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Abstract 

Areas of the primate intraparietal cortex have been identified as an important substrate of 

numerical cognition. In human fMRI studies, activity patterns in these and other areas have 

allowed researchers to read out the numerosity a subject is viewing, but the relation of such 

decodable information with behavioral numerical proficiency remains unknown. 

Here, we estimated the precision of behavioral numerosity discrimination (internal Weber 

fraction) in twelve adult subjects based on psychophysical testing in a delayed numerosity 

comparison task outside the scanner. FMRI data were then recorded during a similar task, to 

obtain the accuracy with which the same sample numerosities could be read out from evoked 

brain activity patterns, as a measure of the precision of the neuronal representation. Sample 

numerosities were decodable in both early visual and intra-parietal cortex with approximately 

equal accuracy on average. In parietal cortex, smaller numerosities were better discriminated 

than larger numerosities of the same ratio, paralleling smaller behavioral Weber fractions for 

smaller numerosities. Furthermore, in parietal but not early visual cortex, fMRI decoding 

performance was correlated with behavioral number discrimination acuity across subjects 

(subjects with a more precise behavioral Weber fraction measured prior to scanning showed 

greater discriminability of fMRI activity patterns in intraparietal cortex, and more specifically, 

the right LIP region). 

These results suggest a crucial role for intra-parietal cortex in supporting a numerical 

representation which is explicitly read out for numerical decisions and behavior. 

 

Keywords: fMRI, parietal cortex, number processing, multivariate decoding, human 
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1. Introduction 

Humans share with other animals the ability to rapidly extract approximate numerosity from a 

visual scene, and to compare numerosities with an accuracy that roughly depends on their 

numerical ratio (Cantlon & Brannon, 2006; Feigenson, Dehaene, & Spelke, 2004). 

Numerosity perception can be psychophysically dissociated from other quantitative 

judgements (Anobile, Cicchini, & Burr, 2016; Cicchini, Anobile, & Burr, 2016), suggesting it 

relies on dedicated neural extraction channels. In accord with this, numerosity responsive 

units supporting ratio-dependent discrimination can develop through unsupervised learning in 

hierarchical generative networks (Stoianov & Zorzi, 2012; Zorzi & Testolin, 2017). It is 

remarkable that the individual precision of basic non-verbal number discrimination can be 

predictive of current and future higher-level symbolic arithmetic skills (Anobile, Castaldi, 

Turi, Tinelli, & Burr, 2016; Gilmore, McCarthy, & Spelke, 2007; Halberda, Mazzocco, & 

Feigenson, 2008), even though the human species’ particularly highly developed 

mathematical abilities undoubtedly rely on multiple foundational capacities (Butterworth, 

2010; De Smedt, Noel, Gilmore, & Ansari, 2013). 

Evidence from several neuroscientific techniques has outlined a set of brain areas with 

particular importance for numerical processing. In macaque monkeys, single neurons 

responding differentially to different numbers of perceived items have been described in sub-

regions of intra-parietal and prefrontal cortex (Nieder & Miller, 2004; Roitman, Brannon, & 

Platt, 2007). At a coarse spatial scale, functional MRI has demonstrated increased activation 

during a variety of numerical as opposed to non-numerical tasks (see Arsalidou & Taylor, 

2011, for a meta-analysis), and responsiveness to numerical deviance during passive viewing 

(e.g., Cantlon & Brannon, 2006; He, Zhou, Zhou, He, & Chen, 2015; Jacob & Nieder, 2009; 

Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004), in similarly located regions. In recent years, 
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multivariate decoding methods have been introduced to make fine-grained (e.g., within the 

same category) discriminations between perceptual features on the basis of fMRI activity 

profiles across voxels (e.g., Norman, Polyn, Detre, & Haxby, 2006; Tong & Pratte, 2012). 

Using this approach it has been possible to read out the number seen or held in mind by a 

subject from fMRI activity in parietal areas functionally equivalent to those carrying 

numerical responses in macaques (Eger et al., 2009; Eger, Pinel, Dehaene, & Kleinschmidt, 

2015). Moreover, beyond pattern-based analyses and the decoding approach, population-

receptive field mapping in combination with ultra-high field (7 Tesla) imaging has further 

allowed recently in humans to detect individual voxels tuned to different numbers of items, in 

a way very similar to neurons described by macaque neurophysiology (Harvey & Dumoulin, 

2017; Harvey, Ferri, & Orban, 2017; Harvey, Klein, Petridou, & Dumoulin, 2013). These 

tuned responses were found to from orderly topographic layouts in different parietal but also 

occipital and frontal regions, at least for small non-symbolic numbers. 

While the neuronal substrates underpinning numerosity perception have been described in 

some depth, it remains insufficiently understood what brain mechanisms give rise to 

variations in numerical performance, either across subjects or different experimental 

situations. The ability to read out numerosity information from a given brain area does not 

necessarily imply that subjects are relying on this information when making numerical 

discriminations. Recent fMRI studies have shown that numerosity could also be decoded from 

areas beyond those considered the core substrate of numerical processing, for example early 

and ventral visual cortex (Bulthé, De Smedt, & Op de Beeck, 2014, 2015; Eger et al., 2015), 

though  not in all cases (Castaldi, Aagten-Murphy, Tosetti, Burr, & Morrone, 2016). 

