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Abstract 

The diagnosis of a parkinsonian syndrome based on clinical criteria remains sometimes 

difficult, especially at disease onset. Brain or heart molecular imaging techniques (SPECT or 

PET) can provide a major help to improve and speed up diagnosis, influencing treatment 

strategies. Presynaptic dopaminergic imaging using either [18F]-Dopa PET or 123I -2β-

Carbomethoxy-3β-(4-Iodophenyl)- N-(3-Fluoropropyl) Nortropane  ([123I]-Ioflupane)SPECT 

demonstrates or rules out the presence of a dopaminergic degenerative process. This allows to 

distinguish Parkinson’s disease, Parkinson “plus” syndromes and dementia with Lewy bodies 

(reduced radiotracers binding) from essential tremor, psychogenic, post-neuroleptic or 

vascular parkinsonisms, dopa-responsive dystonia and Alzheimer’s disease (normal 

radiotracers binding). For differential diagnosis between Parkinson’s disease and Parkinson 

“plus” syndromes, brain molecular imaging with [18F]-Fluorodeoxyglucose ([18F]-FDG) PET 

or 99mTc-HMPAO SPECT can provide useful information, whereas [18F]-Dopa PET or [123I]-

Ioflupane does not separate these entities. Finally, sympathetic cardiac [123I]-

Metaiodobenzylguanidine ([123I]-MIBG) scintigraphy or SPECT can help distinguishing 

Parkinson’s disease and dementia with Lew bodies (decreased binding) from multiple system 

atrophy and progressive supranuclear palsy (normal binding). New radiotracers notably those 

targeting the pathological process itself such as Tau aggregates are under development and 

may provide interesting informations to delineate the different Parkinson “plus” syndromes.  
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Introduction 

The diagnosis of Parkinson’s disease (PD), parkinsonian syndromes and many movement 

disorders relies mostly on clinical criteria. Such criteria and red flags are regularly updated in 

order to improve diagnosis accuracy but this one may remain challenging.  This is notably the 

case for PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), 

corticobasal degeneration (CBD) or dementia with Lewy bodies (DLB) [1-5]. Vascular, post 

neuroleptic or psychogenic parkinsonisms or atypical tremor may as well be difficult to 

distinguish from PD. Thus, despite efforts made by experts in the field to define detailed 

clinical criteria, the accuracy of clinical diagnosis remains insufficient and highly dependent 

on the level of expertise, experience of the clinician and duration of follow-up [6]. A recent 

meta-analysis showed that diagnosis accuracy for parkinsonism based on experts statement 

was of 79.6 % for early diagnosis and 83.9 % later, whereas non experts neurologists provide 

a good diagnosis in only 73.8 % [6]. Diagnosis correctness clearly improves after 3.6 years of 

disease evolution [6]. The anatomopathological confirmation, very rarely available, remains 

the gold standard for diagnosis and reveals 25 % errors in the diagnosis of PD provided by 

general neurologists [7]. In another clinicopathological series 26 % of possible PD and 82 % 

of probable PD had their diagnosis confirmed by neuropathology [8]. This last study also 

showed that the agreement between clinical and pathological diagnosis was much better 

beyond 5 years of disease evolution, which, again stresses the importance of follow-up 

duration (53 % before 5 years disease evolution versus 85 % after 5 years). For MSA and PSP 

clinicopathological studies have shown 30 % diagnosis errors and up to 74 % for CBD [9]. 

The sensitivity of the clinical diagnosis of PD, MSA and PSP were respectively of 89.2%, 

64.3% and 52.9% while the specificity was of 57.8% for PD, 99 % for MSA and 100% for 

PSP [7]. In movement disorder units the sensitivity of the clinical diagnosis of PD, MSA and 

PSP were respectively of 91.1%, 88.2% and 84.2%, showing the importance of clinical 
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expertise [10]. Nevertheless, tools that improve diagnosis accuracy are mandatory because 

providing the right diagnosis as early as possible has important consequences in terms of 

prognosis and treatment choice [11]. As such, brain or heart molecular imaging using single 

photon emission computed tomography (SPECT) and positron emission tomography (PET), 

in combination with morphological brain imaging using MRI serve as powerful tools to 

investigate parkinsonian syndromes [12]. The aim of the present review is to give an overview 

on the role of available SPECT and PET molecular imaging tools in routine clinical practice 

nowadays and in the future.  

