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How to prove the Baum-Connes conjecture for the groups Sp(n, 1) ?

Pierre Julg

Université d’Orléans

Abstract. We present a programme of proof of the Baum-Connes conjecture
with coefficients for G=Sp(n,1) or F4(-20), i.e. simple Lie groups of real rank
one having Kazhdan’s property (T). We use the geometry of the boundary sphere
to produce a G-Fredholm module, together with a homotopy to the trivial rep-
resentation through uniformly bounded representations. The strip of uniformly
bounded representations of M. Cowling plays here the role of the complementary
series. We explain how, modulo some conjectural estimates, this construction
would prove the conjecture.

In his famous work on the Novikov conjecture [K1][K3], G. Kasparov intro-
duced the equivariant bivariant K-theory groups. For any locally compact group
G and A, B two G−C∗-algebras (i.e. C∗-algebras equipped with a strong con-
tinuous action by automorphisms of the group G), he defines an abelian group
KKG(A,B). The main tool in the theory is the cup product

KKG(A,B)×KKG(B,C)→ KKG(A,C).

In particular, if C is the field of complex numbers equipped with the trivial
G-action, KKG(C,C) is a commutative ring, and all the KKG(A,B)’s are
KKG(C,C) modules. There are also maps jG,red and jG,max:

KKG(A,B)→ KK(C∗red(G,A), C∗red(G,B))

KKG(A,B)→ KK(C∗max(G,A), C∗max(G,A))

where C∗red(G,A) and C∗max(G,A) denote respectively the reduced and the full
crossed product.

Let us recall how KKG theory gives a formulation of the Baum-Connes
conjecture with coefficients. We follow [BCH]:

For any proper G-space Z, the space C0(Z) is a module of finite type over
the algebra C∗(G,C0(Z)) (which is both the full and the reduced one) whose
class in K0(C∗(G,C0(Z))) = KK(C, C∗(G,C0(Z))) will be denoted eZ . Then
for any G− C∗-algebra A, the map jG,red :

KKG(C0(Z), A)→ KK(C∗(G,C0(Z)), C∗red(G,A))
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can be composed with the left multiplication by eZ :

KK(C∗(G,C0(Z)), C∗red(G,A))→ KK(C, C∗red(G,A))

to define a map
KKG(C0(Z), A)→ K∗(C

∗
red(G,A)).

Baum, Connes and Higson consider EG, the classifying space of proper actions
of G, and the inductive limit

KG
∗ (EG;A) = lim−→KKG(C0(Z), A)

over all closed subsets Z of EG which are G-invariant and G-compact.The above
maps form an inductive system which defines the Baum-Connes assembly map

µA,red : KG
∗ (EG,A)→ K∗(C

∗
red(G,A)).

Baum-Connes conjecture for G, with coefficients in A: The map µA,red
is an isomorphism.

From the point of view of C∗-algebras, it would have been more natural, in
some sense, to work with full crossed products C∗max(G,A) instead of reduced,
and to consider the corresponding assembly map

µA,max : KG
∗ (EG,A)→ K∗(C

∗
max(G,A)).

defined in the same way. Note that the two maps are related by µA,red =
λ∗A ◦ µA,max where

λ∗A : K∗(C
∗
max(G,A))→ K∗(C

∗
red(G,A))

is the group homomorphism obtained from the regular representation by the
K-functor.

However, we shall see that the map µA,max cannot in general be surjective,
whereas µA,red can reasonably be conjectured to be bijective.

1 The γ element of Kasparov

Let us consider the case where G is a connected group and K a maximal compact
subgroup. Kasparov shows that the ring KKG(C,C) is a direct sum of two
subrings

KKG(C,C) = γKKG(C,C)⊕ (1− γ)KKG(C,C)

given by some idempotent element γ of KKG(C,C), such that the restriction
mapKKG(C,C)→ KKK(C,C) = R(K) is an isomorphism from γKKG(C,C)
to R(K), and vanishes on the complement (1− γ)KKG(C,C).

2



More generally for any A,B as above,

KKG(A,B) = γKKG(A,B)⊕ (1− γ)KKG(A,B)

and the restriction map is an isomorphism from γKKG(A,B) to KKK(A,B)
and vanishes on (1− γ)KKG(A,B).

The element γ plays a key rôle in the Baum-Connes conjecture.

In the case of a connected group, the geometric group (with coefficients in
A) is KKG(C0(Z), A) where Z = G/K. One has (1 − γ)KKG(C0(Z), A) = 0
so that the γ element acts trivially on the geometric group.

On the other hand the element γ acts on the K-theory of C∗(G,A) (where
C∗ denotes either the full or the reduced crossed product) by an idempotent
map which can be described as follows. Consider the composition of ring ho-
momorphisms

KKG(C,C) → KKG(A,A) → KK(C∗(G,A), C∗(G,A))

→ End(K∗(C
∗(G,A)))

and take the images of the idempotent γ by the above maps:

γ̃A,max ∈ End(K∗(C
∗
max(G,A)))

γ̃A,red ∈ End(K∗(C
∗
red(G,A)))

respectively. The results of Kasparov [K1][K3] can then be summarized as
follows:

Theorem 1 The maps µA,red and µA,max are both injective. Their respective
images in K∗(C

∗
red(G,A))) and K∗(C

∗
max(G,A))) are equal to the images of the

idempotent maps γ̃A,red and γ̃A,max.

Corollary 2 The Baum-Connes conjecture (i.e. the statement that µA,red is
an isomorphism) is equivalent to the equality γ̃A,red = Id.

Corollary 3 If γ = 1 in KKG(C,C), then both maps µA,red and µA,max are
isomorphisms, and so is λ∗A : K∗(C

∗
max(G,A))→ K∗(C

∗
red(G,A)).

The property for a group G, that λ∗A is an isomorphism for any A, is es-
sentially J. Cuntz’ K-amenability [Cu], see [JV]. Alain Connes pointed out, in
the early 1980’s, that if G is non compact and has Kazhdan’s property (T ), the
map λ∗ : K∗(C

∗
max(G))→ K∗(C

∗
red(G)) is not injective. Indeed, the trivial rep-

resentation of G defines an idempotent of C∗max(G) which vanishes in C∗red(G)).
Therefore in such cases γ 6= 1 in KKG(C,C).

This happens in particular when G is a connected simple Lie group of real
rank greater or equal to 2, e.g. G = SL(n,R) for n ≥ 3. Then G has property
(T ). The challenge about the Baum-Connes conjecture with coefficients is to
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show that γ̃A,red = Id despite the fact that γ 6= 1. In other words we expect that
full and reduced crossed products behave in a different manner: γ̃A,red = Id on
the one hand, γ̃A,max 6= Id on the other.

The Baum-Connes conjecture with coefficients is completely open for G of
higher rank, and so is its corollary: the Baum-Connes conjecture (even without
coefficients) for discrete subgroups of such a group.

The only positive result was obtained by V. Lafforgue in his 1998 thesis
[L2][L3]: let G = SL(3,R) or SL(3,C), then the Baum-Connes conjecture
without coefficients is true for discrete cocompact subgroups of G. This follows
from the fact that such subgroups do have the Jolissaint (RD) property. The
Baum-Connes conjecture then follows from the Banach analogue (a variant of
Bost conjecture) whose proof is the central point of Lafforgue’s thesis. We should
also mention that the same argument applies to SL(3,H) and E6(−26) which
also have Jolissaint’s (RD) property [Cha]. In fact, A. Valette has conjectured
that discrete cocompact subgroups of semi-simple Lie groups have Jolissaint’s
property. However, no progress has been made in the last 20 years on that
question. On the other hand, Lafforgue’s strong property (T ) for higher rank
Lie groups [L4][Pu] appears to be a fundamental obstacle to a proof of the
conjecture.

