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Abstract

In this paper, we introduce a reduction of a matrix to a condensed form,
the upper J- Hessenberg form, via elementary symplectic Householder trans-
formations, which are rank-one modification of the identity. Features of the
reduction are highlighted and a general algorithm is derived. Then, we study
different possibilities to specify the general algorithm in order to built better
versions. We are led to two variants numerically more stables that we com-
pare to JHESS algorithm. Also, some numerical experiments for comparing
the different algorithms are given.
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1. Introduction

Let A be a 2n× 2n real matrix. The SR factorization consists in writing

A as a product SR, where S is symplectic and R =

[
R11 R12

R21 R22

]
is such

that R11, R12, R22 are upper triangular and R21 is strictly upper triangular
[3, 4]. This decomposition plays an important role in structure-preserving
methods for solving the eigenproblem of a class of structured matrices.
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More precisely, the SR decomposition can be interpreted as the analogue
of the QR decomposition [5], when instead of an Euclidean space, one con-
siders a symplectic space : a linear space, equipped with a skew-symmetric
inner product (see for example [7] and the references therein). The orthogonal
group with respect to this indefinite inner product, is called the symplectic
group and is unbounded (contrasting with the Euclidean case).

There are two classes of methods for computing the SR decomposition.
The first lies in the Gram-Schmidt like algorithms and leads to the symplec-
tic Gram-Schmidt (SGS) algorithms. The second class is constructed from
a variety of elementary symplectic transformations. Each choice of such
transformations leads to the corresponding SR decomposition. Since these
elementary transformations are quite heterogeneous, the SR decomposition
is considerably affected by their choice.

Results on numerical aspects of SGS-algorithms can be found for example
in [7]. These algorithms and their modified versions are usually involved
in structure-preserving Krylov subspace-type methods, for sparse and large
structured matrices.

In the literature, the symplectic elementary transformations involved in
the SR decomposition can be partitioned in two subsets. The first subset is
constituted of two kind of both symplectic and orthogonal transformations
introduced in [6, 12] and a third symplectic but non-orthogonal transforma-
tions, proposed in [2]. In fact, in [3], it has been shown that SR decompo-
sition of a general matrix could not be carried out by using only the above
orthogonal and symplectic transformations. An algorithm, named SRDECO,
based on these three transformations was derived in [2].

From linear algebra point of view, the SR decomposition via SRDECO
algorithm does not correspond to the analogue of Householder QR decom-
position, since SRDECO involves transformations which are not elementary
rank-one modification of the identity (transvections), see [1, 5].

In [8] a study, based on linear algebra concepts and focusing on the con-
struction of the analogue of Householder transformations in a symplectic
linear space, has been accomplished. This has led to the second subset of
transformations. Such analogue transformations, which are rank-one mod-
ification of the identity are called symplectic Householder transformations.
Their main features have been established, especially the mapping problem
has been solved. Then, the analogue of Householder QR decomposition in a
symplectic linear space has been derived. The algorithm SRSH for computing
the SR decomposition, using these symplectic Householder transformations
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has been then presented in details. Unlike Householder QR decomposition,
the new algorithm SRSH involves free parameters and advantages may be
taken from this fact. It has been demonstrated how these parameters can be
determined in an optimal way providing an optimal version[9] of the algo-
rithm (SROSH). The error analysis and computational aspects of this algo-
rithm have been studied [10]. Also, recently, a mathematical and numerical
equivalence between modified symplectic Gram-Schmidt and Householder SR
algorithms (typically SRSH or SROSH) have been established in [11]. Com-
putational aspects and numerical comparisons between SGS and SROSH
have clearly showed the superiority of SROSH over SGS.

In order to build a SR-algorithm (which is a QR-like algorithm) for com-
puting the eigenvalues and eigenvectors of a matrix [13], a reduction of the
matrix to an upper J-Hessenberg form is crucial. This is due to the fact that
the final algorithm we are looking for should have O(n3) as complexity.

In [2], a reduction of a general matrix to an upper J-Hessenberg form
is presented, using to this aim, the three symplectic transformations of the
above first subset. The algorithm, called JHESS, is based on an adaptation
of SRDECO.

In this paper, we focus on the reduction of a general matrix, to an up-
per J-Hessenberg form, using only the symplectic Householder transforma-
tions (the second subset above). We show how this reduction can be con-
structed. The new algorithm, which will be called JHSH algorithm, is based
on an adaptation of SRSH algorithm. A variant of JHSH, named JHOSH
is then obtained by taking some optimal choice of the free parameters. The
JHOSH is numerically better than JHSH. However, to enforce the accuracy
in the computations, we are led to derive another variant, based in replacing
when possible, each symplectic non-orthogonal transformation by another
one, which is symplectic and orthogonal. This gives rise to JHMSH algo-
rithm.

In this work, we restrict ourselves to the construction of such algorithms
and the study of their features. Numerical aspects of the new algorithms
and new insights on JHESS algorithm (breakdowns/near-breakdowns and
their prediction, different strategies of curing breakdowns/near-breakdowns,
...) are very important questions and deserve a detailed study in a devoted
work. Nevertheless, we give an illustrating numerical example, showing in
particular that the algorithms JHESS, JHMSH behave quite similarly.

The remainder of this paper is organized as follows. Section 2, is devoted
to the necessary preliminaries. In the section 3, we introduce the method of
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reducing a general matrix to an upper J-Hessenberg, based only on the use of
symplectic Householder transformations, which are rank-one modification of
the identity. Also, we present the different variants, motivated by numerical
considerations. In the section 4, numerical experiments and comparisons
between JHESS, JHMSH and JHOSH are given. We conclude in the section
5.

2. Preliminaries

Let J2n (or simply J) be the 2n-by-2n real matrix

J2n =

[
0n In
−In 0n

]
, (1)

where 0n and In stand respectively for n-by-n null and identity matrices.
The linear space R2n with the indefinite skew-symmetric inner product

(x, y)J = xTJy (2)

is called symplectic. For x, y ∈ R2n, the orthogonality x ⊥′ y stands for
(x, y)J = 0. The symplectic adjoint xJ of a vector x, is defined by

xJ = xTJ. (3)

The symplectic adjoint of M ∈ R2n×2k is defined by

MJ = JT2kM
TJ2n. (4)

A matrix S ∈ R2n×2k is called symplectic if

SJS = I2k. (5)

The symplectic group (multiplicative group of square symplectic matrices) is
denoted S. A transformation T given by

T = I + cvvJ where c ∈ R, v ∈ Rν (with ν even), (6)

is called symplectic Householder transformation [8]. It satisfies

T−1 = T J = I − cvvJ . (7)

The vector v is called the direction of T.
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For x, y ∈ R2n, there exists a symplectic Householder transformation T
such that Tx = y if x = y or yJx 6= 0. When yJx 6= 0, T is given by

T = I +
1

yJx
(y − x)(y − x)J .