 

SPECT and PET functional imaging tools for neurologists in routine 

clinical practice  

1. Dopaminergic system imaging 

Several SPECT or PET radiotracers are available for the clinicians. They assess the 

presynaptic dopaminergic innervation and confirm or not the presence of a dopaminergic 

degenerative process. The most commonly used is the [123I]-Ioflupane SPECT or DATscan* 

that measures the dopamine transporter (DAT) availability. Many other DAT radiotracers 

exist but are not routinely accessible and will not be detailed here. Using PET, [18F]-Dopa is 

frequently used and measures the dopa-decarboxylase activity, which is another way to 

determine the integrity of presynaptic dopaminergic terminals [13]. In PD, the typical feature, 

notably early in the disease course, is an asymmetrical reduction of striatal binding with a 

rostrocaudal gradient and relative preservation of the caudate nucleus in comparison to the 

putamen [14]. Postsynaptic dopaminergic radiotracers such as [¹²³I]IBZM SPECT or [11C]-

Raclopride PET also exist but are not used in routine practice. 

A recent clinicopathological study in PD suggested that [123I]-Ioflupane SPECT reflects DAT 

functioning rather than the number of dopaminergic neurons but others studies found a 



5 
 

relationship between the uptake of this tracer and nigral dopaminergic neuronal density 

[15,16]. Furthermore, even if striatal [123I]-Ioflupane uptake is well correlated with disease 

duration and severity on a population basis, important discrepancies often exist between the 

degree of reduction of tracer uptake and the severity of motor symptoms on an individual 

basis [15,17]. In other words, one can see patients with major DAT tracer uptake reduction 

but minor motor symptoms or the opposite. This could, at least partly, be explained by the fact 

that [123I]-Ioflupane SPECT or other DAT radiotracers, because of a compensatory 

downregulation of DAT functioning, could overexpress the actual dopaminergic degeneration 

[18]. On the contrary a compensatory overactivity of dopa-decarboxylase could minimize 

[18F]-Dopa sensitivity to the degenerative process. This has to be theoretically taken into 

account but, in routine practice, both [18F]-Dopa PET and [123I]-Ioflupane SPECT provide 

close information on the presence or absence of a dopaminergic nigrostriatal degeneration. 

For [123I]-Ioflupane SPECT there are some drug interactions that can affect the binding, but, 

this is, most of the time, a minor issue. More precisely all drugs that block the DAT must be 

stopped 1 to 2 weeks before DAT imaging, otherwise a complete drop in tracer binding will 

be observed (false positive) [19,20]. This concerns for example cocaine, methylphenidate, 

amphetamine or modafinil. Most antidepressant drugs, but also memantine and amantadine, 

have a minor effect on DAT tracer binding (< 15 %) notably because [123I]-Ioflupane is not 

fully selective for DAT and also labels serotonin transporter, which can be affected by 

concomitant intake of most antidepressant drugs. However this effect is limited and will not 

dramatically change the results, which allows to perform [123I]-Ioflupane SPECT while 

patients still take these drugs [19, 20]. Furthermore this is not an issue when visual assessment 

is performed but should be considered when performing semiquantitative analysis.  On the 

other hand, dopaminergic treatments can be maintained. 
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Analysis of [123I]-Ioflupane SPECT or [18F]-Dopa PET is still frequently performed using 

simple visual inspection but many centers, nowadays, rather use semi-quantitative assessment 

in comparison with age-matched normal values, which is superior and advisable when the 

visual read is inconclusive. Both methods have  excellent sensitivity (95-97 %) and specificity 

(97-100 %), meaning few false negatives and positives [21-23].  

