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1. Introduction  

Throughout history, physicians and thinkers realized the importance of a proper diet for 

the maintenance of good health. In support of it, recent medical literature often cites the 

sentence, “Let food be thy medicine and medicine be thy food”, wrongly attributed to 

Hippocrates (Cardenas, 2013). Ludwig Andreas Feuerbach “you are what you eat” is also 

often quoted in this context (Feuerbach, 1863/4). The success of these citations reflects 

the concern about food in today’s world in which overabundance of calories coupled to 

sedentary life style gives rise to the current obesity epidemic (Hill and Peters, 1998). 

Indeed, recent evidence shows a marked increase in obesity from 1975 to 2016 (NCD-

RisC, 2017). This condition relates to a state of fat excess arising from high energy intake 

and low physical expenditure (Hill and Peters, 1998). Obesity, however, is a complex and 

multifactorial pathology involving genetic, biological, environmental, and behavioral 

factors. Contrasting with obesity, undernutrition or malnutrition in spite of food 

availability is a common problem in the context of cancer- or aging-related cachexia 

(Favaro-Moreira et al., 2016). It is also a condition in which feeding control is altered. 

Since the discovery of the orexigenic hormone ghrelin in 1999, there has been much focus 

on elucidating the pathways through which it operates, with the expectation that this 

knowledge could help the discovery of novel targets of therapeutic value for these 

conditions.   

In this review we focus on ghrelin, which is one of the most potent orexigenic signal, 

and we critically assess its central effects and their relevance in the regulation of food 

reward-associated behaviors and energy balance.  

 

2. Interaction between homeostatic and reward mechanisms in food intake  

It is well known that homeostatic neuronal circuits in the hypothalamus integrate 

peripheral information, such as metabolites and hormones, to modulate food intake and 

energy balance [reviews in (Al Massadi et al., 2017; Belgardt and Bruning, 2010)]. 

However feeding control is also regulated by brain structures pertaining to the reward 

system (Berthoud, 2011). The reward system was serendipitously discovered in rats by 

Olds and Milner who used its self-stimulation for operant training (Olds and Milner, 

1954). The existence of similar responses was demonstrated in primates (Briese and Olds, 

1964) and the underlying circuitry progressively dissected, including its links with the 

dopaminergic neurons and their targets (Corbett and Wise, 1980). From a “Darwinian 
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standpoint” it makes sense that reward mechanisms are recruited to increase motivation 

to eat when hungry and to continue eating when food is plenty to ensure storage for future 

times of shortage [see (Lockie and Andrews, 2013), for a discussion of this issue]. 

 Interestingly, the neuronal circuits involved in homeostatic and reward 

mechanisms appear to be highly interlaced and recent reports emphasize their functional 

links. The mesolimbic dopaminergic system, including the projection from the ventral 

tegmental area (VTA) to the nucleus accumbens (NAc), plays a relevant role in the 

regulation of food seeking and motivation, while the dorsal striatum is implicated through 

its role in habitual/automatic behaviors. The ingestion of palatable food induces an 

increment in dopamine (DA) release from neurons of the VTA and the adjacent substantia 

nigra that project to the NAc and dorsal striatum (Bassareo and Di Chiara, 1999; Pfaus et 

al., 1995). Imaging experiments in humans confirmed the results obtained in animal 

models and showed the activation of the NAc, caudate nucleus, and putamen in response 

to reward stimuli including, food… or romantic love (Acevedo et al., 2012; Small et al., 

2003). Although a major role of DA neurons is to code for errors in reward prediction, 

electrophysiological experiments in non-human primates showed that under uncertainty 

conditioning, their activity also reflects reward expectation (Fiorillo et al., 2003; Schultz 

et al., 1992). As discussed below, many studies indicate that ghrelin interacts in multiple 

ways with the reward system.   

  

3. Ghrelin 

Ghrelin was purified from rat stomach about twenty years ago as a 28-amino acid 

octanoylated peptide and shown to be the endogenous ligand of the growth hormone (GH) 

secretagogue receptor (now termed GHSR1a, Howard et al., 1996; Kojima et al., 1999). 

