N
N

N

HAL

open science

State-parameter estimation approach for data-driven
wildland fire spread modeling: Application to the 2012

RxCADRE S5 field-scale experiment
Cong Zhang, Annabelle Collin, Philippe Moireau, Arnaud Trouvé, Mélanie C.

Rochoux

» To cite this version:

Cong Zhang, Annabelle Collin, Philippe Moireau, Arnaud Trouvé, Mélanie C. Rochoux.
parameter estimation approach for data-driven wildland fire spread modeling: Application to
the 2012 RxCADRE S5 field-scale experiment.

10.1016/j.firesaf.2019.03.009 . hal-03484997

HAL Id: hal-03484997
https://hal.science/hal-03484997v1
Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

State-

Fire Safety Journal, 2019, 105, pp.286 - 299.


https://hal.science/hal-03484997v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0379711218305502
Manuscript_b45c91eb4845d8326245d9e84f15c449

State-Parameter Estimation Approach for Data-Driven Wildland
Fire Spread Modeling: Application to the 2012 RxCADRE S5
Field-Scale Experiment

Cong Zhang?®, Annabelle Collin®, Philippe Moireau®, Arnaud Trouvé?, Mélanie C.
Rochoux®*

@ Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742, USA
bInria, Université de Bordeauz, Bordeaux INP, 351 cours de la Libération, 33405 Talence cedex, France
¢Inria — LMS, Ecole Polytechnique, CNRS — Université Paris-Saclay, 1 rue Honoré d’Estienne d’Orves,

Campus de I’Ecole Polytechnique, 91120 Palaiseau, France
dCECI, Université de Toulouse, CNRS, CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse cedex
01, France

Abstract

Data assimilation is an emerging and powerful tool towards real-time flame front monitor-
ing for wildland fire applications. The key idea is to regularly update the state and/or
parameters of a fire spread model using observed firelines in order to improve a forecast on
future fire locations. The merits of combining state estimation and parameter estimation
through a hybrid state-parameter estimation algorithm are demonstrated through the 2012
RxCADRE S5 field-scale controlled burn experiment. For state estimation, we adopt a cost-
effective Luenberger observer formulation to reconstruct a complete view of the burning
state at a given time. For parameter estimation, we use an ensemble transform Kalman
filter to solve the inverse modeling problem consisting of inferring more realistic wind con-
ditions given observations of the actual burning state. The data-driven model relies on a
front shape similarity measure derived from image segmentation theory to quantify position
errors. We show that the hybrid approach provides an efficient framework to address all
sources of model uncertainties and to select burning scenarios that are most likely to occur.
Parameter estimation is a key component of the data-driven model by reducing model bias.
Using the fire spread model in forecast mode is then an asset to accurately track the flame
front dynamics at future lead times.
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1. Introduction

Data assimilation is a powerful technique to couple information coming from both mea-
surements and simulations, taking into account that sensors or models, when used in isola-
tion, only provide an incomplete and uncertain description of the real state of a dynamical
system [1-5]. The idea is to use observations to best estimate the set of physical parameters,
external forcing or initial conditions used in the model to improve its accuracy in both re-
analysis and forecast modes. The application of data assimilation to combustion [6-9] raises
a number of methodological questions. Combustion can be considered as a front-tracking
problem with the challenges of: (1) simulating accurate flame shape and topology; and
(2) comparing simulations to observation images obtained for instance from infrared cam-
era. Classical data assimilation methods perform poorly when the simulated front deviates
from observations due to the assumption that errors are of amplitude type: data assimilation
methods typically compensate position errors by adjusting amplitudes, which can eventually
produce non-physical fronts [10-12]. There is therefore a need to develop an original image
data assimilation strategy that can handle position errors for front-tracking problems such
as wildland fire spread [8, 13-19].

Wildland fire spread is represented at regional scales using a front-tracking model,
where the front (or “fireline”) represents the moving interface separating burnt and unburnt
biomass fuel. This regional-scale modeling approach relies on an empirical parametrization of
the front propagating speed (or “rate of spread”) in terms of biomass, topography and near-
surface meteorology conditions. But it has a number of limitations. First, rate-of-spread
models rely on a series of physical simplifications; for instance, they usually do not explicitly
account for fire-atmosphere interactions. Second, rate-of-spread models require a list of in-
put parameters representing local environmental conditions but these parameters may only
be known with limited accuracy. Third, rate-of-spread models have a domain of validity
that is limited to the original experimental conditions used during their development and
calibration, which does not include, for instance, extreme fire behavior. Still, rate-of-spread
models are valuable to support decision-making by fire emergency responders [20]. And
data assimilation offers an attractive framework to overcome modeling limitations by taking
advantage of recent progress made in remote sensing technology. One example of typical
observation data is thermal infrared imaging, which highlights areas where active flaming
combustion is occurring [21] and which can be used to extract fireline position [22, 23].
However, fireline observations are likely to be available with a coarse resolution in space and
time; they may also be incomplete in the sense that only a portion of the fireline may be
covered, for instance due to the plume opacity. These expected limitations in the observa-
tions motivate the use of a fire spread model to reconstruct a complete fire perimeter and
forecast its behavior at lead times [24].

In this context, the key idea of data-driven modeling is to design a data assimilation
algorithm capable of assimilating observed fireline positions to provide an improved model
representation of wildland fire behavior. The data assimilation algorithm includes the follow-
ing components: (1) a model based on a rate-of-spread submodel and on a two-dimensional
front-tracking numerical scheme; (2) observations of the fireline position at discrete times;

2



and (3) a sequential data assimilation algorithm that infers a correction on the estimation
targets (or “control variables”) from the differences between observed and simulated fire-
lines and their estimated error statistics. An intuitive approach to represent the fireline
evolution is to adopt a Lagrangian viewpoint and to compute the observation-simulation
discrepancies in terms of a metric distance between observed and simulated markers. This
approach was successfully evaluated against reduced-scale and field-scale (FIREFLUX I)
experiments [17, 19]. However, this Lagrangian representation suffers limitations at regional
scales where the fireline topology is highly heterogeneous and complex. To overcome these
limitations, we have recently designed an object-oriented data assimilation strategy that
considers the burning area as a moving object, whose shape changes in time [25], and that
formulates the observation-simulation discrepancies using a non-Euclidean front shape sim-
ilarity measure derived from image segmentation theory [26].

In wildland fire spread applications, the success of data assimilation strongly depends
on the choice of the control variables. The control variables must be representative of the
actual sources of uncertainty and the model predictions must be sensitive to variations in
the control variables to make the correction physically-consistent and effective. The control
variables can be of different nature. In a parameter estimation mode, corresponding to
an inverse modeling problem, the control variables are the input parameters of the rate-
of-spread model (which cannot be directly measured or can only be measured with great
difficulty and uncertainty) [17, 19]. In a state estimation mode, the control variables are
directly the spatial coordinates of the fireline [18, 24]. When using standalone parameter
estimation, we found that the updated control parameters are usually over-corrected due
to the presence of more sources of uncertainty than assumed in the method (e.g. initial
fireline location, model formulation itself). We also found that standalone state estimation
is limited to a short-term forecast due to a short temporal persistence of the correction.