2. Metabolic activity and brain perfusion imaging  

[18F]-Fluorodeoxyglucose ([18F]-FDG) PET measures cerebral glucose metabolism, which 

reflects synaptic and neuronal activity [12]. [18F]-FDG PET sensitivity is above 75 % and its 

specificity above 90 % in differential diagnosis between PD and atypical parkinsonisms 

[24,25]. As [18F]-FDG PET is not available everywhere, variations of cerebral blood flow 

with SPECT and 99mTc-HMPAO can also provide useful information on local brain 

dysfunction [26]. Both tools are useful to distinguish PD from Parkinson “plus” syndromes 

but it is noteworthy that SPECT has much lower spatial resolution and global accuracy as 

compared with PET 

3. Sympathetic myocardiac innervation imaging 

[123I]-Metaiodobenzylguanidine ([123I]-MIBG) scintigraphy or SPECT provides information 

about peripheral sympathetic myocardial innervation and reveals the presence or absence of 

post-ganglionic sympathetic denervation that can help differentiating PD/DLB (decreased 

cardiac binding) from MSA and PSP (normal binding). [123I]-MIBG scintigraphy or SPECT 

has a sensitivity comprised between 81-88 % but below 70% at early stages of the disease, 

while its specificity is comprised between 77 and 89 % [27-37].   
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Indications and limits of functional imaging in routine clinical practice 

Neurologists are facing several important issues when seeing for the first time a patient with a 

suspicion of parkinsonian syndrome, falling into two main categories.  

1. Is there a dopaminergic degeneration? 

The presence or absence of presynaptic dopaminergic denervation is a key marker to decipher 

degenerative parkinsonian syndrome including PD, PSP, MSA, CBD and DLB from 

differential diagnoses without any dopaminergic degeneration.  

• Atypical tremor versus presynaptic parkinsonism 

This encompasses notably non parkinsonian tremor such as essential tremor that may 

sometimes have an unusual presentation (asymmetrical, doubt on a rest component, doubt on 

rigidity). In that situation [123I]-Ioflupane SPECT is normal in more than 99 % of the cases 

and subjects with normal [123I]-Ioflupane SPECT never become parkinsonian (Fig 1). On the 

contrary patients with abnormal [123I]-Ioflupane SPECT but a clinical presentation not typical 

of PD will, in 65 % of the cases, evolve to PD [38-40]. As mentioned previously, the 

specificity to rule out essential or non parkinsonian tremor is very high comprised between 97 

and 100 % [19,21]. Therefore [123I]-Ioflupane SPECT is an excellent tool to distinguish 

tremor from presynaptic parkinsonism whatever its subtype (PD, PSP, MSA…) and can 

correct clinically overdiagnosed PD [1-5; 39-42].   

• Presynaptic versus non presynaptic parkinsonism 

Non presynaptic parkinsonian syndromes designate psychogenic, post-neuroleptic and 

vascular (except those due to subtantia nigra or striatal stroke) parkinsonisms as well as 

idiopathic normal pressure hydrocephalus. Clinical presentation may be misleading and, 

sometimes, patients exhibit symptoms both related to neurodegenerative and non degenerative 
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processes (for example, PD patients with a worsening of symptoms due to neuroleptics). The 

distinction between non presynaptic and presynaptic parkinsonian syndromes is of great 

importance to avoid prescription of useless and potentially deleterious antiparkinsonian drugs. 

This is, for instance, the case for psychotic patients exhibiting post-neuroleptic parkinsonism, 

for whom a dopaminergic treatment may lead to psychiatric side effects.  

Patients with psychogenic or post-neuroleptic parkinsonism have a normal [123I]-Ioflupane 

SPECT or [18F]-Dopa PET [43-47] (Fig 1). In drug-induced parkinsonism the presence of a 

reduced [123I]-Ioflupane binding is the only predictor of a risk of parkinsonian symptoms 

progression and levodopa response, which is in favor of an underlying degenerative process 

[48]. The combined use of functional imaging and electrophysiology could further improve 

differential diagnosis between psychogenic and non psychogenic parkinsonism [43].  

Vascular parkinsonism due to leucoaraiosis is characterized by a normal or a mild 

homogenous reduction of striatal [123I]-Ioflupane SPECT or [18F]-Dopa PET uptake [49,50] 

(Fig 1). On the contrary, parkinsonism induced by substantia nigra or striatum strokes are 

associated with a major ipsilateral reduction of [123I]-Ioflupane uptake.  