GHSR1a is a 7-transmembrane receptor coupled to Gαq/11, which activates phospholipase 

Cγ and Ca2+ release from internal stores [see (Camina, 2006) for a review]. Beyond the 

initial results in relation with GH releasing effects (Kojima et al., 1999; Seoane et al., 

2000; Takaya et al., 2000), most of the studies focused on ghrelin’s ability to regulate 

food-related behaviors and metabolism [reviewed in (Al Massadi et al., 2017; Perello and 

Dickson, 2015)]. Ghrelin is produced by gut endocrine cells mostly located in gastric 

oxyntic glands, in the fundus of the stomach (Date et al., 2000). Ghrelin production in the 

brain is controversial [see (Cabral et al., 2017) for a review]. Although ghrelin 

immunoreactivity was reported in hypothalamic neurons (Cowley et al., 2003; Kojima et 

al., 1999), other authors suggested this likely resulted from unspecific staining (Furness 
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et al., 2011). In addition, several ghrelin reporter mouse lines failed to reveal positive 

cells in the brain (Sakata et al., 2009a). Although sensitive techniques such as RT-PCR 

revealed some ghrelin transcripts in the brain, the significance of these results remains 

unclear (Cabral et al., 2017). Interestingly, ghrelin-O-acyltransferase (GOAT), the 

enzyme that catalyzes the octanoylation of ghrelin, is expressed (Gahete et al., 2010; 

Sakata et al., 2009b; Wellman and Abizaid, 2015) and active in specific brain regions 

(Murtuza and Isokawa, 2018), raising the possibility that local processing of ghrelin might 

exist, although the source of the putative unmodified ghrelin remains to be identified.  

 Peripheral ghrelin can act in the CNS by penetrating into the ventromedial part of 

the hypothalamus through the fenestrated capillaries of the median eminence close to the 

arcuate nucleus (ARC, Schaeffer et al., 2013, Figure 1). Ghrelin can also cross the blood-

brain barrier in other regions such as the area postrema [see (Cabral et al., 2017)] or reach 

the cerebrospinal fluid through the choroid plexus and tanycytes (Uriarte et al., 2018). 

Another route by which peripheral ghrelin could impact on brain function is the activation 

of GHSR1a in the vagus nerve terminals and transmission of information to the nucleus 

of the tractus solitarius (NTS), which is indirectly connected to the hypothalamus, 

providing a potential pathway to regulate food intake or other behaviors (Date et al., 2006, 

Figure 1). It should also be pointed out that ghrelin-independent activity of GHSR1a may 

be relevant in some cells, either through its constitutive activity or as a result of 

heterodimerization and potential sensitivity to other ligands (Schellekens et al., 2013). 

The contribution of these mechanisms to the actions attributed to ghrelin remains however 

to be determined.   

 With respect to ghrelin regulation, the levels of this hormone are high when 

nutrient availability is low, as during fasting, and decrease when energy supply is 

sufficient, as happens after consumption of a meal [for review see (Al Massadi et al., 

2014)]. Ghrelin levels in the circulation are inversely correlated with the body mass index, 

and are up-regulated in under-nourished states, such as anorexia nervosa, and down-

regulated in states of positive energy balance, like obesity (Mequinion et al., 2013; Otto 

et al., 2001; Tschop et al., 2001). Ghrelin is considered to act as a meal initiation cue and 

its levels rise just before eating in rodents and humans (Cummings et al., 2001; Drazen et 

al., 2006). It is also involved in anticipatory locomotor activity (Blum et al., 2009). 

Indeed, reports using fixed meal patterns suggest that ghrelin is increased preprandially, 

as part of an anticipatory and learned response corresponding to the animal expectation 

to eat, and this increase is independent of the state of fasting or feeding (Drazen et al., 
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2006; Merkestein et al., 2012). Ghrelin secretion in the stomach can also be regulated 

through exposition to food-associated stimuli and the consequent activation of the vagal 

efferent fibers of the NTS (Arosio et al., 2004; Seoane et al., 2007; Sugino et al., 2002). 

Therefore, factors such as anticipatory response, cephalic or oropharyngeal stimulation, 

and food-related sensory stimuli appear to contribute to the regulation of ghrelin [see (Al 

Massadi et al., 2014)].  

 

4. Role of ghrelin in reward and addiction 

In addition to its well-known effects on energy homeostasis regulation at the 

hypothalamic level [reviews in (Al Massadi et al., 2017; Muller et al., 2015)], ghrelin also 

has the ability to increase food motivation acting on  hypothalamic and extra-

hypothalamic areas implicated in motivational and incentive behavior, -VTA and NAc- 

(Naleid et al., 2005; Skibicka et al., 2011), in learning and memory -hippocampus and 

amygdala- (Alvarez-Crespo et al., 2012; Diano et al., 2006; Kanoski et al., 2013; Palotai 

et al., 2013), and in control/decision making -prefrontal cortex- (Kroemer et al., 2015; 

Parent et al., 2015).  