The objective of the present study is to demonstrate the benefits of a hybrid state-
parameter estimation approach to enhance the forecast performance. The key idea of the
hybrid approach is to simultaneously control the model state and a subset of significant
parameters in order to obtain more accurate physical values of the estimated parameters
by attributing uncertainties not only to the model parameters, but also to the model state.
Parameter estimation is carried out using an ensemble transform Kalman filter (ETKF) [27,
28]; state estimation is carried out using a Luenberger observer (LO) formulation [25]. A
proof of concept of a joint state-parameter estimation approach was presented in Ref. [25]
against synthetic experiments. We are now in the process of validating our front data
assimilation strategy in a real-world wildland fire test corresponding to the 2012 RxCADRE
S5 field-scale experiment [21]. The study in Ref. [24] was focused on state estimation applied
to the RkxCADRE dataset to show first, the added value of data assimilation compared to
a simple extrapolation of observations for observation frequencies lower than 1/60 s™!, and
second, how the front shape similarity measure can be formulated for both Eulerian and
Lagrangian front-tracking models in a unified framework. In the present study, the novelty
is to show the benefits of combining state estimation and parameter estimation to accurately
track the fireline in analysis mode and forecast mode. The sensitivity to the observation
frequency (ranging from 1/120 s™! to 1/30 s™!) is also investigated.
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The outline of this paper is as follows: the fire spread model is presented in Section 2;
the hybrid state-parameter estimation approach is presented in Section 3; the verification
and validation tests including the RxCADRE dataset are presented in Section 4; and results
are presented in Section 5.

2. Forward Modeling: the Fire Spread Model

Regional-scale wildland fire spread models feature two main components: (1) a rate-of-
spread (ROS) model that gives values of ROS as a function of local vegetation and topo-
graphical properties, as well as meteorological conditions (we use the classical model due
to Rothermel [29, 30]); and (2) a front-tracking algorithm that provides a solution of the
front propagation equation on a two-dimensional horizontal plane (z,y) € 2, where Q C R?
denotes the two-dimensional computational domain (2 is the physical plane where the fire
evolves in case of a flat terrain and is a conceptual projected plane in case of an arbitrarily
complex terrain).

The fire spread model used in our work [17-19, 25] is an Eulerian front-tracking simulator
based on a level-set method [31-33]. The forward model is similar to that adopted in the
ELMFIRE fire simulator [34] or in the WRF-SFIRE coupled fire-atmosphere system [35].
In the Eulerian framework, a progress variable ¢ = ¢(x, y, t) is introduced as a marker of the
fireline; the fireline is then defined as the contour line ¢, = 0.5; ¢ < ¢ (¢ > ¢p) represents
unburnt (burnt) vegetation. The time evolution of ¢ is governed by

oc
a(l‘,y,t)—f—VVC(I,y,t) :07 C(xay7t0) :Co(l',y), (xay) € Qa tZto, (1)

where V is the displacement velocity of an iso-¢ surface, and where cq(x,y) is the initial
condition at time ¢y5. In wildland fire applications, we commonly assume that the fire-
line self-propagates normal to itself; the normal direction to the front ng is defined as
ng = ng(x,y,t) = —Ve(z,y,t)/|Ve(z,y,t)]. Using this definition, the progress variable ¢ is
calculated as a solution of the propagation equation derived from Eq. (1), i.e.

Oc

a(xayat) = V(x>yat) ‘VC(J%ZUJ)‘ ) C(%y,to) = CO($7y>7 (Qf,y) € Qa t 2 th (2)

where V =V - ng(z, y,t) corresponds to the Rothermel-based ROS parameterization. Note
that the near-surface wind velocity denoted by U, is involved in the calculation of V; it is
specified using two scalar parameters, the wind flow velocity magnitude uy (uy, = ||Uy||)
and the wind flow velocity direction angle dy, such that Uy, = (uy, sin dy, ty cos dw)T. In the
following, u, is referred to as the “wind speed” and d,, as the “wind direction”.

The level-set function ¢.(z,y,t) = (c(z,y,t) — cg) also satisfies Eq. (2); the fireline is
represented by the contour line ¢.(z,y,t) = 0 referred to as the “level set”. We denote the
time-evolving two-dimensional fireline as I'(t) = {(z,y) € Q|c(x,y,t) = cp < dc(z,y,t) =
0}. We also denote by B(t) the burnt area bounded by the fireline I'(¢) at a given time ¢.

To solve Eq. (2), we follow the choices made in Ref. [36] and use a second-order Runge-
Kutta scheme for time-integration and a second-order total variation diminishing (TVD)
scheme with a Superbee slope limiter for spatial discretization, see Ref. [37].
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3. Data-Driven Modeling: the Hybrid State-Parameter Estimation Approach

The key idea of sequential data assimilation is to find optimal estimates of a set of
variables (i.e. the control variables) given uncertain observations and model predictions
(i.e. the “background” or “prior” information). The model informed by the observations
is referred to as the “data-driven model” by opposition to the “free run” corresponding to
the model prediction without data assimilation. A general framework for sequential data
assimilation is presented in Ref. [25].

3.1. Sources of Uncertainty and Control Variables

The choice of the control variables is a critical step in the design of a data assimilation
procedure. This choice must reflect the main sources of uncertainty in the forward model,
and the model predictions must be sensitive to variations of the selected uncertain variables.
An incorrect identification of the sources of uncertainty would indeed lead to an artificial
adjustment of the model through data assimilation and thus to a poor-quality forecast.

In the present study, the uncertain variables are the initial location of the fire (i.e. the
initial condition ¢y) and some parameters 6 informing the ROS model V(z,y,t) in Eq. (2).
The uncertainties in the front position due to uncertainties in the initial fire location ¢y are
addressed through state estimation, meaning that the model state c is updated over time to
locally correct the shape of the fireline and restart the forward model from a fire location that
is informed by observations. This is a classical approach in numerical weather prediction [3].
Furthermore, uncertainties in the front position due to uncertainties in the ROS parameters
are addressed through parameter estimation, meaning that the parameters included in 6 are
explicitly updated when observations become available [38]. Time-averaged estimates of the
control parameters are retrieved over the time window between two successive observations;
we thereby assume that the errors on the ROS model parameters vary slowly in time [15,
17, 18]. The control parameters are here the near-surface wind speed u,, and direction d.,.