Moreover, each non null vector x can be mapped onto any non null vector
y by a product of at most two symplectic Householder transformations [8].
Symplectic Householder transformations are rotations, i.e. det(T ) = 1 and
the symplectic group S is generated by symplectic Householder transforma-
tions.

We recall that a matrixH =

[
H11 H12

H21 H22

]
∈ R2n×2n, is upper J-Hessenberg

when H11, H21, H22 are upper triangular and H12 is upper Hessenberg. H is
called unreduced when H21 is nonsingular and the Hessenberg H12 is unre-
duced, i.e. the entries of the subdiagonal are all nonzero.

3. Upper J-Hessenberg reduction via symplectic Householder trans-
formations

3.1. Toward the algorithm

Let {e1, . . . , e2n} be the canonical basis of R2n and a ∈ R2n be a given
vector. We seek for symplectic Householder transformations T1 and T2 such
that

T1a = ρe1, (8)

for certain ρ ∈ R and

T2e1 = e1, T2a = µe1 + νen+1, (9)

for certain µ, ν ∈ R. The fact that T2 is a symplectic isometry yields the
necessary condition

(T2a)J(T2e1) = aJe1, (10)

which implies ν = an+1 (the n+ 1th component of a) and µ is arbitrary. We
get

Theorem 1. Let ρ 6= 0, µ be arbitrary scalars and ν = an+1. Setting

c1 = − 1

ρaJe1
, v1 = ρe1 − a, c2 = − 1

aJ(µe1 + νen+1)
, v2 = µe1 + νen+1 − a,
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then

T1 = I + c1v1v
J
1 ( respectively T2 = I + c2v2v

J
2 ) satisfy (8) (respectively( 9)).

(11)

Remark 1. Since the n+ 1th component of v2 is zero, T2 keeps the n+ 1th
component of T2x unchanged, for any x ∈ R2n. More on the properties of
such transformations T1 or T2 can be found in [9, 10].

We also need the following

Theorem 2. Let v ∈ R2n, with the partition v = [0T , uT , 0T , wT ]T , where
[u,w] ∈ R(n−i)×2, for a given integer 1 ≤ i ≤ n − 1 and set ṽ = [uT , wT ]T .
Consider the symplectic transformations T = I + cvvJ and T̃ = I + cṽṽJ .
We have
∀α ∈ Ri, ∀β ∈ Ri, ∀x ∈ Rn−i, ∀y ∈ Rn−i,

T [αT , xT , βT , yT ]T = [αT , x′T , βT , y′T ]T , with [x′T , y′T ]T = T̃ [xT , yT ]T .

Proof. We have vJ [αT , xT , βT , yT ]T = uTy−wTx = [uTwT ]J [xTyT ]T . Then
T [αT , xT , βT , yT ]T = [αT , xT , βT , yT ]T+c[0T , uT , 0T , wT ]T [uTwT ]J [xTyT ]T .We

check easily

[
x′

y′

]
=

[
x
y

]
+ c

[
u
w

]
[uTwT ]J

[
x
y

]
= T̃

[
x
y

]
, and

T [αT , 0T , βT , 0T ]T = [αT , 0T , βT , 0T ]T .

Note that the Theorem 2 remains valid if one takes T J instead of T. This
result, with Theorem 1, constitute the main tool on which the SR factoriza-
tion (based on symplectic Householder transformations) is constructed. We
will adapt this tool for reducing a general matrix to an upper J-Hessenberg
form, based on these symplectic Householder transformations.

3.2. The J-Hessenberg reduction : the JHSH algorithm

We explain here the steps of the algorithm by illustrating the general
pattern. Let A ∈ R2n×2n be a given matrix and set A(0) = A. We will use the
notation A(i1:i2,j1:j2), A(i1:i2,:), A(:,j1:j2) to denote respectively the submatrix
obtained from the matrix A by deleting all rows and columns except rows i1
until i2 and columns j1 until j2, by deleting all rows except rows i1 until i2,
by deleting all columns except columns j1 until j2.
1. The first step of the algorithm relies in determining a symplectic House-
holder transformation H1 (i.e. c1 ∈ R and v1 ∈ R2n), with H1e1 = e1, to zero
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out entries 2 through n and entries n + 2 through 2n of the first column of
A(0). The vector e1 stands for the first canonical vector of R2n. The trans-
formation H1 corresponds to the transformation T2, given in Theorem 1. Set
v1 the direction vector of H1. Since H1e1 = e1, we obtain vJ1 e1 = vT1 Je1 = 0.
Thus the n + 1th component of v1 is zero. It follows that for any vector x,
the n+ 1th component of H1x remains unchanged. The direction v1 of H1 is
given by v1 = A

(1)
(1,1)e1+A

(0)
(n+1,1)en+1−A(0)

(:,1), where A
(1)
(1,1) is an arbitrary given

scalar. Notice that we have also HJ
1 e1 = e1, and hence the first column of

H1 and HJ
1 is e1. Thus, multiplying A(0) on the left by H1 leaves unchanged

the n+ 1th row and creates the desired zeros in the first column. We get

A′(1) = H1A
(0) =


A

(1)
(1,1) A

′(1)
(1,2:n) A

′(1)
(1,n+1:2n)

0 A
′(1)
(2:n,2:n) A

′(1)
(2:n,n+1:2n)

A
(0)
(n+1,1) A

(0)
(n+1,2:n) A

(0)
(n+1,n+1:2n)

0 A
′(1)
(n+2:2n,2:n) A

′(1)
(n+2:2n,n+1:2n)

 .

The step involves the free parameter A
(1)
(1,1).

