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Abstract  34 

Graph theory has been playing an increasingly important role in understanding the organizational 35 

properties of brain networks, subsequently providing new tools for the search of neural correlates 36 

of consciousness, particularly in the context of patients recovering from severe brain injury. 37 

However, this approach is not without challenges, as it usually relies on arbitrarily fixing a 38 

threshold in order to retain the strongest connections proportionally equal across subjects. This 39 

method increases the comparability between individuals or groups but it risks the inclusion of false 40 

positive and therefore spurious connections, especially in the context of brain disorders.  41 

Resting state data acquired in 25 coma patients and 22 healthy subjects was compared. We obtained 42 

a representative fixed density of significant connections by first applying a p value-based threshold 43 

on healthy subjects' networks and then choosing a threshold at which all individuals exhibited 44 

meaningful connections. The obtained threshold (i.e. 10%) was used to construct graphs in the 45 

patient group. The findings showed that coma patients have lower number of significant 46 

connections with approximately 50% of them not fulfilling the criteria of the fixed density 47 

threshold. The remaining patients with relatively preserved global functional connectivity had 48 

sufficient significant connections between regions, but showed signs of major whole-brain 49 

network reorganization. These results warrant careful consideration in the construction of 50 

functional connectomes in patients with disorders of consciousness and set the scene for future 51 

studies investigating potential clinical implications of such an approach. 52 

Keywords: resting state, consciousness, coma, complex networks, graph theory 53 

 54 

 55 

 56 

 57 

 58 

 59 

  60 



Introduction 61 

Neurobiological theories of consciousness suggest that local and global information processing, 62 

enabled through highly connected brain regions (i.e. hubs), might be crucial to generate and 63 

maintain conscious experience (Dehaene and Changeux, 2011). Among the behavioral continuum 64 

of acquired pathological consciousness perturbations which could be related to brain injury 65 

(Giacino et al., 2014), the state of unarousable unresponsiveness named coma is the most severe 66 

and acute form of disorder of consciousness (DOC) and therefore constitutes a clinically and 67 

fundamental relevant model of study of conscious access (Laureys and Schiff, 2012). Following 68 

this lead, recent brain functional connectivity studies in coma patients at rest, have provided 69 

promising but divergent accounts about the spatial extent and topography of functional brain 70 

changes related to coma (Achard et al., 2012; Amico et al., 2017; Demertzi et al., 2015; Koenig et 71 

al., 2014; Malagurski et al., 2017; Norton et al.; 2012; Silva et al., 2015; Vanhaudenhuyse et al., 72 

2010). 73 

Graph theory is a robust mathematical framework well-suited to deal with the complexity 74 

intrinsically associated to brain functional connectivity data. This approach enables accurate 75 

topological analysis of neuroimaging data (De Vico Fallani et al., 2014) and permits the 76 

quantification of relevant information processing-derived parameters (Rubinov and Sporns, 2010) 77 

across multiple scales, spanning from single brain areas (i.e. nodes) to networks and eventually 78 

whole brain analysis. Nevertheless, despite the promise held by these approaches, there have only 79 

been a few graph theoretical studies in patients with chronic DOC (Achard et al., 2012; Beudel et 80 

al., 2014; Chennu et al., 2014; 2017; Crone et al., 2014) and none of them have fully explored the 81 

potential contribution of such mathematical methods to specifically address the relationship 82 

between coma and the whole brain complex topological disturbances that may underpin this 83 

pathological state of acute DOC. 84 

We aimed to characterize during this extreme condition of acquired consciousness abolition (i.e. 85 

coma), brain’s residual ability to segregate and integrate information at both global and local 86 

networks levels. In line with network-level theoretical frameworks of conscious access (Tononi 87 

and Koch, 2008; Tononi et al. 2016; Dehaene and Changeux, 2011; Dehaene and Naccache, 2001), 88 

we hypothesize that the complete loss of consciousness that is observed during coma is related to 89 

the massive breakdown of whole brain functional connectivity. Possibly underpinning coma 90 

patient’s considerable neurological outcome heterogeneity, we expect to identify among patients 91 



a large repertoire of local and global topological disturbances, spanning from well-preserved to 92 

almost completely dissolute (i.e. randomized) networks, generating less efficient and costlier 93 

functional brain configurations than small-word arrangement (Fornito et al., 2015; Stam, 2014). 94 