2 The rank one case.

Let us now consider the case of a connected real rank one simple Lie group G.
There is a dichotomy between two classes of groups.

2.1 The groups SO0(n, 1) and SU(n, 1)

Assume G is locally isomorphic to SO0(n, 1) or SU(n, 1) (n ≥ 2). Then G has
the Haagerup approximation property (also known, following M. Gromov, as
a-T-menability), see [J2]. Then a theorem proved by Higson and Kasparov in
1997 [HK][J2] shows that γ = 1, so that the three maps µA,red, µA,max and λ∗A
are isomorphisms. In particular the Baum-Connes conjecture with coefficients
is true for G. However the cases of SO0(n, 1) and SU(n, 1) had already been
treated by Kasparov, Kasparov and Julg, and Chen in the 1980’s and early
1990’s. We shall here briefly review their approaches.

In 1983 Kasparov [K2] considered the group SO0(2n+1, 1). His construction
of a Fredholm module representing the element γ is based on the de Rham
complex on the boundary of the hyperbolic space of dimension 2n+ 1, which is
a sphere S2n carrying a G-invariant conformal structure. Let us explain briefly
this point. To obtain a Fredholm module, we must modify both the operator d
and the action of G on differential forms:

1) The natural action is not unitary since the metric is K-invariant, but
not G-invariant. However, one can modify the representation thanks to the
conformal structure. An element g of G multiplies the metric on the sphere by
some function λ2g. It follows that the metric on k-forms is multiplied by λ−2kg
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whereas the volume form is multiplied by λ2ng . One can then twist the natural
representation of G by a cocycle:

π(g)α = λn−kg g−1∗α.

The representation π is unitary on the Hilbert space of L2 forms of degree k.
2) The operator d can be made bounded by the usual trick: F = d(1+∆)−1/2

is bounded, if ∆ = dd∗ + d∗d is the Laplace-Beltrami operator. But F is no
more G-invariant under the natural action of G: the action of g ∈ G takes ∆
to λ−2g ∆ plus a first order operator, as easily seen at the principal symbol level.
Therefore F is a zero order operator, and its conjugate by the natural action is
λgF plus a negative order pseudodifferential operator.

3) Combining the two preceeding idems (and the fact that F maps k-forms
to (k + 1)-forms) we easily see that the conjugate π(g)Fπ(g)−1 equals F plus
a negative order pseudodifferentialoperator, hence the compactness of the com-
mutator [F, π(g)].

Finally, Kasparov notes that the Fredholm module thus obtained is not quite
the good one, since its index is 2 (the Euler characteristic of S2n). The following
trick, again using conformal structure, solves the problem: the space Ωn(S2n)
of forms of the middle degree n (on which the representation π coincides with
the natural one) splits under the (G-invariant) Hodge star operator into two
eigenspaces. A trunkated module with index 1 is obtained considering forms up
to degree ≤ n− 1, and ending with forms of degree n in the in-eigenvalue of the
Hodge operator. This gives a G-Fredholm module representing the element γ.
To prove that γ = 1, Kasparov made use of the theory of unitary representations
of SO0(2n+ 1, 1), more precisely the existence of complementary series.

In Kasparov’s 1983 work, the case of SO0(2n, 1) was settled as a mere
corollary of the case of SO0(2n + 1, 1). Indeed SO0(2n, 1) is a subgroup of
SO0(2n+ 1, 1) and the element γ restricts to closed subgroups. However it was
most interesting to treat the case of SO0(2n, 1) in itself before passing to the
other rank one groups. Indeed, SO0(2n, 1) shares with SU(n, 1), Sp(n, 1) or
F4(−20) the property that the boundary sphere is odd dimensional. The direct
proof for SO0(2n, 1) has been written by my student Z.Q. Chen in his thesis
[Che] as an interesting toy model for the SU(n, 1) case that I was then working
on with Kasparov. Here again, the G-equivariant de Rham complex on S2n−1

is again turned, thanks to the conformal structure, into a G-Fredholm module
with the bounded operator F = d(1 + ∆)−1/2 and the unitary representation

π(g)α = λ
n−1/2−k
g g−1∗α. This time the index is 0 (the Euler characteristic of

S2n−1). To get an Fredholm module of index 1, something new is needed, which
had no analogue in the SO0(2n+ 1, 1) case. One must use the L2-cohomology
of the hyperbolic space of dimension 2n, i.e. the Hilbert space Hn of square
integrable harmonic forms (which are of degree n). The trunkated module (with
index 1) is obtained by considering only forms of degree ≤ n−1, and completing
by a map from Ωn−1(S2n−1) to Hn. For n = 1, the map Ω0(S1) → H1 is just
the composition of the classical Poisson transform with the de Rham differen-
tial. In general one must use P.-Y. Gaillard’s Poisson transform for forms [G].
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The complementary series of SO0(2n, 1) is finally used by Chen to prove that
γ = 1.

In the 1990’s Kasparov and I [JK] gave a proof of γ = 1 for SU(n, 1).
The boundary of the symmetric space is a sphere S2n−1 equipped with a G-
invariant contact structure. Our construction combines the Rumin complex
(which replaces the de Rham complex) with the L2-cohomology of the symmetric
space. We do not explain it here since it will be a special case of the BGG
complex and Poisson map constructions of sections 4 and 6. The homotopy is
again provided by the complementary series of SU(n, 1) which had already been
used by Fox and Haskell in their proof of K-amenability [FH].

2.2 The groups Sp(n, 1) and F4(−20)

Assume G is locally isomorphic to Sp(n, 1) (n ≥ 2) or F4(−20). Then G has
Kazhdan’s property (T ) and, as explained above, γ 6= 1. However we have
suspected for a long time [J1] that it should be possible to prove the Baum-
Connes conjecture with any coefficients (i.e. γ̃A,red = Id ) using M. Cowling’s
strip of uniformly bounded representations [Co].

Evidence in favour of the Baum-Connes conjecture with coefficents for groups
of rank one is given by the results of V. Lafforgue. Already in his 1998 thesis
[L1][L2], using Banach KK-theory and the Jolissaint rapid decrease property,
he had proved the following result: if Γ is a cocompact discrete subgroup of such
a group G, and more generally if Γ is any Gromov hyperbolic group, then Γ
satisfies the Baum-connes conjecture without coefficients. But more recently, in
the 2010’s, he proved that such groups Γ do satisfy the Baum-Connes conjecture
with any coefficients [L5][Pu].

We would like to present here our programme of proof of the Baum-Connes
conjecture with coefficients for G = Sp(n, 1) (n ≥ 2) or F4(−20):

1) The first step is a geometric and analytic construction (sections 3 to 6)
generalizing the case of the Kasparov-Julg-Chen constructions for SO0(n, 1)
or SU(n, 1). We produce in section 7 a G-Fredholm module whose class in
KKG(C,C) should be γ. Some gap remains and we state the result as conjecture
1 in section 7.4.

2) The second is a generalization of the homotopy argument. We construct
in section 8 a homotopy with uniformly bounded representations. The strip
of uniformly bounded representations of M. Cowling plays here the rôle of the
complementary series for SO0(n, 1) and SU(n, 1). Some of the estimates for the
homotopy are still missing, and the result is stated in conjecture 2 in 8.4.

3 Geometry on the sphere at infinity

3.1 Lie algebra structure on the cotangent bundle

We now assume that G is one of the groups in the series SO0(n, 1), SU(n, 1),
Sp(n, 1) (n ≥ 2) or the exceptional group F4(−20). Each of the four cases
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correspond to a division algebra K, respectively the field R of real numbers,
the field C of complex numbers, the (noncommutative) division algebra H of
quaternions and the (nonassociative) division algebra O of octonions, which are
respectively of real dimension κ = 1, 2, 4 and 8. The associated symmetric space
Z has dimension κn, and M the boundary at infinity is a sphere of dimension
κn− 1. Note that n = 2 in the exceptional case.

