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As shown by Crow in 1970 the evolution of two almost parallel vortex filaments with opposite circulation exhibits a long-wave instability. Ultimately, the symmetric mode increases its amplitude reconnecting both filaments and ending into the formation of an almost periodic structure of vortex rings. This is an universal process which appears in a wide range of scales: from the vortex trails behind an airplane to a microscopic scale of superfluids and Bose-Einstein condensates. In this paper I will focus on the vortex reconnection for the later case by employing the Gross-Pitaevskii theory. Essentially, we focus on the well known laws of interaction and motion of vortex filaments. By means of numerical simulations, as well as, theoretically, we show that a self-similar finite time dynamics manifests near the reconnection time. A self-similar profile is selected showing excellent agreement with numerical simulations.

Introduction

In 1992, Lim and Nickels, from Melbourne, performed an extraordinary experiment on the instability and reconnection of opposite circulation vortex rings aligned in a perfect head-on scattering [START_REF] Lim | Instability and reconnection in the head-on collision of two vortex rings[END_REF][START_REF]Two Vortex Rings Colliding in SLOW MOTION[END_REF][START_REF] Mckeown | Emergence of small scales in vortex ring collisions[END_REF]. The experiment, done in water, consisted on the head-on collision of two equal circular vortex. According to the self-induction law, the vortex rings move ahead, however, as the vortex rings approach, because of mutual interaction, the ring radius increases resulting in a simultaneous expansion of both vortex rings 1 . Further, as the radius increases an instability develops being amplified with an almost periodic modulation. Eventually the amplitudes of deformation are large enough leading to vortex reconnection and to radial momentum transfer by the emission of small vortex rings. Interestingly, the inverse configuration, namely a number of small vortex rings converging to a point resulting into the emergence of two vortex rings moving in opposite directions, was recently observed in experiments on air [START_REF] Hernández | Experimental observation of the collision of three vortex rings[END_REF][START_REF] Hernández | Symmetrical collision of multiple vortex rings[END_REF].

As already recognized by Lim and Nickels, when the vortex radius becomes sufficiently large, the dominant interaction comes from the opposite vortex ring, hence the situation may be regarded as that of two almost parallel vortex filaments with opposite circulation, a problem studied by Crow, from the Boeing company, in 1970 [START_REF] Crow | Stability theory for a pair of trailing vortices[END_REF]. Crow's instability concerns the development of a long-wave instability for the separation distance of almost antiparallel drifting vortex filaments in an inviscid fluid. Crow shows that ultimately the symmetric mode increases its amplitude reconnecting both filaments and ending into the formation of an almost periodic structure of vortex rings.

In a different context, vortex reconnections have regained interest in the last ten years in the context of helium II superfluid, since the experiment of Bewley, Lathrop and collaborators [START_REF] Bewley | Characterization of reconnecting vortices in superfluid helium[END_REF][START_REF] Fonda | Direct observation of Kelvin waves excited by quantized vortex reconnection[END_REF]. Because superfluid helium is essentially inviscid below 1 K and vortex circulation is quantized, helium II appears to be an excellent candidate to test Lim and Nickels and Crow instabilities. However, being extremely complicated in comparison with ordinary fluids, the two fluid behavior of helium II does not help from a theoretical point of view. Nevertheless, the T = 0 K behavior of a Bose-Einstein condensate (BEC) shares perfectly the desired phenomenology of vortex dynamics, hence the instability and the vortex reconnection. Bose-Einstein condensates are perfectly understood in terms of the Gross-Pitaevskii equation for the macroscopic wave function ψ which is, finally, related to the one particle density matrix of the system [START_REF] Ginzburg | On the Theory of superconductivity[END_REF][START_REF] Penrose | Bose-Einstein Condensation and Liquid Helium[END_REF]. The Gross-Pitaevskii equation is a nonlinear Schrödinger equation (NLS), which is also a time-dependent nonlinear partial differential equation but simpler than Euler or Navier-Stokes equations for fluids (rephrasing AC Newell: "BEC, at T = 0, are easier to understand than they are to drink.")

The nonlinear Schrödinger equation reads [START_REF] Pitaevskii | Vortex Lines in an Imperfect Bose Gas[END_REF]:

i ∂ ∂t ψ = - 1 2 ∆ψ + g|ψ| 2 ψ, (1) 
here ∆ = ∇ 2 is the usual Laplacian in 3D, we used dimensionless variables and all parameters are set to one, being g = ±1 a sign variable that distinguishes the defocusing case (g = 1) from the focusing case (g = -1). From now on, we focus our attention to the former case. NLS shares many desired features in an infinite domain:

(i) It possesses a number of invariances: phase invariance, translational and rotational invariance, a dilatation invariance, Galilean invariance, and it is time reversible.

(ii) It preserves the number of particles, the energy and both linear and angular momentum.

(iii) From a mathematical point of view is a Hamiltonian dynamics.

(iv) Weak and long-wave perturbations correspond to non dispersive acoustic modes.