 95 

Methods 96 

Participants 97 

Patients were included from three critical care units affiliated with the University Teaching 98 

Hospital (Toulouse, France) between January 2013 and January 2015. We compared rs-fMRI data 99 

of 25 cardiac arrest survivors with severe anoxic-ischemic brain injury, who met the clinical 100 

definition of coma (Glasgow Coma Scale score (Teasdale & Jennett, 1974) at the admission to 101 

hospital < 8, with motor responses < 6; Mean=51y; SD=18y; age range=18-80y; 12M) to 22 age-102 

matched healthy controls (Mean=44y; SD=20y; age range=22-74y; 10M). Patients were scanned 103 

at least 2 days (4 +/- 2 days) after complete withdrawal of sedation and under normothermic 104 

condition. The delay between primary brain injury (i.e. cardiac arrest) and MRI scan was of 6 days 105 

(Mean=6; SD=3). Standardized clinical examination was performed on the day of the scanning 106 

using the Glasgow Coma Scale and the Full Outline of Unresponsiveness (Wijdicks et al., 2005). 107 

This study was approved by the Ethics committee of the University Hospital of Toulouse, France 108 

(“Comité Consultatif pour la Protection des Personnes”, CHU Toulouse, ID-RCB: 2013-A00009-109 

34). Written informed consent was obtained directly from the healthy volunteers and from the legal 110 

surrogate of the patients.  111 

 112 

Data acquisition 113 

In all participants, 11 min resting state fMRI was obtained using a 3T magnetic resonance scanner 114 

(Intera Achieva; Philips, Best, the Netherlands). Two hundred and fifty multislice T2*- weighted 115 

images were retrieved with a gradient echo-planar sequence using axial slice orientation (37 slices; 116 

voxel size: 2 x 2 x 3.5 mm; TR = 2,600 ms; TE = 30 ms; flip angle = 90°; FOV = 240 mm). In 117 

addition, a 3D T1-weighted sequence (170 contiguous slices; TR= 8.1 ms, TE = 3.7 ms, FOV= 118 

220|232|170mm, flip angle = 8°, resolution= 1mm3 isovoxel) was also acquired in the same session 119 

and later used for visual assessment of the structural integrity of regions of interest. 120 



 121 

Data preprocessing and parcellation 122 

Functional data were preprocessed using Statistical Parametric Mapping (version SPM 12; 123 

http://www.fil.ion.ucl.ac.uk/spm/). The fMRI images were realigned (motion corrected), slice-time 124 

corrected, coregistered to each subject’s T1-weighted image and normalized to standard 125 

stereotaxic anatomical Montreal Neurological Institute (MNI) space. T1-weighted images were 126 

segmented to compute grey matter, white matter and cerebro-spinal fluid images, and normalized 127 

to MNI space. The fMRI images were not smoothed in order to minimize the spillage of the signal 128 

of the neighboring ROIs. The brain images were parcellated according to a whole-brain functional 129 

atlas composed of 268 regions (Finn et al., 2015; Shen et al., 2013). In addition, we regrouped 130 

these regions into large-scale resting-state networks, according to the atlas of Power and colleagues 131 

(2011). The full detailed list of brain regions used in our study can be found in Supplementary 132 

Information (Appendix A). 133 

Time series extraction and wavelet decomposition 134 

In each brain parcel, regional mean time series were estimated by averaging, at each time point, 135 

the fMRI voxel values weighted by the grey matter probability of these voxels. This weighting 136 

limits the contamination of the time-series by white matter signals and cerebrospinal fluids. In 137 

addition, non-neuronal sources of noise were estimated using the anatomical component based 138 

noise reduction method (CompCor) (Behzadi et al., 2007), which consisted of applying the 139 

principal component analysis (PCA) to characterize the time series data from white matter and the 140 

CSF voxels (i.e. normalized T1 segmented masks). Five principal components of the signals from 141 

the noise voxels were then introduced as covariates in a general linear model (GLM) as an estimate 142 

of the physiological noise (Behzadi et al., 2007). Residual head motion was removed by regressing 143 

out motion parameters, estimated during realignment, and composite scan-to-scan movement 144 

parameters calculated using ART (integrated within the CONN toolbox, Whitfield-Gabrieli & 145 