Controlling non-numerical properties when working with non-symbolic numerical stimuli is a 

complex task and often not exhaustively achieved within a single experimental context 

(Gebuis & Reynvoet, 2012), making positive findings in early visual areas difficult to 



4 

 

interpret. Nevertheless, a recent EEG study using an experimental design that allowed testing 

the effect of variation along multiple non-numerical quantitative dimensions, observed that 

already very early components of the ERP, compatible with sources in early visual cortex, 

were modulated more by change in the numerical rather than other dimensions (Park, DeWind, 

Woldorff, & Brannon, 2016). Such effects could be related to the segmentation of individual 

items (Dehaene & Changeux, 1993), or the operation of a combination of spatial filters which 

has been proposed as a potential mechanism to extract an estimate of numerosity (Dakin, 

Tibber, Greenwood, Kingdom, & Morgan, 2011), plausibly located at earlier levels of the 

visual hierarchy. Given such potential contributions of earlier visual regions to numerosity 

extraction, the question arises to what extent numerical acuity as we measure behaviorally is 

determined by efficiency of the processes at these earlier, or higher-level processing stages as 

parietal cortex. 

To shed light on the question of which, among several areas where numerosity could 

previously be successfully decoded, are the most critical to determine the precision of 

behavioral discrimination of this feature, here we related psychophysical measurements and 

multivariate decoding analysis of fMRI patterns, focusing on variability between subjects and 

across different numerical ranges. Each subject’s precision of behavioral discrimination 

(internal Weber fraction) was estimated based on psychophysical testing in a delayed 

numerosity comparison task outside the scanner. FMRI data were then recorded during a 

similar task, to obtain the accuracy with which the same sample numerosities could be read 

out from evoked brain activity patterns, as a measure of the precision of the neuronal 

representation. 
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2. Materials and Methods 

2.1 Subjects and MRI acquisition 

Twelve healthy volunteers (6 male and 6 female; mean age 22 years) participated in the study. 

All but one subject were right-handed and all had normal or corrected-to-normal visual acuity. 

The study was approved by the regional ethical committee (Hôpital de Bicêtre, France). 

Functional images were acquired on a 3 Tesla MR system with 12-channel head coil as T2*-

weighted echo-planar image (EPI) volumes with 2 mm isotropic voxels. Thirty oblique 

transverse slices covering essentially the dorsal visual pathway and superior parts of frontal 

cortex were obtained in ascending interleaved order (repetition time [TR] = 2.52 s; echo time 

[TE] = 33ms; field of view [FOV] = 192 mm; flip angle [FA] = 84°). 

 

 

2.2 Experimental Design and Statistical Analysis 

2.2.1 Stimuli and Procedure 

During fMRI and in the separate behavioral experiments preceding it, subject performed a 

delayed numerosity comparison task on displays consisting of different numbers of randomly 

positioned light grey dots on a black background, inside an implicit circular area subtending 

~8° of visual angle at the center of the screen (Figure 1A). Two separate stimulus sets equated 

either the overall area of grey (resulting in decreasing dot size with increasing number), or the 

individual dot size between numerosities (resulting in increasing number of grey pixels with 

increasing number).  

Each trial started with a sample stimulus display for 150 ms, and after a first delay, a match 

stimulus appeared for 150 ms; after a second delay, a new trial was presented. During the 
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duration of a trial, a red cross was present in the center of the screen, which turned to green 

for 2 s after the disappearance of the match stimulus. Subjects had to memorize the 

approximate number of dots of the sample stimulus on each given trial and to respond by 

button press, after presentation of the match stimulus, depending on whether they judged the 

match number smaller or larger than the previous sample number. 

Four different sample numerosities separated by a ratio of ~1.6 (8, 13, 21, and 34), were used. 

For reasons not relevant to the aim of the present report, different ranges of three sample 

numerosities were presented in different experimental runs (Figure 1 B), the first range 

comprising numerosities 8, 13, and 21, and the second range numerosities 13, 21 and 34.  

In the independent behavioral experiment, six match numerosities were used per sample: 

(sample 8: 5, 6, 7, 9, 11, and 15 items,  sample 13: 8, 9, 11, 15, 18,  and 22 items, sample 21: 

12, 15, 18, 24, 29, and 36 items,  sample 34: 20, 24, 28, 40, 48, and 58 items). Each sample 

display was separated from the match display by a stimulus onset asynchrony (SOA 1) of 

either 3 or 6s, whereas the delay between the match and the new sample presentation (SOA 2) 

was fixed at 3s. A behavioral run contained 72 trials drawn from the same range of sample 

numerosities (3 sample numerosities x 2 SOA 1 x 6 match numerosities x 2 set types 

controlling for different physical variables). Each subject performed a first block of 5 runs 

with one of the two ranges (e.g., [8-21]), and after a short pause, a second block of 5 runs with 

the other remaining range (e.g., [13-34]). The order of presentation of these two blocks was 

counterbalanced across subjects. To obtain a sufficient amount of data, two behavioral testing 

sessions per subject were performed under the same conditions within an interval of around 

two weeks. 

