
HAL Id: hal-03485018
https://hal.science/hal-03485018

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Self-similar vortex reconnection
Sergio Rica

To cite this version:
Sergio Rica. Self-similar vortex reconnection. Comptes Rendus. Mécanique, 2019, 347, pp.365 - 375.
�10.1016/j.crme.2019.03.011�. �hal-03485018�

https://hal.science/hal-03485018
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Self-similar vortex reconnection

Sergio Rica
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Abstract

As shown by Crow in 1970 the evolution of two almost parallel vortex filaments with opposite circulation exhibits
a long-wave instability. Ultimately, the symmetric mode increases its amplitude reconnecting both filaments and
ending into the formation of an almost periodic structure of vortex rings. This is an universal process which
appears in a wide range of scales: from the vortex trails behind an airplane to a microscopic scale of superfluids and
Bose-Einstein condensates. In this paper I will focus on the vortex reconnection for the later case by employing
the Gross-Pitaevskii theory. Essentially, we focus on the well known laws of interaction and motion of vortex
filaments. By means of numerical simulations, as well as, theoretically, we show that a self-similar finite time
dynamics manifests near the reconnection time. A self-similar profile is selected showing excellent agreement with
numerical simulations. To cite this article: S. Rica, C. R. Mecanique ??? (2019).

Résumé

Reconnection des vortex auto-similaire. Comme le montre Crow en 1970, l’évolution de deux filaments
de vortex presque parallèles à circulation opposée présente une instabilité à grand longueur d’onde. Le mode
symétrique augmente d’amplitude en reconnectant les deux filaments et se termine par la formation d’une structure
presque périodique d’anneaux de vortex. Il s’agit d’un processus universel qui apparâıt à différentes échelles : des
allées de vortex derrière un avion à l’échelle microscopique des superfluides et des condensats de Bose-Einstein.
Dans cet article, je me concentre sur la reconnection de vortex pour le dernier cas en utilisant la théorie de Gross-
Pitaevskii. Nous nous concentrons essentiellement sur les lois bien connues de l’interaction et du mouvement des
filaments de vortex. À l’aide de simulations numériques ainsi que théoriquement, nous montrons qu’une dynamique
en temps fini auto-similaire se manifeste près du temps de reconnection. Un profil auto-similaire est sélectionné,
montrant un excellent accord avec les simulations numériques. Pour citer cet article : S. Rica, C. R. Mecanique ? ? ?
(2019).
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1. Introduction

In 1992, Lim and Nickels, from Melbourne, performed an extraordinary experiment on the instability
and reconnection of opposite circulation vortex rings aligned in a perfect head-on scattering [1,2,3]. The
experiment, done in water, consisted on the head-on collision of two equal circular vortex. According
to the self-induction law, the vortex rings move ahead, however, as the vortex rings approach, because
of mutual interaction, the ring radius increases resulting in a simultaneous expansion of both vortex
rings 1 . Further, as the radius increases an instability develops being amplified with an almost periodic
modulation. Eventually the amplitudes of deformation are large enough leading to vortex reconnection and
to radial momentum transfer by the emission of small vortex rings. Interestingly, the inverse configuration,
namely a number of small vortex rings converging to a point resulting into the emergence of two vortex
rings moving in opposite directions, was recently observed in experiments on air [4,5].

As already recognized by Lim and Nickels, when the vortex radius becomes sufficiently large, the
dominant interaction comes from the opposite vortex ring, hence the situation may be regarded as that
of two almost parallel vortex filaments with opposite circulation, a problem studied by Crow, from the
Boeing company, in 1970 [6]. Crow’s instability concerns the development of a long-wave instability for
the separation distance of almost antiparallel drifting vortex filaments in an inviscid fluid. Crow shows
that ultimately the symmetric mode increases its amplitude reconnecting both filaments and ending into
the formation of an almost periodic structure of vortex rings.

In a different context, vortex reconnections have regained interest in the last ten years in the con-
text of helium II superfluid, since the experiment of Bewley, Lathrop and collaborators [7,8]. Because
superfluid helium is essentially inviscid below 1 K and vortex circulation is quantized, helium II appears
to be an excellent candidate to test Lim and Nickels and Crow instabilities. However, being extremely
complicated in comparison with ordinary fluids, the two fluid behavior of helium II does not help from
a theoretical point of view. Nevertheless, the T = 0 K behavior of a Bose-Einstein condensate (BEC)
shares perfectly the desired phenomenology of vortex dynamics, hence the instability and the vortex re-
connection. Bose-Einstein condensates are perfectly understood in terms of the Gross-Pitaevskii equation
for the macroscopic wave function ψ which is, finally, related to the one particle density matrix of the
system [9,10]. The Gross-Pitaevskii equation is a nonlinear Schrödinger equation (NLS), which is also a
time-dependent nonlinear partial differential equation but simpler than Euler or Navier-Stokes equations
for fluids (rephrasing AC Newell: “BEC, at T = 0, are easier to understand than they are to drink.”)

