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En hommage

Introduction

Il est bien vraisemblable que l'on savait, avant toute étude de la réfraction, que la lumière se réfracte à son passage de l'air à l'eau, par exemple. Les astronomes, tel que Cléomède, évoquent l'analogie entre un bâton dont une partie est immergée dans l'eau et le rayon visuel quand il pénètre dans la sphère céleste [START_REF] Goulet | Théorie élémentaire[END_REF]. Mais c'est Ptolémée qui, le premier, a soumis la réfraction à une étude à la fois mathématique et expérimentale dans le cinquième livre de son Optique [START_REF] Ptolémée | L'Optique, dans la version latine de l'Emir Eugène de Sicile[END_REF]. Ainsi après avoir étudié dans les livres précédents de son ouvrage la vision directe et la vision par réflexion sur différents miroirs, il s'occupe de la réfraction dans le cinquième livre. Il écrit :

La réfraction se produit non seulement au passage de milieux rares à des milieux denses, comme dans la réflexion, mais également au passage d'un milieu plus dense à un milieu plus rare ; il n'y a pas dans ce cas de réflexions à angles égaux, mais [ces angles] présentent une certaine relation quantitative par rapport à la normale [au point d'impact] 1 .

Dans ce paragraphe introductif à l'étude de la réfraction du rayon visuel (celui qui émane de l'oeil vers l'objet), Ptolémée évoque déjà plusieurs notions qui vont être considérées par toute théorie de la réfraction de la lumière : les milieux, leurs densités, l'inégalité des angles d'incidence et de ceux de réfraction, et les relations quantitatives entre eux par rapport à la normale au point d'incidence. Ptolémée s'est mis immédiatement à mesurer ces angles pour pouvoir déterminer les relations quantitatives entre eux, lors du passage du rayon visuel de l'air dans l'eau, de l'air dans le verre et de l'eau dans le verre, et donne les résultats dans des tableaux pour des valeurs d'incidence tous les 10 degrés, jusqu'à 80 degrés. Ce cinquième livre de l'Optique sera la principale référence de la recherche future sur la réfraction. Mais il a fallu attendre huit siècles avant que celle-ci reprenne et se renouvelle. C'est à la suite de la traduction arabe de l'ouvrage de Ptolémée que les mathématiciens de la seconde moitié du X e siècle engagent la recherche dioptrique selon deux orientations :

(i) La recherche de la loi générale de la réfraction. Le premier, à ma connaissance, qui a entrepris cette recherche est un mathématicien de la seconde moitié du X e siècle, Ibn Sahl [START_REF] Rashed | Geometry and Dioptrics in Classical Islam[END_REF]. Il a commencé par caractériser chaque milieu par un certain rapport constant, qui n'est autre que l'inverse de l'indice de réfraction de ce milieu par rapport à l'air. Il a formulé une loi équivalente à la loi des sinus [START_REF] Rashed | Geometry and Dioptrics in Classical Islam[END_REF]. Le mouvement suivant la normale est plus aisé et plus fort, et parmi les mouvements obliques, les plus proches de la normale sont les plus aisés [START_REF] Al-Haytham | Opticae Thesaurus Alhazeni Arabis Liber Septem[END_REF].

Il explique encore qu'il est nécessaire que la lumière tende vers la voie la plus aisée tout en conservant son mouvement composé. Or la voie la plus aisée où persiste le mouvement est la voie la plus proche de la normale. C'est ainsi que la lumière qui se propage dans un corps transparent et rencontre un corps transparent plus dense se réfracte suivant une ligne plus proche que la ligne de son mouvement de la normale menée du point où elle rencontre le corps dense.

Ibn al-Haytham propose donc une interprétation physique du changement de chemin de la lumière lors de son passage d'un milieu moins réfringent à un milieu plus réfringent. Le passage inverse pose d'autres problèmes. Il reste qu'Ibn al-Haytham ne donne aucune formulation mathématique de ce principe de la voie la plus aisée. Pour cela, il a fallu attendre Fermat et son invention de la méthode des maxima et minima. [START_REF]Les pages suivantes sont extraites de R. Rashed, Fermat et les débuts modernes de la géométrie[END_REF].

