = 𝜎 − 𝜋 ⋅ 𝜌.
In this paper, we consider the case where there are no

rebuffering events (or playback stalls) during the streaming
session. Thus, when minimizing our cost function ℱ , we
ensure that the playback buffer does not fall empty.
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Let 𝑢(𝑡) and 𝑙(𝑡) be the cumulative number of arrival
frames and the cumulative number of frames watched by the
user till time 𝑡 under the no-rebuffering events assumption.
Then, the buffer underflow constraint can be defined as
𝑢(𝑡) ≥ 𝑙(𝑡) ∀𝑡 ≤ 𝑇 . Given the network bitrate 𝑟(𝑡) and
the corresponding streamed video bitrate 𝑏(𝑡), we compute
the network frame rate as 𝜆 𝑟(𝑡)

𝑏(𝑡) .
Let (𝑟, 𝛾) denote the video transmission strategy, where

𝑟 defines the transmission schedule and 𝛾 characterizes the
quality-levels strategy. The overall optimization problem can
then be summarized as follows

min
(𝑟,𝛾)

ℱ(𝑟, 𝛾) = 1

𝑇

∫ 𝑇

0

𝑟(𝑡)

𝑐(𝑡)
𝑑𝑡−𝜋⋅

∑𝑗=𝐿
𝑗=1 𝑤𝑗

∫ 𝑇

0
𝛾𝑗(𝑡)𝑟(𝑡)𝑑𝑡

𝑆𝐿 (6)

𝑠.𝑡

⎧⎨
⎩

∫ 𝑡

0
𝜆 𝑐(𝑡)𝛾1

𝑏𝐿
≥ 𝑙(𝑡) ∀𝑡 ≤ 𝑇

∫ 𝑡

0

∑𝑗=𝐿
𝑗=1

𝜆 𝑟(𝑡)𝛾𝑗(𝑡)
𝑏𝐿

≥ 𝑙(𝑡) ∀𝑡 ≤ 𝑇

∫ 𝑇

0

∑𝑗=𝐿
𝑗=1

𝜆 𝑟(𝑡)𝛾𝑗(𝑡)
𝑏𝐿

= 𝑙(𝑇 )

where the first constraint ensures the existence of at least one
solution that defines a mono-coded video using the lowest
bitrate level 𝑏1, the second one ensures that there are no
rebuffering events, and the third one guarantees that all the
video is streamed at the end of the streaming session 𝑇 .

Remark 1. Another key QoE parameter is the average video
quality variation. It tracks the switching of the quality from
one segment to another during the streaming session. Al-
though we did not take this parameter into account in the
optimization problem (6), we will show by the sequel that
the structure of the optimal solution also minimizes the video
quality switching.

In [1], we assumed that 𝑐(𝑡) is the exact network capacity,
i.e., perfect capacity prediction assumption. Under this set-
ting, we showed that the optimal solution of the optimization
problem in (6) is as follows:

Theorem 1. Assume that there exists a feasible solution that
satisfies the constraints in (6). Then, there exists an optimal
strategy (𝑟𝑡ℎ, 𝛾𝑟𝑡ℎ) of the optimization problem in (6), where
𝑟𝑡ℎ is a threshold transmission schedule, namely

𝑟𝑡ℎ(𝑡) =

{
𝑐(𝑡) if 𝑐(𝑡) ≥ 𝛼
0 otherwise,

(7)

and 𝛾𝑟𝑡ℎ is an ascending bitrate level strategy, i.e., the
quality-levels of segments increases during the session. This
translates mathematically as follows

∀ 0 ≤ 𝑡 ≤ 𝑡′ ≤ 𝑇, 𝑏(𝑡) ≤ 𝑏(𝑡′) i.e., 𝛾𝑟𝑡ℎ(𝑡) ≥ 𝛾𝑟𝑡ℎ(𝑡
′).