The nonlinear Schrödinger equation reads [11]:

i
∂

∂t
ψ =−1

2
∆ψ + g|ψ|2ψ, (1)

here ∆ = ∇2 is the usual Laplacian in 3D, we used dimensionless variables and all parameters are set to
one, being g = ±1 a sign variable that distinguishes the defocusing case (g = 1) from the focusing case
(g = −1). From now on, we focus our attention to the former case. NLS shares many desired features in
an infinite domain:

(i) It possesses a number of invariances: phase invariance, translational and rotational invariance, a
dilatation invariance, Galilean invariance, and it is time reversible.

(ii) It preserves the number of particles, the energy and both linear and angular momentum.

(iii) From a mathematical point of view is a Hamiltonian dynamics.

Email address: sergio.rica@uai.cl (Sergio Rica).
1. Something easily observed as a smoke vortex ring collides into a wall (the wall creates an image vortex in the opposite

direction).
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(iv) Weak and long-wave perturbations correspond to non dispersive acoustic modes.

(v) Equation (1) admits topological defects as exact solutions which represent quantized vortices. These
are non singular solutions for ψ. Moreover, the vortex core parameter naturally appears to be the
balance among the non-linear and linear terms [12]. This distance, called the healing length (ξ0), is
of the order of one in the dimensionless units used in (1). The existence of this intrinsic length makes
a crucial difference regarding the motion of vortex filaments in ordinary fluids, in which case a core
dynamics is expected [13,14,15]. A proof of the above, is the recently observed vorticity dynamics
on head-on collisions of vortex rings [3].

Because of the simplicity of NLS, and due to these mathematical properties, it appears to be an
attractive model for Bose-Einstein condensates and it has been extensively studied during the last 50
years. In particular the Crow instability was studied by Berloff and Roberts [16], and it was recognized
that the number of small vortex rings created depends on the initial separation distance of the two
traveling vortices, however no link was identified with the problem of vortex reconnection. In superfluids,
vortex reconnection has been studied long ago in the frame of the Biot-Savart filament dynamics [17,18]
and as well as for the nonlinear Schrödinger equation [19].

The self-similar character of vortex reconnections was recognized by Pumir and Siggia [13,14] since the
mid 80s in connection with ordinary fluids and in the context of superfluids it was recently highlighted
[8,20,21,22] (See Ref. [21] and references therein for more details.)

In what it follows, Section 2 shows numerical simulations of the Crow instability in the frame of NLS
for the cases of: two anti-parallel vortex filaments and two head-on vortex rings collision. Next, Section 3,
introduces vortex interaction of two parallel filaments in the frame of an incompresible and inviscid fluid.
Section 4 provides evidence of self-similar vortex reconnection. Section 5 discuss the non-local effects of
vortex interactions and its consequences. Finally, Section 6 concludes the current work.

2. Crow instability in the frame of the Nonlinear Schrödinger equation

2.1. Antiparallel vortex instability

The time-dependent Gross-Pitaevskii equation (1) is solved with an initial condition ψ0(x, y, z) which
vanishes at two parallel lines aligned within the z-axis and a separation distance |z0| (for the notations
see below Secc. 3.2), which is a parameter that can be varied as desired. The resulting, initial condition
corresponds to two topological defects. Figs. 1-(a-a’) show two parallel vortex filaments with a slight
sinusoidal displacement (similar results are obtained with a noisy perturbation of the vortex filaments
position). As time passes, the vortex pair drifts as expected, moreover, the vortex distance perturbation
is amplified, reconnecting the two vortex lines (Figs. 1-(b-b’ & c-c’)), ending with an array of traveling
vortex rings (Figs. 1-(d-d’)).

By varying the separation distance, |z0|, of the initial vortex pair, one notices that the number of
vortices nucleated after the reconnection process scales as n ∼ 1/|z0|, see Fig. 2-(a).