(v) Equation ( 1) admits topological defects as exact solutions which represent quantized vortices. These are non singular solutions for ψ. Moreover, the vortex core parameter naturally appears to be the balance among the non-linear and linear terms [START_REF] Pismen | Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings[END_REF]. This distance, called the healing length (ξ 0 ), is of the order of one in the dimensionless units used in [START_REF] Lim | Instability and reconnection in the head-on collision of two vortex rings[END_REF]. The existence of this intrinsic length makes a crucial difference regarding the motion of vortex filaments in ordinary fluids, in which case a core dynamics is expected [START_REF] Siggia | Collapse and amplification of a vortex filament[END_REF][START_REF] Pumir | Vortex dynamics and the existence of solutions to the Navier-Stokes equations[END_REF][START_REF] Hormoz | Absence of singular stretching of interacting vortex filaments[END_REF]. A proof of the above, is the recently observed vorticity dynamics on head-on collisions of vortex rings [START_REF] Mckeown | Emergence of small scales in vortex ring collisions[END_REF].

Because of the simplicity of NLS, and due to these mathematical properties, it appears to be an attractive model for Bose-Einstein condensates and it has been extensively studied during the last 50 years. In particular the Crow instability was studied by Berloff and Roberts [START_REF] Berloff | Motion in a Bose condensate: IX. Crow instability of antiparallel vortex pairs[END_REF], and it was recognized that the number of small vortex rings created depends on the initial separation distance of the two traveling vortices, however no link was identified with the problem of vortex reconnection. In superfluids, vortex reconnection has been studied long ago in the frame of the Biot-Savart filament dynamics [START_REF] Schwarz | Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions[END_REF][START_REF] De Macle | Route to Vortex Reconnection[END_REF] and as well as for the nonlinear Schrödinger equation [START_REF] Koplik | Vortex Reconnection in Superfluid Helium[END_REF].

The self-similar character of vortex reconnections was recognized by Pumir and Siggia [START_REF] Siggia | Collapse and amplification of a vortex filament[END_REF][START_REF] Pumir | Vortex dynamics and the existence of solutions to the Navier-Stokes equations[END_REF] since the mid 80s in connection with ordinary fluids and in the context of superfluids it was recently highlighted [START_REF] Fonda | Direct observation of Kelvin waves excited by quantized vortex reconnection[END_REF][START_REF] Boué | Analytic Solution of the Approach of Quantum Vortices Towards Reconnection[END_REF][START_REF] Villois | Universal and nonuniversal aspects of vortex reconnections in superfluids[END_REF][START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids[END_REF] (See Ref. [START_REF] Villois | Universal and nonuniversal aspects of vortex reconnections in superfluids[END_REF] and references therein for more details.)

In what it follows, Section 2 shows numerical simulations of the Crow instability in the frame of NLS for the cases of: two anti-parallel vortex filaments and two head-on vortex rings collision. Next, Section 3, introduces vortex interaction of two parallel filaments in the frame of an incompresible and inviscid fluid. Section 4 provides evidence of self-similar vortex reconnection. Section 5 discuss the non-local effects of vortex interactions and its consequences. Finally, Section 6 concludes the current work.

Crow instability in the frame of the Nonlinear Schrödinger equation

Antiparallel vortex instability

The time-dependent Gross-Pitaevskii equation ( 1) is solved with an initial condition ψ 0 (x, y, z) which vanishes at two parallel lines aligned within the z-axis and a separation distance |z 0 | (for the notations see below Secc. 3.2), which is a parameter that can be varied as desired. The resulting, initial condition corresponds to two topological defects. Figs. 1-(a-a') show two parallel vortex filaments with a slight sinusoidal displacement (similar results are obtained with a noisy perturbation of the vortex filaments position). As time passes, the vortex pair drifts as expected, moreover, the vortex distance perturbation is amplified, reconnecting the two vortex lines (Figs. 1-(b-b' &c-c')), ending with an array of traveling vortex rings (Figs. 1-(d-d')).

By varying the separation distance, |z 0 |, of the initial vortex pair, one notices that the number of vortices nucleated after the reconnection process scales as n ∼ 1/|z 0 |, see Fig. 2-(a).

Circular vortex ring instability

Next, we start with an initial condition consisting in two circular vortex rings with the same radii aligned into the z-axis, and placed head-on to ensure a frontal collision. Because of self-induction, the vortex rings drift one against the other colliding at the mid-point. As they come together the self-induction becomes weaker than the interaction between the two rings so they drift into the orthogonal plane increasing its radius and becoming unstable by a mechanism similar to that of the Crow's instability. Ultimately, a number of small vortex rings are ejected (Fig. 3).
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Dynamics of two parallel vortex filaments.

The effective vortex interactions.