3.2. Front Shape Similarity Measure

The estimation algorithms used in this work are not classical since we are dealing with
a front-tracking problem: we need to have a specific measure (referred to as the “front
shape similarity measure”) to represent the discrepancies between the observations y° and
the simulated firelines y (or “observable quantities”) in terms of position errors [10, 25, 26].
Here the observation y° is defined as the instantaneous two-dimensional binary field such
that field values are equal to 0 in the unburnt region and 1 in the burnt region.

The front shape similarity measure is derived from the Chan-Vese contour fitting func-
tional introduced for object detection in image processing theory [32, 39, 40]. In a level-set
formalism, this measure can be written as

T, ¢c) = /Q Hy(¢e) [y = Crnax(y°, (bC)]Q + (1= Ho(¢e)) [y = Crain (v, (bC)]Q dx dy, (3)

where ¢, is the level-set function (¢. = ¢ — ¢¢), Hy the Heaviside function (Hy(¢.) = 0 if
¢ < 0; Hy(¢e) = 11if ¢, > 0), and where Cy;, and Chax are scalar coefficients defined by
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Chnin = min(Cy, C) and Ciayx = max(Cy, Cy) with

(

| = H(6)y dedy
Co(y°, ) = 2 , 0<Cy <1,
¢ (4)
/ H,(¢.)y®dxdy
Ci(y°, @) = =2 L 0<Cy < 1.
[ Hoydzdy

C} measures the level of agreement between the observed and simulated burnt areas; Cj
measures the level of disagreement between the observed and simulated unburnt areas.

The objective in image segmentation is to minimize the functional [J; this is achieved
when the observed and simulated fronts coincide, i.e. C; = 1 and Cy = 0. In data assimilation
applications, the objective is to retrieve an optimal estimate of the control variables that
is compatible with both the observations and the background information. We need to
introduce estimators that are compatible with the front shape similarity measure (Eqs. 3-4)
and that also account for observation and background uncertainties.

3.3. State Estimation (SE)

To present the state estimation (SE) procedure, we assume in this section that the control
parameters 0 are perfectly known, i.e. the control variables correspond to the model state ¢
and uncertainties are only due to the initial condition ¢y. We correct the model state using
a Luenberger observer (LO), i.e. by directly modifying the prognostic Eq. (2) through the
introduction of a relaxation term that steers the model state towards the observations y°
in a continuous way. This methodology corresponds to a continuous-model continuous-data
estimation problem.

The key idea of a LO is to use the physical constraints of the model equation to implicitly
propagate the correction over the computational domain €2 [41]. In the present front-tracking
problem, the LO implicitly propagates the correction from one point of the fireline to the
rest of the fireline and thus preserves a coherent structure for the simulated front [26]. Note
that this is different from the SE algorithm used in Ref. [18] based on an ensemble Kalman
filter (EnKF). Using a LO avoids the formulation of high-dimensional matrices required
within the EnKF framework to compute the Kalman gain matrix. This indeed becomes a
computational issue when the wildland fire extends over a large spatial domain, while the
fireline still needs to be well-resolved in space (the RxCADRE experiment already extends
over a few hectares, while the fireline requires meter-scale resolution).

We use the same LO formulation as in Refs. [24, 25] so that the estimated progress



variable ¢ is governed by

oc .
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()
where ¢ is the (presumably incorrect) initial condition at time ¢y and where 6 = §(¢,.) is
a Dirac delta-function that ensures that the correction is only active along the simulated
fireline [26]. The rate at which the simulated burnt area y converges towards the observation
y© is controlled by the gain factor A\. Note that we can also add a topological feedback
term in Eq. (5) to track multiple fires simultaneously [25]; however this is not required in
the RxCADRE application since there is no fire spotting. Note also that Eq. (5) has an
equivalent formulation for a Lagrangian front-tracking solver [24].

In practice, Eq. (5) is discretized in space and time following the choices made for the
standalone model integration (TVD with Superbee slope limiter and Runge-Kutta scheme,
see Section 2).

3.4. Parameter Estimation (PE)

To present the parameter estimation (PE) procedure, we assume in this section that
the initial condition ¢y is perfectly known, i.e. the control variables correspond to the un-
certain parameters # and uncertainties are only due to the parameters #. We correct the
control parameters using a Kalman-based filtering framework, which is usually presented
as a discrete-model discrete-observation estimation problem. There is a mathematical cor-
respondence between the continuous and discrete estimation problems; this framework is
summarized in Ref. [25]. For simplicity purpose, we only describe the Kalman correction
after space and time discretization of the forward model and observations in this paper.
From now on, we therefore use bold letters to refer to the quantities associated with the
discretized solutions; ¢ refers to the time index and [t — 1,¢] refers to a given assimilation
time window (i.e. the time between two successive observations).

In the Kalman-based filtering framework, the control parameters are noted 6. The
variables in @ are considered as independent random variables; each random variable is
characterized by a Gaussian marginal probability density function (PDF) defined by its
mean value and its standard deviation (STD). Kalman filtering is a two-step procedure over
each window [t—1,¢] made of: (1) a forecast step to quantify uncertainties in the background
control parameters and measure the sensitivity of the simulated observable quantities with
respect to variations in the control parameters over the time window [t — 1,¢]; and (2) an
analysis step to provide new estimates of the control parameters at time t, given available
observations and the following update equation:

0; =60, + K, [D (v{,G(8,))] . (6)

where 0! (0%) is the forecast (analysis) estimate of the control vector, where G is the ob-
servation operator mapping the control vector (here the parameter space) onto the obser-
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vation space such that yf = G(@!), and where D is the discrepancy operator of least-
square type associated with the front shape similarity measure in Eq. (3) and of the form
D (y¢, G(6))) = (D%, D)7 [25] with D" and D" discretizing the quantities

Dot = [1 + %arctan(%)] [y? — Chax (Y7, ¢c)i|a

€,— 2 ) o o <7)
D¢ = [1 — ;arctan(f)] [yt — Chain (¥, gbc)},
where € is a small parameter defined with respect to the contour sharpness [42]. K, is the
Kalman gain matrix that gives a weight to the observation-simulation discrepancy according
to the uncertainties in the observations and in the background estimate. These uncertainties
are described using error covariance matrices denoted by P! (P?) for the background (anal-
ysis) and R for the observations. This two-step filtering procedure is applied sequentially
when new observations become available.

Due to the presence of nonlinearities in the wildland fire spread model, we rely on an
EnKF algorithm [4] to perform sequential PE. There are several EnKF algorithms in the
literature. In Refs. [17, 19], we use a stochastic version of the EnKF algorithm in the sense
that observations are randomly perturbed to obtain an ensemble of observations to be com-
pared to the ensemble of simulated firelines; this approach is known to introduce additional
sampling error and to underestimate the error in the new analysis estimate [43]. There-
fore, in the present work, we rely on a deterministic version of the EnKF called ensemble
transform Kalman filter (ETKF), which avoids observation randomization [27, 28].

Ensemble-based Kalman filters rely on the use of an ensemble of simulations to estimate
the sensitivities between model inputs and outputs. We note N, the size of the ensemble.