2.2. Circular vortex ring instability

Next, we start with an initial condition consisting in two circular vortex rings with the same radii aligned
into the z-axis, and placed head-on to ensure a frontal collision. Because of self-induction, the vortex rings
drift one against the other colliding at the mid-point. As they come together the self-induction becomes
weaker than the interaction between the two rings so they drift into the orthogonal plane increasing its
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(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

Figure 1. Snapshots of the anatomy of vortex reconnection by the Crow instability mechanism. The initial separation distance

was 3 units of length. (a) A modulational instability starts to develop, in (b) it is shown the fore vortex-reconnection instant,

(c) shows the after vortex-reconnection instant, and (d) shows the further evolution of 8 drifting vortex rings. The time
sequence is (a) t = 30, (b) t = 38, (c) t = 40 and (d) t = 50. The second row plots a zoom of the same time sequence. The

three dimensional surface plot shows the iso-surface |ψ|2 = 0.4 and the simulations evolved into a cubic lattice of N = 2563

with a mesh size dx = 0.5 (length units) and time step dt = 0.01.
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Figure 2. (a) Number of vortex rings as a function of the inverse of the initial distance z0. As a visual guide the line represents:

n =
√
2L
2π

1
|z0|

(See Secc. 2 for the theoretical justification). The initial separation distances are such that |z0| ∈ [2, 10]. The

upper bound, 10, being the largest separation distance that can be allowed by the modulational instability because one gets

just a single loop at the end. (b) Number of vortex rings after the collision of two circular vortex rings colliding head-on.
The line represents n = πR

2
. All simulations were done into a cubic lattice of N = 2563 with a mesh size dx = 0.5 and a

time step dt = 0.01.

radius and becoming unstable by a mechanism similar to that of the Crow’s instability. Ultimately, a
number of small vortex rings are ejected (Fig. 3).

3. Dynamics of two parallel vortex filaments.

3.1. The effective vortex interactions.

Because of the existence of an intrinsic length, the non linear Schrödinger model makes possible to
reach a well defined asymptotic limit in which the vortex filaments are faraway separated. Under this
assumption, the full wave function is described by its phase and by the motion of vortex tubes of fixed
size ξ0. Briefly, ψ ≈ eiΘ with ∇2Θ = 0, plus boundary conditions imposed by the vortex filaments. The
resulting dynamics is driven by the Biot-Savart law of vortex interactions [12].
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(a) (b) (c) (d)

Figure 3. Snapshots for the instability of two colliding vortex rings. The initial condition consists of two vortex rings of the

same radii: R = 12.4±0.5 units. (a) The two vortex rings drifting head-on, (b) vortex rings approaching with the subsequent
stretching of the circular filament, (c) the modulational instability and (d) vortex reconnection into 16 smaller vortex rings

drifting into the orthogonal plane. The time sequence is (a) t = 160, (b) t = 220, (c) t = 250 and (d) t = 270. The three

dimensional surface plot shows the iso-surface of |ψ|2 = 0.5. The simulations evolved into a cubic lattice of N = 2563 with
a mesh size dx = 0.5 and a time step dt = 0.01.

Consider first the dynamics of two rectilinear parallel vortex filaments, the first with circulation Γ1 and
located at r1(t) = (x1(t), y1(t), s) and a second vortex with Γ2 and located at r2(t) = (x2(t), y2(t), s).
The length parametrization s describes the fact that the vortex are rectilinear and parallel. The dynamics
for the location of the vortices are the well known Hemholtz equations 2 [23]

d

dt
z1(t) = iΓ2

(z1(t)− z2(t))

|z1(t)− z2(t)|2
and

d

dt
z2(t) = −iΓ1

(z1(t)− z2(t))

|z1(t)− z2(t)|2
, (2)

which are written using complex notation as: z1(t) = x1(t) + iy1(t) and z2(t) = x2(t) + iy2(t).
For the case of almost parallel vortex filaments, the position becomes a curve r1(s, t) = (x1(s, t), y1(s, t), s)

and similarly for r2(s, t). The net interaction over the filament 1 has two contributions: the Biot-Savart
flow created by the second vortex filament that leads to an interaction like (2), and the self-interaction
of filament 1 [12,17]. If the vortex filament curvature is small (that is, if the terms below (3) satisfy
|∂ssz1(s, t)|& |∂ssz2(s, t)| � 1/ξ0) the Biot-Savart self-interaction may be approximated by the local
induction approximation (LIA). The two contributions then read

∂

∂t
z1(s, t) = iΓ1

∂2

∂s2
z1(s, t) + iΓ2

(z1(s, t)− z2(s, t))

|z1(s, t)− z2(s, t)|2
,

∂

∂t
z2(s, t) = iΓ2

∂2

∂s2
z2(s, t)− iΓ1

(z1(s, t)− z2(s, t))

|z1(s, t)− z2(s, t)|2
. (3)

We emphasize that the second terms in (3) are valid if both filaments are asymptotically straight lines
parallel to the ẑ axis. We postpone to Section 5 of the paper some considerations on the effects of
non-localities of vortex interactions.