The group G acts transitively on M . For any point x of the sphere M , its
stabilizer in G is a parabolic subgroup Px, which admits a maximal nilpotent
normal subgroup Nx. The Lie algebras nx form a bundle of Lie algebras, which
we denote by n.

Lemma 4 There is a G-equivariant isomorphism of vector bundles between the
cotangent bundle T ∗M and the bundle n. We can therefore equip T ∗M with a
structure of G-equivariant Lie algebra bundle.

Proof: The tangent space at x is the quotient of Lie algebras g/px. The
cotangent space is the orthogonal of px in the dual g∗. Let us now identify g∗

with g by the Killing form, which is a nondegenerate quadratic form on g. The
orthogonal of px in g∗ is identified with the orthogonal of px for the Killing
form, which is precisely the maximal nilpotent ideal nx of px. This defines a
Px-invariant isomorphism between T ∗xM and the vector space nx. Which proves
the lemma.

In the case of SO0(n, 1) Lie algebra n = nx is abelian of dimension n− 1. In
the other cases, it is a 2-step nilpotent Lie algebra of dimension κn− 1, with a
center z of dimension κ − 1 and [n, n] ⊂ z. More precisely the Lie algebra n is
(non canonically) isomorphic to its associated graded Lie algebra gr(n) = n/z⊕z
which is itself a generalized Heisenberg Lie algebra of the form Kn−1 ⊕ ImK
(for K = C, H or O) where the bracket of two vectors ξ, η ∈ Kn−1 is defined
as [ξ, η] = Im(< ξ, η >) where < ξ, η >=

∑
ξ̄iηi.

3.2 Lie algebra structure on the graded tangent space

It is important to note that the above Lie algebra structure is defined on the
cotangent space, not on the tangent space. There is no G-invariant riemannian
metric on M , and it is not possible to transport the Lie bracket from T ∗M to
TM . However there is another Lie algebra structure, not on the bundle TM
but on the graded bundle associated to the filtration given by the subbbundle
E defined below.

Notations. Let F be the G-equivariant subbundle of T ∗M whose fiber at x cor-
responds to the center zx of nx via the isomorphism between nx and T ∗xM . The
fibers of F have dimension respectively 1, 3 or 7 (for G = SU(n, 1), Sp(n, 1) or
F4(−20)). Let E be the G-equivariant subbundle of TM which is the orthogonal
of F . Then E has codimension 1, 3 or 7 respectively. We consider E ⊂ TM as a
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filtration of vector bundles, and define gr(TM) = E ⊕ TM/E as the associated
graded bundle.

Lemma 5 Consider the Lie algebra Γ(TM) of vector fields as filtered by the
subspace Γ(E). Then the associated graded Lie algebra is identified to Γ(E ⊕
TM/E) and its Lie bracket is bilinear with respect to multiplication by smooth
functions on M . The graded tangent bundle gr(TM) = E ⊕ TM/E therefore
carries a G-equivariant structure of graded Lie algebra bundle.

The proof of the lemma is standard. Let us rather explain the link between
the to Lie algebra bundles T ∗M and gr(TM) = E ⊕ TM/E. Given x and x′

two distinct points of the sphere M , the Killing form defines a nondegenerate
pairing between nx and nx′ , in other words an isomorphism between n∗x and nx′ .
Transporting the Lie algebra structure from nx′ to n∗x yields a Lie bracket on
n∗x which depends on the choice of x′. However, if we equip nx and nx′ with
the grading given by the one parameter group fixing x and x′ (the group of
translations on the geodesic from x to x′), the map gr(nx′)→ gr(n∗x) defines on
the associated graded space gr(n∗x) = gr(TxM) = Ex ⊕ TxM/Ex a Lie algebra
structure which is independent of the choice of x′. This follows from two facts:
Nx acts transitively on the complement M − {x} (so that two nx′ for different
x′’s are conjugate under Nx); and any inner automorphism of Nx acts trivially
on the graded group gr(nx). One can check that the Lie algebra structure thus
obtained on gr(TxM) = Ex⊕TxM/Ex does coincide with the structure defined
in lemma 5.

Remark 1. At a given point x of M are therefore attached two Lie algebras
nx = T ∗xM and

ñx = gr(n∗x) = gr(TxM) = Ex ⊕ TxM/Ex

which are isomorphic, but not canonically (the isomorphism depends on the
choice of a point z ∈ Z.) The second carries a canonical grading, whereas the
first does not. The Lie algebra T ∗xM = nx has a filtration, but no prefered grad-
ing. In other words, the subbundle E of TM has no canonical supplementary
subbundle.

Remark 2. Consider the graded Lie group Ñx associated to the Lie algebra ñx.
The cotangent bundle T ∗Ñx has a left invariant trivialisation as Ñx × ñ∗x =
Ñx × gr(nx). As a consequence the cotangent bundle T ∗Ñx is equipped with a
left invariant Lie algebra structure. One can consider the group Ñx with that
left invariant Lie algebra structure on T ∗Ñx as a local model for the manifold
M equipped with the G-invariant Lie algebra structure on T ∗M .

3.3 Metrics

Let z be a point of the symmetric space Z, Kz its stabilizer (a maximal compact
subgroup of G), and θz the associated Cartan involution. The Killing form
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defines a positive definite, Kz-invariant quadratic form on the tangent space
TzZ = g/kz (identified to the orthogonal of kz in g ), thus defining on TZ a
G-invariant metric, i.e. a G-invariant Riemannian metric on Z.

The situation is however very different on the boundary M : the restriction
of the Killing form to any nx is zero. To any point x in the sphere M we
associate its opposite x′ with respect to z. The Cartan involution θz maps the
Lie subalgebra nx to nx′ which is itself mapped to n∗x by the Killing form. This
defines a map nx → n∗x, i.e. a quadratic form on TxM , which is positive definite
and Kz ∩ Px-invariant. One gets a Kz- invariant Riemannian metric on M .

The action of g ∈ G on the above metrics behaves as follows. There is a
cocycle λ on G, with values in the group of positive smooth functions on M ,
such that the metric restricted to the subbundle E, under the action of g ∈ G,
is multiplied by λ2g, whereas the induced metric on the quotient bundle TM/E
is multiplied by λ4g. We shall say that the action of G on the Kz-invariant
riemannian stucture on M is quasi-conformal. In the special case of SO0(n, 1)
the action of G on M is conformal in the classical sense.

Let us consider the induced metric on the graded space gr(TxM) = Ex ⊕
TxM/Ex. Then a group element g acts by composing the metric with the graded
Lie algebra automorphism given by multiplication by λg(x) on Ex, by λg(x)2

on TxM/Ex. Note the difference of the action of g on the metrics on TM
and E ⊕ TM/E: on the second, the action is conformal on each of the two
components, whereas on the first, the action is only quasi-conformal, with an
off-diagonal component.

4 The BGG complex on the sphere at infinity.

The results and constructions below are due to A. Čap, J. Slovák, and V. Souček
[CSS]. M. Rumin has also introduced [R] a nonG-invariant version in the context
of subriemannian geometry.

Let δ :
∧k

T ∗M →
∧k−1

T ∗M be the bundle map which is at each point x
the boundary map defining the homology of the Lie algebra T ∗xM . The formula
defining δ is

δ(ξ1 ∧ ... ∧ ξk) =
∑
i<j

(−1)i+j [ξi, ξj ] ∧ ξ1 ∧ ... ∧ ξ̂i ∧ ... ∧ ξ̂j ∧ ... ∧ ξk.