MultiplyingH1A
(0) on the right byHJ

1 leaves the first column ofH1A
(0)HJ

1

unchanged, and we obtain

A(1) = H1A
(0)HJ

1 =


A

(1)
(1,1) A

(1)
(1,2:n) A

(1)
(1,n+1:2n)

0 A
(1)
(2:n,2:n) A

(1)
(2:n,n+1:2n)

A
(0)
(n+1,1) A

(1)
(n+1,2:n) A

(1)
(n+1,n+1:2n)

0 A
(1)
(n+2:2n,2:n) A

(1)
(n+2:2n,n+1:2n)

 .
The next step consists in choosing a symplectic Householder H2 to zero
out the entries 3 through n, the entries n + 2 through 2n of the n + 1th

column of A(1). To do this, let Ã(1) =

[
A

(1)
(2:n,2:n) A

(1)
(2:n,n+1:2n)

A
(1)
n+2:2n,2:n A

(1)
n+2:2n,n+1:2n

]
be the

the matrix obtained from A(1) by deleting the first column and the first
and the n + 1th rows. And let A

(2)
(2,n+1) 6= 0 be an arbitrary given scalar.

We apply H̃2 = I2n−2 + c2ṽ2ṽ
J
2 given by Theorem 1, with ṽ2 =

[
u2
w2

]
=

A
(2)
(2,n+1)e1 − Ã(1)(:, n) ∈ R2n−2, u2 ∈ Rn−1, w2 ∈ Rn−1, where e1 stands for
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the first canonical vector of R2n−2. We obtain

Ã′(2) = H̃2Ã
(1) =

 A
′(2)
(2,2:n) A

(2)
(2,n+1) A

′(2)
(2,n+2:2n)

A
′(2)
(3:n,2:n) 0 A

′(2)
(3:n,n+2:2n)

A
′(2)
(n+2:2n,2:n) 0 A

′(2)
(n+2:2n,n+2:2n)

 .
The transformation H̃2 corresponds to the choice T1 in Theorem 1. Setting

H2 = I2n + c2v2v2
J , with v2 =


0
u2
0
w2

 ∈ R2n then H2 is a symplectic

Householder transformation. Using Theorem 2, we get

A′(2) = H2A
(1) =


A

(1)
(1,1) A

(1)
(1,2:n) A

(1)
(1,n+1) A

(1)
(1,n+2:2n)

0 A
′(2)
(2,2:n) A

(2)
(2,n+1) A

′(2)
(2,n+2:2n)

0 A
′(2)
(3:n,2:n) 0 A

′(2)
(3:n,n+2:2n)

A
(0)
(n+1,1) A

(1)
(n+1,2:n) A

(1)
(n+1,n+1) A

(1)
(n+1,n+2:2n)

0 A
′(2)
(n+2:2n,2:n) 0 A

′(2)
(n+2:2n,n+2:2n)

 .

H2 leaves the first and the n + 1 th rows of H2A
(1) unchanged. It leaves

the first column of H2A
(1) unchanged, and creates the desired zeros in the

column n+ 1.
The multiplication of H2A

(1) on the right by HJ
2 leaves the first and the

n+ 1th columns of H2A
(1)HJ

2 unchanged. We obtain

A(2) = H2A
(1)HJ

2 =


A

(1)
(1,1) A

(2)
(1,2:n) A

(1)
(1,n+1) A

(2)
(1,n+2:2n)

0 A
(2)
(2,2:n) A

(2)
(2,n+1) A

(2)
(2,n+2:2n)

0 A
(2)
(3:n,2:n) 0 A

(2)
(3:n,n+2:2n)

A
(0)
(n+1,1) A

(2)
(n+1,2:n) A

(1)
(n+1,n+1) A

(2)
(n+1,n+2:2n)

0 A
(2)
(n+2:2n,2:n) 0 A

(2)
(n+2:2n,n+2:2n)

 .

It is worth noting that H2e1 = e1 and H2en+1 = en+1. Thus the first column
(respectively the n+ 1th column) of H2 and HJ

2 is e1 (respectively en+1).
In the next step, we want to zero out the entries 3 through n and n + 3

through 2n of the second column of A(2) and the entries 4 through n and n+3
through 2n of the column n+2 of A(2). Let Ã(2) be the matrix obtained from
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A(2) by deleting the first, the n+ 1th rows, and the corresponding columns,

ie. Ã(2) =

[
A

(2)
(2:n,2:n) A

(2)
(2:n,n+2:2n)

A
(2)
(n+2:2n,2:n) A

(2)
(n+2:2n,n+2:2n)

]
.

2. We apply now exactly the same two steps of 1., to the new size re-
duced matrix Ã(2). In other words, we choose a symplectic Householder
transformation H̃3, which means to compute a vector ṽ3 = [uT3 , w

T
3 ]T with

u3 ∈ Rn−1, w3 ∈ Rn−1 and a real c3 such that H̃3 = I + c3ṽ3ṽ
J
3 zero out the

entries 2 through n−1 and the entries n+1 through 2n−2 of the first column
of Ã(2) with H̃3e1 = e1 ∈ R2n−2. Here e1 stands for the first canonical vector
of R2n−2. The transformation H̃3 corresponds to the transformation T2, in
Theorem 1. Let en denote the nth canonical vector of R2n−2. The direction
vector ṽ3 of H̃3 is given by ṽ3 = A

(3)
(2,2)e1+Ã(2)(n, 1)en−Ã(2)(:, 1), where A

(3)
(2,2)

is an arbitrary non zero scalar. H̃3 leaves unchanged the nth row of H̃3Ã
(2).

We get

Ã′(3) = H̃3Ã
(2) =


A

(3)
(2,2) A

′(3)
(2,3:n) A

′(3)
(2,n+2:2n)

0 A
′(3)
(3:n,3:n) A

′(3)
(3:n,n+2:2n)

A
(2)
(n+2,2) A

(2)
(n+2,3:n) A

(2)
(n+2,n+2:2n)

0 A
′(3)
(n+3:2n,3:n) A

′(3)
(n+3:2n,n+2:2n)

 .
Remark that the nth component of ṽ3 is zero. Take now v3 = [0 uT3 |0 wT3 ]T

and set H3 = I + c3v3v
J
3 . Then H3 is obviously a symplectic Householder

transformation of order 2n. The components 1, n+1 and n+2 of v3 are equal
to zero. Thus H3 leaves the rows 1, n + 1 and n + 2 of H3A

(2) unchanged
and satisfy H3(e1) = e1, H3e2 = e2 and H3en+1 = en+1. Thus H3 leaves the
first and the n + 1th columns of H3A

(2) unchanged and zero out the entries
3 through n and the entries n+ 3 through 2n of the second column.