Defining Z(s, t) = z1(s, t) + z2(s, t), z(s, t) = z1(s, t) − z2(s, t) and setting Γ2 = −Γ1 = −Γ, for the
case of two counter rotating almost parallel filaments, one gets the coupled nonlinear partial differential
equations:

∂

∂t
Z(s, t) = iΓ

∂2z

∂s2
− 2iΓ

z

|z|2
, (4)

∂

∂t
z(s, t) = iΓ

∂2Z

∂s2
, (5)

2. Through the paper we use a different notation for the circulation, namely
∮

v · d` = 2πΓ instead of Γ.
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due to Klein, Majda and Damodaran [24]. Similarly to equations (2) and (3), equations (4) and (5) are
derived from an action principle given by the Lagrangian density

L= i (z(s, t)∂tZ
∗(s, t)− z∗(s, t)∂tZ(s, t)) + Γ

(
|∂sz(s, t)|2 + |∂sZ(s, t)|2

)
+ 2Γ log |z(s, t)|2. (6)

Symmetry arguments provide the following conserved quantities through Noether’s theorem [24]:

(i) the Hamiltonian H = Γ
∫ (
|∂sz(s, t)|2 + |∂sZ(s, t)|2 + 2 log |z(s, t)|2

)
ds,

(ii) the mean of vorticity: Ω = Γ
∫
z(s, t) ds,

(iii) the angular momentum: L =
∫

(Z(s, t)z∗(s, t) + Z∗(s, t)z(s, t)) ds,

(iv) and, W = i
2

∫
(Z(s, t)∂sz

∗(s, t)− Z∗(s, t)∂sz(s, t) + z(s, t)∂sZ
∗(s, t)− z∗(s, t)∂sZ(s, t)) ds.

Equations (4) and (5) for the vortex dynamics are the basic object that we study in the current paper.

3.2. Linear stability analysis.

Consider the stability of uniform parallel counter propagating vortices. For the uniform case, no de-
pendence on s is allowed so that the uniform solution reads z = z0, which represents the separation
distance between both vortex filaments. Conversely, Z0(t) = −2iΓ z0

|z0|2 t represents the uniform motion of

the vortex pair. Perturbing this uniform solution as:

Z(s, t) = −2iΓ
z0

|z0|2
t+ δZ(s, t), and z(s, t) = z0 + δz(s, t), (7)

and linearizing the vortex dynamics (4,5), we get

∂

∂t
δZ(s, t) = iΓ

∂2δz

∂s2
+ 2iΓ

δz̄

z2
0

, and
∂

∂t
δz(s, t) = iΓ

∂2δZ

∂s2
.

Seeking perturbations of the form δZ(s, t) ∼ ei(ks−ωt), δz(s, t) ∼ ei(ks−ωt) and δz̄(s, t) ∼ ei(ks−ωt), the
linear problem provides a linear dispersion relation:

ω2
k =

Γ2k2

|z0|2
(
|z0|2k2 ± 2

)
. (8)

Among the four branches, two of them (the plus sign) correspond to Kelvin waves, while the other (the
minus sign) may become unstable for k|z0| <

√
2, this long wave instability creates an exponential growth

of the long wave modes. The nonlinear regime of this instability ends with the formation of vortex rings
of size of the order of the mean separation distance, |z0|. More precisely in a periodic system of size L
the wave numbers are quantized as kn = 2π

L n, therefore the unstable wave numbers are 2π
L n|z0| <

√
2,

thus the selected number of unstable modes becomes n
L <

√
2

2π
1
|z0| . This relation is plotted, together with

the numerical data, in Fig. 2-(a).

4. Self-similar vortex reconnection

4.1. Direct numerical simulations of (4) and (5).

Numerical simulations of the set of coupled partial differential equations (4) and (5) show that the
separation distance z(s, t) vanishes in finite time. These equations are solved into a periodic domain s ∈
[−L,L] with L = 10. For the numerical simulations we consider a weakly initially modulated perturbation :

6



Z(s, 0) = 0, z(s, 0) = z0

(
1 + ε sin

(π
L
s
))

. (9)

This special class of initial condition preserves the initial values of Im z = 0 and ReZ = 0 [25]. However,
other general initial conditions show similar self-similar behavior. For the sake of brevity, thus we focus
the current paper on an initial condition of type (9). From the numerics, one observes that the vortex lines
drift perpendicularly to the inter vortex action line, as expected. However, because of the modulational
instability the small initial perturbations are amplified creating a large deformation of the vortex lines
and making the inter vortex separation distance smaller, as a consequence this portion drifts faster.

More quantitatively, supported by the simulations described in Fig. 4, we notice the following features:

(i) The appearing of a finite time singularity characterized by z(s, t)→ 0 as t→ tc and Z(s, t)→ Z0,
finite, as as t→ tc.

(ii) The minimum of z(s, t) vanishes as z(0, t) ∼ (tc − t)1/2. On the other hand, Z(s, t) reaches a finite
value, we can readily fit Z(s, t)− Z0 ∼ (tc − t)1/2.