In particular δ(ξ ∧ η) = [ξ, η] for ξ, η ∈ T ∗xM .
Let Ω = Ω(M) be the graded algebra of differential forms on M . We consider

on Ω the two operators d and δ, respectively of degree 1 and −1. Recall that
d2 = 0 and δ2 = 0. It follows that the degree zero map dδ + δd commutes both
with d and δ.

Let E be the space of differential forms α on M such that δα = 0 and
δdα = 0. It is graded by Ek = E ∩ Ωk and is stable by d. We thus have a
subcomplex (E , d) of the complex (Ω, d).
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Consider the map ι from E to the sections of the quotient bundle kerδ/imδ
obtained by composing the canonical injection E = kerδ ∩ kerδd → kerδ with
the canonical surjection kerδ → kerδ/imδ.

Theorem 6 1) E = ker(dδ + δd) 2) The canonical injection E → Ω induces an
isomorphism in cohomology. 3) The map ι is an isomorphism from E to the
space of sections of the quotient bundle kerδ/imδ.

Note that (kerδ/imδ)k is the space of sections of the bundle whose fiber at
x ∈ M is the homology group Hk(

∧
T ∗xM, δ) of the Lie algebras T ∗xM at each

point x ∈M .
All the assertions of the theorem follow from the lemma:

Lemma 7 The map dδ+ δd induces on the sections of the vector bundle imδ a
differential operator which is invertible in the algebra of differential operators.

The lemma implies theorem 6:
Let us consider q the differential operator on Ω defined by qα = (dδ+δd)−1δα

where (dδ + δd)−1 is the inverse of dδ + δd on imδ. Note that the kernel of q
(resp. the image of q) is the space of sections of the vector bundle kerδ (resp.
imδ).

One easily checks that q2 = 0 and qdq = q. The operator π = dq + qd
therefore satisfies π2 = π, πd = dπ = dqd and πq = qπ = q. It follows
immediately that kerπ = kerq ∩ kerqd = E .

Let us consider the decomposition Ω = kerπ⊕ imπ. Note that kerπ and imπ
are subcomplexes and that H∗(imπ, d) = 0 since the map dq + qd vanishes in
cohomology. Therefore H∗(kerπ, d) = H∗(Ω, d).

It remains to show that the map from kerπ = kerq ∩ kerqd to kerq/imq is an
isomorphism. We construct explicitely its inverse: it is given by the map 1− qd
which leaves kerq stable and vanishes on imq.

Proof of lemma 7:
The key tool in the proof of the lemma is the filtration of the bundle of

exterior algebras
∧
T ∗M by weight: the space

∧
w T
∗M of forms of weight ≥ w

is the span of forms α ∧ β where α ∈
∧i

T ∗M , β ∈
∧F

and i+ 2j ≥ w. Recall
that Fx is the center of the Lie algebra T ∗xM . One has

∧
w+1 T

∗M ⊂
∧
w T
∗M

and
∧
w T
∗M ∧

∧
w′ T

∗M ⊂
∧
w+w′ T

∗M . Note that δ preserves the filtration:
δ(
∧
w T
∗M) ⊂

∧
w T
∗M .

Passing to quotients, the bundle of graded algebras gr(
∧
T ∗M) i.e. the di-

rect sum of all the quotients
∧
w T
∗M/

∧
w+1 T

∗M is canonically identified to
the exterior bundle

∧
gr(T ∗M), where gr(T ∗M) is the nilpotent graded alge-

bra bundle associated to the filtered Lie algebra bundle T ∗M . Note that the
boundary map δ passes to the quotient, and the induced map is the boundary
map δ0 of the Lie algebra bundle gr(T ∗M).
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Let Ωw be the algebra of sections of
∧
w T
∗M . The associated graded algebra

gr(Ω) =
⊕
w

Ωw/Ωw+1

is the set of sections of
∧

(gr(T ∗M)). The important fact about the filtration of
Ω is the following:

Proposition 8 The de Rham operator d preserves the filtration: d(Ωw) ⊂ Ωw.
Moreover, it induces on the quotient the bundle map δ∗0 which is the adjoint of
the above defined δ0 for the metric associated to any point z ∈ Z.

The first statement is straightforward since for a section τ of F , dτ is a 2-
form, hence an element of Ω2. When passing to the quotient, d induces (point-
wise) the coboundary operator d0 for the Lie algebra E ⊕ TM/E = gr(TM).
The adjoint operator d∗0 on

∧
(gr(T ∗M)) is given by d∗0 = jb0j

−1 where b0 is
the boundary operator on

∧
(gr(TM)) and j the isomorphism (depending on z)

: gr(TM) → gr(T ∗M) . But since j is a Lie algebra homomorphism, one has
jb0 = δ0j so that d∗0 = δ0

Let us now prove the lemma. The map dδ + δd preserves the filtration of
Ω. Passing to the quotient yields the bundle map d0δ0 + δ0d0 = d0d

∗
0 + d∗0d0,

which is clearly invertible on imd∗0 = imδ0. The conclusion follows from the
elementary fact that if a linear map preserving a filtration induces an invertible
map at the graded level, then it is invertible.

Theorem 6 has the following corollary:

Corollary 9 The operator D = ιdι−1 defines a differential operator on the
space of sections of the bundle kerδ/imδ which satisfies D2 = 0 and has degree
one for the grading of kerδ/imδ.

The complex (Γ(kerδ/imδ), D) is called the Bernstein-Gel’fand-Gel’fand com-
plex, or BGG complex [CSS]. Its cohomology is the de Rham cohomology of the
manifold M . Note that D is G-invariant by construction: let ρ(g) be the natural
action ofG on Ω and Γ(C): for α ∈ Γ(C), ρ(g)α = g∗−1α. ThenDρ(g) = ρ(g)D.
Let us finally mention the following fact:

Proposition 10 The filtration Ωw(M) of Ω restricts to a filtration of the space
E. It also induces a filtration of the bundle kerδ/imδ, and the map ι is filtration
preserving. Moreover the filtration on kerδ/imδ is associated to a canonical
grading.

The vector bundle kerδ/imδ is therefore given with a bigrading (degree and
weight). To prove the proposition, note that the existence of the grading by
weight on kerδ/imδ follows from the observation that two (non canonical) grad-
ings of nx are conjugate under Nx. But it is a standard fact that the inner
automorphisms of a Lie algebra act trivially on the homology, as follows from
the formula adX = eXδ + δeX .
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4.1 Differential operators.

The algebra Diff(M) of differential operators on a manifold M is the subalgebra
of operators on C∞(M) generated by multiplications by functions and deriva-
tions by vector fields. It has a natural filtration (order of differential operators)
such that functions have order 0 and vector fields order 1. But in our situation,
we rather equip Diff(M) with the filtration by weighted order associated to the
filtration of TM by the subbundle E. Only vector fields in Γ(E) are required
to be of order 1. As a result, a vector field not in Γ(E) has weighted order
2. The symbol of an operator of weighted order l is its image in the algebra
Diff l(M)/Diff l−1(M) which is the space of sections of the vector bundle with
fibers Ul(Ex⊕TxM/Ex), the degree l component of the graded universal algebra
of the graded Lie algebra ñx = Ex ⊕ TxM/Ex. Note that in the trivial case
(E = 0) the universal agebra coincides with the symmetric algebra STxM of
polynomial functions on the cotangent space T ∗xM .