Because of the existence of an intrinsic length, the non linear Schrödinger model makes possible to reach a well defined asymptotic limit in which the vortex filaments are faraway separated. Under this assumption, the full wave function is described by its phase and by the motion of vortex tubes of fixed size ξ 0 . Briefly, ψ ≈ e iΘ with ∇ 2 Θ = 0, plus boundary conditions imposed by the vortex filaments. The resulting dynamics is driven by the Biot-Savart law of vortex interactions [START_REF] Pismen | Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings[END_REF]. Consider first the dynamics of two rectilinear parallel vortex filaments, the first with circulation Γ 1 and located at r 1 (t) = (x 1 (t), y 1 (t), s) and a second vortex with Γ 2 and located at r 2 (t) = (x 2 (t), y 2 (t), s). The length parametrization s describes the fact that the vortex are rectilinear and parallel. The dynamics for the location of the vortices are the well known Hemholtz equations 2 [START_REF] Helmholtz | Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen[END_REF] 

d dt z 1 (t) = iΓ 2 (z 1 (t) -z 2 (t)) |z 1 (t) -z 2 (t)| 2 and d dt z 2 (t) = -iΓ 1 (z 1 (t) -z 2 (t)) |z 1 (t) -z 2 (t)| 2 , (2) 
which are written using complex notation as:

z 1 (t) = x 1 (t) + iy 1 (t) and z 2 (t) = x 2 (t) + iy 2 (t).
For the case of almost parallel vortex filaments, the position becomes a curve r 1 (s, t) = (x 1 (s, t), y 1 (s, t), s) and similarly for r 2 (s, t). The net interaction over the filament 1 has two contributions: the Biot-Savart flow created by the second vortex filament that leads to an interaction like (2), and the self-interaction of filament 1 [START_REF] Pismen | Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings[END_REF][START_REF] Schwarz | Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions[END_REF]. If the vortex filament curvature is small (that is, if the terms below (3) satisfy

|∂ ss z 1 (s, t)| & |∂ ss z 2 (s, t)|
1/ξ 0 ) the Biot-Savart self-interaction may be approximated by the local induction approximation (LIA). The two contributions then read

∂ ∂t z 1 (s, t) = iΓ 1 ∂ 2 ∂s 2 z 1 (s, t) + iΓ 2 (z 1 (s, t) -z 2 (s, t)) |z 1 (s, t) -z 2 (s, t)| 2 , ∂ ∂t z 2 (s, t) = iΓ 2 ∂ 2 ∂s 2 z 2 (s, t) -iΓ 1 (z 1 (s, t) -z 2 (s, t)) |z 1 (s, t) -z 2 (s, t)| 2 . (3) 
We emphasize that the second terms in (3) are valid if both filaments are asymptotically straight lines parallel to the ẑ axis. We postpone to Section 5 of the paper some considerations on the effects of non-localities of vortex interactions.

Defining Z(s, t) = z 1 (s, t) + z 2 (s, t), z(s, t) = z 1 (s, t) -z 2 (s, t) and setting Γ 2 = -Γ 1 = -Γ,
for the case of two counter rotating almost parallel filaments, one gets the coupled nonlinear partial differential equations: due to Klein, Majda and Damodaran [START_REF] Klein | Simplified equations for the interaction of nearly parallel vortex filaments[END_REF]. Similarly to equations ( 2) and (3), equations ( 4) and ( 5) are derived from an action principle given by the Lagrangian density

∂ ∂t Z(s, t) = iΓ ∂ 2 z ∂s 2 -2iΓ z |z| 2 , (4) 
∂ ∂t z(s, t) = iΓ ∂ 2 Z ∂s 2 , (5) 
L = i (z(s, t)∂ t Z * (s, t) -z * (s, t)∂ t Z(s, t)) + Γ |∂ s z(s, t)| 2 + |∂ s Z(s, t)| 2 + 2Γ log |z(s, t)| 2 . ( 6 
)
Symmetry arguments provide the following conserved quantities through Noether's theorem [START_REF] Klein | Simplified equations for the interaction of nearly parallel vortex filaments[END_REF] 4) and ( 5) for the vortex dynamics are the basic object that we study in the current paper.

Linear stability analysis.

Consider the stability of uniform parallel counter propagating vortices. For the uniform case, no dependence on s is allowed so that the uniform solution reads z = z 0 , which represents the separation distance between both vortex filaments. Conversely, Z 0 (t) = -2iΓ z0 |z0| 2 t represents the uniform motion of the vortex pair. Perturbing this uniform solution as:

Z(s, t) = -2iΓ z 0 |z 0 | 2 t + δZ(s, t), and z(s, t) = z 0 + δz(s, t), (7) 
and linearizing the vortex dynamics (4,5), we get

∂ ∂t δZ(s, t) = iΓ ∂ 2 δz ∂s 2 + 2iΓ δz z 2 0 , and 
∂ ∂t δz(s, t) = iΓ ∂ 2 δZ ∂s 2 .
Seeking perturbations of the form δZ(s, t) ∼ e i(ks-ωt) , δz(s, t) ∼ e i(ks-ωt) and δz(s, t) ∼ e i(ks-ωt) , the linear problem provides a linear dispersion relation:

ω 2 k = Γ 2 k 2 |z 0 | 2 |z 0 | 2 k 2 ± 2 . ( 8 
)
Among the four branches, two of them (the plus sign) correspond to Kelvin waves, while the other (the minus sign) may become unstable for k|z 0 | < √ 2, this long wave instability creates an exponential growth of the long wave modes. The nonlinear regime of this instability ends with the formation of vortex rings of size of the order of the mean separation distance, |z 0 |. More precisely in a periodic system of size L the wave numbers are quantized as k n = 2π

L n, therefore the unstable wave numbers are 2π

L n|z 0 | < √ 2, thus the selected number of unstable modes becomes n L < √ 2 2π 1 |z0|
. This relation is plotted, together with the numerical data, in Fig. 2-(a).