Nieto-Castanon, 2012; http://www.nitrc.org/projects/conn). In addition, we calculated the average 146 

scan-to-scan movement (i.e. for the entire MRI session) for each subject and correlated this with 147 

network metrics to investigate the impact of motion on brain network analysis (please see 148 

Appendix B). 149 



The residual time series were decomposed in four scales using discrete dyadic wavelet 150 

transformation (Achard et al., 2006). We used the maximal overlap discrete wavelet transform 151 

(MODWT) to each regional mean time series and estimated the pairwise inter-regional correlations 152 

at each of the four wavelet scales. Given that the wavelet decomposition is dependent on the 153 

repetition time (TR=2.6s) of the rs-fMRI acquisition protocol, we decomposed all regional mean 154 

time series into the following scales: scale 1 (0.1–0.19 Hz); scale 2 (0.05–0.1 Hz); scale 3 (0.02–155 

0.05 Hz); and scale 4 (0.01–0.02 Hz). We decided to primarily focus on scale 2, because previous 156 

studies indicated that this frequency band contains relevant information for rs-fMRI and is most 157 

sensitive to differences between aberrant and healthy brain functioning (Váša et al., 2018). Still, 158 

some analysis has been repeated for scale 3 (see Supplementary Information – Appendix B).   159 

 160 

Graph computation 161 

Threshold selection 162 

Lower levels of overall functional connectivity have been associated with higher degree of 163 

randomness in the individual proportionally thresholded (i.e. connection density) brain graphs. 164 

Edges with low functional strength have a higher probability of being spurious and often lead to 165 

differences in clustering and global efficiency not necessarily reflecting real changes in network 166 

organization but artificially induced differences due to low overall functional connectivity (van 167 

den Heuvel et al., 2017). 168 

In order to eliminate the possible group differences in functional connectivity strength, we first 169 

thresholded each subject’s matrix at an FDR-adjusted significance level of p<.05, and termed the 170 

surviving edges as significant connections (Benjamini & Yekuteli, 2001).   171 

Then, we calculated the ratio of the number of these significant connections to the total number of 172 

possible edges in a given graph. The resulting connection densities were used to select a fixed 173 

density threshold that contained only significant edges for all subjects, including controls and coma 174 

patients (Achard et al., 2006; De Vico Fallani et al., 2014). 175 

Importantly, to keep the graph fully connected, we extracted the minimum spanning tree (MST) 176 

for each subject, based on the correlation matrix with absolute weights. The remaining values of 177 

the correlation matrices were then added at the selected fixed connection density threshold to the 178 

MST skeleton resulting in an undirected binary adjacency matrix for all subject in the two groups. 179 



The code used to calculate the significance of edges is integrated in an R-based package entitled 180 

brainwaver, available at https://cran.r-project.org/web/packages/brainwaver/. 181 

It is worth noting that we calculated the significance of connections using absolute values of 182 

negative and positive correlation coefficients, which do seem to play a different role in disorder of 183 

consciousness (Di Perri et al., 2016; Malagurski et al., 2017). However, our additional analysis 184 

indicated that there were significantly more positive links which were also higher in strength in 185 

comparison to negative links in both groups (see Appendix B). Thus, our final thresholded matrices 186 

(at 10%) included only the (binarized) connections that were based on positive correlation 187 

coefficients, for both controls and patients.  188 

 189 

Network metrics 190 

 191 

The network analysis was done in R (v.3.3.2; The R Project for Statistical Computing; 192 

http://www.R-project.org/) using the brainwaver (v.1.6) and iGraph (v.1.1.2) package freely 193 

downloadable at http://cran.r-project.org. 194 

Following global metrics were calculated: clustering and global efficiency. The clustering (global 195 

average local efficiency – see description below) is a topological measure of segregated 196 

information transfer. The global efficiency (GE) is a metric for efficiency of integrative 197 

information transfer across the network. This measure is inversely related to the characteristic path 198 

length (average shortest path between nodes) but is adapted to fragmented that is disconnected 199 

graphs. 200 

To explore the local/nodal network metrics we employed the degree and the local efficiency. Each 201 

of these measures describe different aspects of topological node centrality permitting the 202 

identification of nodes that have the highest influence on network-wide processes. The degree 203 