More generally one can define the algebra Diff(M,V ) of differential operators
on the space of sections of a vector bundle V . Choose a connection ∇ on V and
consider the algebra generated by bundle homomorphisms and by derivations
∇X for vector fields X in Γ(E). The filtration by weighted order is defined
by requiring that bundle homomorphisms have order 0 and operators ∇X for
X ∈ Γ(E) have order 1. The algebra and the filtration do not depend on the
choice of the connection. The space of sections Diff l(M,V )/Diff l−1(M,V ) is
the space of sections of the bundle with fibers Ul(Ex ⊕ TxM/Ex)⊗ End(Vx).

Let us now turn to the case of differential operators on Ω(M), i.e. on the
space of sections of the bundle

∧
T ∗M equipped as above with a decreasing

filtration. There is an increasing Z-filtration on End(
∧
T ∗M) defined as follows:

we say a ∈ Endl(
∧
T ∗M) if and only if for any w,

a(
∧
w

T ∗M) ⊂
∧
w−l

T ∗M.

Choose a connection on Γ(TM) preserving the Lie algebra structure on T ∗M .
In particular ∇X(Γ(E)) ⊂ Γ(E). Such connections do exist [JvE]. We define a
filtration on Diff(M,

∧
T ∗M) extending the above filtration on End(

∧
T ∗M) by

requiring that ∇X has order 1 for X ∈ Γ(E). The new filtration thus obtained
will be called filtration by superweighted order. It is independent of the choice of
the connection ∇. The space Diff l(M,

∧
T ∗M)/Diff l−1(M,

∧
T ∗M) of symbols

of superweighted order l is the space of sections of the degree l component of
the graded algebra bundle U(Ex ⊕ TxM/Ex)⊗ End(

∧
T ∗xM).

Similarly one defines a filtration on Diff(M,C) where the bundle C is as
above the subquotient kerδ/imδ of

∧
T ∗M . Recall that the filtration of C

comes with a grading C =
⊕

w Cw. An operator of superweighted degree l is
a differential operator on Γ(C) which is a sum of operators of weighted order j
mapping sections of each Cw to Cw−l+j .

Proposition 11 The operator d has superweighted order 0 in Diff(M,
∧
T ∗M).

Similarly, the operator D has superweighted order 0 in Diff(M,C). The operator

12



D has the form D = D1+D2+... where each operator Dl (l ≥ 1) is a differential
operator of weighted order l mapping sections of Ckw to sections of Ck+1

w+l .

The symbol of D at a point x ∈M is the sum of the symbols of Dl ,

σx(Dl) ∈ Ul(ñx)⊗Hom(Cw,x, Cw+l,x)

where ñx = gr(n∗x) = Ex ⊕ TxM/Ex.
Note that the symbol of D can be interpreted as a left invariant differential

operator on the graded Lie group Ñx associated to the Lie algebra ñx. Recall
that the cotangent bundle T ∗Ñx carries a left invariant Lie algebra structure.
The construction of the BGG complex on M can therefore be made similarly
on each group Ñx, and one can define an operator Dx which is a left invariant
operator acting on the space Ω(Ñx) = C∞(Ñx) ⊗ Cx where Cx = kerδx/imδx.
Then the symbol of D is σx(D) = Dx.

The cohomology of the complex (Γ(C), D) is finite dimensional since it is
equal to the de Rham cohomology of a compact manifold. The finite dimensional
caracter is related to the existence of a parametrix Q, which lives in a suitable
pseudodifferential calculus, namely the pseudodifferential calculus modeled on
convolution algebras of graded nilpotent groups. Unfortunately such a calculus
is not very documented in the litterature. We can refer to [BG] for the contact
case, or [CGGP] on a graded nilpotent group. The general case is treated in
[Me] but it is an unpublished preprint very difficult to find. The best approach
is certainly the one based on groupoids: see [Po], [vEY][,DS], or [Mo] .

If N is a 2-step graded nilpotent groups, n = n1 ⊕ n2 its Lie algebra, with
[n1, n1] = n2 and n2 central. Equip n with a euclidian metric such that n1
and n2 are orthogonal. A classical fact is that the left invariant sublaplacian
(or Kohn laplacian)

∑
iX

2
i (where (Xi) is an orthonormal basis of n1) has an

inverse which is the right convolution by a homogeneous distribution on N .
The filtrations of the algebras of differential operators on M by weighted

order (or by superweighted order) extends to similar filtration of the algebra of
pseudodifferential operators. We shall consider below pseudodifferential oper-
ators acting on sections of the graded bundle C. As in the case of differential
operators, a pseudodifferential operator of superweighted j is an operator whose
component mapping Cw to Cw+l is a pseudodifferential operator of weighted or-
der l + j.

Theorem 12 There exists a pseudodifferential operator Q in the above calcu-
lus, of superweighted order 0, such that the operators DQ + QD − 1, Q2 and
π(g)Qπ(g)−1 −Q for g ∈ G have superweighted order −1.

Sketch of proof : By the above pseudodifferential calculus, it is enough to
work at the symbol level. At a given point x ∈M , consider the graded nilpotent
group Ñx associated to the Lie algebra ñx = gr(TxM) = Ex ⊕ TxM/Ex, and
the left invariant Lie algebra structure on the bundle T ∗Ñx as above. For the
operator Dx Rumin [R] constructs Qx such that DxQx+QxDx = 1 and Q2

x = 0;
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Qx is a sum of convolution operators by homogeneous distributions of weight
l with values in linear maps from Cw to Cw+l. After lifting from symbols to
pseudodifferential operators, one obtains that DQ + QD − 1 and Q2 are of
superweighted order −1.

The construction of Qx only depends on a metric on ñx. Let us choose the
Kz-invariant metric for some z ∈ Z. Now if one changes the choice of z, the
new metric differ from the old one by some dilation automorphism (λ, λ2) of
the Lie algebra ñx = Ex⊕TxM/Ex. It follows easily that the operator Qx does
not change. In other words, one has for g ∈ G, Qgx = g∗−1Qxg

∗ where g∗ is

the natural transport of functions on Ñgx with values in Cgx to functions on Ñx
with values in Cx. Therefore the family Qx is a G-equivariant symbol, hence its
lifting Q is such that π(g)Qπ(g)−1 −Q has superweighted order −1.

5 The bounded version of the complex.

Let us fix a point z of the symmetric space Z and consider on the boundary
M the Kz-invariant metric as above. Let λg be the cocycle describing its qua-
siconformal behaviour as in 3.3. Let us complete the space of sections Γ(C)
by the corresponding L2-norm. An element g ∈ G multiplies the metric on E
by λ2g, and on TM/E by λ4g. Therefore the metric on

∧i
E∗ ⊗

∧j
(TM/E)∗

is multiplied by λ
−2(i+2j)
g and that on Cw by λ−2wg . On the other hand, the

volume form on M is multiplied by λνg where ν = dimE + 2 dim(TM/E).
It follows that the cocycle λ allows to twist the action of G on the Hilbert

space L2Γ(C) into a unitary one. Let us consider indeed the representation

π(g) = λ
ν/2−W
g ρ(g) where the operator W = w on the subbundle Cw. In other

words if α ∈ Γ(Cw) is a section of weight w, π(g)α = λ
ν/2−w
g ρ(g)α.

Proposition 13 The representation π of G in the Hilbert space L2Γ(C) is uni-
tary.

The complex (L2Γ(C), D) of unbounded operators can be turned into a
complex of bounded operators by the usual trick of passing to Sobolev spaces.
The Sobolev spaces adapted to our situation are not the classical ones, but those
defined by a Kz-invariant sublaplacian on M , i.e. the operator ∆E = ∇∗E∇E
defined as follows. We consider a connection ∇ compatible with the subbundle
E as in section 4, and ∇E : Γ(M,C) → Γ(M,C ⊗ E∗) the composition of
∇ : Γ(M,C) → Γ(M,C ⊗ T ∗M) with the restriction T ∗M → E∗ of 1-forms to
the subbundle E, and ∇∗E its formal adjoint with respect to the Kz-invariant
metric on M .