A thorough and detailed analysis of the results above is
provided in [1]. For succinctness, we leave it out and simply
claim that streaming the video at higher capacity regions
is cheaper than streaming it at lower capacity regions (in
terms of system utilization cost). This can be performed with-
out violating the no-rebuffering constraint. We also notice

that, given such a transmission schedule, the no-rebuffering
constraint may be relaxed by applying an ascending bitrate
strategy. In fact, reordering the qualities in an ascending way
may add more flexibility toward the constraints, as it results
in higher number of streamed segments at the beginning of
the session. To sum it up, we can say that reordering the
levels only allows to send more data beforehand, which can
be performed without buffer overflows since we assume a
sufficiently large playback buffer size.
In [1], we proposed an algorithm, called NEWCAST, that
performs close to the optimal solution under perfect capacity
prediction over the entire future horizon. NEWCAST can
be summarized as follows: We set the threshold transmis-
sion schedule 𝛼 to its lowest value (𝑐𝑚𝑖𝑛), then we keep
increasing it progressively till reaching the case where it
becomes impossible to stream the entire video using the
lowest quality. This case determines the maximum possible
scheduling threshold 𝛼. At each step, we heuristically set the
ascending order of segments’ quality-levels to maximize the
average video quality. By computing and storing at each step
the resulting objective function ℱ , we end up choosing the
strategy that gives the minimum value of ℱ .
To implement this solution in a real environment, a video

delivery optimization framework should be developed at the
client side to set the streaming strategy at the beginning of the
streaming session. This framework sends both the threshold
𝛼 to the network scheduler and the quality levels’ sequence to
the media player. While the scheduler manages the resource
allocation, the player requests the qualities one by one to the
server as set by the framework.

III. NEWCAST UNDER IMPERFECT PREDICTION OVER

THE ENTIRE HORIZON

As claimed in [12], a perfect prediction of the capacity may
not be available over a large horizon window. That said, it
is more plausible that the prediction becomes more accurate
over a short horizon window. In the literature, we find that
prediction accuracy depends on three major factors: (i) the
accuracy on the user’s mobility model, (ii) the space mapping
of the users’ average throughput, and (iii) the variation of
the real throughput around the user space-mapped average
throughput [6]. Accordingly, in this paper, we assume that
prediction error increases as long as we move forward in
time. The real capacity 𝑐𝑟𝑒𝑎𝑙 is then modeled as a Gaussian
white noise around the predicted capacity 𝑐, namely

∀ 𝑡 𝑖𝑛 [0, 𝑇 ], 𝑐𝑟𝑒𝑎𝑙(𝑡) = 𝒩 (𝑐(𝑡),𝒮𝒟𝑒𝑟𝑟(𝑡))

where 𝒮𝒟𝑒𝑟𝑟(𝑡) = 𝒮𝒟𝑒𝑟𝑟 ⋅ log(𝑡) is the error standard
deviation at time 𝑡.

In our previous work [1], the evaluation tests of NEW-
CAST algorithm were done through simulations using Mat-
lab. To be as close as possible to real video settings, we set
the video parameters according to DASH standard and some
Youtube specifications [13], [14]. The network part, however,
was simulated through a randomly generated capacity around
a given mean throughput.
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Window Size 3 min 10 s
Mean throughput 2 Mbps
Capacity Time Slot 1 s
Video Length 3 min
Segment Length 1s
Video frame rate 30 fps
Playback cache 4s
Bitrate levels Mbps [0.4 0.75 1 2.5 4.5]
Levels weights [0.09 0.17 0.22 0.55 1]

TABLE I
SIMULATION SETTING PARAMETERS.

In this work, we use the same approach to evaluate
the performance of NEWCAST under throughput prediction
errors. All the parameter settings are listed in Table I. To
see how NEWCAST reacts in simulated real environments,
we generate many examples of possible real throughput
variations 𝑐𝑟𝑒𝑎𝑙 using one predicted network capacity 𝑐 and
the aforementioned prediction error model with different
values of 𝒮𝒟𝑒𝑟𝑟.

NEWCAST is run using the knowledge of the future
throughput 𝑐 to decide on the future streaming strategy
that determines the optimal scheduling threshold 𝛼∗ and
the bitrates’ strategy 𝛾∗. After generating a real throughput
𝑐𝑟𝑒𝑎𝑙, we apply that strategy (same threshold and same
quality-levels) to compute the real system utilization cost
and the number of stalls during the streaming session. In our
simulations, we set 𝜋 to a low value (𝜋 = 3) to prioritize the
system cost and make the system more sensible to prediction
errors.