In the fMRI experiment, to equate subjective task difficulty, match numbers were chosen 

based on the individual psychometric function of each subject computed from the results of 

the prior behavioral experiment, using psignifit toolbox (http://psignifit.sourceforge.net/) 
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(Wichmann & Hill, 2001). Standard match stimuli were chosen to correspond to those 

numerosities that yielded 25/75% of larger responses in the previous behavioral testing 

(“standard” trials). In addition, on a small percentage of trials, match numerosities 

corresponded to 5/95% of larger responses (“catch” trials). The order of trials was pseudo-

randomized, as well as the SOA 1 (between sample and match stimulus) and SOA 2 (between 

match and following sample stimuli), which could be 3, 4, 5 or 6 s. A run contained 60 

“standard” trials (3 samples x 2 matches x 2 sets x 5 repetitions) and 12 “catch” trials (3 

samples x 2 matches x 2 sets), from the same range of sample numerosities. Each subject 

performed four runs: run 1 and 4 corresponding to one of the two numerosity ranges, and runs 

2 and 3 to the other range, with the order of range presentation counterbalanced across 

subjects. Before each run, subjects performed a short six-trial-training in which sample and 

(their respective) match numerosities of the following run were presented. An experiment 

lasted 45 minutes. 

 

2.2.2 Data analysis 

To obtain measures of the internal Weber fraction of numerosity representation, the 

percentage of larger responses to match numbers in the psychophysical experiment as a 

function of the logarithmic difference between sample and match numerosities was fitted with 

a cumulative Gaussian function, which returned estimates of both the function’s standard 

deviation and mean. The internal Weber fraction is derived from the standard deviation of the 

fitted Gaussian by dividing it by √2 (Dehaene, 2007). 

From the Weber fractions for individual numerosities within each range, we further computed 

the sensitivity index (d’) for discrimination between all possible pairs of sample numerosities 

n1 and n2 as in the following way, where w1 is the internal Weber fraction for n1 and w2 the 

internal Weber fraction for n2: 
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The fMRI data were preprocessed with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software), 

including realignment to the first volume as reference, and normalization to the standard 

template of the Montreal Neurological Institute (MNI) using SPM’s segment algorithm. 

The normalized, unsmoothed EPI volumes were entered into a GLM, where each sample 

stimulus event was modeled as a condition, resulting in 72 conditions per session (60 events 

for “standard” trials and 12 events for “catch” trials). Match stimulus time points of the same 

relative magnitude (within the respective range) and response type (smaller or larger than the 

sample stimulus) were grouped and modeled as further trial types, resulting in 6 additional 

conditions (3 magnitudes x 2 response types) per session, intended to capture variance of non-

interest related to match stimulus presentation, comparison and response execution1. The 

onsets of these 78 conditions were convolved with a standard hemodynamic response function. 

The resulting 60 beta estimates (per session) for the “standard” sample stimulus conditions 

were used in the multi-voxel pattern analysis.  

We defined regions of interest (ROIs) by a combination of global masks in MNI space and 

further subject-specific selection of voxels within each masks. For the analyses of early visual 

(EV) and parietal cortex (PAR), the global masks were derived from WFU PickAtlas 

(http://fmri.wfubmc.edu/-software/pickatlas) (Maldjian, Laurienti, Kraft, & Burdette, 2003) 

comprising for EV left and right area 17 and for PAR left and right superior and inferior 

parietal lobules. Within each of these two masks, we selected on a subject-by-subject basis the 

                                                           
1 We verified that sample and match stimulus predictors had a high degree of independence in our design: 

average cosine similarity between all possible pairs of sample and match stimulus predictors for the same 

sample numerosity was 0.048 (for comparison 0.011 for sample and match stimulus predictors of different 

sample numerosities, with 0 corresponding to orthogonality and 1 to collinearity). 
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600 most significantly activated voxels in the t-contrast of all “standard” sample stimulus 

conditions vs baseline for decoding analysis. In addition, we targeted more specific sub-

regions of parietal cortex, by reapplying the ROIs originally introduced by a previous study 

(Eger et al., 2015) to operationally define human equivalents of areas LIP and VIP to the 

current data set. In these cases the global masks corresponded to the group activations of the 

mentioned previous study thresholded to 300 voxels per ROI and hemisphere as originally 

done by Eger et al. (2015), and within each of these four masks we selected on a subject-by-

subjects basis the 150 most activated voxels in the same contrast (all sample vs baseline) as 

for the other ROIs. 

For pattern classification, conditions were labeled according to sample numerosity, collapsing 

across the two different stimulus sets. Pattern recognition analysis was performed within each 

subject on mean-corrected trial-wise parameter estimate vectors (40 vectors / condition) using 

linear Support Vector Machines (SVM) with regularization parameter C = 1 in scikit-learn 

(http://scikit-learn.org/stable/) (Pedregosa et al., 2011). The classification was performed for 

all possible pairs of numerosities within each range (theoretical chance level = 50 %). For 

each comparison, for trial n=1:40, the n-th trial of each condition was left out for test when 

training the classifier, and the percentage of correct identification on left-out data was 

computed across the entire cross-validation cycle. 

Confusion matrices were constructed from the output of classifiers from all pairwise 

comparisons. In addition, in analogy to the analysis of the behavioral data, the sensitivity 

index (d’) was computed for pairwise comparisons between numerosities as: 

�� = ��ℎ�� ����
 − ������� ����� ����
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Across subject statistics on behavioral Weber fractions and fMRI classification performance 

used paired two-tailed t-tests, and the across subject relation between these measures was 

probed by Pearson correlations. 