— o~k
Each particle or “member” of the ensemble can be decomposed as 0" =0+ 0( ), where k
refers to the index of the member, 6 is the mean (ensemble-averaged) value defined as

1 X
0= > oW, (8)
k=1

e

- (k
and 0( ) is the statistical spread characterized by the error covariance matrix P,

P = (Nel_1>®®T, (9)

with @ = [6Y) —9,... 8™ — 9] = [5(1)7 o ’g(Ne)

associated with the control parameters.

In the ETKF framework, the analysis mean estimate is obtained using the Kalman update
equation (Eq. 6) and the analysis error covariance matrix P# is obtained as a transformation
of the background error covariance matrix P! as

| the ensemble perturbation matrix

1 1
@am@&T —
N, —1 N, —1

8

P =

o'wwT e, (10)



where W is the transform matrix satisfying

W=1/N.—1[(No— DI+ Y"R 'Y, (11)

such that Z* = Z'W with Z' = 1//N, — 10", and where Y! = [g"® ... 5] is the
forecast ensemble perturbation matrix associated with the model outputs. The analysis
ensemble can then be easily constructed from the analysis mean and the analysis spread.
Details of the ETKF algorithms can be found in Ref. [44].

To account for unrepresented error sources when generating the ensemble and to avoid un-
derestimating the ensemble variance, we adopt the relaxation-to-prior perturbations (RTPP)
scheme to artificially inflate the analysis ensemble spread [45]:

N

~a, ~f
0, =(1-a)0, +ab, (12)

where a ranges from 0 to 1 featuring a small-to-large inflation effect.

Note that for the RxCADRE experiment, the wind control parameters u,, and d,, are
assumed to be uniform over the computational domain {2 since environmental conditions
are quasi-uniform (an extension to spatially-distributed PE is possible for heterogeneous
conditions [19]).

3.5. Hybrid State-Parameter Estimation (HE)

In this study, our data assimilation algorithm combines a SE approach based on the
LO presented in Eq. (5) and a PE approach based on the ETKF algorithm presented in
Egs. (8)—(10). Since we use two distinct methods for SE and PE, we refer to this algorithm
as “hybrid”.

The hybrid data assimilation algorithm (HE) is sequentially applied over an assimilation
window [t —1,¢]. Each assimilation cycle is decomposed into two successive forecast-analysis
steps for each ensemble member. During the forecast step, the state of the kth ensemble
member (k= 1,---, N,) is forwarded from time (¢t — 1) to time ¢ using Eq. (5) with a given
gain )\, instead of the original Eq. (2) of the forward model. The kth forecast model state at
time ¢ (after spatial and temporal discretization using TVD and Runge-Kutta schemes, see

Section 2) is noted cg The corresponding forecast observable quantlty at time ¢, y, (k), is

different for each member k due to changes in the control parameters 6, £ and in subsequent
changes in the LO feedback term. The idea is to perform a LO-based SE for each ensemble
member during the ETKF forecast step; we only update the control parameters 0 durmg

the ETKF analysis step following Eqgs. (6)—(11). The new state ¢ and control parameters

0} *) serve as the prior-known information, ¢}, and OtJ(rl), for the next assimilation window

[t,t 4+ 1] (with RTPP-inflation for the control parameters, see Eq. 12).

Note that the hybrid method is based on a dual state-parameter estimation, meaning
that LO and ETKF are applied successively over a given assimilation time window [46, 47].
This could be extended to a joint estimation as in Refs. [25, 48, 49|, where both LO and
ETKF are applied simultaneously; however, this is beyond the scope of the present study,
which is more oriented towards wildland fire applications.
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To show the benefits of the HE approach, we compare in Section 5, the results obtained
with different choices of the control variables: standalone PE using ETKF, standalone SE
using LO (corresponding to the first step of HE applied to each ensemble member, also
presented in detail in Ref. [24]), and HE (corresponding to the successive application of LO
and ETKF over each assimilation time window). The same value of \ is used for standalone
SE and HE. X is specified so as to reduce uncertainties induced by wrong initial condition
and imperfect model predictions, not those induced by wrong input parameters to the fire
spread model (this is the role of the forecast error covariance matrix P). We therefore
consider a moderate level of nudging A = 0.2 so as to balance the correction in-between the
two SE/PE steps of the HE approach.

4. Verification and Validation Procedure

4.1. Observing System Simulation Experiment (OSSE) Verification Procedure

In data assimilation, verification tests are typically done through the observing system
simulation experiment (OSSE) framework, in which the reference (or “true”) state of the
system is assumed to be known and is constructed from a solution of the forward model.
Figure 1 presents a typical OSSE framework, in which the true values of the control variables
(the initial condition ¢ and/or the input parameters 8* denoted by x* for genericity) exist
and are known. Thus, the observation and background errors €° and €' are known.

The background information x' (prior to data assimilation) is obtained by perturbing
the true parameters x'; the perturbation €' is of Gaussian-type for the ETKF algorithm
and is characterized by the STD of. Note that the initial condition ¢y is formulated in
a parametric form with respect to the “center of mass” of the initial burning area, whose
position is denoted by (Zign, Yign). Thus the parameters that are perturbed to generate a
forecast are the initial conditions (Zign, Yign) and the ROS parameters (uy, dy). The Ne-sets
of parameters are obtained using Monte Carlo random sampling.

The observations y° are synthetically generated by integrating the fire spread model
(Eq. 2) using the true values of the uncertain variables and by adding noise to the observed
fireline. In the OSSE test case (Section 5.1), the observation error €° (characterized by the
STD o°) is assumed to be small (¢° = 0.1); the observations are thus considered as the
“targets” of the data assimilation algorithm.

The performance of the HE approach is evaluated by examining its ability to retrieve
the true structure of the fire state ¢ and the true values of the control parameters 6" in a
situation in which observations are considered accurate. This configuration aims at pushing
the data-driven model to its limit in a situation in which the error in the prior is large
and the estimation involves an important correction to match the observations. Diagnostics
comparing the background x!, the analysis x* and the truth x' are used as verification tools
of the proposed data assimilation algorithm.

4.2. ReCADRE FExperimental Data

In this section, we briefly review the experimental data used for validation in Section 5.2.
RxCADRE corresponds to a series of field experiments aimed at model development and
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Figure 1: Schematic of the OSSE framework, in which observation data are generated by the forward model
using the true values of the control variables x*. A correction on the background estimates of the control
variables x! is derived; the analysis estimate x? is then used to run the forward model in forecast mode.
The two-step forecast-analysis procedure is applied sequentially over time.

validation [50]. In the present work, we use the 2012 RxCADRE S5 experimental dataset [21]
already adopted in Ref. [24]. The S5 experiment was a 15-minute-long prescribed fire con-
ducted on a flat terrain characterized by a surface area of approximately 180 m x 180 m and
by a mixed grass and shrub vegetation. The fire was ignited on the North side of the lot
and propagated into the southern direction. Fire propagation was recorded through a series
of temperature maps starting at time ¢ = 34 s after ignition and recorded at 1-Hz frequency
using a long-wave thermal infrared imaging system [21].