Fermat

Fermat n'a pas appliqué sa méthode du maximum et du minimum aux seuls problèmes géométriques et algébriques, mais aussi aux questions d'optique et de dioptrique.

Tout a commencé en 1637, à la suite de la publication de la Dioptrique de Descartes. Sollicité par Mersenne pour donner son avis sur cette publication, Fermat répond dans une lettren • XXII -datée par P. Tannery et Ch. Henry du mois de septembre, et par Ch. Adam et G. Milhaud d'avril ou mai de la même année.

Cette lettre laisse paraître que Fermat connaissait le Livre de l'Optique d'Ibn al-Haytham dans sa traduction latine, ainsi que ceux de Vitellius et de Maurolico, mais pas celui de Kepler.

Par ailleurs, Fermat y semble attacher davantage d'importance à la preuve formelle qu'à la preuve expérimentale, se montrant ainsi plus mathématicien que physicien. Il adresse à la Dioptrique de Descartes une critique solide : (i) Il n'est pas permis de soumettre un phénomène instantané, celui de la propagation de la lumière par transmission des pressions, aux lois du mouvement des projectiles. Il écrit : Il semble qu'il y a une particulière disconvenance, en ce que le mouvement d'une balle est plus ou moins violent, à mesure qu'elle est poussée par des forces différentes, là où la lumière pénètre en un instant les corps diaphanes, et semble n'avoir rien de successif. Mais la Géométrie ne se mêle point d'approfondir les matières de la Physique.

Notons qu'à cette époque Fermat admet lui aussi la propagation instantanée de la lumière, contestant seulement qu'on puisse lui appliquer les lois du mouvement des projectiles ; d'ailleurs, tout comme Descartes, il accepte la loi aristotélicienne. (ii) L'autre critique porte sur l'analogie invoquée par Descartes, et déjà par Ibn al-Haytham : le modèle de la balle animée d'un mouvement violent, lancée contre un obstacle.

Dans une autre lettre à Mersenne, datée de décembre 1637 (n • XXIV), Fermat réagit aux réponses que Descartes adresse à ses critiques. Il réitère et développe ses critiques du modèle de la balle, mais en introduisant une modification notable. Alors, en effet, que, dans la première lettre, il est loin de concevoir la nature vectorielle de la vitesse de la lumière, dans la seconde il laisse nettement apparaître le parallélogramme des vitesses. Vingt ans après, dans sa correspondance avec Clerselier (Lettre XC) du mars 1658, et la lettre (XCV) du 2 juin 1658, Fermat réitère ses anciennes critiques de la Dioptrique de Descartes, auxquelles il ajoute quelques nouvelles. En 1664, après avoir écrit "L'analyse de la réfraction" et "La synthèse de la réfraction", il écrit à un anonyme (Lettre CXVI) en rappelant les deux précédentes critiques. Il reste que l'essentiel de sa critique porte sur le modèle de la balle pour expliquer la réfraction, et sur la distinction faite par Descartes entre la "détermination", ou droite de support du vecteur vitesse, et la vitesse elle-même. Tout indique qu'il est alors dans la même opinion que vingt ans auparavant, lorsqu'il écrivait à Mersenne :

Voilà mon sentiment sur ces nouvelles propositions (de Descartes), dont les conséquences qu'il en tire, lorsqu'il traite de la figure que doivent avoir les lunettes, sont si belles, que je souhaiterais que les fondements sur lesquels elles sont établies fussent mieux prouvés qu'ils ne sont pas ; mais j'appréhende que la vérité leur manque aussi bien que la preuve.

À la lecture de la correspondance de Fermat en 1637 et en 1658, on constate qu'il admet les résultats de la Dioptrique de Descartes, la loi des sinus (en attendant de l'asseoir sur des bases solides) et son application à l'étude des lentilles, mais qu'il rejette les explications de Descartes -les fondements physiques adoptés pour construire le modèle de la balle.