 

3. Results 

3.1 Behavioral results 

We fitted the percentage of larger responses to match numbers with cumulative Gaussian 

functions to obtain the internal Weber fraction (w) of the numerosity representation (see 

Materials and Methods for details). Fits were calculated per magnitude, range, sample match 

delay, and testing session, and subsequently averaged for each magnitude within each range 
2. 

Figure 1C illustrates the fitted curves for one subject, and Figure 1D the estimated w across 

subjects for the different conditions. Weber fractions were not completely equal across 

numerosities in this study, but gradually increased from number 8 to 13 to 21 after which they 

remained constant. Pairwise statistical comparisons between conditions across the 12 subjects 

confirmed that Weber fractions for numerosity 8 were significantly different from the ones for 

all the other conditions (compared to 13 range 1: t(11) = 3.57, p = 0.00439, 21 range 1: t(11) 

= 5.71, p = 0.00014, 13 range 2: t(11) = 3.41, p = 0.00587, 21 range 2: t(11) = 7.72, p = 

0.00001, 34: t(11) = 3.40, p = 0.00592, all paired two-tailed t-tests), while no other 

comparisons reached significance. 

                                                           
2 We also tested in how far Weber fractions differed as a function of the stimulus set (dot size vs total surface 

area equated between numerosities). In an analysis performing separate fits per stimulus set, magnitude and 

range, an ANOVA revealed a main effect of stimulus set (F(1,11)=17.2, p=0.0016,  with average w being 0.155 

for the constant dot size set, and 0.172 for the constant total surface area set) which, however, did not 

significantly interact with the other factors. Investigating in detail the influence of stimulus properties on 

numerical discrimination is beyond the scope of the present study, and for reasons of sensitivity / increasing 

the number of trials, we subsequently collapsed across the two stimulus sets in both the behavioral and fMRI 

analyses. 
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For correlation with the fMRI decoding results, an average Weber fraction across 

numerosities and ranges was computed for each subject. Across the group these values had a 

mean of 0.15 (with the minimum being 0.13, and the maximum 0.19). 

 

3.2 FMRI decoding results in early visual and parietal cortex 

Multivariate classifiers based on support vector machines were used to discriminate between 

all pairs of sample numerosities within a given range, within regions of interest in early visual 

and parietal cortex. The detailed pattern of classification performance is displayed in Figure 

2A in form of the confusion matrices obtained from the pairwise classification for both 

regions. Percentages of classification are plotted for the true conditions against the predicted 

conditions, values on the diagonal reflect correct identifications, and off-diagonal values mis-

classifications. Overall accuracies and patterns of performance are rather similar for the two 

regions of interest, with a slight apparent difference in the accuracy across the two numerical 

ranges between regions: early visual cortex activation patterns allowed to identify sample 

numerosities with approximately equal accuracy within both ranges, while in parietal cortex 

classification was on average better in range 1 which included smaller sample numerosities 

than in range 2 (as indicated by lower diagonal and higher off-diagonal values). This pattern 

resembles the one observed in the behavioral results (smaller Weber fractions for smaller 

numerosities). 

Across all pairwise comparisons, decoding performance was on average 57.1% correct in 

early visual cortex and 56.7 % correct in parietal cortex (in both cases significantly different 

from the theoretical chance level of 50 %,  paired two-tailed t(11) = 8.72, p = 0.000003 in 

early visual cortex, and t(11) = 4.71, p = 0.000641 in parietal cortex).  
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3.3 Across subject correlation between behavioral precision and fMRI decoding performance  

To test for the behavioral relevance of these occipital and parietal number representations, we 

capitalized on the inter-individual differences in the precision of the numerical representation 

as determined by psychophysics, and correlated the psychophysical Weber fractions across 

subjects with the average decoding accuracies. The idea underlying this approach is that if a 

neural representation underpins (or determines) behavior then decoding accuracy should 

predict psychophysical performance. Figure 2B shows the extent to which fMRI classification 

performance is predicted by Weber fractions from the independent behavioral experiment in 

both regions of interest. In spite of the very similar level of prediction accuracy on average 

(middle panel), a significant Pearson’s correlation of behavioral Weber fractions with fMRI 

decoding accuracies across subjects was only found in parietal (r = -0.59, p = 0.0451) but not 

early visual cortex (r =-0.07, p = 0.8305). A negative correlation in this case indicates that 

subjects with a higher behavioral acuity (as evidenced by smaller w) have a more precise 

neuronal representation (as evidenced by higher decoding performance for individual 

numbers from multi-voxel activation patterns).  

The analyses described so far found a relation between decoding performance and behavioral 

precision in the parietal ROI, which however, was only marginally significant. Furthermore, 

this correlation appears to depend to a large extent on two subjects with the highest Weber 

fractions of the group and low (close to chance) decoding performance in the parietal ROI. 

The two subjects’ Weber fractions, however, are still well within the normal range for adult 

subjects (Piazza et al., 2010), such that they may appear to diverge here only because the rest 

of the group is rather homogeneous and precise in Weber fraction. 