In Fig. 1, we evaluate the robustness of NEWCAST
by representing the distribution of video stalls during the
streaming session as function of 𝒮𝒟𝑒𝑟𝑟. Results show that
the probability of having zero stalls is relatively low and
decreases from 0.49 to 0.17 as the error on the predicted
capacity increases, whereas the average number of stalls
increases from 1.53 to 1.89. That said, when the prediction
of the capacity over a long future horizon is imperfect,
NEWCAST algorithm fails to guarantee a good QoE. This
leads us to consider short-term future horizon in order to
obtain accurate throughput prediction.
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Fig. 1. NEWCAST: Distribution of stalls as function of 𝒮𝒟𝑒𝑟𝑟 , 𝜋 = 3.

IV. ADAPTIVE SHORT-TERM NEWCAST (A-STERN)
FOR BETTER STALL AVOIDANCE

A-STERN is a modified version of NEWCAST that con-
siders short-term throughput prediction over successive short
term future horizons. It takes as input the evolution of the
buffer occupancy computed by NEWCAST over long future
horizon window with long-term predicted capacity 𝑐 to adjust

the number of segments that need to be streamed at each short
future horizon window. Let �̃�(𝑡) be the number of cumulative
received frames predicted by NEWCAST at time 𝑡. At the
beginning of each short horizon, A-STERN computes the
cumulative number of segments that should be streamed
using �̃� in order to force the playback buffer to follow
the same evolution as predicted by NEWCAST. To reduce
quality-levels’ switching rate when moving from one short
horizon to another, A-STERN ignores the startup phase mode
of NEWCAST where the first segments are streamed with a
greedy transmission mode using the lowest quality-level. Let
ℋ𝑖 be the 𝑖𝑡ℎ short horizon for 𝑖 > 0, 𝑐ℋ𝑖

its associated
predicted capacity and 𝑋ℋ𝑖

the number of segments that
should be streamed over ℋ𝑖.

The adaptive side of A-STERN lies in making real-time
updates on the real buffer state to see whether the number of
streamed frames matches the predicted function �̃� or not. Let
𝑢𝑟𝑒𝑎𝑙 be the real cumulative number of received frames. We
make the following statement: If ∣𝑢𝑟𝑒𝑎𝑙(𝑡) − �̃�(𝑡)∣ ≥ 𝜖 , 𝑡 ∈
ℋ𝑖, 𝑖 > 0 where 𝜖 designs a number of frames, then the
player stops streaming the video and generates a new strategy
over a new short horizon ℋ𝑖+1 (see Algorithm. 1).

Fig. 2. Illustration of A-STERN interactions in a real environment.

In our simulations, we set 𝜋A-STERN to be one time equal
to 𝜋NEWCAST and one time greater than 𝜋NEWCAST (3 and 6).
Fig. 3 depicts the probability of having stalls with A-

STERN compared to NEWCAST as function of 𝜋A-STERN

and 𝒮𝒟𝑒𝑟𝑟. It is clear that A-STERN makes the system
more robust to video stalls. Indeed, for a 𝜋A-STERN = 3,
the probability of having zero stalls increases from 0.17 to
0.64, and for 𝜋A-STERN = 6 it increases to 0.97 at the highest
error, which led to reduce the average number of stalls from
1.90 to 0.38 and 0.03.
In Fig. 4, we plot the average number of switches for

A-STERN and NEWCAST during the streaming session.
The number of switches is notably high for both values of
𝜋A-STERN: around 16 and 25 at the highest error, versus 3
switches with NEWCAST. For the sake of illustration, we
show in Fig. 5 snapshots on video quality-levels’ variation
for a given real throughput 𝑐𝑟𝑒𝑎𝑙.

As for the overall system performance, it is noticed from
Fig. 6 that A-STERN increases the system cost from 32%
to 43% ( 𝜋A-STERN = 3) and 71% (𝜋A-STERN = 6) at the
highest prediction error. The average video quality has evenly
increased.
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Algorithm 1: Adaptive Short-TERm Newcast (A-
STERN)

Input: ℋ1 = [𝑡0, 𝑡1], 𝑋ℋ1
= �̃�(𝑡1)

SegmentSize , 𝑖 = 1;
1 while Still segments to stream do
2 𝑡 = 𝑡𝑖−1;
3 Predict 𝑐ℋ𝑖

;
4 Check if it is possible to stream 𝑋ℋ𝑖

segments over
𝑐ℋ𝑖

, otherwise, reduce 𝑋ℋ𝑖
;

5 [𝛼𝑖, 𝛾𝑖]=NEWCAST(𝑐ℋ𝑖
, 𝑋ℋ𝑖

);
6 Extract QualityVect𝑖 from 𝛾𝑖 ;
7 [BufferState, tfin] = StreamVideo (

𝑐real[𝑡𝑖:end], 𝛼𝑖,QualityVect𝑖);
8 Do simulataneously to streaming
9 while 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖[ do

10 if ∣𝑢𝑟𝑒𝑎𝑙(𝑡)−�̃�(𝑡)∣
SegmentSize ≥ 𝜖 then

11 Change strategy ;
12 𝑡𝑖 = 𝑡+ 1;
13 𝑡𝑖+1 = 𝑡𝑖 +ℋ𝑖;
14 ℋ𝑖+1 = [𝑡𝑖, 𝑡𝑖+1];
15 𝑋ℋ𝑖+1

= �̃�(𝑡𝑖+1)
SegmentSize - BufferState(t) ;

16 𝑖 = 𝑖+ 1;
17 𝑡 = 0 ;

else
18 𝑡 = 𝑡+ 1 ;

end

end
end

19 return ({𝛼𝑖}, {𝛾𝑖})

These figures clearly show significant amelioration on the
overall quality, mainly by reducing the number of stalls, but,
this unluckily leads to an increase on the number of switches
and on the system utilization cost, which was our motivation
to develop the next algorithm.
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Fig. 3. A-STERN vs. NEWCAST: Probability of having stalls as function
of 𝒮𝒟𝑒𝑟𝑟 and 𝜋A-STERN for a short-term horizon of 10s, 𝜖=3 segments.
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Fig. 6. A-STERN vs. NEWCAST: System utilization cost and normalized
average video quality as function of 𝜋 for 𝒮𝒟𝑒𝑟𝑟 = 10−2 Mbits and a
short-term horizon of 10s .

V. SHORT TERM ENSLAVED NEWCAST (STREET) FOR

SMOOTHER QUALITY VARIATION

Unlike the previous algorithm that sets its bitrate strategy
independently of NEWCAST’s predicted quality using the
capacity 𝑐, STREET algorithm attempts to follow the same
predicted quality as NEWCAST to give similar performance
with a reduced number of stalls. It performs as follows: At
the beginning of each short-term horizon ℋ𝑖, it computes
the number of segments 𝑋ℋ𝑖

to stream by seeing �̃�. If it is
possible to perform the streaming with the same quality as
NEWCAST, it sets up the highest short-term threshold 𝛼𝑖 to
minimize the system utilization cost over ℋ𝑖, otherwise it
reduces the video quality-levels of the segments by running
NEWCAST. In the latter case, STREET ignores the startup
phase mode of NEWCAST to avoid additional switches.

Figures. 7 and 8 show the performance of STREET in
terms of quality-levels’ switching compared to NEWCAST
and the A-STERN. It is noticed that STREET succeeds
to follow a near bitrate trend as NEWCAST with a near
number of switches (around 3.03 for both values of 𝜋STREET).
The system utilization cost and the average video quality
are evenly near to NEWCAST performance (around 39%
and 0.48 Mbps for both values of 𝜋STREET). As for the
distribution of stalls, it is depicted from Fig .10 that the
probability of having zero stalls decreases compared to A-
STERN to 0.32 for both values of 𝜋STREET , but is still
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relatively high compared to NEWCAT. As a result, the
average number of stalls increases compared to A-STERN
to 0.71 but is still relatively low compared to NEWCAST.
Overall, we consider STREET as the best algorithm that
mostly achieves the same performance as NEWCAST while
reducing the risk of video stalls by around 75%.
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Fig. 10. STREET vs. A-STERN: Probability of stalls as function of 𝒮𝒟𝑒𝑟𝑟

and 𝜋 for a short-term horizon of 10s.

VI. CONCLUSION

In this paper, we proposed 2 novel approaches to anticipate
resource management and QoE for video streaming under

imperfect prediction. More specifically, we adapted NEW-
CAST algorithm to imperfect prediction of the future capac-
ity. We showed that the proposed A-STERN algorithm can
significantly reduce the number of stalls by leveraging short-
term horizon throughput prediction, which usually results in
accurate throughput prediction compared to long-term hori-
zon throughput prediction. However, we observed that short-
term horizon prediction combined to buffer occupancy results
in increasing the number of quality-levels’ switching. This
led us to propose STREET algorithm to smooth the video
quality variation. Our numerical results showed the efficiency
of our proposed solutions, whereas feasible communication
protocols between the operator and our proposed frameworks
are still arguable.
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