We have

A′(3) = H3A
(2) =



A
(1)
(1,1) A

(2)
(1,2) A

(2)
(1,3:n) A

(1)
(1,n+1) A

(2)
(1,n+2:2n)

0 A
(3)
(2,2) A

′(3)
(2,3:n) A

(2)
(2,n+1) A′

(3)
(2,n+2:2n)

0 0 A
′(3)
(3:n,3:n) 0 A′

(3)
(3:n,n+2:2n)

A
(0)
(n+1,1) A

(2)
(n+1,2) A

(2)
(n+1,3:n) A

(1)
(n+1,n+1) A

(2)
(n+1,n+2:2n)

0 A
(2)
(n+2,2) A

(2)
(n+2,3:n) 0 A

(2)
(n+2,n+2:2n)

0 0 A
′(3)
(n+3:2n,3:n) 0 A′

(3)
(n+3:2n,n+2:2n)


.
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The transformation HJ
3 leaves the column 1, 2 and n + 1 of H3A

(2)HJ
3

unchanged since HJ
3 (e1) = e1, H

J
3 e2 = e2 and HJ

3 en+1 = en+1. We get

A(3) = H3A
(2)HJ

3 =



A
(1)
(1,1) A

(2)
(1,2) A

(3)
(1,3:n) A

(1)
(1,n+1) A

(3)
(1,n+2:2n)

0 A
(3)
(2,2) A

(3)
(2,3:n) A

(2)
(2,n+1) A

(3)
(2,n+2:2n)

0 0 A
(3)
(3:n,3:n) 0 A

(3)
(3:n,n+2:2n)

A
(0)
(n+1,1) A

(2)
(n+1,2) A

(3)
(n+1,3:n) A

(1)
(n+1,n+1) A

(3)
(n+1,n+2:2n)

0 A
(2)
(n+2,2) A

(3)
(n+2,3:n) 0 A

(3)
(n+2,n+2:2n)

0 0 A
(3)
(n+3:2n,3:n) 0 A

(3)
(n+3:2n,n+2:2n)


.

Now, deleting the rows 1, 2, n + 1, n + 2 and the columns 1, 2, n + 1 of

A(3) and setting Ã(3) =

[
A

(3)
(3:n,3:n) A

(3)
(3:n,n+2:2n)

A
(3)
(n+3:2n,3:n) A

(3)
(n+3:2n,n+2:2n)

]
, we find c4 ∈ R

and ṽ4 =

[
u4
w4

]
, with u4 ∈ Rn−2 and w4 ∈ Rn−2 such that the action of

H̃4 = I + c4ṽ4ṽ4
J gives

Ã′(4) = H̃4Ã
(3) =

 A
′(4)
(3,3:n) A

(4)
(3,n+2) A

′(4)
(3,n+3:2n)

A
′(4)
(4:n,3:n) 0 A

′(4)
(4:n,n+3:2n)

A
′(4)
(n+3:2n,3:n) 0 A

′(4)
(n+3:2n,n+3:2n)

 .
The coefficientA

(4)
(3,n+2) is an arbitrary chosen scalar. Taking v4 = [0 0 uT4 |0 0 wT4 ]T

then the transformation H4 = I + c4v4v
J
4 leaves unchanged the rows 1, 2,

n + 1, n + 2 and columns 1, 2, and n + 1 of A′(4) = H4A
(3) and creates the

desired zeros in the column n+ 2. We obtain

A′(4) =



A
(1)
(1,1) A

(2)
(1,2) A

(3)
(1,3:n) A

(1)
(1,n+1) A

(3)
(1,n+2) A

(3)
(1,n+3:2n)

0 A
(3)
(2,2) A

(3)
(2,3:n) A

(2)
(2,n+1) A

(3)
(2,n+2) A

(3)
(2,n+3:2n)

0 0 A′
(4)
(3,3:n) 0 A

(4)
(3,n+2) A′

(4)
(3,n+3:2n)

0 0 A′
(4)
(4:n,3:n) 0 0 A′

(4)
(4:n,n+3:2n)

A
(0)
(n+1,1) A

(2)
(n+1,2) A

(3)
(n+1,3:n) A

(1)
(n+1,n+1) A

(3)
(n+1,n+2) A

(3)
(n+1,n+3:2n)

0 A
(2)
(n+2,2) A

(3)
(n+2,3:n) 0 A

(3)
(n+2,n+2) A

(3)
(n+2,n+3:2n)

0 0 A′
(4)
(n+3:2n,3:n) 0 0 A′

(4)
(n+3:2n,n+3:2n)


.

10



HJ
4 leaves unchanged the first, the second, the n + 1, n + 2 columns of

A(4) = H4A
(3)HJ

4 since HJ
4 (ei) = ei for i = 1, 2 , n+ 1, n+ 2. Hence, we get

A(4) =



A
(1)
(1,1) A

(2)
(1,2) A

(4)
(1,3:n) A

(1)
(1,n+1) A

(3)
(1,n+2) A

(4)
(1,n+3:2n)

0 A
(3)
(2,2) A

(4)
(2,3:n) A

(2)
(2,n+1) A

(3)
(2,n+2) A

(4)
(2,n+3:2n)

0 0 A
(4)
(3,3:n) 0 A

(4)
(3,n+2) A

(4)
(3,n+3:2n)

0 0 A
(4)
(4:n,3:n) 0 0 A

(4)
(4:n,n+3:2n)

A
(0)
(n+1,1) A

(2)
(n+1,2) A

(4)
(n+1,3:n) A

(1)
(n+1,n+1) A

(3)
(n+1,n+2) A

(4)
(n+1,n+3:2n)

0 A
(2)
(n+2,2) A

(4)
(n+2,3:n) 0 A

(3)
(n+2,n+2) A

(4)
(n+2,n+3:2n)

0 0 A
(4)
(n+3:2n,3:n) 0 0 A

(4)
(n+3:2n,n+3:2n)


.