Self-similar vortex reconnection

4.1. Direct numerical simulations of (4) and [START_REF] Hernández | Symmetrical collision of multiple vortex rings[END_REF].

Numerical simulations of the set of coupled partial differential equations ( 4) and [START_REF] Hernández | Symmetrical collision of multiple vortex rings[END_REF] show that the separation distance z(s, t) vanishes in finite time. These equations are solved into a periodic domain s ∈ [-L, L] with L = 10. For the numerical simulations we consider a weakly initially modulated perturbation :

Z(s, 0) = 0, z(s, 0) = z 0 1 + sin π L s . (9) 
This special class of initial condition preserves the initial values of Im z = 0 and Re Z = 0 [START_REF] Zakharov | Wave collapse[END_REF]. However, other general initial conditions show similar self-similar behavior. For the sake of brevity, thus we focus the current paper on an initial condition of type [START_REF] Ginzburg | On the Theory of superconductivity[END_REF]. From the numerics, one observes that the vortex lines drift perpendicularly to the inter vortex action line, as expected. However, because of the modulational instability the small initial perturbations are amplified creating a large deformation of the vortex lines and making the inter vortex separation distance smaller, as a consequence this portion drifts faster. More quantitatively, supported by the simulations described in Fig. 4, we notice the following features:

(i) The appearing of a finite time singularity characterized by z(s, t) → 0 as t → t c and Z(s, t) → Z 0 , finite, as as t → t c .

(ii) The minimum of z(s, t) vanishes as z(0, t) ∼ (t c -t) 1/2 . On the other hand, Z(s, t) reaches a finite value, we can readily fit Z(s, t)

-Z 0 ∼ (t c -t) 1/2 .
(iii) A special kind of self-similar behavior is observed. Both z and Z scales as (t c -t) 1/2 , moreover, these functions must be re-scaled spatially with a self-similar coordinate s(t c -t) -1/2 (See Fig. 5).

(a) 4.2. Self-similar solution for vortex reconnection.

Accordingly with previous observations, we seek solutions of the form:

Z(s, t) = i Z 0 + (Γ(t c -t)) 1/2 Φ s Γ(t c -t) , -log(t c -t) , (10) 
z(s, t) = (Γ(t c -t)) 1/2 ζ s Γ(t c -t) , -log(t c -t) , (11) 
where Φ(ω, τ ) and ζ(ω, τ ) are two real functions of the re-scaled variables ω = s/ Γ(t c -t) and τ = -log(t c -t).

The scaling (t c -t) 1/2 has a long history. It was first recognized by Jean Leray in 1934 [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF] (but with the fluid viscosity as a pre-factor), next, by Pumir and Siggia [START_REF] Siggia | Collapse and amplification of a vortex filament[END_REF][START_REF] Pumir | Vortex dynamics and the existence of solutions to the Navier-Stokes equations[END_REF] in the frame of the Biot-Savart approximation for vortex filament motion in inviscid fluids. The current scaling, Γ(t c -t), was explicitly found by Pomeau [START_REF] Pomeau | Singularité dans l'évolution du fluide parfaitl[END_REF]. The same scaling arises in the case of superfluid helium [START_REF] Fonda | Direct observation of Kelvin waves excited by quantized vortex reconnection[END_REF] and finally measured accurately in direct numerical simulations of the NLS model [START_REF] Villois | Universal and nonuniversal aspects of vortex reconnections in superfluids[END_REF].

Introducing the self-similar Ansatz, eqs. [START_REF] Penrose | Bose-Einstein Condensation and Liquid Helium[END_REF][START_REF] Pitaevskii | Vortex Lines in an Imperfect Bose Gas[END_REF], into the dynamical equations, one recovers the following set of partial differential equations for the self-similar variables:

∂ ∂τ - 1 2 (1 -ω∂ ω ) Φ(ω, τ ) = ∂ ωω ζ(ω, τ ) - 2 ζ(ω, τ ) , ∂ ∂τ - 1 2 (1 -ω∂ ω ) ζ(ω, τ ) = -∂ ωω Φ(ω, τ ). ( 12 
)
As usual in this kind of problems, the desired solutions correspond to the stable fixed points of the nonlinear system [START_REF] Eggers | Singularities: Formation, Structure, and Propagation[END_REF]. That is, it is expected that time derivatives vanishes in [START_REF] Pismen | Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings[END_REF]. These fixed points are solutions of the following set of ordinary differential equations:

- 1 2 (Φ(ω) -ωΦ (ω)) = ζ (ω) - 2 ζ(ω) , ( 13 
) 1 2 (ζ(ω) -ωζ (ω)) = Φ (ω). ( 14 
)
Equations ( 13) and ( 14) were first derived by Zakharov in 1988 [START_REF] Zakharov | Wave collapse[END_REF]. Four boundary conditions are required to determine the solution. These may be derived from the conditions of regularity of the original variables [START_REF] Penrose | Bose-Einstein Condensation and Liquid Helium[END_REF][START_REF] Pitaevskii | Vortex Lines in an Imperfect Bose Gas[END_REF]. Following [START_REF] Eggers | Singularities: Formation, Structure, and Propagation[END_REF] one needs to impose:

ζ (0) = Φ (0) = 0, (15) 
ζ(ω) → ζ ± ∞ ω & Φ(ω) → Φ ± ∞ ω, ω → ±∞. (16) 
The constants ζ ± ∞ and Φ ± ∞ differ in the limits ω → ±∞. However, because of the even symmetry of the equations, and because of evidence coming from numerical simulations, one concludes that both slopes have the same absolute value:

|ζ ± ∞ | = ζ ∞ and |Φ ± ∞ | = Φ ∞ .

Inner Asymptotic

The inner behavior of solutions of ( 13) and ( 14) may be obtained from a regular asymptotic expansion of the form:

ζ(ω) = n≥0 a n ω n , and Φ(ω) = n≥0 b n ω n . ( 17 
)
Because of boundary conditions [START_REF] Hormoz | Absence of singular stretching of interacting vortex filaments[END_REF], a 1 = b 1 = 0. Introducing the above asymptotic expansion into the nonlinear ODE system ( 13) and ( 14) one readily gets:

a 2 = 1 a 0 - b 0 4 , a 3 = 0, a 4 = (a 4 0 + 4a 0 b 0 -16) 96a 3 0 , . . . b 2 = a 0 4 , b 3 = 0, b 4 = a 0 b 0 -4 96a 0 , . . . b 2n+2 = - (2n -1) 4(n + 1)(2n + 1) a 2n . (18) 
Notice that because a 1 = b 1 = 0, all odd coefficients vanish. This asymptotic expansion could be pursued up to all orders and all coefficients depend only on a 0 and b 0 .

Outer Asymptotic

For the outer asymptotic, one needs to fit boundary conditions ( 16), therefore we try the following asymptotic expansion for the solutions of ( 13) and ( 14)

ζ(ω) = ω n≥0 c n ω -n , and Φ(ω) = ω n≥0 d n ω -n . (19) 
Here we identify c 0 ≡ ζ ∞ and d 0 ≡ Φ ∞ . Introducing these asymptotic expansions into equations ( 13) and ( 14) one obtains:

c 1 = c 2 = c 3 = 0, c 4 = 2 c 0 , c 5 = c 6 = c 7 = 0, c 8 = - 10(1 + 6c 2 0 ) c 3 0 , c 9 = c 10 = c 11 = 0, . . . d 1 = 0, d 2 = 2 c 0 , d 3 = d 4 = d 5 = 0, d 6 = - 4(1 + 6c 2 0 ) 3c 3 0 , d 7 = d 8 = d 9 = 0, . . .
The outer asymptotic shows that for a given couple of parameters (c 0 , d 0 ), the solution exhibits the correct behavior. Notice, that none of the coefficients do depend explicitly on d 0 since Φ(ω) = Kω is always a solution, hence one cannot fix K. (a) Plots z/ Γ(tc -t)) vs ω and (b) -i(Z -Z 0 )/ Γ(tc -t)) vs ω. The segmented black line represents the solution of ( 13) and ( 14) with boundary conditions [START_REF] Hormoz | Absence of singular stretching of interacting vortex filaments[END_REF] and matching condition [START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids[END_REF].

Selection Mechanism

Numerical solutions of set ( 13) and ( 14) with the boundary conditions [START_REF] Hormoz | Absence of singular stretching of interacting vortex filaments[END_REF] shows that in practice a given pair (a 0 , b 0 ) selects a unique solution with the good asymptotic behavior [START_REF] Berloff | Motion in a Bose condensate: IX. Crow instability of antiparallel vortex pairs[END_REF], hence it provides a unique pair (c 0 , d 0 ). However, there is a subtle point: although all solutions have the right behavior as ω → ∞, the original four dimensional system has a natural tendency to display an oscillatory behavior. Looking for a general far-field (ω → ∞) solution one notices that the original system becomes a purely linear equation (since ζ(ω) → ∞). Taking A(ω) = ζ(ω) + iΦ(ω), one gets that the linear problem may be reduced to a complex Hermite equation:

A (ω) + i 2 ωA - i 2 A = 0, (20) 
which has two independent solutions:

A 1 (ω) = 1 + i ω 2 2 • 2! + ω 4 2 2 • 4! -i3 ω 6 2 3 • 6! -. . . = e -i ω 2 4 + e i π 4 ωf e i π 4 2 ω , & A 2 (ω) = ω. (21) 
where f (z) = z 0 e -t 2 dt is proportional to an error function. The total asymptotic solution is A(ω) = αA 1 (ω) + βA 2 (ω) where α and β are complex numbers corresponding to four integration constants. Starting with (a 0 , b 0 ), then the far field behavior sets α = α(a 0 , b 0 ) and β = β(a 0 , b 0 ). Because the oscillatory behavior comes from A 1 (ω), one concludes that by imposing the condition for the complex parameter α(a * 0 , b * 0 ) = 0 one gets two conditions for a * 0 and b * 0 . Moreover, the second complex parameter, β(a * 0 , b * 0 ) = c 0 + id 0 provides the far field asymptotic boundary conditions. In the numerics one can see that this selection mechanism works for the values:

3 a * 0 ≈ 1.071 & b * 0 ≈ 2.125 ⇒ c * 0 ≈ 1.0605 & d * 0 ≈ 1.0841. ( 22 
)
Fig. 5 compares the self-similar functions with the self-similar envelope determined by direct numerical simulations of the original model ( 4) and ( 5). Fig. 6 shows the phase portrait in the ζ , Φ projection plane of the suppression of the oscillatory mode for the parameter conditions [START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids[END_REF]. Finally, the universal behavior of the closest relative distance between filaments is given by z(s = 0, t) = (Γ(t c -t)) 1/2 ζ (0) ≡ a * 0 (Γ(t c -t)) 1/2 . By comparing with the results of Ref. [START_REF] Villois | Universal and nonuniversal aspects of vortex reconnections in superfluids[END_REF], before reconnection, namely their δ -(t), one concludes that their A -must be A -= a * 0 √ 2π ≈ 0.427, in agreement with the numerical results of Ref. [START_REF] Villois | Universal and nonuniversal aspects of vortex reconnections in superfluids[END_REF]. Moreover, the parameters c 0 and d 0 provide information for the reconnection angles. More precisely, the tangents of filament 1 behave, asymptotically, as t± 1 as s → ±∞ and the same occurs for filament 2. The respective opening angles between the filaments read:

(i) The opening angle of a single filament: cos θ = -t-

1 • t+ 1 = - 4-c 2 0 -d 2 0 4+c 2 0 +d 2 0
, which is about θ ≈ 105.66 • for the values found in [START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids[END_REF].

(ii) The opening angle between different filaments: cos ϕ = t+

1 • t+ 2 = 4-c 2 0 +d 2 0 4+c 2 0 +d 2 0
, in this case one gets ϕ ≈ 50 • .

The former opening angle is close to the numerical values found in Ref. [START_REF] De Macle | Route to Vortex Reconnection[END_REF], while the second angle appears to be twice the value given in the same reference.

Nonlocal effects on vortex dynamics

The self-similar scenario predicts a singular behaviour of the filament curvature, yet the derivation of equations ( 3) is valid for a vortex filament distance larger than the healing length, |z(s, t)| ξ 0 , for an almost straight pair of vortex filaments and for small filament curvature. When, t → t c then |z(s, t)| → 0 and the self-similar curvature

κ(s, t) ∼ 1 Γ(t c -t) K s Γ(t c -t) , (23) 
blows-up. In that situation, the vortex dynamics provided by eqns. ( 3) must be revisited. The filament dynamics comes from the Biot-Savart expression for the contributions of the velocity induced by the filament itself and the contributions of all the other filaments. For an almost straight filament considered in eqns. (3) one gets the general filament dynamics:

∂z 1 (s) ∂t = -i Γ 1 2 ∞ -∞ z 1 (s ) -z 1 (s) -(s -s)z 1 (s ) [(s -s ) 2 + |z 1 (s) -z 1 (s )| 2 ] 3/2 ds + i Γ 2 2 ∞ -∞ z 1 (s) -z 2 (s ) + (s -s)z 2 (s ) [(s -s ) 2 + |z 1 (s) -z 2 (s )| 2 ] 3/2 ds , (24) 
and a similar equation for the second filament by exchanging 1 by 2. In what it follows we analyze each term separately.

The self interaction contribution.