Ghrelin modulates the  reward system (Egecioglu et al., 2010; Perello et al., 2010). 

It enhances the time mice spend in a place previously associated with highly palatable 

food and this effect is abrogated in GHSR1a-null mice (Egecioglu et al., 2010; Perello et 

al., 2010; Skibicka et al., 2011; Skibicka et al., 2012a). However this effect varies 

depending of the route and the doses used and if the conditioning sessions are done in the 

presence or absence of food (Schele et al., 2017). For example, peripheral injection of a 

high dose of ghrelin in the absence of food causes conditioned place aversion (CPA, 

Lockie et al., 2015). However with low dose or if the conditioning sessions were made in 

the presence of food, ghrelin induces conditioned place preference (CPP, Jerlhag, 2008; 

Lockie et al., 2015). In like manner, central administration of ghrelin in the presence of 

food induces CPA (Schele et al., 2017). Intracerebroventricular (i.c.v.) or peripheral 

ghrelin injections increase the intake of highly palatable food (Denis et al., 2015; Perello 

et al., 2010). Ghrelin injection into the VTA enhances cue-induced reinstatement of 

operant responses for palatable food pellets (St-Onge et al., 2016), while injection into 

the ventral hippocampus also enhances cue-potentiated feeding in food-sated animals 

(Kanoski et al., 2013). Conversely, genetic or pharmacological inhibition of ghrelin 

signaling abrogates the potentiated feeding after presentation of a conditioned stimulus 

(Walker et al., 2012).  



5 

 

Brain imaging in rats showed that intravenous ghrelin administration activates 

brain areas that controls homeostatic feeding and components of the mesolimbic reward 

circuitry including the prefrontal cortex, NAc, and septum (Sarvari et al., 2014). In human 

subjects exposed to palatable food pictures, ghrelin activates reward-related areas 

including amygdala, ventral striatum, anterior insula, orbitofrontal cortex and 

hippocampus (Goldstone et al., 2014; Malik et al., 2008). Ghrelin also activates the 

olfactory area of the piriform cortex, and increases olfactory sensitivity (Malik et al., 

2008; Tong et al., 2011). During presentation of food pictures, circulating ghrelin levels 

are positively correlated with the brain response to these pictures (Kroemer et al., 2013). 

Interestingly, brain activation in response to food pictures differs depending on the 

genotype at an “obesity-risk” locus associated with dysregulated circulating ghrelin levels 

(Karra et al., 2013).  

         Other findings suggest that appetitive and food seeking behaviors may be driven by 

negative emotions. For example, starvation-sensitive agouti-related peptide (AgRP) 

neurons, which are activated by ghrelin (see below), provide a negative-valence teaching 

signal (Betley et al., 2015). Importantly, although ghrelin induces food seeking behavior 

in rodents and humans, it was shown in most studies that this peptide causes CPA in 

rodents (Lockie et al., 2015; Schele et al., 2017). Thus, by itself ghrelin appears to be 

aversive rather than rewarding whereas it increases the motivation to seek and consume 

food. Along these lines, it was proposed that ghrelin mediates eating behaviors associated 

with stress or depression since chronic stress-increased intake and CPP for high fat food 

were prevented in mice devoid of GHSR1a in catecholaminergic neurons (Chuang et al., 

2011).                

Beside these studies related to food, several groups examined the role of ghrelin 

in the actions of psychostimulants. Modulation of the ghrelin system and food restriction 

alter locomotor sensitization, DA release in the NAc, and CPP induced by cocaine, 

amphetamine, and nicotine (Abizaid et al., 2011; Clifford et al., 2012; Clifford et al., 

2011; Davis et al., 2007; Jerlhag et al., 2010; Jerlhag and Engel, 2011; Wellman et al., 

2011; Wellman et al., 2005; Zheng et al., 2013). Moreover, GHSR1a deletion diminishes 

the reinforcement for intracranial self-stimulation with an electrode implanted in the 

lateral hypothalamic area (LHA, Wellman et al., 2012).  