Au cours de ces deux décennies, la pensée de Fermat se modifie et se rectifie. Dans la réponse à de la Chambre qui lui avait envoyé son livre 2 La lumière, il écrit : et j'ose même vous assurer par avance que, si vous souffrez que je joigne un peu de ma géométrie à votre physique, nous ferons un travail à frais communs qui nous mettra d'abord en défense contre M. Descartes et tous ses amis.

Il poursuit : Je reconnais premièrement avec vous la vérité de ce principe, que la nature agit toujours par les voies les plus courtes. Vous en déduisez très bien l'égalité des angles de réflexion et d'incidence,[...] ; et, un peu plus loin : Mais, puisqu'il (notre principe) a servi à la réflexion, pourrons-nous en tirer quelque usage pour la réfraction ? Il me semble que la chose est aisée et qu'un peu de géométrie nous pourra tirer d'affaire.

Ainsi, dans cette lettre d'août 1658 à de la Chambre, Fermat expose un nouveau projet : combiner sa géométrie à une nouvelle physique de la lumière qui admet le principe de la voie la plus aisée, mais aussi la propagation de la lumière dans un temps fini. Sans doute lui fallait-il alors modifier d'autres éléments, et notamment formuler le principe de telle sorte qu'il puisse épouser la géométrie. Autrement dit, il fallait doter ce principe qualitatif d'un statut mathématique. Nous avons vu qu'Ibn al-Haytham, dans son Optique, avait tenté semblable démarche en étudiant les deux composantes du mouvement de la lumière -radiale et tangentielle. Mais cela ne semble pas suffire. Selon Fermat, cela ne sera en effet possible que lorsqu'on formule ce principe comme un principe d'extremum. Mais, pour ce faire, il faut adapter le contenu physique.

En 1658, Fermat s'efforce de transformer ce problème en problème de minimum. Il écrit dans la même lettre à de la Chambre 3 :

2. Notons qu'en août 1657 Fermat parle à de la Chambre "de la perte d'un Discours que je vous avais adressé, il y a déjà quelques années, sur ce même sujet et que j'ai su n'être pas venu entre vos mains". D'autre part, le 21 mai 1662, il écrit à Clerselier : "J'écrivis, il y a plus de dix ans, à M. de la Chambre que je croyais que la réfraction se devait réduire à ce problème de la géométrie ..." ([6] p. 483). Les dates s'accordent pour confirmer que Fermat avait bien écrit ce Discours, aujourd'hui perdu, et donc qu'autour des années 1652 il écrivait sur l'optique.

3. Lisons la traduction latine du texte déjà cité : "necesse est, ut lux declinet ad partem faciliorem parte, ad quam prius movebatur, remanente in ipso motu composito ; sed pars facilior parte, ad quam movebatur remanente motu in ipso, est illa pars, quae est vicinor perpendiculari. Unde lux, quae extenditur in corpore diaphano, si occurrit corpori diaphano grossiori corpore, in quo existit, refringetur per lineam propinquiorem perpendiculari, exeunti a puncto, in quo occurrit corpori grossiori, quae extenditur in corpore grossiore per aliam lineam quam sit linea, per quam movebatur" [START_REF] Alhazen | Opticae Thesaurus Alhazeni Arabis Liber Septem[END_REF].

Étant donnés les deux points C et A et la droite DB, (voir Figure 1) trouver un point dans la droite DB auquel si vous conduisez les droites CB et BA, la somme de CB et de la moitié de BA contienne la moindre de toutes les sommes pareillement prises, ou bien que la somme de CB et du double de BA contienne la moindre de toutes les sommes pareillement prises :

Et le point B qui sera trouvé par la construction de ce problème sera le point où se fera la réfraction. Fermat fera le calcul de ce problème de minimum et s'expliquera sur ces choix de la moitié et du double cinq ans plus tard. On lit les premières explications dans une lettre qu'il adresse à de la Chambre le 1er juillet 1662, sur la réfraction. Dans cette lettre, il traduit le principe de la voie la plus aisée de sorte qu'il se prête à une formulation géométrique. Il donne l'exemple suivant :