As it is well known, the first integral in [START_REF] Klein | Simplified equations for the interaction of nearly parallel vortex filaments[END_REF] diverges logarithmically, at s = s . Introducing an arc-length cut-off, , one splits the self-interaction vortex dynamics into a couple of terms as:

∞ -∞ z 1 (s ) -z 1 (s) -(s -s)z 1 (s ) [(s -s ) 2 + |z 1 (s) -z 1 (s )| 2 ] 3/2 ds = log( /ξ 0 ) ∂ 2 ∂s 2 z 1 (s, t) + - ∞ -∞ z 1 (s ) -z 1 (s) -(s -s)z 1 (s ) [(s -s ) 2 + |z 1 (s) -z 1 (s )| 2 ] 3/2 ds .
Where we have defined a regularized integration

- ∞ -∞ f (s )ds ≡ s- -∞ f (s ) ds + ∞ s+ f (s ) ds ,
which removes the singular part of the Biot-Savart integral [START_REF] Schwarz | Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions[END_REF]. If the non-local integral term is discarded one recovers the local induction term in (3) up to the logarithmic pre-factor 1 2 log( /ξ 0 ) which can be absorbed with an adequate definition of scale length s.

For the self similar solutions of the form of the Ansatz [START_REF] Penrose | Bose-Einstein Condensation and Liquid Helium[END_REF] and [START_REF] Pitaevskii | Vortex Lines in an Imperfect Bose Gas[END_REF] one recovers the same scaling equations ( 13) and ( 14) as before, but the nonlocal contribution, modifies them. In particular, the ζ term in eqn. ( 13) changes as:

Discussion

It has been shown that the vortex dynamics of two almost anti-parallel vortex filaments display a finite time singularity. By means of numerical simulations, as well as, theoretically we show that a selfsimilar finite time dynamics manifests near the reconnection time. The filament distance vanishes in finite time and the vortex drift propagates up to a maximum value producing a cusp. This self-similar profile satisfies an autonomous equation and a selection mechanism is introduced showing excellent agreement with numerical simulations. However, some questions remain open:

(i) The uniqueness of the matching condition [START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids[END_REF] and the stability of the self-similar profile. Usually these kind of problems introduce a variety of solutions which satisfy the boundary conditions, however not all of them are stable, therefore a stability analysis must complement the current analysis. Perhaps the existence of a variational principle for Eqns. [START_REF] Pismen | Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings[END_REF], which reads4 : (ii) For an arbitrary initial condition (an arbitrary complex fields for z(s, t = 0) and Z(s, t = 0) or for a non-symmetric initial perturbation respect to the origin) requires a more careful study. Although a 0 ≈ 1 for all cases, it has been observed a slight discrepancy on the value for b 0 , getting values greater than 3.

S = e -
(iii) In the case of very close propagating vortices, it has been observed the nucleation of Jones-Roberts structures [START_REF] Jones | Motions in a Bose condensate. IV. Axisymmetric solitary waves[END_REF] instead of small vortex rings. The transverse fluctuations manifest themselves via a Kandomshev-Petshiavili instability that ultimately become a solitary wave [START_REF] Jones | Motions in a Bose condensate. IV. Axisymmetric solitary waves[END_REF].

(iv) Direct numerical simulations of the nonlinear Schrödinger equation, shown in Ref. [START_REF] Villois | Universal and nonuniversal aspects of vortex reconnections in superfluids[END_REF], does not display a self-similar behavior for the filament curvature as in [START_REF] Helmholtz | Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen[END_REF], however, in that case the vortex reconnection dynamics is tracked near the collision point, namely the vortex separation distance is |z(0, t)| ≈ ξ 0 . Therefore, naturally, the approximations employed in the derivation of (4) and ( 5) are not valid near reconnection. In the same line, the post-reconnection scenario is not accessible in the frame of equations ( 4) and [START_REF] Hernández | Symmetrical collision of multiple vortex rings[END_REF], to do that one should understood well the matching among the far field dynamics [START_REF] Pismen | Vortices in nonlinear fields: from liquid crystals to superfluids, from non-equilibrium patterns to cosmic strings[END_REF]. Something still open to the author's opinion.

(v) Note added in Proof. Banica, Faou and Miot [START_REF] Banica | Collision of Almost Parallel Vortex Filaments[END_REF] have shown, in the frame of eqns. (3) the existence of a finite time collision of counter-rotative vortex filaments described by a non differentiable selfsimilar solutions.
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 1210 Figure 1. Snapshots of the anatomy of vortex reconnection by the Crow instability mechanism. The initial separation distance was 3 units of length. (a) A modulational instability starts to develop, in (b) it is shown the fore vortex-reconnection instant, (c) shows the after vortex-reconnection instant, and (d) shows the further evolution of 8 drifting vortex rings. The time sequence is (a) t = 30, (b) t = 38, (c) t = 40 and (d) t = 50. The second row plots a zoom of the same time sequence. The three dimensional surface plot shows the iso-surface |ψ| 2 = 0.4 and the simulations evolved into a cubic lattice of N = 256 3 with a mesh size dx = 0.5 (length units) and time step dt = 0.01.

Figure 3 .

 3 Figure 3. Snapshots for the instability of two colliding vortex rings. The initial condition consists of two vortex rings of the same radii: R = 12.4 ± 0.5 units. (a) The two vortex rings drifting head-on, (b) vortex rings approaching with the subsequent stretching of the circular filament, (c) the modulational instability and (d) vortex reconnection into 16 smaller vortex rings drifting into the orthogonal plane. The time sequence is (a) t = 160, (b) t = 220, (c) t = 250 and (d) t = 270. The three dimensional surface plot shows the iso-surface of |ψ| 2 = 0.5. The simulations evolved into a cubic lattice of N = 256 3 with a mesh size dx = 0.5 and a time step dt = 0.01.