Since the initial fire only covered a very small area, we use the observed fire at time
60 s as initial condition for fire spread simulations. Hence in the following, time t5 = 0 s
corresponds to time 60 s in the RxCADRE dataset. Figure 2a presents the map of flame
arrival times, from ¢y = 0 to 780 s (corresponding to the time interval [60 s; 840 s in the
RxCADRE dataset), showing the time at which the fireline arrives at a given pixel of the
S5 burn lot. To demonstrate the benefits of the HE approach, we assume that observations
are available at 60-s time intervals (Ref. [24] shows that when the assimilation time period
is shorter than 60 s, the forecast performance of data assimilation is no better than a simple
method based on extrapolation of observation data). In the following, we also test the
sensitivity of the data assimilation results with respect to changes in the assimilation time
period, considering observations at 30-s and 120-s time intervals.

The present object-oriented data assimilation procedure requires two-dimensional instan-
taneous binary fields as observation y°. We generate these binary fields at the observation
times using the corresponding map of flame arrival times after some filtering to remove
small-scale holes and outliers. Figure 2b shows the contour of these binary fields at 60-
s time intervals. The shape of these contours (or “firelines”) present some irregularities,
especially on the flanks, which may not be captured by the fire spread model.

Note that the RxCADRE validation test is challenging for the data-driven model: the
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Figure 2: Dataset for the 2012 RxCADRE S5 fire. (a) Map of flame arrival times (0-780 s). (b) Series of
firelines over the time period [0; 780 s] at 60-s time intervals.

values of the control variables for which the model predictions agree with the observations
may not exist.

5. Results and Discussion

5.1. Verification Test

In this section, we present results from an OSSE verification test based on synthetic
observations (see Section 4.1). The computational domain 2 is 180 m x 180 m (with a
computational grid cell size Az = Ay = 1 m). The duration is 50 s (with a constant time step
At = 0.1 s); a single assimilation cycle is considered so that the analysis is performed at time
t = 50 s. We consider a flat terrain and assume a bimodal biomass moisture distribution:
MY =5 % or MP =20 % (see the colormap in Fig. 4). Except for the moisture content, the
input parameters of the ROS model are assumed uniform: the biomass fuel is characterized
by &, = 0.2 m (vegetation layer thickness), m. = 0.28 kgm~2 (fuel surface loading), ¥, =
9,000 m~" (fuel particle surface-to-volume ratio), p, = 512.6 kgm ™2 (fuel particle density),
and Ah, = 18.6 x 10% Jkg™! (heat of combustion).

5.1.1. Convergence of the Parameter Estimation (PE) Approach
We first consider the standalone ETKF-based PE approach (see Section 3.4). We as-
sume that uncertainties only come from the uniform wind speed and direction so that

the control vector is simply defined as 8 = (uy,dy)T. The “true” fire is initialized at
(Tign, Yign) = (90 m, 90 m) as a circular front with a radius rig, = 10 m. The true wind
speed is u!, = 3 ms™!; the true wind direction is df, = 180° (the wind is blowing into

the north direction). The background simulations are initialized at the “true” position
(Tign, Yign) = (90 m, 90 m) but with values of wind parameters that are randomly-selected
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and correspond to the following mean values: u!, = 4 ms™! (25 % error) and df, = 225°
(20 % error, the mean background wind is blowing into the North-East direction). The cor-
responding STD o' is 0.5 ms™! for the wind speed and 25° for the wind direction. Changes
in the assumed wind conditions result in significantly different front positions between the
truth and the free run. In addition, heterogeneities in the biomass fuel moisture content
result in different front shapes and differences keep increasing in time.

In this test, we analyze the sensitivity of the results to the ETKF ensemble size N,, with
N, varying between 10 and 200. Figure 3 presents the mean and STD of the analysis wind
speed and direction as a function of N,. The mean wind speed and direction produced by
the analysis converge towards the true values provided that the ETKF ensemble size is large
enough, N, > 30. In contrast, the STD is insensitive to variations in N,. In the following,
we consider N, = 40. Note that in Ref. [19], a higher number of members (N, = 200) was
required for spatially-distributed PE due to the larger dimension of the control vector that
included wind speed and direction at multiple nodes in the vicinity of the fireline.
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Figure 3: Convergence test of the ETKF-based PE approach for a variable ensemble size N, for (a) the wind
direction dy [°], and (b) the wind speed u,, [ms=!]; OSSE test with @ = (uy,dy ). The plots compare
mean values produced by the analysis step (black solid lines) with the mean values produced by the free run
(upper horizontal dashes lines) and with the true values (lower horizontal dashes lines). Error bars represent
the STD values; the vertical dotted lines represent the ensemble size (N, = 40) adopted in the present study.

Figure 4 presents a representative sample from the ensemble of simulated fire perimeters
at the analysis time ¢ = 50 s, without and with PE. In the absence of data assimilation, there
is a wide scatter in the estimate of the fireline location due to the uncertainties in wind speed
and direction. As expected, with the application of data assimilation, all the predictions
from the ensemble are steered towards the observed fire location that is representative of the
truth. In addition, the ensemble features a much reduced scatter compared to the free run
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Figure 4: Comparison of fireline locations at time ¢t = 50 s; OSSE test with @ = (uy,dy)? and N, = 40
— Representative sample from the ensemble of simulated fire perimeters obtained using (a) the free run
(without data assimilation); and (b) the data-driven run (with PE-based data assimilation). Cross symbols

correspond to the observed fireline. The colormap visualizes the heterogeneous distribution of the biomass

)

moisture content: light gray areas correspond to M‘Sl = 5 %; dark gray areas correspond to M‘Ez) =20 %.

ensemble. Note that the ETKF algorithm uses a RTPP inflation scheme with a moderate
value, a = 0.5 in Eq. (12), providing enough statistical variations to avoid filter divergence
issues and accounting for the small variability observed in the headfire predictions.

5.1.2. Merits of Hybrid State-Parameter Estimation (HE)

We now assume that uncertainties are due to both wind parameters and ignition location
so that the control variables include 8 = (uy,dy)? and the model state c at a given time.
The true fire is initialized as before at (Zign, Yign)" = (90 m, 90 m) with u!, = 3 ms™! and
ds, = 180°; the background simulations are initialized at an incorrect location (Zig,, yign)f =
(85 m, 85 m), with randomly-selected wind parameters characterized by mean values equal
to ul, =4 ms™! and df, = 225° (the wind parameters are the same as in Section 5.1.1).