3. The jth step is now clear. It involves two sub-steps. The first consists in
finding H2j−1 , i.e. the scalar c2j−1 and the vector v2j−1 such that H2j−1 =
I + c2j−1v2j−1v

J
2j−1 leaves the rows 1, . . . , j− 1, the rows n+ 1, . . . , n+ j, the

columns 1, . . . , j − 1, and the columns n + 1, . . . , n + j − 1 of H2j−1A
(2j−2)

unchanged and zero out the entries j+ 1 through n and the entries n+ j+ 1
through 2n of the jth column. The vector v2j−1 ∈ R2n has the structure
v2j−1 = [0T , uT2j−1, 0

T , wT2j−1]
T , with u2j−1 ∈ Rn−j+1, w2j−1 ∈ Rn−j+1. The

first component of w2j−1 is zero.Thus H2j−1ei = ei for i = 1, . . . , j and for
i = n+ 1, . . . , n+ j − 1. The jth column H2j−1A

(2j−2)(:, j) is transformed as
follows

H2j−1A
(2j−2)(:, j) =


A(2j−2)(1 : j − 1, j)
A(2j−1)(j, j)
0
A(2j−2)(n+ 1 : n+ j, j)
0


{j − 1}
{1}
{n− j}
{j}
{n− j}

.

The entry A(2j−1)(j, j) is a free parameter.
The multiplication ofH2j−1A

(2j−2) on the right byHJ
2j−1 leaves the columns

1, . . . , j, and the columns n + 1, . . . , n + j − 1, of H2j−1A
(2j−2)HJ

2j−1 un-
changed. The coefficient c2j−1, the vector v2j−1 and hence the symplectic
transformation H2j−1 are simply and explicitly given by Theorem 1. The ma-
trix A(2j−1) = H2j−1A

(2j−2)HJ
2j−1 has the desired form. Let us set H̃2j−1 =

I + c2j−1ṽ2j−1ṽ
J
2j−1, ṽ2j−1 = [uT2j−1, w

T
2j−1]

T , where [u2j−1, w2j−1] ∈ Rαj×2 ,

with αj = n− j+ 1 and Ã(2j−2)(:, j) the jth column of Ã(2j−2) obtained from
A(2j−2)(:, j) by deleting the rows 1, . . . , j−1 and rows n+1, . . . , n+j−1. We
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obviously obtain H̃2j−1Ã
(2j−2)(:, j) = A(2j−1)(j, j)e1 + A(2j−2)(n + j, j)eαj+1.

Here e1 and eαj+1 denote the first and the αj + 1th canonical vectors of R2αj .
In a similar way, the second sub-step consists in finding H2j , i.e. the

scalar c2j and the vector v2j such that H2j = I + c2jv2jv
J
2j leaves the rows

1, . . . , j, the rows n + 1, . . . , n + j, the columns 1, . . . , j, and the columns
n + 1, . . . , n + j − 1 of H2jA

(2j−1) unchanged and zero out the entries j + 2
through n and the entries n + j + 1 through 2n of the n + jth column.
The vector v2j ∈ R2n has the structure v2j = [0T , uT2j, 0

T , wT2j]
T , with u2j ∈

Rn−j, w2j ∈ Rn−j. Thus H2jei = ei for i = 1, . . . , j and for i = n+1, . . . , n+j.
The n+ jth column of H2jA

(2j−1)(:, n+ j) is transformed as follows

H2jA
(2j−1)(:, n+ j) =


A(2j−1)(1 : j, n+ j)
A(2j)(j + 1, n+ j)
0
A(2j−1)(n+ 1 : n+ j, n+ j)
0


{j}
{1}
{n− j − 1}
{j}
{n− j}

.

The entry A(2j)(j + 1, n+ j) is a free parameter.
The multiplication of H2jA

(2j−1)) on the right by HJ
2j leaves the columns

1, . . . , j, and the columns n+ 1, . . . , n+ j, of H2jA
(2j−1)HJ

2j unchanged. The
coefficient c2j, the vector v2j and hence the symplectic transformation H2j

are explicitly given by Theorem 1. The matrix A(2j) = H2jA
(2j−1)HJ

2j has
the desired form.

Let us set H̃2j = I + c2j ṽ2j ṽ
J
2j, with ṽ2j = [uT2j, w

T
2j]

T , where [u2j, w2j] ∈
Rβj×2 , βj = n−j and Ã(2j−1)(:, n+j) the n+jth column of Ã(2j−1) obtained
from A(2j−1)(:, n+j) by deleting the rows 1, . . . , j and rows n+1, . . . , n+j. We
obviously obtain H̃2jÃ

(2j−1)(:, n+ j) = A(2j)(j + 1, n+ j)e1. Here e1 denotes
the first canonical vector of R2βj .

Thus, it is worth noting that each step j involves two free parameters
A(2j−1)(j, j) and A(2j)(j + 1, n+ j), and that these parameters are located as
highlighted above, in the corresponding symplectic Householder transforma-
tions H2j−1 and H2j (or equivalently H̃2j−1 and H̃2j ).

At the last step (the n− 1th step), we obtain

H2n−2 . . . H2H1A(H2n−2 . . . H2H1)
J =

[
H11 H12

H21 H22

]
= H ∈ R2n×2n, with

H11, H21, H22 upper triangular and H12 upper Hessenberg. We get A =
SJHS with S = H2n−2 . . . H1. The entries of the diagonal of H11 are the free
parameters A(2j−1)(j, j), ie. H11(j, j) = A(2j−1)(j, j) for j = 1, . . . , n. Also,

12



The entries of the sub-diagonal of H12 are the free parameters A(2j)(j+1, n+
j), ie. H12(j + 1, j) = A(2j)(j + 1, n + j) for j = 1, . . . , n − 1. We propose
here the algorithm in its general version, written in pseudo Matlab code, for
computing the reduction of a matrix to the upper J-Hessenberg form, via
symplectic Householder transformations (JHSH algorithm).