The sublaplacian operator ∆E = ∇∗E∇E is not elliptic (except of course in
the case G = SO0(n, 1)) but subelliptic with (1 + ∆E)−1 a pseudodifferential
operator of weighted order −2 in the above calculus. More generally for any
real number s, the operator (1 + ∆E)s/2 has weighted order s.

14



Instead of considering Sobolev spaces, we prefer to remain on the space
L2Γ(C) and conjugate the operator D by the operator (1 + ∆E)(ν/2−W )/2 on
Γ(C). The latter is by definition equal to (1 + ∆E)(ν/2−w)/2 on Γ(Cw). Cf. [R].

Proposition 14 The operator D0 = (1 + ∆E)(ν/2−W )/2D(1 + ∆E)(−ν/2+W )/2

is of weighted order zero.

Proof: the component of D0 which sends Cw to Cw+l is

(1 + ∆E)(ν/2−w−l)/2Dl(1 + ∆E)(−ν/2+w)/2

which has weighted order (ν/2− w − l) + l + (−ν/2 + w) = 0.

Corollary 15 The operator D0 is bounded on the Hilbert space L2Γ(C). It
satisfies D2

0 = 0, and the commutator [D0, f ] is compact for any continuous
function f on M .

Indeed, for f smooth, the operator [D0, f ] is an operator of weighted order
−1.

Let us now consider the behaviour of the above operators under the action of
G. First note that ρ(g)∆Eρ(g)−1−λ−2g ∆E is a differential operator of weighted
order −1. More generally:

Lemma 16 For any real s,

ρ(g)(1 + ∆E)s/2ρ(g)−1 − λ−sg (1 + ∆E)s/2

is a pseudodifferential operator of weighted order s− 1.

Let us compare the following two representations of the group G in the space
L2Γ(Cw)

π(g) = λν/2−Wg ρ(g)

and
ρ0(g) = (1 + ∆E)(ν/2−w)/2ρ(g)(1 + ∆E)−(ν/2−w)/2

Lemma 17 The representation ρ0 is a representation by bounded operators,
and for any g ∈ G, the operator ρ0(g)− π(g) is compact.

Let us denote s = −ν/2+w. The operator (ρ0(g)−π(g))ρ(g)−1 is equal to the
product of (1+∆E)−s/2 (of order−s ) by ρ(g)(1+∆E)s/2ρ(g)−1−(1+∆E)s/2λ−sg
which is of weighted order s− 1 according to the lemma.

Corollary 18 For any g ∈ G, [D0, ρ0(g)] = 0 and [D0, π(g)] is compact. In
other words, π(g)D0π(g)−1 −D0 is compact.

Proof: The equality [D, ρ(g)] = 0 implies [D0, ρ0(g)] = 0 after conjugaison
by (1 + ∆E)(ν/2−W )/2. Hence [D0, π(g)] = [D0, π(g)− ρ0(g)] is compact.

Corollary 19 The operator Q0 = (1 + ∆E)(ν/2−W )/2Q(1 + ∆E)(−ν/2+W )/2 is
bounded and the operators Q0D0 + D0Q0 − 1, Q2

0 and π(g)Q0π(g)−1 − Q0 for
g ∈ G are compact.
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6 Poisson transformation for differential forms.

We first construct a G-invariant kernel on the space M × Z. Let z ∈ Z and
x ∈ M . The obvious map nx → g/kz yields an injective map Φz,x : T ∗xM →
TzZ = T ∗z Z. Its transpose TzZ → TxM is the visual map in the sense of
Haefliger and Gaillard [G]. We shall still denote Φz,x the functorially associated

map Φz,x :
∧k

T ∗xM →
∧k

T ∗z Z for any integer k.

Note that Φz,x ∈ Hom(
∧k

T ∗xM,
∧k

T ∗z Z) is Kz∩Px-invariant. Consider the
volume form dµz on M associated to the Kz invariant metric. Note that the
form dµz(x) is a Kz ∩ Px-invariant element of

∧top
Tx
∗M .

It follows that the formula

P (α)(z) =

∫
M

Φz,x(αx)dµz(x)

defines a G-equivariant map

P : Ωk(M)→ Ωk(Z).

Let us consider the Casimir operator of the semisimple Lie algebra g. It
acts on Ωk(Z) by −∆ = −(dd∗ + d∗d) (Kuga’s theorem, see [BW], [Pe]) and by
−2(dδ + δd) on Ωk(M) (see the proof by Čap and Souček in [CS]).

From the commutation of the Casimir operator with P , one deduces the
formula:

∆P (α)) = 2P ((dδ + δd)(α))

for any α ∈ Ωk(M). In particular, the map P sends the subcomplex E =
ker(dδ + δd) to the space of harmonic forms.

Recall the following classical fact (see [Pe], appendix A) about L2 harmonic
forms.

Theorem 20 Let Hk be the Hilbert space of L2 harmonic forms of degree k on
the rank one symmetric space Z. Then Hk 6= {0} if and only if k = dimZ/2. In
particular the L2 cohomology of Z vanishes for G = SO0(2n+1, 1). In the other
cases, it is infinite dimensional, equal to Hn for G = SO0(2n, 1) or SU(n, 1),
to H2n for G = Sp(n, 1) and to H8 for G = F4(−20).

We now assume that dimZ = 2m is even.

Lemma 21 The Poisson transform P induces a G-equivariant bijection from
the space d(Em−1) ⊂ Em to a dense subspace of Hm.

Let us recall that one has a bijective linear map ι : Ek → Γ(Ck) such that
Dι = ιd. Let us consider the composition S = Pdι−1 = Pι−1D as a map
Γ(Cm−1) → Hm. One has SD = 0. The operator S is a G-equivariant linear
map from Γ(Cm−1) → Hm with dense image and kernel kerD. Let σ denote
the unitary representation of G in Hm, one has σ(g)S = Sρ(g).

Let us define a parametrix as follows: take Q′ = QιR where R is the inverse
of P from Hm to d(Em−1) ⊂ Em. The operator DQ + Q′S − 1 on Γ(Cm−1) is
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pseudodifferential of superweighted order −1, and SQ′ = 1 on Hm. Moreover
QQ′ and ρ(g)Q′σ(g)−Q′ are composition with the map ιR : Hm → Γ(Cm) of
pseudodifferential operators of superweighted order −1.

One can make S bounded as follows:

Proposition 22 The map S0 = S(1 + ∆E)(ν/2−W )/2 is bounded. One has
S0D0 = 0.

Proposition 23 For any g ∈ G, the operator σ(g)S0π(g)−1 − S0 is compact.

Indeed the relation σ(g)S = Sρ(g) implies σ(g)S0 = S0ρ0(g). The proposition
follows from the fact that π(g)− ρ0(g) is compact.

Take Q′0 = (1 + ∆E)(−ν/2+W )/2Q′.
One has S0Q

′
0 = 1 on Hm, and the operator D0Q0+Q′0S0−1 on L2Γ(Cm−1)

is compact. Moreover Q0Q
′
0 and ρ(g)Q′0σ(g)−Q′0 are compact on Hm.

7 Representing the γ element.

7.1 KKG-element associated to a G-Fredholm complex.

Let H be a Hilbert space equipped with:
(i) a Z-grading H =

⊕
Hk

(ii) a degree 0 unitary representation π
(iii) a degree 1 bounded operator F satisfying the following three conditions:

F 2 = 0; [F, π(g)] is compact for any g ∈ G; there exists a degree −1 bounded
operator Q such that Q2, FQ+QF − 1 and [Q, π(g)] (for g ∈ G) are compact
operators.