We compare the HE approach with the standalone PE approach in terms of PDFs of
the wind parameters. Figure ba presents the PDFs of the wind direction obtained after
the analysis step in the HE approach; Fig. 5b presents the counterpart for the wind speed.
These PDFs are compared to those obtained without data assimilation (corresponding to the
background estimate) or with the standalone PE approach; the true wind speed and direction
are also indicated as reference. As expected, the background prediction is inaccurate (the
mean error in wind direction is about 40°; the mean error in wind speed is 1.25 ms™1).
Results show that the PE approach provides improved results but is also subject to a bias
(the mean error in wind direction is about 25°; the mean error in wind speed is 0.5 ms™1).
The PE approach is indeed unable to predict the true fireline position because it incorrectly
interprets errors in the initial fire location as errors in the wind parameters. The bias in the
predicted fireline position due to an incorrect initial fire location at time t = 0 s is much
reduced in the HE approach. The HE approach accurately retrieves the true parameter
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Figure 5: Comparisons of PDF's of the wind parameters; OSSE test with N, = 40. (a) Wind direction dy [°].
(b) Wind speed uy, [ms™!]. Circle symbols represent the true (reference) values of the wind parameters. The
plots compare PDFs produced without data assimilation corresponding to the background estimate (light
gray histogram), by the analysis step of the PE approach (medium gray histogram) and by the analysis step
of the HE approach (dark gray histogram).

values (the mean error in wind direction is about 10°; the mean error in wind speed is close
to 0). The scatter of the ensemble is also much reduced. Thus, the HE approach is able to
overcome uncertainties in both ROS model parameters and initial fire location.

5.2. Validation Test: Application to the RtCADRE FExperiment

We now apply the HE approach to the RxCADRE experimental dataset (see Section 4.2).
The computational domain €2 is 180 m x 180 m (with a computational grid cell size Az =
Ay =1 m). The time window is 780 s (with a constant time step At = 0.05 s). During the
experiment, the fire was ignited near the northern boundary and propagated from North
to South. In the simulations, we initialize the fire at time ¢ = 0 s as a semi-circular front
located at (Zign, Yign)! = (90 m, 180 m) with a radius riz, = 15 m. We assume uniformly-
distributed biomass fuel as well as uniform and constant wind. The input biomass fuel
parameters required by Rothermel’s model are based on experimental measurements: ¢, =
0.2 m (vegetation layer thickness), m, = 0.28 kgm~2 (fuel surface loading), 3, = 9,000 m~!
(fuel particle surface-to-volume ratio), M, = 10 % (fuel moisture content). The values of
the fuel particle density and heat of combustion are standard values, p, = 512.6 kgm ™2 and
Ah, = 18.6 x 10% Jkg™!, respectively. For the wind parameters, we start with the following
mean background estimates for speed and direction: uf, =2 ms™ and df, = 360° (the wind
is blowing into the south direction). The corresponding background STD o' is 0.5 ms~! for
the wind speed and 25° for the wind direction. The size of the ETKF-ensemble is N, = 40.
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The LO-gain value is A = 0.2.

5.2.1. Analysis and Forecast Performance

We first evaluate the analysis performance by comparing observed and predicted firelines
at the analysis time ¢ = 60 s of the first assimilation cycle. Figure 6(a) presents free
run predictions. Figures 6(b)—(c)—(d) present data-driven predictions obtained with data
assimilation. Figure 6(b) corresponds to the PE approach; the corresponding mean values
for the wind parameters are u? = 2.4 ms™! and d? = 335° the associated STD values
are 0.30 ms~! and 11.6°. Figure 6(c) presents the simulated firelines after the first step of
the HE approach corresponding to a SE step. Figure 6(d) presents the simulated firelines
after the second step of the HE approach corresponding to a PE step; the corresponding
mean values for the wind parameters are u? = 2.1 ms™! and d? = 325° the associated
STD values are 0.30 ms™! and 13.3°. These results show that compared to the free run, the
data-driven runs require a significant change in the wind parameters (in particular in the
wind direction) in order to match the observed fireline shape and position. The scatter in
the wind parameters obtained in the PE and HE approaches is similar and is reduced by a
factor of two compared to the free run. The HE approach is seen to provide a better match
of the observed fireline than the standalone PE approach at the analysis time.

We now evaluate the forecast performance at future lead times. Figure 7 presents a
comparison between observed and predicted firelines in terms of ensemble mean prediction
(instead of a sample of individual members as in Fig. 4). Also, the comparison between
predictions and observations is not only made at the analysis time, ¢ = 60 s, i.e. the time
at which observation data are assimilated, but also at forecast times ¢ = 120 and 180 s,
i.e. at times that benefit from the assimilation performed at ¢ = 60 s but also rely on the
quality of the forward model and the calibration of wind parameters to maintain a predictive
capability. At times ¢ = 120 and 180 s, the observations are used for diagnostic purposes
but are not assimilated (i.e. the forward model runs free after ¢ = 60 s for all approaches).
Figure 7 compares results obtained with a PE approach (a), a SE approach (b) and a HE
approach (c). In addition, Fig. 7 includes a comparison to a simple extrapolation method
based on observations made at times ¢ = 0 and 60 s. This observation extrapolation method
does not require a physics-based fire spread model: the fireline position is projected at
times t = 120 and 180 s assuming that the magnitude and direction of the ROS does not
change and following a simple methodology introduced in Ref. [24]. Results show that the
SE approach fails to capture the direction of the fire spread (between South and South-
East). Results also show that both the PE and HE approaches are capable of forecasting
the fire spread dynamics. These results suggest that the background wind direction is
incorrect and needs to be updated, as done in the PE and HE approaches. The HE approach
provides a slightly better forecast of the fireline shape on the flanks. Finally, the observation
extrapolation method significantly overestimates the ROS over the entire fire perimeter.
These results indicate the importance of using a physics-based forward model to provide
realistic constraints to the fire propagation predictions.

Next, in order to quantify the performance of the data assimilation algorithms, we con-
sider the Chan-Vese data fitting functional 7 (Eq. 3) to evaluate a posteriori the discrepan-
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Figure 6: Comparison of fireline locations at time ¢ = 60 s; RxCADRE S5 validation test with N, = 40
and A = 0.2. Representative sample from the ensemble of simulated fire perimeters obtained using (a) the
free run (without data assimilation); (b) the standalone PE approach; (c) after the first (forecast) step in
the HE approach corresponding to a SE step; and (d) after the second (analysis) step in the HE approach
corresponding to a PE step. Cross symbols correspond to the observed fireline.

cies between observations and model predictions in analysis and forecast modes. Figure 8
presents the temporal variations of the Chan-Vese functional computed with the data pre-
sented in Fig. 7. The minimum distance error between observed and predicted firelines is
achieved when the Chan-Vese functional is close to 0. Results show that the performance of
the free run is worst among all approaches and gets worse over time. All data assimilation
approaches provide an improved performance at the analysis time, £ = 60 s. In the case of
the SE approach, the positive impact of data assimilation at analysis time is rapidly lost
during the forecast time and results suggest that the SE approach behaves like the free run,
but with a time delay. In contrast, the positive impact of data assimilation at analysis time
is more persistent in the PE and HE approaches. The HE approach provides the best per-
formance among all approaches at the analysis time ¢t = 60 s and at the lead time ¢t = 120 s;
it provides similar performance as the PE approach at the lead time t = 180 s. This suggests
that the PE and HE approaches are capable of re-calibrating and finding physical values of
unknown or uncertain parameters. Moreover, the HE approach provides a better forecast of
the fireline geometry on the flanks and of its irregularities than the PE approach. Note that
diagnostics in Fig. 8 are consistent with diagnostics from the literature such as Jaccard’s
and Sorensen’s indices [15, 51] (not shown here).