           All these observations show that ghrelin has a potent modulatory role on the 

reward system and that it increases motivation for food and can also modulate responses 

to addictive stimuli.  
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5. Ghrelin and the mesolimbic dopamine pathway  

Many studies indicate that DA is the main mediator of the actions of ghrelin on the reward 

system. DA is implicated in reward-associated behaviors and the mesolimbic pathway is 

a key component of food motivational aspects (Palmiter, 2007). Ghrelin activates the 

mesolimbic DA pathway (Abizaid et al., 2006; Jerlhag et al., 2006; Jerlhag et al., 2007). 

Ghrelin administration into the VTA induces feeding (Abizaid et al., 2006; Jerlhag et al., 

2006; Naleid et al., 2005; Skibicka et al., 2011) and enhances palatable food intake 

(Egecioglu et al., 2010; Perello et al., 2010). The orexigenic action of ghrelin or food 

deprivation is blunted by the administration of a ghrelin antagonist in the VTA (Abizaid 

et al., 2006; Denis et al., 2015). Furthermore, ghrelin administered in the VTA increases 

the effort that rats make to obtain a food reward (Skibicka et al., 2011). Highly palatable 

food-related behaviors are impaired in VTA-lesioned rats or after ghrelin receptors 

blockade in the VTA, but not in the NAc, suggesting the role of ghrelin action in the VTA 

(Abizaid et al., 2006; Denis et al., 2015; Egecioglu et al., 2010; Skibicka et al., 2011). 

Interestingly, the positive effects of ghrelin on food intake are seen only when one type 

of food is presented. In contrast, ghrelin can change the preference from high fat food to 

chow in a binge eating protocol or a free choice paradigm, suggesting its implication in 

food choice (Bake et al., 2017; Schele et al., 2016). This change in food preference was 

reproduced by an injection of ghrelin in the VTA (Bake et al., 2017). These results suggest 

a specific role of the VTA for ghrelin actions on both food motivation and choice. 

Ghrelin potentiates DA release in the NAc induced by food or food predictive 

cues, an effect that seems to depend on orexin in the VTA  (Cone et al., 2014; Cone et al., 

2015). Food cues increase VTA DA neurons firing in food-restricted rats but ghrelin 

injected i.p. does not modify this effect (van der Plasse et al., 2015). In support of the role 

of VTA to NAc DA pathway, the injection of an antagonist of either D1 or D2 DA 

receptor in the NAc blocked the actions of ghrelin in the VTA on food reward behavior 

but not chow intake (Skibicka et al., 2013). 

 Ghrelin administration into the VTA increases DA neurons activity (Abizaid et 

al., 2006; Jerlhag et al., 2006; Jerlhag et al., 2007). Ghrelin action on DA neurons is 

mediated, at least in part, by cholinergic neurons since ghrelin increases acetylcholine 

release in the VTA, thereby activating DA neurons and inducing DA release in the NAc 

(Jerlhag et al., 2012, Figure 2). This suggested acetylcholine-DA link could also be 

involved in ghrelin actions on locomotor activity (Jerlhag et al., 2006). In addition, ghrelin 
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may act directly on DA neurons since GHSR1a is expressed in about half of them in the 

VTA (Abizaid et al., 2006; Guan et al., 1997; Zigman et al., 2006).  

 Although most actions of ghrelin on DA neurons seem to originate in the VTA, 

GHSR1a also appears to co-localize with DA D1 receptors in several brain areas where 

they were they may form heterodimers (Jiang et al., 2006). GHSR1a were also proposed 

to heteromerize with DA D2 receptors in hypothalamic neurons and thereby regulate 

appetite in vivo (Kern et al., 2012). Few studies, however, addressed the possible direct 

effects of ghrelin in the NAc. Ghrelin injected into the NAc moderately increases food 

intake (Naleid et al., 2005) and potentiates cocaine-induced locomotor activity (Jang et 

al., 2013).  

In conclusion, many studies highlight the importance of the VTA-NAc 

dopaminergic pathway in the action of ghrelin on food seeking and reward-associated 

behaviors. The results suggest that most effects of ghrelin originate in the VTA, at least 

in part through modulation of cholinergic neurons, although some direct effects in the 

NAc cannot be ruled out.  