To such a G-Fredholm complex we associate a class in KKG(C,C) as follows:
let us equip the Hilbert space H with the Z/2-grading by the parity of the Z-
degree, the representation π of G and the operator T = F + Q. We obtain a
G-Fredholm module whose class in KKG(C,C) is independent of the choice of
the parametrix Q (see [L2]).

7.2 The original G-complex.

Let us consider the following complex of Hilbert spaces:

D0 D0 D0

L2Γ(C0) → L2Γ(C1) → ... → L2Γ(C2m−1)

The Z-graded Hilbert space

L2Γ(C) =

2m−1⊕
k=0

L2Γ(Ck)
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together with the unitary representation π defined by

π(g) = λν/2−wg ρ(g)

on each L2Γ(Ckw), and the bounded operator D0 do satisfy the above conditions.
Note that the class of the complex (L2Γ(C), π,D0) in KKG(C,C) cannot

be γ since its restriction to a maximal compact subsgroup K of G is 0 (indeed,
the cohomology of D0 is the same as the de Rham cohomology of the sphere
M , which vanishes except in dimensions 0 and 2m− 1).

However one can show that the class of the complex (L2Γ(C), π,D0) is in
the subgroup γKKG(C,C). This follows from the observation that it belongs
to the image of KKG(C(M),C) with M = G/P and P amenable. See [K2].

7.3 The truncated complex.

Let us truncate the complex (L2Γ(C), D0) to make it of index 1. We keep the
left half of the complex and complete in degree m with the L2-cohomology Hm
of Z = G/K.

In other words we consider the complex of Hilbert spaces:

D0 D0 D0 S0

L2Γ(C0) → L2Γ(C1) → ... → L2Γ(Cm−1) → Hm

The Hilbert space

H =

m−1⊕
k=0

L2Γ(Ck)⊕
⊕
Hm

is equipped with:
(i) the Z-grading by degree.
(ii) the degree 0 unitary representation π defined by

π(g) = λν/2−wg ρ(g)

on each L2Γ(Ckw) for k ≤ m− 1 and π(g) = σ(g) on Hm.
(iii) the degree 1 bounded operator F equal to D0 on L2Γ(Ck) (k ≤ m− 2)

and to S0 on L2Γ(Cm−1)
The complex (H,π, F ) defines an element of KKG(C,C) whose image in

R(K) is equal to the unit 1K of R(K).

7.4 Link with γ.

Conjecture 1 The class of the complex (H,π, F ) is equal to γ ∈ KKG(C,C).

To show conjecture 1 we consider the compactification Z̄ = Z ∪M of Z =
G/K by the boundary sphere M = G/P . Let us use the lemma of [JK]:
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Lemma 24 An element of KKG(C,C) which is in the image of KKG(C(Z̄),C)→
KKG(C,C) and maps to 1 in R(K) is equal to γ.

The conjecture would therefore follow from the fact that the class of (H,π, F )
in KKG(C,C) is in the image of KKG(C(Z̄),C).

The algebra C(Z̄) acts on L2Γ(Ck) via C(M). It also has an action via
Cb(Z) on L2Ωm(Z), but the subspace Hm is not stable.

To fix the latter difficulty, we enlarge the complex (H,π, F ) to allow an
action of C(Z̄). Let

H̃ =

m−1⊕
k=0

L2Γ(Ck)⊕
2m⊕
k=0

L2Ωk(Z)

be graded by form degree. We equip H̃ with the unitary representations π̃
equal to π on L2Γ(C) and to σ (the natural action) on L2Ω(Z) . The operator
is modified as follows: F̃ is equal to D0 on L2Γ(Ck) (0 ≤ k ≤ m − 2), to S0

on L2Γ(Cm−1) (with values in Hm ⊂ L2Ωm(Z)) and to d0 = d(1 + ∆)−1/2 on
L2Ωk(Z) (0 ≤ k ≤ 2m. ).

The complex (H̃, π̃, F̃ ) clearly has the same image as (H,π, F ). To show that
it belongs to the image of KKG(C(Z̄),C), one has to estimate the commutators
of the operator F̃ with the action of f ∈ C(Z̄).

The case of the D0-component has already been checked. The d0-component
is dealt with as in [JK]. It remains to show that [S0, f ] is compact as an operator
from L2Γ(Cm−1) to L2Ωm(Z). A proof has beeen given in the case of SO0(2n, 1)
by Chen and in the case of SU(n, 1) by Kasparov and myself. We do not yet
have the estimates for the case of Sp(n, 1) and F4(−20). In principle it should
be possible to generalize the method of [JK] with explicit computations, but
unfortunatly the combinatorics of the representations of K = Sp(n)Sp(1) are
much more complicated than for U(n). We look for some new ideas involving
explicit formulas for the Poisson kernels and estimates near the boundary.

8 How to prove that γ̃A,red = Id?

8.1 From unitary to uniformly bounded representations.

We shall produce a homotopy of Fredholm complexes from (H,π, F ) to a trivial
complex of index 1. The Hilbert space H and the operator F will be constant,
but the representations on each L2Γ(Ckw) will be deformations from

π0(g) = π(g) = λν/2−wg ρ(g)

to
π1(g) = ρ0(g) = (1 + ∆E)(ν/2−w)/2ρ(g)(1 + ∆E)−(ν/2−w)/2.

Consider to that effect the family of representations

πs(g) = (1 + ∆E)(ν/2−w)s/2λ(ν/2−w)(1−s)
g ρ(g)(1 + ∆E)−(ν/2−w)s/2
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Lemma 25 For any s ∈ C and g ∈ G the operator πs(g) is bounded and
πs(g)− π0(g) is compact.

The proof is the same as in lemma 16.
Let us now state a special case of a theorem due to Michael Cowling [Co][ACD].

We say that a representation π is uniformly bounded if

sup
g∈G
‖π(g)‖ <∞.

Theorem 26 The representation πs on L2Γ(Cw) is uniformly bounded for any
s ∈ C such that

|Res| < ν/2

|ν/2− w|

Recall that ν = dimE + 2 dim(TM/E) and note that the values of w range
between 0 and ν, so that ν/2 ≤ |ν/2−w| with equality only for w = 0 or ν, i.e.
k = 0 or 2m− 1.

Corollary 27 The representations πs are uniformly bounded if s ∈ [0, 1[. The
representation π1 is uniformly bounded on L2Γ(Ck) for k 6= 0 or 2m− 1.

We consider the homotopy from s = 0 to s = 1. We start at s = 0 with
the unitary representations π0 and the Fredholm complex which, according to
conjecture 1, represents the element γ. At the other end, for s = 1 the operator
F exactly commutes with the representation π1. Formally the family (H,πs, F )
from s = 0 to s = 1 provides the homotopy from γ to 1, but only in a weak
sense, since the representations involved are no more unitary.

8.2 Uniformly bounded representations and K-theory

The fact which makes the uniformly bounded representations work for our prob-
lem is the following theorem. We define a uniformly bounded G-Fredholm mod-
ule as the data (H,π, F ) where H is a Hilbert space, π a uniformly bounded
representation and F a Fredholm operator. We define a homotopy of uni-
formly bounded G-Fredholm module in the same way, replacing Hilbert spaces
by C[0, 1]-Hilbert modules (i.e. continuous fields of Hilbert spaces).

Let us denote after Kasparov [K1] R(G) = KKG(C,C). Define as in [J1]
Rub(G) the group of homotopy classes of uniformly bounded G-Fredholm mod-
ules.

Theorem 28 For any G− C∗-algebra A, the Kasparov map

R(G)→ EndK∗(C
∗
red(G,A))

factors through the map R(G)→ Rub(G).