(iii) A special kind of self-similar behavior is observed. Both z and Z scales as (tc − t)1/2, moreover,
these functions must be re-scaled spatially with a self-similar coordinate s(tc − t)−1/2 (See Fig. 5).

(a) -4 -2 2 4

0.2

0.4

0.6

0.8

1.0

(b)

-4 -2 2 4

-6.6

-6.4

-6.2

-5.8

-5.6

Figure 4. Time evolution of the vortex filament variables z(s, t) and Z(s, t). (a) Plot of z(s, t) for different time steps. (b)
Plot of Z(s, t) for same time steps as in (a). The simulations were done for L = 10, an initial perturbation of the form (9)

with z0 = 4 and ε = 0.1 getting a finite time singularity at a time with tc ≈ 44.756. With initial condition (9) one has

tc ≈ 44.756 and Z0 ≈ −27.223 i. The time steps are tn = tc − 21−n.

4.2. Self-similar solution for vortex reconnection.

Accordingly with previous observations, we seek solutions of the form:

Z(s, t) = i

[
Z0 + (Γ(tc − t))1/2 Φ

(
s√

Γ(tc − t)
,− log(tc − t)

)]
, (10)

z(s, t) = (Γ(tc − t))1/2 ζ

(
s√

Γ(tc − t)
,− log(tc − t)

)
, (11)

where Φ(ω, τ) and ζ(ω, τ) are two real functions of the re-scaled variables ω = s/
√

Γ(tc − t) and τ =
− log(tc − t).

The scaling (tc − t)1/2 has a long history. It was first recognized by Jean Leray in 1934 [26] (but
with the fluid viscosity as a pre-factor), next, by Pumir and Siggia [13,14] in the frame of the Biot-Savart
approximation for vortex filament motion in inviscid fluids. The current scaling,

√
Γ(tc − t), was explicitly

7



found by Pomeau [27]. The same scaling arises in the case of superfluid helium [8] and finally measured
accurately in direct numerical simulations of the NLS model [21].

Introducing the self-similar Ansatz, eqs. (10,11), into the dynamical equations, one recovers the following
set of partial differential equations for the self-similar variables:(

∂

∂τ
− 1

2
(1− ω∂ω)

)
Φ(ω, τ) =

(
∂ωωζ(ω, τ)− 2

ζ(ω, τ)

)
,(

∂

∂τ
− 1

2
(1− ω∂ω)

)
ζ(ω, τ) =−∂ωωΦ(ω, τ). (12)

As usual in this kind of problems, the desired solutions correspond to the stable fixed points of the
nonlinear system [28]. That is, it is expected that time derivatives vanishes in (12). These fixed points
are solutions of the following set of ordinary differential equations:

−1

2
(Φ(ω)− ωΦ′(ω)) =

(
ζ ′′(ω)− 2

ζ(ω)

)
, (13)

1

2
(ζ(ω)− ωζ ′(ω)) = Φ′′(ω). (14)

Equations (13) and (14) were first derived by Zakharov in 1988 [25]. Four boundary conditions are required
to determine the solution. These may be derived from the conditions of regularity of the original variables
(10,11). Following [28] one needs to impose:

ζ ′(0) = Φ′(0) = 0, (15)

ζ(ω)→ ζ±∞ω & Φ(ω)→ Φ±∞ω, ω → ±∞. (16)

The constants ζ±∞ and Φ±∞ differ in the limits ω → ±∞. However, because of the even symmetry of the
equations, and because of evidence coming from numerical simulations, one concludes that both slopes
have the same absolute value: |ζ±∞| = ζ∞ and |Φ±∞| = Φ∞.

4.3. Inner Asymptotic

The inner behavior of solutions of (13) and (14) may be obtained from a regular asymptotic expansion
of the form:

ζ(ω) =
∑
n≥0

anω
n, and Φ(ω) =

∑
n≥0

bnω
n. (17)

Because of boundary conditions (15), a1 = b1 = 0. Introducing the above asymptotic expansion into the
nonlinear ODE system (13) and (14) one readily gets:

a2 =
1

a0
− b0

4
, a3 = 0, a4 =

(a4
0 + 4a0b0 − 16)

96a3
0

, . . .

b2 =
a0

4
, b3 = 0, b4 =

a0b0 − 4

96a0
, . . . b2n+2 = − (2n− 1)

4(n+ 1)(2n+ 1)
a2n.