 

6. Ghrelin interactions with the opioid system 

The endogenous opioid system is an important regulator of appetite and metabolism 

(Bodnar, 2017; Nogueiras et al., 2012). In fact, several pharmacological studies have 

demonstrated that agonists of the three opioid receptors (mu, kappa, and delta) increase 

food intake, whereas antagonists of these receptors decrease food intake (Bodnar, 2016, 

2018). Apart from these orexigenic effects, the opioid system regulate food reward and 

motivation. Opioids act on the mesolimbic DA system inducing DA release through 

activation of μ-opioid receptors in the VTA (Spanagel et al., 1992) and μ- and/or δ-opioid 

receptors in the NAc (Hirose et al., 2005; Yoshida et al., 1999), whereas κ-opioid 

receptors in the NAc decrease DA release (Spanagel et al., 1992). Both ghrelin and 

opioids act in the same areas, including the hypothalamus and the VTA, to regulate 

homeostatic feeding and food reward behaviors respectively (Ikeda et al., 2015; Romero-

Pico et al., 2013; Skibicka et al., 2012b). In support of their functional interaction, ghrelin-

induced chow intake and motivated behavior toward sucrose are blunted by the opioid 

receptor antagonist naltrexone (Skibicka et al., 2012b). Conversely, sub-chronic 

administration of ghrelin receptor antagonist was reported to increase the levels of Leu-

enkephalin-Arg(6) in the NAc, of Met-enkephalin-Arg(6)Phe(7) in the VTA, and of 

dynorphin B in the hippocampus, providing evidence of cross-talk between ghrelin 
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signaling and opioid system (Engel et al., 2015). Finally, ghrelin seems to be involved in 

the effects of opiates since pharmacological inhibition of ghrelin signaling diminishes 

morphine-induced locomotor activity, DA release in the NAc and increase in stereotypic 

behaviors in rodents (Sustkova-Fiserova et al., 2014). These results provide evidence for 

a high degree of interaction between ghrelin and the opioid system. 

 

7. Ghrelin and endocannabinoids 

Several interactions between ghrelin and the endocannabinoid system have been reported 

at the periphery and in brain areas regulating food intake and energy balance, indicating 

a crosstalk between these two systems (Kola et al., 2008; Senin et al., 2013). 

Endocannabinoids have a strong implication in the control of feeding as indicated by their 

ability to increase consumption of palatable liquids and foods in satiated animals and 

motivated behaviors  [see (Kirkham, 2009) for a review]. The cannabinoid CB1 receptor 

(CB1R) is mostly expressed on axon terminals (Herkenham et al., 1991). Cannabinoid 

agonists stimulate VTA DA neurons activity leading to increased release of DA within 

the NAc shell (French, 1997; Solinas et al., 2006), whereas a CB1R antagonist blunts the 

mesolimbic DA release elicited by the presentation of novel palatable foods (Melis et al., 

2007; Oleson et al., 2012). Recently, the functional interaction between ghrelin and 

endocannabinoids was supported by studies showing that the peripheral, intra-VTA or 

intra-NAc administration of a ghrelin antagonist blocks the rise in anandamide and 

decrease in 2-arachidonoylglycerol levels induced in the NAc by fentanyl treatment 

(Sustkova-Fiserova et al., 2017). Conversely, the ghrelin-dependent DA release in the 

NAc and the consequent activation of locomotor activity appear to depend on cannabinoid 

signaling in the VTA. This hypothesis is based on studies in mice in which the systemic 

administration of a CB1R antagonist blunted the increase in DA and in locomotor activity 

induced by i.c.v. injection of ghrelin (Kalafateli et al., 2018). These effects were 

replicated when both CB1R antagonist and ghrelin were administered into the VTA 

(Kalafateli et al., 2018). These results point to the VTA as an important locus of 

interaction between ghrelin and the endocannabinoids. 

 

8. Crosstalk between food reward and homeostatic mechanisms  

8.1 Neuropeptides implicated in the actions of ghrelin  

Ghrelin induces feeding by activating GHSR1a (Sun et al., 2004), which is expressed in 

the ARC (Guan et al., 1997), a nucleus containing AgRP- and NPY-positive neurons 
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(Luquet et al., 2005). AgRP is an antagonist at melanocortin receptors [for review see 

(Dieguez et al., 2011)], whose endogenous agonist is α-MSH. Genetic deletion of both 

NPY and AgRP is required to block ghrelin-induced feeding (Chen et al., 2004). 