Algorithm 3. function [S,H]=JHSH(A)
twon = size(A(:, 1)); n = twon/2; S = eye(twon);
for j = 1 : n− 1
J = [zeros(n− j + 1), eye(n− j + 1);−eye(n− j + 1), zeros(n− j + 1)];
ro = [j : n, n+ j : 2n]; co = [j : n, n+ j : 2n];
[c, v] = sh2(A(ro, j));
% Updating A :
A(ro, co) = A(ro, co) + c ∗ v ∗ (v′ ∗ J ∗ A(ro, co));
A(:, co) = A(:, co)− (A(:, co) ∗ (c ∗ v)) ∗ v′ ∗ J ;
% Updating S (if needed):
S(ro, 2 : end) = S(ro, 2 : end) + c ∗ (v ∗ v′) ∗ J ∗ S(ro, 2 : end);
J = [zeros(n− j), eye(n− j);−eye(n− j), zeros(n− j)];
ro = [j + 1 : n, n+ j + 1 : 2n];
[c, v] = sh1(A(ro, n+ j));
%Updating A:
A(ro, co) = A(ro, co) + c ∗ v ∗ (v′ ∗ J ∗ A(ro, co));
A(:, ro) = A(:, ro)− (A(:, ro) ∗ (c ∗ v)) ∗ v′ ∗ J ;
%Updating S (if needed):
S(ro, 2 : end) = S(ro, 2 : end) + c ∗ (v ∗ v′) ∗ J ∗ S(ro, 2 : end);
end
end

Algorithm 4. function [c, v] = sh1(a)
%compute c and v such that T1a = ρe1,
% a = [a1, . . . , a2n].
%ρ is a free parameter, and T1 = (eye(twon) + c ∗ v ∗ v′ ∗ J);
twon = length(a); n = twon/2;
J = [zeros(n), eye(n);−eye(n), zeros(n)];
choose ρ; aux = a1 − ρ;
if aux == 0
c = 0; v = zeros(twon, 1); %T = eye(twon);
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elseif an+1 == 0
display(’division by zero’);
return
else

v =
a

aux
; c =

aux2

ρ× an+1

; v(1) = 1;

end
end

Algorithm 5. function [c, v] = sh2(a)
%compute c and v such that T2e1 = e1, and T2a = µe1 + νen+1,
%µ is a free parameter, and T2 = (eye(twon) + c ∗ v ∗ v′ ∗ J);
% a = [a1, . . . , a2n].
twon = length(a); n = twon/2;
J = [zeros(n), eye(n);−eye(n), zeros(n)];
if n == 1

v = zeros(twon, 1); c = 0; %T = eye(twon);
else
choose µ;
ν = an+1;
if ν == 0
display(’division by zero’)
return
else

v = µe1 + νen+1 − a, c =
1

an+1(µ− a1)
;

end
end

3.3. JHOSH, JHMSH algorithms

From an linear algebra point of view, JHSH is the analogue in the sym-
plectic case, of the algorithm performing the Hessenberg reduction of a matrix
via Householder transformations in the Euclidean case. Recall that JHSH
involves two free parameters at each step. The question is then how these
free parameters can be chosen? In the sequel, we show how one can take
benefit from these free parameters in some optimal way. In order to get
an algorithm numerically stable as possible, the free parameters are chosen
so that the symplectic Householder transformations used in the reduction
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have minimal norm-2 condition number. The choice of such parameters is as
follows [9] :

Theorem 6. Let a = [a1, . . . , a2n] ∈ R2n be a given vector and {e1, . . . , e2n}
be the canonical basis of R2n. Take ρ = sign(a1) ‖a‖2 , µ = a1 ± ξ and

ν = an+1, with ξ =

√√√√ 2n∑
i=2,i 6=n+1

a2i . Setting

c1 = − 1

ρaJe1
, v1 = ρe1 − a, c2 = − 1

aJ(µe1 + νen+1)
, v2 = µe1 + νen+1 − a,

then

T1 = I + c1v1v
J
1 ( respectively T2 = I + c2v2v

J
2 ) satisfy (8) (respectively( 9)),

(12)
with T1 (respectively T2) has the minimal norm-2 condition number.

Proof. See [9], Lemma 4.1, Lemma 4.3, Lemma 4.4 and Theorem 4.5.

For these choices of the free parameters, we refer to T1 (respectively T2) as the
first optimal symplectic Householder (osh1) transformation (respectively the
second optimal symplectic Householder osh2) transformation. This optimal
version of JHSH is referred to as JHOSH algorithm and is given as follows :

Algorithm 7. function [S,H]=JHOSH(A)
replace in the body of JHSH the sh1 by osh1 and sh2 by osh2.

end.

The pseudo code Matlab of osh1 and osh2 is a follows

Algorithm 8. function [c, v] = osh1(a)
twon = length(a); n = twon/2;
J = [zeros(n), eye(n);−eye(n), zeros(n)];
ρ = sign(a(1)) ∗ ‖a‖2; aux = a(1)− ρ;
if aux == 0
c = 0; v = zeros(twon, 1); %T = eye(twon);
elseif an+1 == 0
display(’division by zero’);
return
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else

v =
a

aux
; c =

aux2

ρ ∗ an+1

; v(1) = 1;

%T = (eye(twon) + c ∗ v ∗ v′ ∗ J);
end
end

Algorithm 9. function [c, v] = osh2(a)
twon = length(u); n = twon/2;
J = [zeros(n), eye(n);−eye(n), zeros(n)];
if n == 1
v = zeros(twon, 1); c = 0; %T = eye(twon);
else
I = [2 : n, n+ 2 : twon]; ξ = norm(a(I));
if ξ == 0
v = zeros(twon, 1); c = 0; %T = eye(twon);
else
ν = an+1;
if ν == 0
display(’division by zero’)
return
else
v = −a/ξ; v(1) = 1; v(n+ 1) = 0; c = ξ/ν;
%T = (eye(twon) + c ∗ v ∗ v′ ∗ J);
end
end
end
end

We have seen that the symplectic Householder transformations used in JHOSH
algorithm have minimal norm-2 condition number, and thus numerically,
JHOSH presents a significant advantage over JHSH. However, all these sym-
plectic Householder transformations are not orthogonal. It is well known
that it is not possible to handle a SR decomposition using only transfor-
mations which are both symplectic and orthogonal (see [3]). Nevertheless,
we will show that half of them (all the transformations H2j above) may be
replaced by specified transformations which are both orthogonal and sym-
plectic. Furthermore, we will show that the two type of orthogonal and
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symplectic transformations, introduced by Paige et al. [6, 12] can be used to
replace the symplectic transformations H2j, to zero desired components of a
vector. The first type is

H(k, w) =

(
diag(Ik−1, P ) 0
0 diag(Ik−1, P )

)
, (13)

where
P = I − 2wwT/wTw, w ∈ Rn−k+1.

The transformation H(k, w) is just a direct sum of two ”ordinary” n−by−n
Householder matrices [14]. We refer to H(k, w) as Van Loan’s Householder
transformations. The second type is

J(k, c, s) =

(
C S
−S C

)
, (14)

where c2 + s2 = 1, and

C = diag(Ik−1, c, In−k),

S = diag(0k−1, s, 0n−k).