Soit, en la figure à part (voir Figure 2), le cercle ACBG, duquel le diamètre soit AOB, le centre O et un autre diamètre GOC. Des points G et C soient tirées des perpendiculaires sur le premier diamètre, GH, CD. Supposons que le premier diamètre AOB sépare deux milieux différents, dont l'un qui est celui de dessous, AGB, soit le plus dense, et celui de dessus, ACB, soit le plus rare, en telle sorte, par exemple, que le passage par le plus rare soit plus aisé que celui par le plus dense en raison double Il suit de cette supposition que le temps qu'emploie le mobile ou la lumière de C en O est moindre que celui qui les conduit de O en G, et que le temps du mouvement de C en O, qui se fait dans le milieu le plus rare, n'est que la moitié du temps du mouvement de O en G. Et par conséquent la mesure du mouvement entier par les deux droites CO et OG peut être représentée par la somme de la moitié de CO et de la totale OG ; de même, si vous prenez un autre point, comme F, le temps du mouvement par les deux droites CF et FG peut être représenté par la somme de la moitié de CF et de la totale FG. Après avoir traduit le principe de la voie la plus aisée dans les termes "du temps du mouvement", et aussi en termes de vitesse, il écrit : parce que, pour satisfaire à mon principe, il ne suffit pas d'avoir trouvé un point comme F, par où le mouvement naturel se fait plus vite, plus aisément et en moins de temps que par la droite COG, mais [qu'] il faut encore trouver le point qui fait la conduite en moins de temps que quelque autre que ce soit, pris des deux côtés, il m'a été nécessaire d'avoir en cette occasion recours à ma méthode de maximis et minimis qui expédie cette sorte avec assez de succès.

Fermat conclut qu'il lui restait à surmonter deux obstacles : d'une part, mener de longs calculs pour traduire mathématiquement le principe du temps le plus court ; d'autre part, vérifier par l'expérience les valeurs obtenues.

Or il savait par M. Petit et par d'autres que les valeurs de la réfraction obtenues grâce à la loi des sinus de Descartes sont vérifiées expérimentalement. Mais ces valeurs avaient été obtenues à l'aide d'une hypothèse selon laquelle le rapport du sinus de l'angle d'incidence et de celui de l'angle de réfraction pour deux milieux n 1 et n 2 est égal au rapport des vitesses de la lumière dans les deux milieux respectifs. Vient donc s'ajouter, selon Descartes, une seconde hypothèse : si le milieu n 2 est plus réfringent que le milieu n 1 , alors on a sin a sin b = v 2 v 1 avec a angle d'incidence dans n 1 , b angle de réfraction dans n 2 , v 2 vitesse dans n 2 et v 1 vitesse dans n 1 . Dans ses calculs, Fermat admet la première hypothèse et inverse la seconde. Au cours du calcul, il considère la résistance des milieux, ce qui est équivalent aux vitesses. Il présente ces calculs dans deux textes, l'un consacré à l'analyse, l'autre à la synthèse.

Analyse pour les réfractions

Selon De Waard, ce texte, comme celui qui porte sur la synthèse, est extrait de la correspondance de Descartes. Fermat l'avait envoyé à M. de la Chambre en même temps que sa lettre du 1er janvier 1662. Il aura donc fallu à Fermat cinq ans environ avant de livrer ses calculs. Dans ces pages, Fermat représente la résistance des divers milieux au mouvement de la lumière par des grandeurs (définies à un facteur près), et le mouvement qui doit être rendu minimum (selon la voie la plus aisée) par le produit de la résistance par la longueur du parcours. Il considère un rayon incident CD, réfracté en DI au passage de la surface de séparation ADB des deux milieux (voir Figure 3).. Les points et I sont sur un cercle de centre D, et ils se projettent, en F et H respectivement, sur AB. Le milieu le moins dense est le demi-cercle supérieur, et le plus dense l'autre demi-cercle. Si les résistances des deux milieux sont représentées respectivement par DF et par m, le mouvement total est représenté par mCD + DIDF , qu'il faut rendre minimum.

Fermat écrit alors : Nous emploierons à cet effet notre méthode, déjà répandue parmi les géomètres et exposée depuis environ vingt ans par Hérigone dans son Cursus mathematicus.