It remains possible that the statistically not very strong results for the parietal ROI are related 

to the fact that this ROI is rather extended and unspecific in its definition, and not necessarily 



13 

 

targeting the most relevant sub-regions/voxels. To further explore the potential contribution of 

more precise sub-regions of parietal cortex to the observed correlation between behavioral 

performance and fMRI decoding accuracy, we probed the same relation within four ROIs that 

were defined in a previous study using specific functional localizer scans to target the parietal 

sub-regions which have been implicated in number representations by neurophysiology, 

representing the putative human equivalents of lateral (LIP) and ventral (VIP) intra-parietal 

areas of the macaque in the left and right hemispheres (see Figure 3A for overview of ROI 

locations). All these regions showed a tendency towards the expected negative correlation, as 

the one observed in the large and unspecific parietal ROI. However, this correlation had the 

highest value in the right LIP region and it reached significance only in this region when 

testing each ROI in isolation (right LIP: r = -0.74, p = 0.0059, left LIP: r = -0.49, p = 0.1067, 

right VIP: r = -0.38, p = 0.2266, left VIP: r = -0.12, p = 0.7053) 3. The correlation in the right 

LIP region remains significant even when applying Bonferroni correction for multiple 

comparisons in this case (4 subregions tested: αaltered =.05/4 = .0125, pcorrected =  .0236 for right 

LIP region). 

In summary, correlation analyses revealed that subjects with better behavioral discrimination 

ability between individual numerosities also showed better decodability of numerosity-evoked 

activity patterns. Critically, this relation was found in parietal cortex, and more specifically in 

the right LIP region, but not in occipital cortex, even though there was enough information in 

the latter area to decode numerosity with an equivalent level of performance. 

 

3.4 Behavioral precision and fMRI decoding performance across the numerical range 

                                                           
3 The correlation between number decoding and behavioral Weber fractions in the right LIP ROI still remains 

significant when the two subjects with the largest Weber fractions are taken out (rho = -0.78, p = 0.0078). 
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The results described previously allowed us to establish a relation between individual 

differences in behavioral numerical acuity and fMRI decoding performance, on average 

across all the numerosities tested. Behavioral results had also indicated some differences in 

behavioral precision across the numerical range (in particular smaller Weber fractions for 8 

dots than for larger numerosities, see Figure 1D). In parietal cortex but not in occipital cortex 

these behavioral results were paralleled by a tendency for better decoding in the range 

including numerosity 8 (Figure 2A). To establish a more direct quantitative correspondence 

between these two tendencies, we computed the sensitivity index (d’) for all pairwise 

discriminations between numerosities from estimated behavioral Weber fractions on the one 

hand, and the output of the fMRI pattern classifier, on the other hand (see Materials and  

Methods for details). Figure 4 displays the resulting d’ matrices, for behavioral discrination 

(A) and for decoding in early visual and parietal cortex ROIs (B), averaged across subjects. In 

spite of the fact that the overall discriminability of fMRI was much lower than the behavioral 

one, a general pattern of higher d’ for comparisons involving the lowest numerosity can be 

found in the behavioral matrix, and is more clearly reflected in the fMRI decoding matrix 

from the parietal than the early visual cortex ROI. Multiple regressions on the d’ values for 

the different numerical comparisons, run on a subject-by-subject basis (with predictors being 

the z-transformed ratio and mean size of the two numerosities in each pair, plus a constant) 

confirmed that for the behavioral data the beta weights for ratio and size were significantly 

different from 0 across the 12 subjects (paired two-tailed t-tests: ratio: t(11) = 23.81, p = 8.2e-

11, size: t(11) = 3.16, p = 9.1e-03, Figure 3C). The same was true for decoding in the parietal 

cortex ROI (paired two-tailed t-tests: ratio: t(11) = 4.47, p = 0.0009, size: t(11) = 2.85, p < 

0.0157), while for the early visual cortex ROI only the ratio predictor reached significance 

(t(11) = 5.21, p = 0.0003), but the effect of size remained non-significant (t(11) = 0.45, p = 

0.6620) (Figure 4D). 
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Thus, decoding performance in parietal cortex closely parallels the observed differences in 

behavioral discrimination performance across the numerical range, in particular showing a 

significant effect of the size of two compared numbers on top of their ratio, an effect absent in 

early visual cortex activity. 

 

4. Discussion 

The present study acquired both psychophysical and functional neuroimaging data to test 

which of several regions previously shown to contain information about individual 

numerosities is read out when making explicit numerical judgements. We found that in spite 

of a very similar level of overall decoding performance in early visual and intraparietal cortex, 

the subjects’ behavioral Weber fractions measured prior to scanning were negatively 

correlated with pattern decoding performance in parietal (and more precisely in the right 

human equivalent of monkey LIP) but not occipital cortex. This result indicates that the 

precision with which subjects discriminate numbers reflects the precision with which they 

represent numbers in specific parietal regions and hence demonstrates that these regions are 

crucial for overt numerical decisions. 