2 .

 2 Through the paper we use a different notation for the circulation, namely v • d = 2πΓ instead of Γ.

Figure 4 .

 4 Figure 4. Time evolution of the vortex filament variables z(s, t) and Z(s, t). (a) Plot of z(s, t) for different time steps. (b) Plot of Z(s, t) for same time steps as in (a). The simulations were done for L = 10, an initial perturbation of the form (9) with z 0 = 4 and = 0.1 getting a finite time singularity at a time with tc ≈ 44.756. With initial condition (9) one has tc ≈ 44.756 and Z 0 ≈ -27.223 i. The time steps are tn = tc -2 1-n .

Figure 5 .

 5 Figure 5. Self-similar evolution of the re-scaled functions (10,11) as a function of the self-similar variable ω = s/ Γ(tc -t).

Figure 6 .

 6 Figure 6. Φ -ζ projection of the trajectories, five different trajectories are shown for parameters (a 0 , b 0 ) taking the following values: (i) (1.071, 2.125); (ii) (1.044, 2.088); (iii) (1.106, 2.088); (iv) (1.044, 2.213); (v) (1.106, 2.213).

3 2 τ 4

 4 log ζ + (∂ ω ζ) 2 + (∂ ω Φ) 2 + ζ (2∂ τ Φ + ω∂ ω Φ -Φ) dωdτ,could shed light on the road toa plausible answer to this question.

  : (i) the Hamiltonian H = Γ |∂ s z(s, t)| 2 + |∂ s Z(s, t)| 2 + 2 log |z(s, t)| 2 ds,(ii) the mean of vorticity: Ω = Γ z(s, t) ds, (iii) the angular momentum: L = (Z(s, t)z * (s, t) + Z * (s, t)z(s, t)) ds, (iv) and,W = i 2 (Z(s, t)∂ s z * (s, t) -Z * (s, t)∂ s z(s, t) + z(s, t)∂ s Z * (s, t) -z * (s, t)∂ s Z(s, t)) ds. Equations (

Email address: sergio.rica@uai.cl (Sergio Rica). 1. Something easily observed as a smoke vortex ring collides into a wall (the wall creates an image vortex in the opposite direction).

Essentially it is a two parameter shooting method (treated in detail in Ref.[START_REF] Eggers | Singularities: Formation, Structure, and Propagation[END_REF]). A good visual method consists on plotting ζ (ω) vs. Φ (ω), because both functions start at the origin and they both reach a fixed point, (c 0 , d 0 ), the oscillations been clearly observed in most of cases, excepting the selected ones.

This action is derived after the Lagrangian (6) together with the self-similar solutions[START_REF] Penrose | Bose-Einstein Condensation and Liquid Helium[END_REF] and[START_REF] Pitaevskii | Vortex Lines in an Imperfect Bose Gas[END_REF] and the Jacobian coming from a change of variables from (s, t) → (ω, τ ).
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and similarly for Φ in [START_REF] Pumir | Vortex dynamics and the existence of solutions to the Navier-Stokes equations[END_REF].

Because the integration limits in both integrals behaves as ω → ω ± / Γ(t c -t) → ±∞, when t c → t, one requires just the asymptotic behaviors of ζ(ω ) = c 0 |ω | and Φ(ω ) = d 0 |ω | in the integration. In that case all integrals maybe computed exactly for a fixed ω leading to the expression:

Therefore, the nonlocal contribution comes up to an order O(Γ(t c -t)), thus the nonlocal interaction may be discarded, when t → t c , in the self similar equations.

The filament interaction contribution.

If the separation distance is almost constant in (24) in its asymptotic limit, one may safely replace:

However, the far-field behavior (16) of self-similar functions appears to contradict this condition. Therefore, eqns ( 13) and ( 14) are modified as

Hormoz and Brenner [START_REF] Hormoz | Absence of singular stretching of interacting vortex filaments[END_REF] have approximated the non-local effects of the second filament in the case of fluid dynamics obtaining a non-universal vortex collision scenario. Although the problem is not precisely the same, because in ordinary fluids a core structure possesses a coupled dynamic, the selection mechanism for equations [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF] seems to be similar as discussed in Secc. 4.5. Naturally the specific values of the parameters a * 0 and b * 0 (as well as c * 0 and d * 0 ) must change. Indeed, in the far field ω → ±∞, that is ζ(ω) → ∞ both integrals also vanish. Therefore the final far-field linear problem is ruled by the Hermite equation [START_REF] Boué | Analytic Solution of the Approach of Quantum Vortices Towards Reconnection[END_REF]. As in Section 4.5, a condition for removing the oscillatory behaviour must be imposed, leading probably to a universal solution. This program will be discussed in a future publication.