Il fait varier le point D sur AB, C et I restant fixes. Si D vient en O tel que DO = e petit, on a :

CO 2 = CF 2 + F O 2 = CD 2 -F D 2 + (F D -e) 2 = n 2 -2be + e 2 en posant CD = n et F D = b. De même IO 2 = n 2 + 2ae + e 2
, avec a = DH. Le vrai chemin est donc :

CO.m + IO.b = m 2 n 2 + m 2 e 2 -2m 2 be + b 2 n 2 + b 2 e 2 + 2b 2 ae
C'est cette expression qu'il s'agit de rendre minimum. Fermat indique les étapes du calcul, sans l'effectuer : il commence par élever l'expression au carré et la compare à la valeur mn + nb) 2 correspondant pour e = 0. La différence s'écrit :

m 2 e 2 -2m 2 be + 2b 2 ae + 2 m 2 n 2 + m 2 e 2 -2m 2 be b 2 n 2 + b 2 e 2 + 2b 2 ae -2bnm 2
on l'adégale à 0, ce qui donne :

2 m 2 n 2 + m 2 e 2 -2m 2 be b 2 n 2 + b 2 e 2 + 2b 2 ae = 2bm 2 -m 2 e 2 + 2m 2 be -b 2 e 2 -2b 2 ae
On élève à nouveau au carré pour faire disparaître tous les radicaux :

4(m 2 n 2 + m 2 e 2 -2m 2 be)(b 2 n 2 + b 2 e 2 + 2b 2 ae) = (2bmn 2 -m 2 e 2 + 2m 2 be -b 2 e 2 -2b 2 ae) 2 .
En effectuant les multiplications, en faisant disparaître les termes communs et en simplifiant par le facteur e, on trouve :

(m 2 -b 2 ) 2 e 3 + (b 2 -m 2 )(ab + m 2 )e 2 + 4be((ab + m 2 ) 2 b -mn 2 (m + b) 2 ) = 8mn 2 b 2 (a -m)(m + b)
Selon la méthode de Fermat, on peut maintenant remplacer e par 0, et on obtient

8mn 2 (a -m)(m + b) = 0,
ce qui donne a = m. C'est alors que Fermat écrit : Par conséquent, pour trouver le point de réfraction, il faut, ayant mené les droites CD et CF, prendre les droites DF et DH dans le rapport de la résistance du milieu plus dense à celle du milieu moins dense, soit dans le rapport de b à m. On élèvera ensuite en H la perpendiculaire HI au diamètre ; elle rencontrera le cercle en I, point où passera le rayon réfracté ; et ainsi d'ailleurs le rayon, passant d'un milieu moins dense dans un plus dense, s'infléchira du côté de la perpendiculaire : ce qui concorde absolument et sans exception avec le théorème découvert par Descartes ; l'analyse ci-dessus, dérivée de notre principe, donne donc de ce théorème une démonstration rigoureusement exacte.

Autrement dit, au point D on a DF DH = b a = F D m , c'est-à-dire le rapport des résistances des milieux.

Synthèse pour les réfractions

Au début de ce texte, Fermat revient sur la controverse qui l'a opposé à Descartes à propos de la réfraction. Il écrit :

Le savant Descartes a proposé pour les réfractions une loi qui est, comme on dit, conforme à l'expérience ; mais, pour la démontrer, il a dû s'appuyer sur un postulat absolument indispensable à ses raisonnements, à savoir que le mouvement de la lumière se ferait plus facilement et plus vite dans les milieux denses que dans les milieux rares ; or ce postulat semble contraire à la lumière naturelle.