5.2.2. Sequential Application of the Hybrid State-Parameter Estimation (HE) Approach
We now consider the entire duration of the RkxCADRE experiment, from ¢t = 0 to t =

780 s; we consider that observations are available at 60-s time intervals. The 780-s time

is divided into thirteen 60-s-long data assimilation cycles: the cycles are characterized by
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Figure 7: Comparison of fireline locations at analysis time ¢t = 60 s and at forecast times ¢ = 120 and 180 s;
RxCADRE S5 validation test with N, = 40. (a) Standalone PE approach. (b) First SE step of the HE
approach. (c¢) Second PE step of the HE approach. (d) Simple extrapolation method based on observations
made at times t = 0 and 60 s. Cross symbols correspond to the observed firelines; solid gray lines correspond
to ensemble-mean predictions.
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Figure 8: Temporal variations of the Chan-Vese contour fitting functional to quantify the discrepancies
between observed and predicted firelines; RxCADRE S5 validation test. The plots compare results obtained
with a free run (dashed lines), a SE approach using A = 0.2 (solid lines with circle symbols), a PE approach
using N, = 40 (solid lines with plus symbols) and a HE approach using N, = 40 and A = 0.2 (solid lines
with cross symbols). In the data-driven models, data are assimilated at ¢ = 60 s; predictions at ¢ = 120 and
180 s correspond to a forecast.
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twelve analysis events, called A;—A;5 with A; designating an analysis performed at time
(¢ x 60 s) based on an observation made at the same time, and by twelve forecast events,
called F|—Fy, with F; corresponding to a forecast performed at time ((i + 1) x 60 s) based
on the analysis A;. The lead time of the forecast is therefore fixed and equal to 60 s. The
quality of the analysis is evaluated through comparisons between predicted and observed
fireline positions at time (i x 60 s) using the Chan-Vese functional as in Fig. 8; the quality
of the forecast is evaluated through similar comparisons at time ((7 4+ 1) x 60 s).

In Section 5.2.1, we discuss results obtained during the first assimilation cycle A;/F;.
Here we also consider subsequent assimilation cycles Ao—Aj,/Fo—Fi5 but limit our discussion
to the HE approach. The wind parameters are sequentially updated every 60 s to track
temporal changes of the wind. Figure 9 presents the temporal variations of the wind speed
and direction produced by the HE approach. The variations are characterized in terms of
mean and STD values. In addition, Figures 10-11 present a comparison between observed
and predicted firelines in terms of ensemble mean prediction. Comparisons are made at the
analysis times A;—Aj (Fig. 10) and at the forecast times F1—Fj, (Fig. 11).
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Figure 9: Temporal variations of the corrected wind parameters of the ROS model for all (60-s-long) as-
similation cycles A;—A;2 using the HE approach; RxCADRE S5 validation test. (a) Wind speed [ms™!].
(b) Wind direction [°]. The plots show the mean values (solid lines) and the STD (the vertical thickness of
the gray areas is equal to twice the STD).

Results suggest that the mean wind direction significantly changes over the first 180 s of
the RxCADRE test and then stabilizes: in Fig. 9, the wind shifts slightly from a northwest
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Figure 10: Comparison of predicted (solid lines) and observed (cross symbols) fireline locations at the
analysis times Aj-Aj5 (60 < t < 720 s); RxCADRE S5 validation test. Predictions correspond to the
ensemble mean obtained with the HE approach using N, = 40 and A = 0.2.



180 + 180 + 180
150 u 150 u 150
120 120 120
90 90 90
60 60 60
30 30 30
0 t = 120s 0 t=180s 0 t = 240s
0 30 60 90 120150 180 0 30 60 90 120150 180 0 30 60 90 120150 180
180 + + 180 o + 180 -
150 150 g 150
120 120 120
90 90 5 90 -
+
60 60 60
30 30 30
0 t = 300s 0 t = 360s 0 t = 420s
0 30 60 90 120150 180 0 30 60 90 120 150 180 0 30 60 90 120150180
180 + A 180 180
150 150 150
120 120 120
90 ? 90 90
60 el 60 60
30 30 30
0 t = 480s 0 t = 540s 0 t = 600s
0 30 60 90 120150 180 0 30 60 90 120 150 180 0 30 60 90 120 150 180
180 180 b 180 + A
150 150 150
120 120 120
90 90 k! 90
o
60 60 60 e
30 30 5 30 o
0 t = 660s 0 t = 720s 0 t= 780s
0 30 60 90 120150 180 0 30 60 90 120150 180 0 30 60 90 120150 180

Figure 11: Comparison of predicted (solid lines) and observed (cross symbols) fireline locations at the
forecast times Fj-Fio (120 < t < 780 s); RxCADRE S5 validation test. Predictions correspond to the
ensemble mean obtained with the HE approach using N, = 40 and A = 0.2.



6000

&)
o
o
o

N
o
o
o

N
o
o
o

|
|
[
|
[
|
|
[
|
[
|
|
[
|
|
1

’

0 120 240 360 480 600 720
Time (s)

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b

Chan-Vese data-fitting functional
S 8
o o
o o

Figure 12: Temporal variations of the Chan-Vese contour fitting functional used to measure the discrepancies
between observed and predicted firelines; RxCADRE S5 validation test. The plot compares results obtained
with a free run (dashed line) and a HE-based data-driven run (piecewise-linear solid line), where data are
assimilated at times A;1-A1o and predictions are made at times Fj-Fjo with a 60-s-long lead time.

wind (the wind is blowing into the South-East direction), d? = 325°, to a northerly wind
(the wind is blowing into the South direction), d® a 350°. This predicted shift is consistent
with the observed location of the headfire presented in Figs. 10-11. Results also suggest that
the mean wind speed is stable over the first 300 s of the RkxCADRE test and then decreases:
in particular, in Fig. 9, the wind speed suddenly decreases by 10 % at time ¢t = 300 s,
due to possible wind stagnancy; the wind speed subsequently relaxes back to a higher value
apparently reached at time ¢t = 420 s before decreasing again. These predicted variations are
consistent with the slightly slower or faster propagation of the predicted and observed fire
perimeters presented in Figs. 10-11. For instance, the predicted fireline at time ¢ = 360 s in
Fig. 11 is seen to propagate too fast in the headfire region compared to observations: this
explains the drop in wind speed observed in Fig. 9 during the assimilation cycle [300; 360 s];
the HE approach responds to the discrepancy detected at time ¢ = 360 s by reducing the
value of the wind speed and therefore the value of the ROS. Similarly, the predicted fireline
at time t = 420 s in Fig. 11 is seen to propagate too slowly in the headfire region compared
to observations: this explains the increase in wind speed observed in Fig. 9 during the
assimilation cycle [420;480 s|; the HE approach responds to the discrepancy detected at
time t = 480 s by increasing the value of the wind speed and therefore the value of the ROS.
Thus, the corrections in the wind parameters of the ROS model are designed to provide the
best possible match between predicted and observed fireline positions.