Moreover, feeding induction by ghrelin is partially recovered in GHSR1a knockout mice 

by selective re-expression of this receptor in NPY/AgRP neurons (Wang et al., 2014). 

Therefore, it is widely accepted that ghrelin necessitates an intact ARC melanocortin 

system to induce feeding. The group of Serge Luquet re-evaluated this paradigm and 

showed that, although NPY/AgRP-ablated mice fed on a standard diet did not respond to 

ghrelin, the orexigenic effect of ghrelin was restored when these mice were fed a high 

fat/high sucrose diet (Denis et al., 2015). These results suggest that the ghrelin-dependent 

induction of food intake in the absence of NPY/AgRP neurons is nutrient-sensitive. In 

other words, when NPY/AgRP neurons activity is impaired, ghrelin can still increase the 

motivation to feed via other circuits, such as those involving DA neurons (Denis et al., 

2015). These findings highlight the complexity of feeding behavior and mechanisms of 

action of ghrelin, as well as the importance of food palatability. 

 

8.2. Orexin in the LHA in the action of ghrelin on the reward system 

The lateral hypothalamus area (LHA) is implicated in the homeostatic and motivational 

control of food intake [see (Stuber and Wise, 2016) for a review]. Both chronic and acute 

highly palatable food ingestion activates neuronal activity in the LHA (de Macedo et al., 

2016; Valdivia et al., 2015), a region where the orexin neurons are localized. Orexin was 

suggested to mediate the communication between the LHA and the mesolimbic DA 

neurotransmission (Korotkova et al., 2003; Nieh et al., 2015, Figure 2). In support of this 

hypothesis it was shown that ghrelin injection targets orexin neurons in the LHA to induce 

feeding (Hsu et al., 2015; Lawrence et al., 2002; Olszewski et al., 2003; Perello et al., 

2010; Yamanaka et al., 2003). Moreover, the pretreatment of VTA with an orexin receptor 

antagonist blunts the ghrelin-induced food intake (Cone et al., 2014). Ghrelin signaling 

in the LHA is indispensable for food reward behaviors such as food-seeking behavior, 

motivation to eat evaluated by operant conditioning for sucrose, and CPP for high fat diet  

(Lopez-Ferreras et al., 2017; Perello et al., 2010). Finally, pharmacological, virogenetic 

or genetic blockade of the orexin pathway blunts the effects of ghrelin on the reward 

system (Lopez-Ferreras et al., 2017; Perello et al., 2010) and ghrelin necessitates an intact 

orexin pathway to induce these food-related behaviors (Perello et al., 2010). In 

conclusion, ghrelin could regulate food reward behaviors not only through a local action 
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in mesolimbic areas, but also, indirectly, by its actions on the ARC melanocortin system 

or on the LHA orexin neurons through neuronal projections to the VTA. 

 

8.3. Ghrelin actions in food reward depend on metabolic status 

The motivation to obtain and seek food is influenced by the metabolic state, which 

modulates the perceived value of a reinforcement (Lockie and Andrews, 2013). Since, as 

discussed above, in starvation ghrelin increases food seeking and motivation, ghrelin 

tends to protect the organism from states of prolonged negative energy balance by 

increasing the perceived value of food. Conversely, in states of positive energy balance 

such as obesity, ghrelin becomes less effective in the induction of those food-related 

behaviors. In diet-induced obese (DIO) mice, although ghrelin injection into the VTA 

increases food intake, ghrelin ability to produce CPP for food is highly compromised 

(Lockie et al., 2015). The ability of ghrelin to increase the motivation to obtain food after 

operant conditioning response is impaired in DIO mice (Finger et al., 2012). In contrast, 

cocaine still induces CPP in DIO mice, indicating that psychostimulants and ghrelin act 

at different levels to condition behavior (Lockie et al., 2015). These data suggest that the 

resistance to ghrelin action on food reward-associated behaviors in obese rodents  does 

not take place in the VTA but involves upstream structure(s) in which the AgRP neurons 

were suggested to have an important role (Lockie et al., 2015).   