represents the number of links connected to the node, assuming that nodes with many connections 204 

have a higher influence on the network in comparison to low-degree nodes. The local efficiency 205 

measures the integration capacity between immediate neighbors of a given node. This metric also 206 

reflects the network resilience by indicating how efficiently neighbors of a given node 207 

communicate when this node is disrupted. 208 

 209 

 210 



Network reorganization mechanism 211 

To detect network reorganization in comatose patients we have also computed the hub disruption 212 

index (HDI) for nodal measures (Achard et al., 2012). To calculate HDI for a given metric, for 213 

example the degree, we subtract the healthy group mean degree from the degree of the 214 

corresponding node in an individual subject, and plot this individual difference against the healthy 215 

group mean. The slope of a straight line fitted to a given plot is referred to as hub disruption index. 216 

A negative HDI close to -1, indicates a severe network reorganization, meaning that nodes with 217 

highest degree (i.e. hubness) in controls show greatest reduction in patients, whereas the nodes 218 

with lowest nodal degree in controls show the greatest increase in patients. 219 

 220 

Statistical analysis 221 

Global and nodal statistics (and functional connectivity) were compared between groups with the 222 

aid of the permutation test (10000 iterations) using the package perm (v.1.0-0.0) implemented in 223 

R (v.3.3.2; The R Project for Statistical Computing; http://www.R-project.org/). For each nodal 224 

metric, the significance level of p-values was adjusted to 0.05/N (p=.00018), where N represent 225 

the number of nodes included in the analysis. The results were visualized with the BrainNet Viewer 226 

(Xia et al., 2013). 227 

 228 

Results 229 

 230 

Randomness  231 

The results showed that the number of significant connections in the graphs of coma patients were 232 

significantly lower in comparison to those of healthy controls, exhibiting a lower connection 233 

density of significant connections at an FDR-adjusted significance level of p<.05 (Appendix B. 234 

Table 1). The median connection density of these thresholded graphs in patients was 14% (range 235 

0-56%), meaning that the maximum connection density that graphs could be built to, while 236 

ensuring that all subject’s connectomes contain only significant edges was much lower in 237 

comparison to the control group. These results were reproducible across several levels of 238 



parcellation of the functional atlas used in the principal analysis (Finn et al., 2015; Shen et al., 239 

2013), as shown in the Supplementary Information (Appendix B – Table 1). 240 

The final fixed threshold for exclusion of patients was set to 10% significant connections density, 241 

the lowest value found in healthy control subjects. Therefore, to allow meaningful interpretation 242 

of patients’ global and local network topology that is not related to randomness low functional 243 

connectivity, but to node related topological changes, we decided to calculate the graph measures 244 

excluding patients (N=12) that did not have at least 10% of significant connections, leaving a total 245 

of 13 patients for further analysis. The patients that were included in further analysis are referred 246 

to as “non-random” the “effective” patient subgroup, while the excluded patients were referred to 247 

as “random” the “non-effective” patient subgroup (see Figure 1). This nomenclature was chosen 248 

as effectiveness refers to the fact that the effective patient subgroup satisfied the significant 249 

connections density criteria so as to be able to construct the connectivity graphs. 250 

It is worth noting that this first step of global network analysis, appears to have a potential value 251 

for neuroprognostication in this challenging clinical setting, as five out of six patients who did not 252 

have any significant connections at any level of parcellation (i.e. random non-effective subgroup) 253 

did not recover consciousness at 3 months post coma (Appendix B – Table 2). 254 

Further, we compared the overall functional connectivity strength (without threshold) between all 255 

patients and controls, and between patients who had satisfied the criteria of edge significance and 256 

healthy subjects. There were no significant differences in the overall (average) functional 257 

connectivity (FC) between the non-random effective patient subgroup and controls (p=.081) 258 

(Figure 1.). 259 

Finally, we examined whether there was a significant association between the overall FC and graph 260 

metrics across the final groups of subjects. We found a significant relationship between the FC 261 

strength and clustering (r=-.59, p=.0002), and global efficiency (r=-.38, p=.02) in the group of all 262 

subjects – controls and non-random the effective patient subgroup (van den Heuvel et al., 2017). 263 