This follows from the following easy lemma and its corollary:

20



Lemma 29 1) Let π be a uniformly bounded representation of G in a Hilbert
space H. Let λ be the left regular representation of G on L2(G). There exists
an operator U on H⊗L2(G), which is bounded and has a bounded inverse, such
that

π(g)⊗ λ(g) = U(1⊗ λ(g))U−1

2) If moreover π is a unitary representation, U is a unitary operator.

To any Hilbert space H equipped with a uniformly bounded representation
π, let us associate as in [K1] the Hilbert module E = H ⊗ C∗red(G,A) and the
covariant representation of (G,A) with values in LC∗red(G,A)(E) defined by:

a 7→ 1⊗ a, g 7→ π(g)⊗ λ(g).

Corollary 30 The representation πA : Cc(G,A) → LC∗red(G,A)(E) extending
the above covariant representation factors through the reduced crossed product
C∗red(G,A).

Proof. The reduced crossed product C∗red(G,A) is by definition a sub-C∗-algebra
of LA(L2(G)⊗A) . The C∗-algebra LC∗red(G,A)(E) is a sub-C∗-algebra of LA(H⊗
L2(G)⊗A). It follows easily from lemma 1 that for any a ∈ Cc(G,A), one has

πA(a) = U(1⊗ λA(a))U−1

where
λA : Cc(G,A)→ C∗red(G,A)→ LA(L2(G)⊗A)

The map πA therefore extends to a continuous (but in general not ∗) homomor-
phism

πA : C∗red(G,A)→ LC∗red(G,A)(E).

Proof of the theorem. Let us construct the map Rub(G) → EndK∗(C
∗
r (G,A)).

To aG-Fredholm module (H,π, T ) we associate the triple (H⊗C∗red(G,A), πA, TA)
where πA : C∗red(G,A) → LC∗red(G,A)(E) is the Banach algebra homomorphism
defined above, and TA = T ⊗ 1 ∈ LC∗red(G,A)(E).

The Banach G-Fredholm module thus obtained defines a map from the group
K∗(C

∗
red(G,A)) to itself. Note that such a construction has no analogue for

C∗max(G,A) since it relies upon a specific feature of the regular representation.

8.3 Slow exponential growth

Unfortunately, it is not quite enough to work with uniformly bounded represen-
tations. Indeed, the representation π1 on L2(M) is not uniformly bounded, and
when s→ 1, the uniform bound of πs on L2(M) is not bounded. Therefore the
family πs cannot define a homotopy on the closed segment [0, 1]. To overcome
the difficulty we introduce a wider class of representations.
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Fix ε > 0. We say that a representation π of G is of ε-exponential type if
there is a constant C such that for any g ∈ G,

‖π(g)‖ ≤ Ceεl(g)

where l(g) = d(gz, z) is the length of g (z is a chosen origin in Z as above).
We define as above a G-Fredholm module of ε-exponential type, and similarly
a homotopy of such modules. Let Rε(G) be the abelian group of homotopy
classes. The obvious maps Rε(G)→ Rε′(G) for ε < ε′ form a projective system
and we consider the projective limit lim←−Rε(G) when ε→ 0.

We would like to have an analogue of theorem 28 with the group lim←−Rε(G)
instead of Rub(G). In fact there is a slightly weaker result, due to N. Higson
and V. Lafforgue (cf [L5], théorème 2.3) which is enough for our purpose:

Theorem 31 The kernel of the map

R(G)→ lim←−Rε(G)

is included in the kernel of the map

R(G)→ EndK∗(C
∗
r (G,A)).

Let us sketch the proof following [L5]. As above, to any representation π of
G is associated a ∗-homomorphism

πA : Cc(G,A)→ LC∗r (G,A)(E)

where E = H ⊗ C∗red(G,A).
For all ε > 0 there is a Banach algebra Cε which is a completion of Cc(G,A)

such that for any representation π of ε-exponential type, the above map πA
extends to a bounded map Cε → LC∗r (G,A)(E). The Banach Fredholm module
thus obtained defines a map

Rε(G)→ Hom(K∗(Cε),K∗(C
∗
r (G,A))).

This being done for each ε, we have a system of maps compatible with the maps
Cε → Cε′ for ε′ < ε, so that there is a commutative diagramme (cf [L5] prop
2.5)

R(G) → EndK∗(C
∗
r (G,A))

↓ ↓
lim←−Rε(G) → lim←−Hom(K∗(Cε),K∗(C

∗
r (G,A))).

The theorem of Higson-Lafforgue then follows immediately, thanks to the
following lemma:

Lemma 32 The group K∗(C
∗
r (G,A)) is the union of the images of the maps

K∗(Cε)→ K∗(C
∗
r (G,A)).
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To prove the lemma, Higson and Lafforgue use the fact that the symmetric space
Z has finite asymptotic dimension. They give an estimate of the form (prop 2.6
in [L6])

‖f‖Cε
≤ kεeε(ar+b)‖f‖C∗r (G,A)

for f ∈ Cc(G,A) with support in a ball of radius r (for the length l).
The spectral radius formula in Banach algebras then implies for such an f ,

ρCε
(f) ≤ eεarρC∗r (G,A)(f),

so that ρC∗r (G,A)(f) = inf ρCε
(f). A fact which, by standard holomorphic cal-

culus techniques, implies the lemma.

8.4 Towards the end of the proof.

Conjecture 2 For any ε > 0, the class of the module (H,π, F ) defined in 7.3.
maps to 1 under the map R(G) = KKG(C,C)→ Rε(G).

Conjecture 2, together with theorem 31, implies that for any G−C∗-algebra
A, the class of (H,π, F ) in KKG(C,C) maps to the identity under the map

R(G) = KKG(C,C)→ EndK∗(C
∗
r (G,A)).

Therefore conjecture 1 and conjecture 2 combined together imply that the
element γ maps to 1 in EndK∗(C

∗
r (G,A)). In other words, with the notations

of section 1, one has γ̃A,red = Id. This proves the Baum-Connes conjecture for
G with coefficients in A.

The main step in the proof of conjecture 2 should be the solution of the
following. To simplify notations, put L = (1 + ∆E)1/2. Let ε > 0 and w < ν/2.

Problem. Show that there exists constants C and a such that for any s ∈
[1/2, 1] the formula

πεs(g) = L−επs(g)Lε

defines a representation of G on L2Γ(Cw), satisfying

‖πεs(g)‖ ≤ Ceεal(g).

Note that
πεs(g) = Λgπs′(g)

where s′ = s− ε
ν/2−w and where the cocycle operator Λg is defined by

Λg = L(ν/2−w)s′λ−εg L−(ν/2−w)s′

The representations πs′ are uniformly bounded with a bound independant
of s because (for ε small enough, s′ = s− ε

ν/2−w belongs to a compact interval
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strictly contained in [0, ν/2
|ν/2−w| [. To solve our problem, it remains to show that

‖Λg‖ ≤ eεal(g) for some a > 0.

Let us sketch how conjecture 2 would then follow. Fix any ε > 0. We want
to show that the image of the element γ in R(G) in Rε(G) is equal to 1.

Consider conjugation by L−ε and define Fε = L−εFLε. There is a parametrix
Qε = L−εQLε. The commutator [Dε, π

ε
s(g)] is compact for any g ∈ G. For any

s ∈ [0, 1] the complex (H, ρεs, Fε) has a class in Rε(G) independent of s. Then
observe that:

At s = 0 this class is the image of γ : one can indeed consider the homotopy
(H, ρtεs , Ftε) for t ∈ [0, 1].

At s = 1 the class is equal to 1 since [Dε, ρε1(g)] = 0. Indeed the complex
tDε has parametrix t−1Qε and the commutator [tDε + t−1Qε, ρ

ε
1(g)] tends to 0

as t goes to infinity. Cf. [L2].
This would end the proof.
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