Overall, the fMRI decoding performance reported here (around 57 % correct in parietal 

cortex) may seem low compared to some previous studies (Bulthé et al., 2014; Eger et al., 

2009; Knops, Piazza, Sengupta, Eger, & Melcher, 2014). However, when considerably higher 

decoding performance was obtained previously this was generally for smaller numerosities 

(up to a maximum of 8 items). When the numerical values and ratios between numerosities 

were comparable to the ones used here, discrimination performance was considerably lower, 

and compatible with the one obtained in the current study (Eger et al., 2015). This also fits 

well with the fact that studies which directly mapped the cortical layout of numerosity 
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selectivity at the level of individual voxels have so far had sufficient sensitivity only to detect 

preferential responses for relatively small numerosities in parietal cortex (Harvey & 

Dumoulin, 2017; Harvey et al., 2013). 

Given that early visual and parietal cortex allowed us in the present study to decode 

numerosity to the same degree, one might wonder what might be the nature of the information 

encoded in early visual cortex. We do not want to claim from the current results that early 

visual cortex does represent numerosity explicitely (implying individual neurons responsive 

or tuned to it at that level) and independently from other features. We used in this study two 

stimulus sets that either equated dot size or the total number of pixels across numerosities. 

While this is one commonly used strategy for stimulus creation in studies on numerosity 

perception, it does not control for differences in the total amount and distribution of contrast 

energy across numerosities, which can affect early visual responses. This factor may likely 

account for the early visual cortex results in this and other studies, given that the one previous 

fMRI decoding study which reported successful decoding of numerosity in parietal but not 

early visual cortex (Castaldi et al., 2016) had equated the contrast energy of the stimuli.  

The LIP region defined here by neurophysiologically motivated localizers and showing a 

strongly significant relation with behavioral acuity is one of the parietal subregions that have 

been shown in the macaque monkey to contain neuronal responses discriminating between 

numerosities (Roitman et al., 2007), with VIP being another one where the majority of 

neurophysiological recordings were made (Nieder, 2016). Previously we have found that the 

human equivalents of both regions allowed for decoding of numerosity information for fMRI 

activity patterns (Eger et al., 2015). The fact that here we did not observe a significant relation 

of behavioral discrimination with VIP activation patterns does not necessarily mean that no 

such relation exists. Given the overall reduced decoding performance when the parietal ROI 

was replaced by several smaller subregions, null results can hardly be considered informative. 
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Nevertheless, in the right LIP a significant relation was found in spite of the reduction in 

number of voxels, indicating that this region contains the most behaviorally relevant 

information at least at the spatial scale accessed by our measurements. It is interesting to note 

a close correspondence between the average MNI coordinates of our right LIP ROI (22.9 -

61.0 54.2) and the coordinates (23 – 60 60) where a systematic spatial layout of numerosity 

responses was observed initially (Harvey et al., 2013) using ultra-high-field fMRI (though 

without testing the relation of these responses with behavioral numerical acuity).  

The present report is the first one showing that the precision of intra-parietal (and more 

specifically right LIP) activity patterns evoked by individual numerosities reflects inter-

individual differences in behavioral numerical acuity in adult human subjects. Interestingly, 

using fMRI adaptation methods, an across-subject correlation between behavioral Weber 

fractions and Weber fractions estimated from the fMRI adaptation effect was found very 

recently in 3-6 year old children (Kersey & Cantlon, 2017) in the right, but not the left 

intraparietal sulcus. FMRI adaptation and multi-variate decoding of evoked activity patterns 

are two different approaches often used to tackle similar questions (related to characteristics 

of neuronal representations), however, the underlying signals exploited by the two methods 

are of a very different nature. The fMRI adaptation approach is based on deviance signals 

which are observed at the level of regional activity when a change in the stimulus is 

introduced (Grill-Spector, Henson, & Martin, 2006), possibly in line with an intrinsic 

tendency of the brain to predict its input (e.g., Grotheer & Kovács, 2016; Kleinschmidt, 

Büchel, Hutton, Friston, & Frackowiak, 2002). Multivariate decoding, on the other hand, 

exploits differences in direct evoked activation patterns, and therefore the layout of responsive 

neuronal populations, independently from temporal context/stimulation history. Given that 

such different measures cannot necessarily be guaranteed to provide the same insights, and 

that they can in fact sometimes lead to different results in the same paradigm and data set 
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(Drucker & Aguirre, 2009), it is even more remarkable that in the case of the relation between 

perceptual and neuronal sensitivity to numerosity studied here, both measures converge across 

age groups onto similarly located parietal regions. Beyond this work using fMRI, it is of 

interest that an across subject correlation has also been observed between the amplitude of 

ERP components (in particular the N2pc) and numerosity discrimination within the subitizing 

range, however without allowing to localize the underlying brain regions generating this 

effect (Ester, Drew, Klee, Vogel, & Awh, 2012). 

While as far as we are aware of, inter-individual differences in numerical acuity have not been 

investigated at the level of single neuron responses, macaque neurophysiology has 

nevertheless provided evidence for the behavioral relevance of the intraparietal and prefrontal 

number selectivities: specifically, on trials where the monkeys made errors in a delayed 

numerosity match-to-sample task, the numerical selectivity for the preceding sample stimulus 

was lost or reduced (Nieder & Miller, 2004). A related approach using error trials to reveal 

the relevance of regional activation patterns for performance has also been used in fMRI 

studies related to other cognitive domains than number: for example, in an experiment on 

object recognition, on trials when subjects failed to correctly identify the object that was 

briefly presented and masked, discriminative information was disrupted in lateral occipital 

object responsive areas, but not in early visual cortex (Williams et al., 2008). Such effects are 

not necessarily restricted to higher-level cortical areas: decoding of stimulus orientation from 

early visual cortex was shown to be enhanced on trials where subjects correctly discriminated 

a small change in orientation as compared to incorrect trials (Scolari & Serences, 2010), and 

the uncertainty about orientation decoded from early visual cortex on individual trials was 

found to reflect the variability of perceptual decisions (van Bergen, Ma, Pratte, & Jehee, 

2015). 