Given that there were no significant differences in the average FC strength between the two 264 

subgroups, this association should not significantly influence the group comparison results. See 265 

supplementary information (Appendix B – Figure 1) for the same analysis for scale 3 (0.02–0.05 266 

Hz). 267 

 268 

Disruption of hub rank order 269 



This hub disruption index summarizes the pattern of network reorganization, in subtracting the 270 

healthy group mean value from the value of the corresponding node in coma patients, and plotting 271 

this individual difference against the healthy group mean. The slope of a straight line fitted to a 272 

given plot is referred to as hub disruption index (Achard et al., 2012). A negative HDI close to -1, 273 

indicates a severe network reorganization, meaning that nodes with highest nodal efficiency (i.e. 274 

hubness) in controls show greatest reduction in patients, whereas the nodes with lowest nodal 275 

efficiency in controls show the greatest increase in patients. The hub disruption index calculated 276 

with the global (nodal) efficiency (p<.0001) and local efficiency (p<.0001) implied significant 277 

brain network reorganization within the effective patient subgroup (Figure 2). Further, HDI 278 

calculated using the degree implied the same significant brain network reorganization within the 279 

patient group in comparison to the control group (p<.0001; Figure 2), and we found evidence of a 280 

critical reorganization of high degree nodes (i.e. hubs). Namely, cortical regions that were hubs of 281 

healthy brain networks seemed to become non-hubs of comatose brain networks and vice versa 282 

(Figure 3). However, there seemed to be significant heterogeneity within the coma patient group 283 

(Figure 2), with some individuals showing severe reorganization at global level, while others 284 

having similar values to healthy subjects. 285 

 286 

Network topology 287 

There were no statistically significant differences in clustering (at cost 10% permutation test 288 

p=.88) and global efficiency (permutation test p=.57) between nonrandom the effective patient 289 

subgroup and the control group (Figure 4). In addition, we ran a general linear model to determine 290 

a statistically significant difference between the nonrandom effective patient subgroup and 291 

controls in global metrics after controlling for the global functional connectivity and its interaction 292 

with the group variable. The results showed that there was no significant main effect of the group 293 

on clustering (F(1,31) =.035, p=.85) and global efficiency (F(1,31) =.84, p=.37) after controlling 294 

for the covariates. The interaction between the FC and group was not significant, after the 295 

Bonferroni correction, for the clustering (F(1,31) =.035, p=.85) and for the global efficiency 296 

(F(1,31) = 6.26, p=1).  297 

However, Figure 5. shows multiple regions that significantly differ between the patients and the 298 

control group at nodal level. Overall, we can see a disruption in brain node centrality in the patient 299 



group reflected in a combination of decrease and increase of node degree, suggesting specific 300 

regional changes in brain network organization. The decrease of nodal degree was shown in the 301 

right crus (I) of the cerebellum (not classified in a network), while the increase of nodal degree 302 

encompassed the left angular gyrus (default mode network) and the left fusiform gyrus (not 303 

classified in a network). 304 

The local efficiency indicates how efficiently neighbors of a given node communicate when this 305 

node is disrupted. This decrease in this metric was primarily seen in the right lingual gyrus (visual 306 

network). 307 

 308 

Discussion 309 

Our findings significantly contribute to the growing evidence of the involvement of resting state 310 

functional networks in the mechanisms of acquired disorders of consciousness. We observed 311 

among comatose patients a large repertoire of topological disturbances, at several levels: (i) whole 312 

brain impairments, encompassing gradual disruption in functional connectivity with the most 313 

severe changes implying complete randomness (ii) and significant disruption of hubs rank order 314 

across local networks metrics, suggesting a critical reorganization of high degree nodes, with 315 

cortical regions that were hubs of healthy brain networks becoming non-hubs of comatose brain 316 

networks and vice versa. 317 

In agreement with our first hypothesis, systems-level mathematical metrics allows us to identify a 318 

massive breakdown of whole brain functional connectivity in coma patients, leading in some cases 319 

to a complete randomization of the functional brain networks. It should be stressed that the 320 

obtained dichotomization between random and non-random non-effective and effective whole 321 

brain networks, seems to have a potential value for neuroprognostication in this challenging 322 

clinical setting, as five out of six patients who did not have any significant connections at any level 323 

of parcellation did not recover consciousness after coma. Future and ongoing studies should further 324 

investigate in larger and longitudinal patient’s cohorts the added value of this promising and 325 

straightforward assessment tool of global brain function (Dell’Italia et al., 2018). 326 