(18)

Notice that because a1 = b1 = 0, all odd coefficients vanish. This asymptotic expansion could be pursued
up to all orders and all coefficients depend only on a0 and b0.
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4.4. Outer Asymptotic

For the outer asymptotic, one needs to fit boundary conditions (16), therefore we try the following
asymptotic expansion for the solutions of (13) and (14)

ζ(ω) = ω
∑
n≥0

cnω
−n, and Φ(ω) = ω

∑
n≥0

dnω
−n. (19)

Here we identify c0 ≡ ζ∞ and d0 ≡ Φ∞. Introducing these asymptotic expansions into equations (13) and
(14) one obtains:

c1 = c2 = c3 = 0, c4 =
2

c0
, c5 = c6 = c7 = 0, c8 = −10(1 + 6c20)

c30
, c9 = c10 = c11 = 0, . . .

d1 = 0, d2 =
2

c0
, d3 = d4 = d5 = 0, d6 = −4(1 + 6c20)

3c30
, d7 = d8 = d9 = 0, . . .

The outer asymptotic shows that for a given couple of parameters (c0, d0), the solution exhibits the correct
behavior. Notice, that none of the coefficients do depend explicitly on d0 since Φ(ω) = Kω is always a
solution, hence one cannot fix K.
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Figure 5. Self-similar evolution of the re-scaled functions (10,11) as a function of the self-similar variable ω = s/
√

Γ(tc − t).
(a) Plots z/

√
Γ(tc − t)) vs ω and (b) −i(Z − Z0)/

√
Γ(tc − t)) vs ω. The segmented black line represents the solution of

(13) and (14) with boundary conditions (15) and matching condition (22).

4.5. Selection Mechanism

Numerical solutions of set (13) and (14) with the boundary conditions (15) shows that in practice a
given pair (a0, b0) selects a unique solution with the good asymptotic behavior (16), hence it provides a
unique pair (c0, d0). However, there is a subtle point: although all solutions have the right behavior as
ω → ∞, the original four dimensional system has a natural tendency to display an oscillatory behavior.
Looking for a general far-field (ω → ∞) solution one notices that the original system becomes a purely
linear equation (since ζ(ω)→∞). Taking A(ω) = ζ(ω) + iΦ(ω), one gets that the linear problem may be
reduced to a complex Hermite equation:

A′′(ω) +
i

2
ωA′ − i

2
A = 0, (20)

which has two independent solutions:
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A1(ω) = 1 + i
ω2

2 · 2!
+

ω4

22 · 4!
− i3 ω6

23 · 6!
− . . . = e−i

ω2

4 + ei
π
4 ωf

(
ei
π
4

2
ω

)
, & A2(ω) = ω. (21)

where f(z) =
∫ z

0
e−t

2

dt is proportional to an error function. The total asymptotic solution is A(ω) =
αA1(ω) + βA2(ω) where α and β are complex numbers corresponding to four integration constants.
Starting with (a0, b0), then the far field behavior sets α = α(a0, b0) and β = β(a0, b0). Because the
oscillatory behavior comes from A1(ω), one concludes that by imposing the condition for the complex
parameter α(a∗0, b

∗
0) = 0 one gets two conditions for a∗0 and b∗0. Moreover, the second complex parameter,

β(a∗0, b
∗
0) = c0 + id0 provides the far field asymptotic boundary conditions. In the numerics one can see

that this selection mechanism works for the values: 3

a∗0 ≈ 1.071 & b∗0 ≈ 2.125 ⇒ c∗0 ≈ 1.0605 & d∗0 ≈ 1.0841. (22)

Fig. 5 compares the self-similar functions with the self-similar envelope determined by direct numerical
simulations of the original model (4) and (5). Fig. 6 shows the phase portrait in the ζ ′,Φ′ projection plane
of the suppression of the oscillatory mode for the parameter conditions (22).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(i)

(iv)

(iii)

(ii)
(v)

Figure 6. Φ′ – ζ′ projection of the trajectories, five different trajectories are shown for parameters (a0, b0) taking the

following values: (i) (1.071, 2.125); (ii) (1.044, 2.088); (iii) (1.106, 2.088); (iv) (1.044, 2.213); (v) (1.106, 2.213).

Finally, the universal behavior of the closest relative distance between filaments is given by z(s = 0, t) =
(Γ(tc − t))1/2 ζ (0) ≡ a∗0(Γ(tc − t))1/2. By comparing with the results of Ref. [21], before reconnection,

namely their δ−(t), one concludes that their A− must be A− =
a∗0√
2π
≈ 0.427, in agreement with the

numerical results of Ref. [21]. Moreover, the parameters c0 and d0 provide information for the reconnection
angles. More precisely, the tangents of filament 1 behave, asymptotically, as t̂±1 as s→ ±∞ and the same
occurs for filament 2. The respective opening angles between the filaments read:

(i) The opening angle of a single filament: cos θ = −t̂−1 · t̂
+
1 = − 4−c20−d

2
0

4+c20+d20
, which is about θ ≈ 105.66◦

for the values found in (22).