J(k, c, s) is a Givens transformation, which is an ”ordinary” 2n-by-2n Givens
rotation that rotates in planes (k, k + n) [14]. We refer to J(k, c, s) as Van
Loan’s Givens rotation. Van Loan’s Householder and Givens transformations
are both orthogonal and symplectic. It is worth noting that for i 6= k and
i 6= n + k, we have J(k, c, s)ei = ei. Also, we have J(k, c, s)ek = cek − sen+k
and J(k, c, s)en+k = sek + cen+k. Thus, J(k, c, s) applied to a vector a, leaves
unchanged all the rows of J(k, c, s)a except rows k and n + k. It is obvious
also that H(k, w)ei = ei for i = 1, . . . , k − 1 and i = n + 1, . . . , n + k − 1.
The modification of the even sub-steps of JHOSH (or JHSH) algorithm is as
follows. Let A = [a1, . . . , an, an+1, . . . , a2n] ∈ R2n×2n be a given matrix and
set A(0) = A. The first sub-step is obtained by creating the desired zeros in
the first column, via the H1 as above. The updated matrix is A(1). Now, for
creating the desired zeros in the column n + 1 and keeping the first column
unchanged, we shall use the Van Loan’s transformations, instead of H2. For
k = n, . . . , 2, we compute J(k, c, s) such that a zero is created in position n+k
in the n+1th column of J(k, c, s)A(1). The first column as well as the already
created zeros in the current n+1 column of A(1) remain unchanged. The first
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and the n+ 1th columns of J(k, c, s)A(1) leave unchanged when the latter is
multiplied on the right by J(k, c, s)T . The matrix A(1) is then updated with
A(2) = J(k, c, s)A(1)J(k, c, s)T . So the entries at positions n + 2, . . . , 2n in
the n + 1 column of A(2) are zeros. Now, we compute w so that the action
of Van Loan’s Householder in the product H(2, w)A(2) creates zeros in the
positions 3, . . . , n in the n + 1 column. The first column of H(2, w)A(2) as
well as the already created zeros remain unchanged. The transformation
H(2, w) leaves unchanged the first and the n + 1 columns of the updated
matrix A(2) = H(2, w)A(2)H(2, w)T .
At the jth step, the first sub-step is obtained by creating the desired zeros in
the jth column , via the H2j−1 as in JHOSH. The updated matrix is A(2j−1).
Now, the desired zeros in the column n + j are created by using the Van
Loan’s givens rotations, instead of H2j. For k = n, . . . , j + 1, we compute
J(k, c, s) such that a zero is created in position n+ k in the n+ jth column
of J(k, c, s)A(2j−1). The columns 1, . . . , j and n + 1, . . . , n + j − 1 as well
as the already created zeros in the current n + j column of A(2j−1) remain
unchanged. The columns 1, . . . , j and n + 1, . . . , n + j of J(k, c, s)A(2j−1)

leave unchanged when the latter is multiplied on the right by J(k, c, s)T . The
matrix A(2j−1) is then updated with A(2j) = J(k, c, s)A(2j−1)J(k, c, s)T . So
the entries at positions n + j + 1, . . . , 2n in the n + j column of A(2j) are
zeros. Now, we compute w so that the action of Van Loan’s Householder in
the product H(j+ 1, w)A(2j) creates zeros in the positions j+ 2, . . . , n in the
n+ jth column. The columns 1, . . . , j and n+ 1, . . . , n+ j − 1 as well as the
already created zeros in the current n+ j column of A(2j) remain unchanged.
H(j + 1, w) leaves unchanged the columns 1, . . . , j and n + 1, . . . , n + j of
the updated matrix A(2j) = H(j + 1, w)A(2j)H(j + 1, w)T . We obtain the
following algorithm

Algorithm 10. function [S,H]=JHMSH(A)
twon = size(A(:, 1)); n = twon/2; S = eye(twon);
for j = 1 : n− 1

J = [zeros(n−j+1), eye(n−j+1);−eye(n−j+1), zeros(n−j+1)];
ro = [j : n, n+ j : 2n]; co = [j : n, n+ j : 2n];
[c, v] = osh2(A(ro, j));

% Updating A :
A(ro, co) = A(ro, co) + c ∗ v ∗ (v′ ∗ J ∗ A(ro, co));
A(:, co) = A(:, co)− (A(:, co) ∗ (c ∗ v)) ∗ v′ ∗ J ;

% Updating S (if needed):
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S(:, co) = S(:, co)− c ∗ S(:, co) ∗ (v ∗ v′) ∗ J ;
for k = 2n : n+ j + 1,
[c, s] = vlg(k,A(:, n+ j)),
%Updating A:[
A(k, co)
A(n+ k, co)

]
=

[
c s
−s c

] [
A(k, co)
A(n+ k, co)

]
;[

A(:, k) A(:, n+ k)
]

=
[
A(:, k) A(:, n+ k)

] [ c −s
s c

]
;

%Updating S (if needed):[
S(:, k) S(:, n+ k)

]
=
[
S(:, k) S(:, n+ k)

] [ c −s
s c

]
;

end
if j ≤ n− 2
[β,w]=vlh(j+1,A(:,n+j));
%Updating A:
A(j + 1 : n, co) = A(j + 1 : n, co)− β ∗ w ∗ w′ ∗ A(j + 1 : n, co)
A(j+1+n : 2n, co) = A(j+1+n : 2n, co)−β∗w∗w′∗A(j+1+n : 2n, co);
A(:, j + 1 : n) = A(:, j + 1 : n)− β ∗ A(:, j + 1 : n)w ∗ w′;
A(:, n+ j+ 1 : 2n) = A(:, n+ j+ 1 : 2n)−β ∗A(:, n+ j+ 1 : n)w ∗w′;