Further, the analysis did not show any evidence of significant differences in global network 327 

topology between nonrandom the effective coma patient subgroup and healthy subjects (Achard 328 

et al., 2012; Crone et al, 2014). Therefore, patients that had preserved whole-brain functional 329 



connectivity, similar to that found in a healthy functioning brain, did not exhibit any disruption in 330 

global efficiency and clustering. In fact, our findings are in line with the recently published studies 331 

(De Vico Fallani 2014, van den Heuvel et al., 2017, Váša et al., 2018) indicating that edges with 332 

low functional connectivity strength are probably spurious and thus artificially induce apparent 333 

changes in global topology not necessarily related to an underlying neurobiological mechanism. 334 

Indeed, the conservation of global networks properties has been put in evidence in another graph 335 

theory-based study (Achard et al., 2012) with patients with acquired disorders of consciousness, 336 

further suggesting that fundamental networks characteristics may be homeostatically preserved 337 

under clinical conditions such as severe brain-injury and coma. It must be stressed, that these 338 

results were found across multiple resolutions of brain parcellations and are probably unrelated to 339 

the brain node definition, which has been shown to significantly impact the analysis of brain 340 

network topology. Our results not only reproduce the results obtained in the study of Achard and 341 

colleagues (2012), but highlight the robustness of these findings under different acquisition scheme 342 

and in an another group of patients from a different hospital. In this study, the acquisition duration 343 

was nearly twice as shorter as the one used in Achard and colleagues (2012), and the patients in 344 

the current cohort were more severe and were scanned earlier than in the previous study (Achard 345 

et al., 2012), exclusively during the acute phase that follows the primary brain injury (i.e. coma). 346 

Without taking into account accurate statistical properties of low functional connectivity, the 347 

results would have been misleading because of the lack of signal in the data. 348 

Further, a finer-grained exploration of network organization in coma patients highlighted a 349 

disruption of the order of importance of specific brain nodes, where brain regions such as the 350 

posterior cingulate cortex and the cerebellum which were high-degree nodes in healthy brain 351 

networks became low-degree nodes in coma patients, whereas low-degree non-hub regions such 352 

as the amygdala and the temporal cortical region became highly connected hub nodes in coma 353 

patients. This reorganization was further put in evidence with other nodal properties such as the 354 

hub rank disruption of nodal and local efficiency of brain regions.   355 

In fact, previous functional connectivity studies with patients with acquired disorders of 356 

consciousness, have suggested significant changes along high-order midline posterior parietal 357 

regions, encompassing the posterior cingulate cortex, in this setting (Hannawi et al., 2015; 358 

Malagurski et al., 2017; Silva et al., 2015). In fact, these highly important regions have been 359 



previously suggested to be involved in self-related processing and potentially critical for 360 

consciousness emergence (Boly et al., 2017). 361 

Among these brain regions, we found robust evidence of a loss of connectedness of the cerebellum, 362 

indicated by the hub disruption index and supported by the local network topology results. We 363 

hypothesize that this circuit-selective significant reduction of cerebellum centrality could be linked 364 

to diaschisis phenomena caused by a reduced excitatory drive from the damaged cortex, to which 365 

cerebellum is densely connected (Herculano-Houzel, 2012) and could represent in the context of 366 

global brain severe injury, a potential relevant biomarker of diffuse cortico-cortical and cortico-367 

thalamic widespread functional disruption. From a cognitive point of view, this cerebellar 368 

disconnection seems in line with recent studies which have highlighted the cognitive role of this 369 

brain structure in consciousness related processes as attention, working memory and self-reference 370 

tasks (Buckner, 2013; Sokolov et al., 2017).  371 

Finally, the network reorganization index pointed to an increase in nodal degree in coma patients 372 

tended to be in the least central nodes found in the healthy controls, implying potential 373 

compensatory brain plastic processes, reflected through reallocation of critical residual neural 374 

resources to otherwise not so central nodes (Di Perri et al. 2014; Hillary et al., 2015; Liu et al., 375 