Another condition in which ghrelin may be relevant is malnutrition observed in 

cachexia induced by cancer or in elderly patients under institutional care (25-60% 

prevalence of malnutrition) or hospitalization (35-65 % prevalence, Favaro-Moreira et 

al., 2016). Given the fact that ghrelin is one of the most potent orexigenic signal, targeting 

the ghrelin system could be an interesting therapeutic strategy in subjects undergoing a 

negative energy balance. Indeed the use of ghrelin agonists in cancer-induced cachexia 

appears to be promising (Garcia et al., 2015) [and see (Su et al., 2016) for a meta-

analysis]. These agonists have also been proposed in other disease states such as anorexia 

nervosa (Mequinion et al., 2013; Perello and Zigman, 2012), with mildly encouraging 

preliminary results (Fazeli et al., 2018). 

 

9. Concluding remarks 

The mesolimbic system, including the VTA and the NAc, is the main final pathway for 

most ghrelin´s actions on food reward-associated behaviors. Control of DA plays a key 

role in ghrelin actions on the reward system, which also involve endogenous opioid 
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peptides and endocannabinoids. This interdependence shows the complexity of feeding 

control, in which multiple neurotransmitters are coordinated to achieve a proper 

behavioral and physiological equilibrium. In physiological conditions, the respective 

contribution of direct actions of ghrelin in the VTA and indirect effects through various 

afferents, including from the hypothalamus, is still an open question. In light of recent 

data indicating the existence of different DA neurons subtypes (Poulin et al., 2018), it 

will be very interesting to identify on which of these neurons ghrelin exerts direct or 

indirect effects.  

It is important to underline that although ghrelin increases the motivation to eat 

even in fed state, its effects on food intake and reward are blunted in obese animal models 

(Zigman et al., 2016). This emphasizes also the interconnection between homeostatic 

regulation of food intake and reward. The recent discovery of an endogenous GHSR1a 

antagonist implicated in metabolic control (Ge et al., 2018), suggests new approaches for 

the study of ghrelin system and food reward (Al-Massadi et al., 2018). A better 

mechanistic understanding of ghrelin signaling in the regulation of food reward behaviors 

could be crucial for the elucidation of the origin and pathophysiology of food-related 

diseases including obesity, bulimia, anorexia nervosa or binge-eating disorder.  
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Figure legends 

 

 

Figure 1: Gastric ghrelin regulation and action on the hypothalamus. Ghrelin is 

mainly secreted by the stomach during fasting and its release is inhibited by food-

associated stimuli locally and through innervation. Circulating ghrelin can cross the 

blood-brain barrier (BBB) through the fenestrated endothelium of the median eminence 

and activate GHSR1a in the arcuate nucleus (ARC) of the hypothalamus. Ghrelin has also 

been proposed to activate GHSR1a in the terminals of the vagus nerve and to trigger 

neuronal signaling to the nucleus of the solitary tract (NTS) in the brain stem and 

indirectly the hypothalamus. ARC: hypothalamic arcuate nucleus; GHSR1a: growth 

hormone secretagogue receptor 1a or ghrelin receptor; NTS: nucleus of the solitary tract. 

 

Figure 2: Ghrelin in food reward. Interaction between the mesolimbic pathway and the 

hypothalamus in ghrelin-induced food reward and crosstalk of ghrelin with other neuronal 

systems regulating feeding such as dopamine, opioid peptides, and endocannabinoids. 

Peripheral ghrelin can reach the hypothalamus and act on AgRP neurons in the arcuate 

nucleus (ARC) and orexin neurons in the lateral hypothalamus area (LHA). AgRP 

neurons are connected to neurons that express pro-opiomelanocortin (POMC), the 

precursor of α-MSH. All these hypothalamic neurons could act directly or indirectly on 

VTA through their neuropeptides or GABA or glutamate. One important intermediate are 

the cholinergic neurons which activate DA neurons. Although ghrelin can act on several 

of these neurons in which its receptor GHSR1a has been demonstrated, it is still unclear 

how it reaches these deep brain regions. 

 ACh: acetylcholine; AgRP: agouti related peptide; ARC: hypothalamic arcuate nucleus; 

CB1R: cannabinoid receptor 1; DA: dopamine; δ-OR: delta opioid receptor; GABA: 

gamma aminobutyric acid; GHSR1a: growth hormone secretagogue receptor 1a; JMV-

2959: GHSR1a antagonist; κ-OR: kappa opioid receptor; LHA: lateral hypothalamic area; 

NAc: nucleus accumbens; MC4R: melanocortin 4 receptor; μ-OR; mu opioid receptor; 

OX-R: orexin receptor; POMC: pro-opiomelanocortin; VTA: ventral tegmental area. 

 

 

 