(ii) The opening angle between different filaments: cosϕ = t̂+
1 · t̂

+
2 =

4−c20+d20
4+c20+d20

, in this case one gets

ϕ ≈ 50◦.

3. Essentially it is a two parameter shooting method (treated in detail in Ref. [28]). A good visual method consists on
plotting ζ′(ω) vs. Φ′(ω), because both functions start at the origin and they both reach a fixed point, (c0, d0), the oscillations
been clearly observed in most of cases, excepting the selected ones.
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The former opening angle is close to the numerical values found in Ref. [18], while the second angle
appears to be twice the value given in the same reference.

5. Nonlocal effects on vortex dynamics

The self-similar scenario predicts a singular behaviour of the filament curvature, yet the derivation of
equations (3) is valid for a vortex filament distance larger than the healing length, |z(s, t)| � ξ0, for an
almost straight pair of vortex filaments and for small filament curvature. When, t→ tc then |z(s, t)| → 0
and the self-similar curvature

κ(s, t) ∼ 1√
Γ(tc − t)

K

(
s√

Γ(tc − t)

)
, (23)

blows-up. In that situation, the vortex dynamics provided by eqns. (3) must be revisited.
The filament dynamics comes from the Biot-Savart expression for the contributions of the velocity

induced by the filament itself and the contributions of all the other filaments. For an almost straight
filament considered in eqns. (3) one gets the general filament dynamics:

∂z1(s)

∂t
=−iΓ1

2

∞∫
−∞

z1(s′)− z1(s)− (s′ − s)z′1(s′)

[(s− s′)2 + |z1(s)− z1(s′)|2]
3/2

ds′ + i
Γ2

2

∞∫
−∞

z1(s)− z2(s′) + (s′ − s)z′2(s′)

[(s− s′)2 + |z1(s)− z2(s′)|2]
3/2

ds′,

(24)

and a similar equation for the second filament by exchanging 1 by 2. In what it follows we analyze each
term separately.

5.1. The self interaction contribution.

As it is well known, the first integral in (24) diverges logarithmically, at s = s′. Introducing an arc-length
cut-off, `, one splits the self-interaction vortex dynamics into a couple of terms as:

∞∫
−∞

z1(s′)− z1(s)− (s′ − s)z′1(s′)

[(s− s′)2 + |z1(s)− z1(s′)|2]
3/2

ds′ = log(`/ξ0)
∂2

∂s2
z1(s, t) +−

∞∫
−∞

z1(s′)− z1(s)− (s′ − s)z′1(s′)

[(s− s′)2 + |z1(s)− z1(s′)|2]
3/2

ds′.

Where we have defined a regularized integration

−
∞∫
−∞

f(s′)ds′ ≡
s−`∫
−∞

f(s′) ds′ +

∞∫
s+`

f(s′) ds′,

which removes the singular part of the Biot-Savart integral [17]. If the non-local integral term is discarded
one recovers the local induction term in (3) up to the logarithmic pre-factor 1

2 log(`/ξ0) which can be
absorbed with an adequate definition of scale length s.

For the self similar solutions of the form of the Ansatz (10) and (11) one recovers the same scaling
equations (13) and (14) as before, but the nonlocal contribution, modifies them. In particular, the ζ ′′

term in eqn. (13) changes as:
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ζ ′′(ω)→ ζ ′′(ω) +

ω−`/
√

Γ(tc−t)∫
−∞

ζ(ω′)− ζ(ω)− (ω′ − ω)ζ ′(ω′)[
(ω − ω′)2 + 1

4 |ζ(ω)− ζ(ω′)|2 + 1
4 |Φ(ω)− Φ(ω′)|2

]3/2 dω′ +
+

∞∫
ω+`/
√

Γ(tc−t)

ζ(ω′)− ζ(ω)− (ω′ − ω)ζ ′(ω′)[
(ω − ω′)2 + 1

4 |ζ(ω)− ζ(ω′)|2 + 1
4 |Φ(ω)− Φ(ω′)|2

]3/2 dω′,
and similarly for Φ′′ in (14).

Because the integration limits in both integrals behaves as ω′ → ω±`/
√

Γ(tc − t)→ ±∞, when tc → t,
one requires just the asymptotic behaviors of ζ(ω′) = c0|ω′| and Φ(ω′) = d0|ω′| in the integration. In that
case all integrals maybe computed exactly for a fixed ω leading to the expression:

8Γ(tc − t)
`2 (c20 + d2

0 + 4)
3/2
× (ζ(ω)− c0ω).

Therefore, the nonlocal contribution comes up to an order O(Γ(tc − t)), thus the nonlocal interaction
may be discarded, when t→ tc, in the self similar equations.