Idiopathic normal pressure hydrocephalus may sometimes associate parkinsonian signs to the 

classical triad. The few dopaminergic radiotracers studies having analyzed patients with 

idiopathic normal pressure hydrocephalus found, for some of them, no presynaptic 

dopaminergic denervation but decreased dopaminergic receptor availability [51], while others 

revealed a reduction of dopaminergic tracers uptake in less than half of the cases [52].   
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• PD versus doparesponsive dystonia 

Doparesponsive dystonia (DRD) and young onset PD may be difficult to distinguish clinically 

at disease onset. However, contrary to PD, DRD does not progress and [123I]-Ioflupane 

SPECT or [18F]-Dopa PET are normal in DRD [53].  

• DLB versus Alzheimer disease 

Contrary to Alzheimer’s disease, [123I]-Ioflupane SPECT or [18F]-Dopa PET are abnormal in 

DLB [54-56]. [123I]-Ioflupane SPECT sensitivity and specificity to diagnose or rule out DLB 

in clinically and autopsy diagnosed cases are 78-87% and 90-94 % [54-57].     

• The SWEDD issue 

Patients suspected of PD but without abnormalities on [123I]-Ioflupane SPECT or [18F]-Dopa 

PET correspond to the so-called “Scan without evidence of dopaminergic degeneration” or 

SWEDD. This entity remains highly debated and some authors propose its complete abandon 

while others consider it as a particular but poorly understood entity [58]. It is very unlikely 

that SWEDD are due to a lack of sensitivity to detect dopaminergic denervation at early stage 

of PD as these functional imaging methods can detect dopaminergic denervation even before 

any clinical manifestations (and predict phenoconversion) and, obviously, more easily when 

motor symptoms start, which corresponds to a reduction of at least 60 %  dopaminergic 

innervation [59]. SWEDD represent a small percentage of patients suspected of PD or other 

degenerative parkinsonian syndromes. This percentage is variable and comprised between 1-2 

% and 15 % [60-62]. Furthermore the risk of conversion to PD at 5 years follow-up is mild 

and has been evaluated at 12.5 % in a recent study [63]. These patients do not disclose the 

progression of dopaminergic lesions and motor signs usually seen in PD [41,64]. The most 

likely explanation is that SWEDD represent alternative diagnosis such as dystonic tremor, 
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atypical tremor or non presynaptic parkinsonism (psychogenic, post-neuroleptic…). Errors in 

[123I]-Ioflupane SPECT interpretation may also explain some cases of SWEDD. Indeed, in a 

recent study, only 0.2% of [123I]-Ioflupane SPECT were finally considered as normal in 

patients suspected of PD after reinterpretation versus 2.4 % in first instance [65].   

 

2. Parkinson’s disease or Parkinson “plus” syndrome? 

• Interest of presynaptic dopaminergic radiotracers 

Convergent evidence has demonstrated that, at an individual level, [123I]-Ioflupane SPECT or 

[18F]-Dopa PET do not allow to differentiate PD and Parkinson “plus” syndromes [66-69].  

(Fig 1). At the level of a population of patients, dopaminergic denervation is, however, more 

important and goes faster in Parkinson “plus” syndromes than in PD, and lesions are more 

homogeneous and less asymmetrical within the striatum in PSP and MSA compared to CBD 

and PD [70-72]. In addition, a relative preservation of dopaminergic terminals is observed in 

MSA with cerebellar features (MSAc) as well as a greater dopaminergic denervation in the 

caudate nucleus in PSP compared to MSAc and PD on the one hand and in MSA with 

predominant parkinsonism (MSAp) compared to MSAc on the other hand [73,74]. However 

these elements are not suitable to provide individual differential diagnosis in routine clinical 

practice. Furthermore, the anticipated greater asymmetry of dopaminergic degeneration in PD 

compared to MSA was not confirmed in autopsy-proven cases [69].   