Fermat cherche à fonder la loi de la réfraction à partir, dit-il, "du principe contraire". En effet, sa démonstration repose sur le postulat classique qui veut que la nature opère "par les voies les plus aisées", et sur le contenu quantitatif qu'il donne à ce postulat : le principe de la voie la plus aisée doit rendre, non pas la longueur parcourue, mais le temps de parcours minimum. Ce temps est égal, dans un milieu donné, à la longueur parcourue divisée par la vitesse de propagation. Cette vitesse est supposée constante pour un milieu diaphane donné et la "résistance" du milieu est considérée comme proportionnelle à l'inverse de cette vitesse. C'est ce qu'il entend démontrer dans ce texte. Il ne s'agit donc pas d'une "synthèse" au sens usuel en mathématiques, c'est-à-dire l'inverse de l'analyse avec des constructions auxiliaires s'il le faut ; mais de la démonstration d'une loi physique, où l'on procède à l'aide des notions optiques et des concepts géométriques. Il représente le rapport des vitesses dans les deux milieux par :

A

V M N V N H = V M R V RH = M N N I = M R RP On a donc M N • V N H = N IV M N et M R • V RH = RP • V M N
Le rapport des temps de parcours s'écrit : 

temps(M N H) temps(M RH) = M N V M N + N H V N H M R V M R + RH V RH = M N • V N H + N H • V N M M R • V RH + RH • V M R car V M N = V M R et V N H = V RH , ce rapport se transforme en V N M (N I + N H) V M R (RP + RH) = IN + N H P R

Figure 1 .

 1 Figure 1. Voir texte principal.
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 2 Figure 2. Voir texte principal.
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 3 Figure 3. Voir texte principal.

Figure 4 .

 4 Figure 4. Voir texte principal. Fermat considère deux chemins M N H et M RH entre les points fixés M et H. Les points N et R sont des points de la frontière entre les deux milieux dans le plan de la figure 4, plan déterminé par les droites M D et HS qui projettent orthogonalement M et H sur le plan de séparation des deux milieux.Il représente le rapport des vitesses dans les deux milieux par :

2 =

 2 + RH Le principe adopté par Fermat revient à dire que IN + N H est minimum si M N H est le trajet suivi par la lumière. Fermat interprète ensuite la loi des sinus telle que Descartes l'a formulée en termes de vitesse de propagation, pour pouvoir la rapprocher de son principe. Il introduit dans la figure précédente un cercle centré sur la droite séparant les deux milieux et qui passe par M et H. Si on suppose que le point N par où passe le rayon lumineux est le centre du cercle, les segments DN et N S, projections respectives de M N et N H sur le diamètre AB du cercle, sont proportionnels aux sinus de l'angle d'incidence et de l'angle de réfraction. La loi des sinus signifie donc que DN N S est une constante, ne dépendant que des deux milieux. Fermat interprète ce rapport comme étant celui des vitesses de propagation dans les deux milieux, ce qui lui permet de se ramener au problème purement géométrique suivant : si le point I sur M N est déterminé par DN N S = M N N I , la somme IN + N H est minimum. La démonstration est désormais purement géométrique et synthétique. On considère un point quelconque R = N sur la droite AB ; il s'agit de démontrer que IN + N H < RP + RH, où P est le point de M R tel que M R RP = DN N S . Fermat introduit les points O et V de M N tels que M N DN = RN N O et DN N S = N O N V ; on a évidemment N O < N R et N V < N O, si on suppose que M se trouve dans le milieu le moins dense (DN > N S). Le calcul est le suivant :M R 2 = M N 2 + N R 2 ± 2DN.N R RH 2 > HN 2 + N R 2 ∓ SN • N R où le signe supérieur correspond à un point R à droite de N . Comme DN • N R = M N • N O et SN • N R = HN • N V , puisque M N 2 + N R 2 ± M N • N O et RH 2 > HN 2 + N R 2 ∓ 2HN • N V En utilisant le fait que N R > N O > N V , on a M R 2 > M N 2 + N O 2 ± 2 M N • N O = (M N ± N O) 2 et RH 2 > HN 2 + N V 2 ∓ 2HN • N V = (HN ∓ N V ) 2 . Ainsi, M R > M N ± N O et RH > HN ∓ N V .On en déduit enfin que P R + RH > IN + N H et donc que le temps selon le rayon brisé M N H est moindre que le temps selon le rayon brisé M RH, au moins d'après la position des points R et N et si la surface réfringente est plane. On démontre la proposition d'une manière analogue dans le cas où R est un point de AN .

Réf.[START_REF] Ptolémée | L'Optique, dans la version latine de l'Emir Eugène de Sicile[END_REF], p. 90.
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