Figure 12 presents a quantification of the performance of the HE approach by plotting
the temporal variations of the Chan-Vese contour fitting functional. The evolution of the
distance error in the free run mode is a smooth, continuously increasing function of time.
In contrast, the evolution of the distance error in the data-driven model is a discontinuous
piecewise-linear function: deviations of model predictions from observations are periodically
reduced during the analysis events A;-Ajs due to the benefit of assimilating observations.
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Figure 13: Temporal variations of the Chan-Vese contour fitting functional - RxCADRE S5 validation test.
See caption of Fig. 12. In the HE approach, data are assimilated with (a) a 30-s-long lead time; or (b) a
120-s-long lead time.

After each analysis event, when the data-driven model is used in forecast mode, the error
increases with time but remains bounded. It is clear from this figure that data assimila-
tion shall be carried out at regular time intervals to avoid an increase in the simulation-
observation discrepancies and control the accuracy of the data-driven run. Note that the
performance of the HE approach is not sensitive to the assimilation time period (not shown
here); the question of the influence of the observation frequency will be better addressed in
future work when considering large-scale and long-duration wildfire events.

5.2.8. Sensitivity to the Data Assimilation Frequency

So far, we have assumed that observations are made at 60-s time intervals. We now
consider variations in the duration of the assimilation time period, considering observations
at 30-s and 120-s time intervals. Note that because of the limited duration of the RxCADRE
experiment, it is not possible to study lower observation frequencies. Figure 13 presents the
temporal variations of the Chan-Vese contour fitting functional. The results are similar to
those already presented in Fig. 12: in particular the values of the distance error do not seem
to increase when the observation frequency is decreased, which suggests that for the present
test, the performance of the HE approach is not sensitive to the assimilation time period.
Figure 14 presents the temporal variations of the wind speed and direction produced by the
HE approach. The results are similar to those already presented in Fig. 9: in particular,
the progressive shift from a North-West wind to a northerly wind, as well as the wind speed
decrease around ¢ = 300 s are also observed, which again suggests that for the present test,
the performance of the HE approach is not sensitive to the assimilation time period. The
question of the influence of the observation frequency will be better addressed in future
work, i.e. in applications of the present fire spread modeling capability to large-scale and
long-duration wildfire events.
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Figure 14: Temporal variations of the corrected wind parameters of the ROS model using (a) a 30-s-long

lead time; or (b) a 120-s-long lead time — RxCADRE S5 validation test. See caption of Fig. 9.

6. Conclusions

Data-driven wildland fire spread prediction is still at an early stage of development com-
pared to numerical weather prediction. While the application of classical data assimilation
methods to wildland fire spread modeling clearly benefits from past developments made for
weather forecasting applications, it is important to recognize that there are yet a number
of application-specific technical barriers that need to be overcome. The application of data
assimilation to wildland fire problems first requires the formulation of an adequate measure
of the discrepancies between model predictions and observations. Regional-scale wildland
fires are commonly described as propagating fronts and are cast as a front-tracking prob-
lem. Errors in wildland fire spread models therefore correspond to position errors that are
addressed here using a front shape similarity measure derived from image segmentation the-
ory. The similarity measure provides a useful diagnostic to evaluate the analysis and forecast
performance of the data-driven system. The application of data assimilation to wildland fire
problems also requires a suitable choice of the control variables; the control variables are
here the near-surface wind parameters and the initial position of the fire front.

Our objective in the present study is to demonstrate the performance of data assimila-
tion in general, and of a hybrid state-parameter estimation approach in particular towards
an improved forecast of wildland fire spread in the context of an Eulerian front-tracking
solver (similar results could be obtained using a Lagrangian front-tracking solver [24]). The
hybrid state-parameter estimation approach relies on an ensemble transform Kalman filter
(ETKF) for parameter estimation and a fire propagation equation modified by a Luenberger
observer (LO) for state estimation. Parameter estimation is used to update the near-surface
wind parameters of the rate-of-spread (ROS) model used in the fire propagation equation;
in this sense, it can be regarded as an inverse modeling procedure derived from a Bayesian
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estimation problem. State estimation is used to update the fireline position. The updates
are driven by observations of the fire perimeter that are assimilated at discrete times. The
performance of the hybrid state-parameter estimation approach is evaluated in an observing
system simulation experiment (OSSE) verification test and in a validation test corresponding
to the 2012 RxCADRE S5 prescribed fire experiment [21]. Results show that data assimi-
lation provides an interesting framework to produce accurate forecast of the fire dynamics,
in which parameter estimation is an essential component to reduce bias. A simple method
based on extrapolation of observation data fails to provide accurate forecast. With the ben-
efit of data assimilation, a physics-based wildland fire spread model is capable of correcting
for uncertainties in both the ROS model parameters and the initial fire location and thereby
of providing an accurate forecast. The hybrid state-parameter estimation model provides a
general and flexible framework to account for all sources of model uncertainties.

Future work includes extending the application of our data-driven system to the case of
large-scale long-duration wildfire events, in which both models and observations are subject
to significant error and uncertainty, in which observation data will be available at medium-
to-low spatial and temporal resolution, and in which the number of control variables is large
(model parameters are no longer treated as spatially uniform and are treated instead as
functions of spatial coordinates) and the computational cost of data assimilation is much
increased. In particular, the sensitivity of the data assimilation results to the observation
frequency, the observation resolution and the choice of the control parameters will be studied
to provide guidelines to apply data assimilation to wildfire hazards. From a more theoretical
viewpoint, future work also includes extending the object-oriented data assimilation algo-
rithm to a more consistent treatment of the observation error, in particular of the spatial
correlations in the observation error in the thermal-infrared imaging data. In practice, this
will be useful to reconstruct a complete fire perimeter through data assimilation, even if for
instance only a portion of the fire perimeter is actually observed due to the opacity of the
thermal plume and/or due to monitoring limitations.
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