19 

 

The paradigm we used was less suited to investigate the effects of behavioral relevance at the 

level of individual trials: subjects were performing a delayed numerosity comparison with two 

response alternatives (larger or smaller) for which chance performance is 50 % and 

furthermore errors could either arise at the level of encoding of the first or second stimulus, 

thus minimizing the chances to identify true errors with the amount of trials available in an 

fMRI experiment as this one. We therefore focused on differences in behavioral precision 

across subjects and their relation with fMRI decoding. Only one other study to our knowledge 

has so far reported that decoding performance for a fine-grained perceptual comparison 

predicted inter-individual differences in behavioral discrimination capacity: in a phoneme 

discrimination task, decoding of the phonemes /ra and /la differed between English and 

Japanese speakers, but in addition was also indicative of individual differences in behavioral 

acuity within groups (Raizada, Tsao, Liu, & Kuhl, 2010). Interestingly, and different from our 

results, behavioral acuity in that study was related to representations at the earliest stage of 

cortical processing (Heschl’s gyrus). 

The across-subject relation with behavioral performance in our case was found for numerosity, 

but since only numerosity was tested, we cannot claim that the relation is specific for that 

feature in the regions in question, rather than potentially more generally observed for relevant 

contents in a comparison task. However, establishing the specificity of the relation between 

behavior and fMRI decoding for numerosity per se appears a non-trivial enterprise, since 

successful decoding of numerosity already requires a considerable amount of data/scanning 

time, and any additional feature to be contrasted with numerosity regarding its correlation 

with behavioral performance would need to be discriminable within the same regions in the 

first place.  

A related issue is whether the correlation observed necessarily needs to reflect the subjects’ 

intrinsic numerical acuity, rather than variations across subjects in the level of engagement in, 
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or attention to, the task. Attention is well-known to modulate activity in parietal cortex, and  

pattern recognition methods have revealed that distributed response patterns in intraparietal  

areas not only can reflect task set (which feature dimension is attended), but also 

preferentially discriminate between feature values within an attended/task-relevant dimension 

(e.g., Ester, Sutterer, Serences, & Awh, 2016; Liu, Hospadaruk, Zhu, & Gardner, 2011). 

Nevertheless, such attentional enhancement of feature information has been found to be at 

least as present at the earliest stages of the visual hierarchy (e.g., Jehee, Brady, & Tong, 2011; 

Ling, Pratte, & Tong, 2015; Serences & Boynton, 2007). This contrasts with our study, where 

we find that only parietal and not early visual cortex patterns reflect behavioral acuity for 

numerosity across subjects, although our design does not allow us to explicitly rule out effects 

related to attention in this finding. 

In addition to the across subject relation between behavioral acuity and pattern decoding 

performance for numerosity discrimination, our study also observed differences in numerical 

acuity across the numerical range tested. Specifically, once again in parietal, but not early 

visual cortex, smaller numerosities were better discriminated than larger numerosities of the 

same ratio, paralleling better behavioral precision for the smaller numerosites. Similar 

findings showing that small numerosities are more discriminable than predicted by Weber’s 

law have been obtained in a few other behavioral studies (Burr, Turi, & Anobile, 2010; 

Merten & Nieder, 2009). Interestingly, Burr et al. (2010) have shown that the higher 

behavioral precision for smaller numerosities disappeared when attentional resources were 

engaged elsewhere, leading to the suggestion that several potential mechanisms contribute to 

numerosity discrimination across the numerical range, one of which (for relatively small 

numerosities) requires attentional resources. In our study, the better discriminability of 

smaller numerosities was not restricted to numbers as small as the ones used in that study and 
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it still remains to be understood in detail which task or stimulus factors determine up to which 

limit performance for smaller numerosities can deviate from Weber’s law. 

The findings reported here were obtained during delayed number comparison and thus a 

working memory task. Further studies will be needed to clarify whether the present 

correlations between behavioral numerical acuity and the precision of the neuronal 

representation reflects the precision of the numerical percept per se, or of its maintenance in 

short-term memory. On the other hand, a previous study has lent support to the idea that the 

mechanisms for extracting numerosity and non-numerical feature tracking/short term memory 

of properties of visual sets might be closely intertwined (Knops et al., 2014): Area LIP in 

particular is thought to implement a saliency map, and a computational model of a saliency 

map architecture did account for fMRI data acquired with two different tasks in that region by 

different levels of mutual inhibition between model nodes. It seems tempting to speculate how 

such a shared component could potentially provide a unifying explanation for diverse 

impairments found in disorders of numerical processing (dyscalculia) that are conventionally 

categorized as either domain-specific (impairments in non-symbolic number processing) or 

domain-general (impairments in visual working memory) (Piazza et al., 2010; Szucs, Devine, 

Soltesz, Nobes, & Gabriel, 2013). 