2017). 376 

 377 

Methodological considerations and limitations 378 

We thresholded each subject's graph at an FDR-adjusted significance level of p<.05, and used the 379 

resulting connection densities to select a fixed density threshold that contained only significant 380 

edges for all subjects, including controls and coma patients. The final threshold was set to 10% of 381 

significant connections, according to the minimal value found in the sample of healthy subjects. 382 

This approach certainly has the advantage of reducing the effect of potentially spurious 383 

connections by highlighting patients with insufficient functional connectivity, however, other 384 

significance levels should also be considered, to make sure that these findings are not specific to a 385 

single threshold (Váša et al., 2018). 386 

Different brain parcellation methods should be taken into account when defining regions of 387 

interest, as the choice of nodes has been shown to significantly impact the topological organization 388 

(De Vico Fallani et al., 2014). However, the “randomness”, that is the loss of functional 389 



connectivity, found in some of our patients has been identified across multiple levels of 390 

parcellation implying potential global-level changes independent of the choice of brain nodes. 391 

Further, since the BOLD signal is hemodynamic in origin, it is worth investigating if alterations in 392 

global functional connectivity found in our patients might be, in some cases, a reflection of altered 393 

neurovascular coupling and consequent signal loss, as previously highlighted in cerebrovascular 394 

and ischemic disorders (Hillman, 2014). 395 

Further research needs to include more patients with accurate long-term longitudinal follow-up, 396 

encompassing repeated behavioral and fMRI assessment because topological organization could 397 

significantly change over the course of time (Castellanos et al, 2011; Nakamura et al., 2009). 398 

Additionally, comatose patients with different etiologies, such as traumatic brain injury, should be 399 

also studied aiming to identify potential etiology-related pathology mechanisms. 400 

 401 

Conclusions 402 

In summary, the probabilistic p value–based thresholding which we applied highlighted significant 403 

whole-brain reorganization in coma patients, with the most severe changes implying a global 404 

reduction in functional connectivity and consequent randomness. The remaining non-random 405 

patients had sufficient significant connections between regions, but showed globally reorganized 406 

brain networks put in evidence by a disruption in hub rank order across several local metrics. Apart 407 

from a deeper understanding of the neural correlates of consciousness, the obtained 408 

dichotomization between random and nonrandom the non-effective and effective patient 409 

subgroups, has potential clinical implications and might be particularly relevant for outcome 410 

prediction and could inspire new therapeutic options. 411 

 412 

 413 
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Figures 

 

 

Figure 1. Functional connectivity (Pearson’s r) over all pairs of nodes (without a threshold) plotted against the global metrics – global 

efficiency (A) and clustering (B) (at wavelet scale 2). Patients with the significant connections density lower than 10% are marked 

using the cyan colour. These patients have a lower average functional connectivity in comparison to the other subgroup of patients and 

controls. There are no significant differences in the overall (average) functional connectivity between the non-random effective patient 

subgroup (in purple) and the control group (p=.081).



 

 

 

Figure 2. Hub disruption index (degree, global efficiency and clustering) for each of the subjects in the control and the patient group.   

 

 



 

Figure 3. Hub disruption of functional networks in comatose patients. A) The mean degree of each node in the healthy control group (x 

axis) is plotted against the difference between the groups in mean degree of each node (y axis). Normal hub nodes with high degree in 



the healthy group have a reduction in degree in the comatose group (i.e. posterior cingulate cortex, cerebellum), whereas the healthy 

non-hub nodes have an increase of degree in patients (i.e. amygdala, temporal cortex).  The colors correspond to HDI values marked on 

the Y axis. B) Hub disruption index projected onto a brain surface for an easier interpretation of inter-regional differences. 

 

 

Figure 4. Global topology in controls and effective patients. A) Global efficiency (GE) in controls and patients in comparison to regular 

and random networks, at multiple connection density thresholds (5-50%, increment 5%). B) Clustering (average local efficiency) in 

controls and patients in comparison to regular and random networks, at multiple connection density thresholds (5-50%, increment 5%). 

There were no group differences in global efficiency (p=.57) or clustering (p=.88) at the 10% connection density threshold. 



 

Figure 5. Brain representation of nodes that demonstrated significant between-group difference in nodal degree and local efficiency. 

P>C – significantly higher in patients; P<C –significantly lower in patients. The p values are corrected using the Bonferroni correction 

(p=.00018).
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