• Interest of post-synaptic dopaminergic radiotracers 

Because of the extension of the degenerative process to post-synaptic dopaminergic receptors 

it is expected that post-synaptic dopaminergic radiotracers such as [¹²³I]IBZM SPECT or 

[11C]-Raclopride PET could help differentiating PD from Parkinson “plus” syndromes. Some 
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studies have indeed shown a decrease of these radiotracers binding in the striatum in MSA 

and PSP compared to PD but the important impact of chronic dopaminergic drugs on 

dopaminergic receptors can, per se, affect their uptake [66,75-78]. More precisely, dopamine 

agonists and levodopa can induce an internalization of D1 and D2 dopaminergic receptors 

and, in turn, a decrease of dopaminergic postsynaptic radiotracers even in PD [77,78]. Thus 

these tools may be useful in untreated patients but not reliable in chronically treated patients, 

which represents the most common situation. Furthermore, these radiotracers are not available 

in many nuclear medicine centers. A comparison of sensitivity and specificity of [¹²³I]IBZM 

SPECT and diffusion weighted MRI has, in addition, clearly shown a superiority of the MRI 

to differentiate patients with MSAp and PD. 

• Interest of studying brain metabolism and brain perfusion 

The use of perfusion SPECT allows correct discrimination between PD and Parkinson “plus” 

syndromes in 67 % of the cases versus 58 % for [123I]-Ioflupane SPECT but the combination 

of both approaches leads to a much better diagnosis accuracy comprised between 82.4 % and 

86.1 % [79,80]. 99mTc-HMPAO SPECT shows a bilateral fronto-parietal and thalamus 

hypoperfusion in CBD compared to PD [81]. In MSA compared to PD some studies showed 

surprisingly that the only difference between PD and MSA consisted in an occipital 

hypoperfusion in PD [82].  In PSP brain hypoperfusion is noted in the anterior cingulate and 

medial frontal cortex [83] 

Another more interesting brain molecular imaging tool to achieve a good delineation between 

PD and Parkinson “plus” syndromes is the study of cerebral glucose metabolism using [18F]-

FDG PET. Several studies have shown that its sensitivity is above 75 % and its specificity 

above 90 % leading to diagnosis accuracy greater than 90 % [24,25,84,85]. More precisely 

PSP is characterized by frontal lobe, caudate and mesencephalon hypometabolism, while 
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MSA is characterized by cerebellum, pons and putamen hypometabolism, CBD by lateralized 

fronto-parietal, thalamic and striatum hypometabolism and PD by relatively spared 

metabolism in the putamen, sensorimotor cortex and cerebellum [24,25,84-86] (Fig 2). In 

DLB, hypometabolism of the lateral occipital cortex is highly sensitive (93%) while the 

relative preservation of the mid to posterior cingulate gyrus is very specific (100%) 

[84,85,87]. However it has to be noted that the preservation of posterior cingulate cortex 

relative to the precuneus tends to disappear with disease progression in DLB [88].  For DLB 

diagnosis [18F]-FDG PET appears better than blood flow measure using 99mTc-HMPAO 

SPECT [89]. Finally, a recent report found a hypometabolism in caudate nucleus and putamen 

and preserved cortical metabolism in idiopathic normal pressure hydrocephalus [90].   

• Interest of studying sympathetic innervation 

[123I]-MIBG scintigraphy or SPECT reveals the presence of postganglionic sympathetic 

myocardial denervation in PD as measured by a reduced heart/mediastinum uptake ratio, 

whereas this ratio is normal in MSA and PSP patients [27-37] (Fig 3). Meta-analyses have 

shown a sensitivity of 82-88 % and a specificity of 77-89 %. In addition, there is a good 

correlation between MIBG scintigraphy or SPECT finding and the loss of subtantia nigra 

neuromelanin hypersignal in PD [91]. [¹²³I]MIBG scintigraphy or SPECT may also be useful 

to differentiate PD and vascular parkinsonism [92]. Furthermore, [¹²³I]MIBG scintigraphy or 

SPECT has now been acknowledged to better differentiate DLB form other dementia in 

comparison to [123I]-Ioflupane SPECT that may be positive even in some forms of 

frontotemporal dementia [93]. It has however to be acknowledged that [¹²³I]MIBG 

scintigraphy or SPECT may be abnormal in up to 30 % of MSA patients [28,29] and normal 

at disease onset in PD [94,95]. 
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 Interest of future radiotracers 

Involvement of Tau protein in Alzheimer’s disease, CBD and PSP explains the reason why 

recent attempts are made to develop PET Tau radiotracers. Several Tau ligands are under 

development notably the [¹8F]-AV1451 for PET. Increased Tau deposits in basal ganglia and 

mesencephalon in PSP vs AD and controls and increased Tau deposits in temporal cortex in 

AD vs PSP and controls have been demonstrated using [¹8F]-AV1451 PET [96]. Compared to 

PD and controls, [¹8F]-Flortaucipir discloses an increased binding in globus pallidus, 

midbrain, subthalamic nucleus (STN) and dentate nucleus in PSP patients [97]. The 

abnormalities of Tau tracer binding observed in subcortical regions in PSP compared to PD 

are not correlated to motor and cognitive manifestations severity and not associated with 

increased cortical Tau binding [98,99]. Furthermore age also induces Tau deposits, which has 

to be taken into account [99]. 