5.2. The filament interaction contribution.

If the separation distance is almost constant in (24) in its asymptotic limit, one may safely replace:

i
Γ2

2

∞∫
−∞

z1(s)− z2(s′) + (s′ − s)z′2(s′)

[(s− s′)2 + |z1(s)− z2(s′)|2]
3/2

ds′ → iΓ2
(z1(s, t)− z2(s, t))

|z1(s, t)− z2(s, t)|2
. (25)

However, the far-field behavior (16) of self-similar functions appears to contradict this condition. There-
fore, eqns (13) and (14) are modified as

−1

2
(Φ(ω)− ωΦ′(ω)) = ζ ′′(ω)− 1

2

∞∫
−∞

ζ(ω′) + ζ(ω)− (ω′ − ω)ζ ′(ω′)[
(ω − ω′)2 + 1

4 (ζ(ω) + ζ(ω′))2 + 1
4 (Φ(ω)− Φ(ω′))2

]3/2 dω′ ,
1

2
(ζ(ω)− ωζ ′(ω)) = Φ′′(ω) +

1

2

∞∫
−∞

Φ(ω′)− Φ(ω)− (ω′ − ω)Φ′(ω′)[
(ω − ω′)2 + 1

4 (ζ(ω) + ζ(ω′))2 + 1
4 (Φ(ω)− Φ(ω′))2

]3/2 dω′ .
(26)

Hormoz and Brenner [15] have approximated the non-local effects of the second filament in the case of
fluid dynamics obtaining a non-universal vortex collision scenario. Although the problem is not precisely
the same, because in ordinary fluids a core structure possesses a coupled dynamic, the selection mechanism
for equations (26) seems to be similar as discussed in Secc. 4.5. Naturally the specific values of the
parameters a∗0 and b∗0 (as well as c∗0 and d∗0) must change. Indeed, in the far field ω → ±∞, that is
ζ(ω)→∞ both integrals also vanish. Therefore the final far-field linear problem is ruled by the Hermite
equation (20). As in Section 4.5, a condition for removing the oscillatory behaviour must be imposed,
leading probably to a universal solution. This program will be discussed in a future publication.
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6. Discussion

It has been shown that the vortex dynamics of two almost anti-parallel vortex filaments display a
finite time singularity. By means of numerical simulations, as well as, theoretically we show that a self-
similar finite time dynamics manifests near the reconnection time. The filament distance vanishes in finite
time and the vortex drift propagates up to a maximum value producing a cusp. This self-similar profile
satisfies an autonomous equation and a selection mechanism is introduced showing excellent agreement
with numerical simulations. However, some questions remain open:

(i) The uniqueness of the matching condition (22) and the stability of the self-similar profile. Usually
these kind of problems introduce a variety of solutions which satisfy the boundary conditions,
however not all of them are stable, therefore a stability analysis must complement the current
analysis. Perhaps the existence of a variational principle for Eqns. (12), which reads 4 :

S =

∫
e−

3
2 τ
[
4 log ζ + (∂ωζ)2 + (∂ωΦ)2 + ζ (2∂τΦ + ω∂ωΦ− Φ)

]
dωdτ,

could shed light on the road toa plausible answer to this question.

(ii) For an arbitrary initial condition (an arbitrary complex fields for z(s, t = 0) and Z(s, t = 0) or for
a non-symmetric initial perturbation respect to the origin) requires a more careful study. Although
a0 ≈ 1 for all cases, it has been observed a slight discrepancy on the value for b0, getting values
greater than 3.

(iii) In the case of very close propagating vortices, it has been observed the nucleation of Jones-Roberts
structures [29] instead of small vortex rings. The transverse fluctuations manifest themselves via a
Kandomshev-Petshiavili instability that ultimately become a solitary wave [29].

(iv) Direct numerical simulations of the nonlinear Schrödinger equation, shown in Ref. [21], does not
display a self-similar behavior for the filament curvature as in (23), however, in that case the vortex
reconnection dynamics is tracked near the collision point, namely the vortex separation distance is
|z(0, t)| ≈ ξ0. Therefore, naturally, the approximations employed in the derivation of (4) and (5)
are not valid near reconnection. In the same line, the post-reconnection scenario is not accessible in
the frame of equations (4) and (5), to do that one should understood well the matching among the
far field dynamics [12]. Something still open to the author’s opinion.

(v) Note added in Proof. Banica, Faou and Miot [30] have shown, in the frame of eqns. (3) the existence
of a finite time collision of counter-rotative vortex filaments described by a non differentiable self-
similar solutions.
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4. This action is derived after the Lagrangian (6) together with the self-similar solutions (10) and (11) and the Jacobian

coming from a change of variables from (s, t)→ (ω, τ).
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