To summarize and conclude, the present study is the first one to demonstrate that the 

precision of numerosity evoked activity patterns in intraparietal cortex, and more specifically 

the equivalent of area LIP, correlates with behavioral enumeration abilities and thus likely 

constitutes a crucial level of the cortical hierarchy at which activity is read out for perceptual 

decisions during numerosity tasks. Future studies may clarify whether this link between 

behavioral precision and evoked response patterns in intra-parietal cortex is specifically found 

for numerosity or also for other quantitative or even non-quantitative perceptual contents, 

what is the role of attention to or task relevance of the feature in question, and what, if any, is 
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the relation between the brain behavior correlation described here and higher-level aspects of 

numerical performance. 
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Figure Legends 

Figure 1:  

Paradigm: A) In a delayed numerical comparison task, subjects were presented with a sample 

numerosity for 150 ms that after an SOA of several seconds was followed by a match 

numerosity presented for the same short duration and required a smaller/larger judgment. The 

critical fMRI data used for multivariate decoding were the responses evoked by the sample 

numerosities. B) In each half of the experimental runs, three sample numerosities were used, 

forming two partly overlapping ranges (either 8, 13 and 21, or 13, 21 and 34 items). 

Behavioral results: The percentage of larger responses in the preceding independent 

behavioral experiment was fitted with cumulative Gaussian functions to obtain a measure of 

the internal Weber fraction (w). Panel C) illustrates the functions fitted in one subject, with 

steeper lopes for smaller numerosities. Panel D) displays group results (n=12, means and 

SEM) for w obtained for the three sample numerosities in the two ranges. 
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Figure 2:  

FMRI decoding results and across-subject correlation with behavioral Weber fractions in 

early visual and parietal ROIs:  Panel A) displays the ROIs and average confusion matrices 

obtained from all pairwise classifications between numerosities in each numerical range, for 

regions of interest in early visual and parietal cortex. Individual subjects’ ROIs were defined 

as the 600 voxels most activated across all sample numerosities vs baseline, within anatomical 

masks (derived from WFU Pickatlas, see Materials and Methods for details). For the ROI 

summary displays, rendered onto Caret’s PALS Atlas, the color code reflects the number of 

subjects (out of 12) in whom one given voxel location was included in their specific ROI 

(smaller values in the parietal cortex reflect a larger variability of the most activated voxels 

across subjects within the large anatomical mask). In the confusion matrices, the values on the 

diagonal correspond to the percentage of correct identifications for each numerosity on 

average across all pairwise comparisons, and the off-diagonal values correspond to the 

percentages of incorrect identification (confusion with one of the other numerosities). The 

theoretical chance level for correct identification is 50 %. Panel B) displays the average 

classification performance (means and SEM across the 12 subjects) for pairwise 

discrimination between numerosities for each ROI (middle panel) together with correlations 

between individual subjects’ fMRI classification performance and behavioral Weber fractions 

(left panel for early visual cortex, right panel for parietal cortex). In spite of a very similar 

average decoding performance in the two ROIs, a negative correlation between behavioral w 

and fMRI decoding performance was found only in the parietal ROI, indicating that subjects 

with a more precise behavioral discrimination measured prior to scanning had more precisely 

discriminable evoked activation patterns in that region. 
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Figure 3:  

FMRI decoding results and across-subject correlation with behavioral Weber fractions in the 

left and right functional equivalents of areas LIP and VIP: Individual subjects’ ROIs were 

defined as the 150 voxels most activated across all sample numerosities vs baseline, within 

each of four group-level masks as derived from a previous study (Eger et al., 2015). Panel A) 

illustrated the ROI locations rendered onto Caret’s PALS Atlas, with color codes 

corresponding, as in Figure 2, to the number of subjects (out of 12) in whom one given voxel 

location was included in their specific ROI.  Panel B) displays the average classification 

performance (means and SEM across the 12 subjects) for pairwise discrimination between 

numerosities (theoretical chance level = 50 %) for left and right LIP (middle panel) together 

with correlations between individual subjects’ fMRI classification performance and 

behavioral Weber fractions (left panel for left hemisphere, right panel for right hemisphere). 

Panel C) displays the corresponding results for left and right VIP. The negative correlation 

between behavioral Weber fractions and fMRI decoding performance was only significant in 

the right LIP ROI when testing all regions in isolation. 

 

Figure 4:  

FMRI decoding results and behavioral precision across the numerical range: The d-prime 

index was calculated for all pairwise comparisons between numerosities (within each of the 

two numerical ranges) from behavioral Weber fractions and from fMRI decoding 

performance. Panel A) shows the across subject averages of the d-prime matrices for 

behavioral discrimination, and panel B) the ones for fMRI pattern discrimination in early 

visual and parietal ROIs. A tendency for higher d-prime values (indicating better 

discriminability) for comparisons involving smaller as opposed to larger numerosities can be 
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seen in the behavioral results and in the fMRI results from parietal cortex. Multiple 

regressions, run on a subject-by-subject basis and tested for significance across subjects, 

confirmed a significant effect of numerical size on top of ratio, for the pairwise 

discriminability in the behavioral data (C) and the fMRI data of parietal cortex but not early 

visual cortex (D). 
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