In CBD, using two different Tau tracer, the [¹8F]-THK5351 and the [¹8F]-AV1451, an 

asymmetrical increase of binding has been observed in the globus pallidus, and pre and 

postcentral gyrus as well as in the pyramidal tract [98,100]. The different topography of [¹8F]-

AV1451 increased binding may help differentiating PSP from CBD and AD [99].   

These results seem promising but they are still preliminary and some controversies exist. 

Indeed a recent study did not find any difference of [¹8F]-AV1451 binding between PSP, PD 

and controls suggesting that this tracer may be more appropriate to detect paired helical 

filaments found in AD than straight Tau filaments observed in PSP [101]. Furthermore Tau 

pathology is also frequently observed using [¹8F]-AV1451 in cognitively impaired PD and 

DLB patients independently of amyloid burden, which sheds shadow on the specificity of this 

tracer and its capacity to distinguish PD from PSP or CBD [102]. In addition, there are some 

methodological issues that will need to be sorted out before using these radiotracers in 
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routine. This concerns in particular off-target binding (including neuromelanin, melanin, 

blood components, MAO…) and the binding of some Tau radiotracers (PBB3) to α-synuclein 

[103,104]. Finally a recent study combining [¹8F]-AV1451 PET and [¹1C]-Pittsburgh 

compound B (PIB) to measure amyloid deposits revealed that Tau deposit was not 

independent but related to β-amyloid status [105]. Overall, although interesting, these new 

radiotracers will need further analysis before being used in routine. 

 

Cost-effectiveness and impact on care of functional imaging    

Several studies have addressed the issue of the impact of [123I]-Ioflupane SPECT on diagnosis 

and care and the cost-effectiveness of this technique. It has been shown that such tool can 

impact treatment strategy (initiation or withdrawal of dopamine replacement therapy) in 15 to 

35 % of the cases and improve the diagnosis or modify the follow-up of patients in 21% of the 

cases [38,40]. Therefore it is likely to be financially advantageous in clinically uncertain 

cases. In some rare situations it can even be helpful to perform a second [123I]-Ioflupane 

SPECT as repeating such exam can help providing a diagnosis in 87.5 % of patients with 

unconclusive diagnosis at baseline [106]. Nevertheless reimbursement level, scanner location, 

radiopharmaceutical costs, access and cost of clinical evaluation by expert neurologists and 

consequences of treatment choice are major factors that can differently affect, depending on 

the country and health system, the interest and cost-effectiveness of [123I]-Ioflupane SPECT 

[107,108]. Importantly, the decision to prescribe or not a [123I]-Ioflupane SPECT must only be 

taken after careful clinical investigation, as, whatever the stage of the disease, the accuracy of 

the diagnosis provided by [123I]-Ioflupane SPECT and clinical expertise are very close 

[109,110]. 
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A summary of the most important findings obtained with usual PET and SPECT 

radioradiotracers is provided in Table 1. 

 

Conclusion  

PET and SPECT molecular imaging using radiotracers allowing the characterization of 

presynaptic dopaminergic innervation, brain metabolism or perfusion and peripheral 

sympathetic innervation provide very useful information in routine clinical practice to confirm 

or rule out clinically evoked diagnosis and to classify the different subtypes of parkinsonisms. 