%Updating S (if needed):
S(:, j + 1 : n) = S(:, j + 1 : n)− β ∗ S(:, j + 1 : n)w ∗ w′;
S(:, n+ j + 1 : 2n) = S(:, n+ j + 1 : 2n)− β ∗S(:, n+ j + 1 : n)w ∗w′;
end
end

end

Algorithm 11. function[c,s]=vlg(k,a)
% a = [a1, . . . , a2n].
twon = length(a); n = twon/2;

r =
√
a2k + a2n+k;

if r = 0 then c = 1; s = 0;

else c =
ak
r

; s =
an+k
r

;

end

Algorithm 12. function[β,w]=vlh(k,a)
% a = [a1, . . . , a2n].
twon = length(a); n = twon/2;
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% w = (w1, . . . , wn−k+1)
T ;

r1 =
n−k+1∑
i=2

a2i+k−1;

r =
√
a2k + r1;

w1 = ak + sign(ak)r;
wi = ai+k−1 for i = 2, . . . , n− k + 1;

r = w2
1 + r1; β =

2

r
;

%P = I − βwwT ; (H(k, w)a)i = 0 for i = k + 1, . . . , n.
end

4. Numerical experiments

In this work, our goal was to introduce an new algorithm for computing
a J-Hessenberg reduction of a matrix, via symplectic Householder transfor-
mations, which are rank-one modification of the identity. We showed how
this reduction may be handled. The reduction process involves free param-
eters. We outlined how some optimal choice can be done, which gave rise
to JHOSH algorithm. In order to enforce accuracy, we succeed to modify
the JHOSH algorithm, by replacing half of the involved symplectic trans-
formations with other transformations, which are both orthogonal and sym-
plectic. This gave rise to JHMSH algorithm, which behaves with satisfac-
tory properties and is better than all the previous ones. The algorithms
JHESS as well as JHSH and its different variants JHOSH, JHMSH may
meet breakdowns/near-breakdowns. Such breakdowns/near-breakdowns oc-
cur exactly in the same condition for all these algorithms. This gives rise to
very important questions concerning for example the different strategies for
curing, when it is possible, such breakdowns/near-breakdowns. For example,
a breakdown is encountered in JHMSH algorithm when for a certain call,
the function osh2 returns ξ 6= 0 and ν = 0. A near-breakdown occurs when
ξ 6= 0, ν 6= 0 and the ration ξ/ν is very large. An extended and detailed
study is needed. This will be the focus of a forthcoming paper.

We propose here a numerical example, allowing us the comparison be-
tween the different algorithms.

Example : Let us take A = randn(2n) and run JHESS, JHMSH,
JHOSH. The loss of J-orthogonality and the error in the J-Hessenberg reduc-
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Loss of J-orthogonality
∥∥I − SJS∥∥

2

2n JHESS JHMSH JHOSH
4 2.2377e− 16 5.0453e− 16 1.3878e− 16
6 1.2362e− 15 1.0314e− 14 7.8665e− 15
8 1.1262e− 15 4.4185e− 15 8.2489e− 15
10 5.5159e− 15 6.6951e− 14 2.3061e− 13
12 8.3091e− 15 8.3005e− 13 7.7104e− 13
14 5.5932e− 14 4.5568e− 13 8.9718e− 11
16 1.4082e− 14 2.0836e− 13 5.9120e− 12
18 2.8530e− 14 1.5159e− 12 1.8129e− 10
20 1.5660e− 13 8.1831e− 11 1.9407e− 09
22 1.6207e− 14 3.0169e− 13 8.4138e− 11
24 6.5797e− 14 9.3572e− 12 8.0934e− 09
26 1.2295e− 13 3.9518e− 11 1.0048e− 05
28 4.5993e− 14 1.6715e− 12 1.6731e− 09
30 6.1491e− 13 5.9323e− 11 2.8166e− 05

Table 1: Loss of J-orthogonality, A = randn(2n).

tion, for the different algorithms, are displayed in Table 1 and Table 2 respec-
tively. One can observe that JHESS and JHMSH provide sensibly similar
results. This is explained by the fact that both use a half of orthogonal and
symplectic transformations (numerically stables) and another half of trans-
formations which are only symplectic (but not orthogonal). We emphasize
that the backward error

∥∥A− SHSJ∥∥ and the forward error
∥∥H − SJAS∥∥

of JHMSH (respectively JHESS) are of the same order of magnitude. Also,
JHOSH presents a significant disadvantage compared to JHESS and JHMSH.
This is not surprising since JHOSH uses only symplectic but not orthogonal
transformations. Such transformations may be the source of numerical insta-
bility. This is the case when these transformations have a large 2-condition
number, which corresponds to the presence of a near-breakdown.

5. Conclusion

In this paper, we introduce a reduction of a matrix to the upper J-
Hessenberg form, based on the symplectic Householder transformations, which
are rank-one modification of the Identity. This reduction is the crucial step
for constructing an efficient SR-algorithm. The method is the analogue of
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Error of J-Hessenberg reduction
∥∥H − SJAS∥∥

2

2n JHESS JHMSH JHOSH
4 7.6284e− 16 1.7280e− 15 1.4299e− 15
6 1.1399e− 14 1.3724e− 13 4.4936e− 13
8 5.4087e− 15 2.7576e− 14 8.9172e− 14
10 4.1767e− 14 2.6532e− 12 1.2819e− 11
12 4.9776e− 14 7.1119e− 12 2.0655e− 11
14 1.7671e− 13 1.3752e− 11 6.4185e− 09
16 1.2971e− 13 1.4069e− 12 2.1820e− 10
18 1.7410e− 13 6.4203e− 12 3.1054e− 08
20 1.6234e− 12 3.3818e− 09 7.7719e− 07
22 1.2996e− 13 7.0366e− 12 2.4491e− 09
24 7.4530e− 13 3.1000e− 10 7.4156e− 07
26 1.2377e− 12 1.2405e− 09 6.3300e− 02
28 7.0871e− 13 1.8094e− 11 4.9546e− 07
30 3.9641e− 12 1.4573e− 09 1.1500e− 02

Table 2: Error of J-Hessenberg reduction, A = randn(2n)

the reduction of a matrix to Hessenberg form, via Householder transforma-
tions, when instead of an Euclidean linear space, one takes a sympletctic one.
Then the algorithm JHOSH is derived, corresponding to an optimal choice
of the free parameters. Furthermore, JHOSH is significantly improved by
showing that half of these symplectic Householder transformations may be
replaced by Van Loan’s symplectic and orthogonal transformations leading
to a variant JHMSH which is significantly more stable numerically. The
algorithm JHMSH behave quite similarly to JHESS algorithm. Moreover,
both may meet fatal breakdown at the same condition. The treatment of
breakdowns/near-breakdowns and related topics deserve more investigations
and will be the focus of a forthcoming work.
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