Their use has to be limited to patients with challenging diagnosis, only after careful clinical 

examination and, usually, in combination with morphological imaging (MRI). It is of major 

importance that the acquisition and analysis of these examinations follow strict procedural 

guidelines in order to guarantee reliable informations  [111,112]. In the future, new 

radiotracers will allow to study the pathological process itself (Tau or amyloid deposits) but 

methodological issues still exist and will have to be sorted out. The use of brain or heart 

molecular imaging techniques notably those permitting very early (even premotor) diagnosis 

will undoubtedly become of greater importance when disease modifying strategies will 

emerge.  
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Legends 

Fig 1 

SPECT [123I]-Ioflupane assessing presynaptic dopaminergic innervation in parkinsonian 

syndromes. A: Normal striatal radiotracer binding in post-neuroleptic parkinsonism (Post NL 

Park), vascular parkinsonism (VP), essential tremor (ET) and psychogenic parkinsonism (Psy 

Park); B: bilateral and asymmetrical reduction of striatal binding with rostrocaudal gradient in 

Parkinson’s disease (PD) and corticobasal degeneration (CBD); C: bilateral reduction of 

striatal binding in dementia with Lewy bodies (DLB); D: bilateral reduction of striatal binding 

in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA).    

Fig 2 

PET [18 F]-FDG assessing brain glucose metabolism in degenerative parkinsonian syndromes. 

A: bilateral striatal hypermetabolism in Parkinson’s disease (PD); B:  bilateral striatal 

hypometabolism in multiple system atrophy (MSA); C: bilateral frontal hypometabolism in 

progressive supranuclear palsy (PSP); D: asymmetrical frontoparietal hypometabolism in 

corticobasal degeneration (CBD); E:  bilateral occipital hypometabolism in dementia with 

Lewy bodies (DLB). 

Fig 3 

SPECT [123I]-MIBG measuring postganglionic sympathetic innervation in parkinsonian 

syndromes. A: reduced heart/mediastinum uptake ratio in Parkinson’s disease (PD) and 

dementia with Lewy bodies (DLB); B: normal heart/mediastinum uptake ratio in multiple 

system atrophy (MSA), progressive supranuclear palsy (PSP) and vascular parkinsonism 

(VP).    
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Table 1: SPECT and PET findings in routine clinical practice 

Disease [123I]-Ioflupane SPECT 
Dopaminergic innervation 

[
18

F]-FDG PET  
Brain metabolism 

[
123 

I]-MIBG cardiac SPECT  
Sympathetic innervation 

PD Asymmetrical striatal reduction of binding 

with rostro-caudal gradient  
Relative putamen, sensorimotor cortex 

and cerebellum hypermetabolism 
Reduction of heart/mediastinum ratio 

binding 

Non presynaptic parkinsonism (VP, 

postNL, psychogenic, NPH) 
ET and DRD 

Normal 
Sometimes slightly reduced in VP 

NPH: hypometabolism in caudate nucleus 

and putamen and preserved cortical 

metabolism 
VP: Hypometabolism depending on the 

topography of vascular lesions 
ET, postNLand psychogenic Park: normal 

Normal 

MSA Homogeneous and less asymmetrical 

(unconstant) reduction of binding within 

the striatum in MSA vs PD and CBD. 

Greater abnormalities in MSAp versus 

MSAc 

Cerebellum, pons and putamen 

hypometabolism 
Normal in the majority of cases but 

abnormal in 30 % of the cases 

PSP Homogeneous and less asymmetrical 

reduction of radiotracer uptake in the 

striatum in PSP vs PD and CBD. Greater 

abnormalities in PSP versus MSAc and PD 

Frontal lobe, caudate and mesencephalon 

hypometabolism 
Normal 

CBD Asymmetrical striatal reduction of 

radiotracer uptake 
Lateralized fronto-parietal, thalamic and 

striatal hypometabolism  
Normal 

DLB Symetrical striatal reduction of radiotracer 

uptake 
Lateral occipital cortex hypometabolism 

and relative preservation of the mid to 

posterior cingulate gyrus metabolism 

Reduction of heart/mediastinum ratio 

binding 

Abbreviations: PD: Parkinson’s disease; VP: vascular parkinsonism; postNL: post neuroleptic parkinsonism; NPH: normal pressure hydrocephalus; ET: essential tremor; DRD: 

doparesponsive dystonia; MSA: multiple system atrophy; PSP: progressive supranuclear palsy; CBD: cortico-basal degeneration; DLB: dementia with Lewy Body; SPECT: single photon 

emision computed tomography; PET: positron emission tomography 
 




