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In this paper, we introduce a reduction of a matrix to a condensed form, the upper J-Hessenberg form, via elementary symplectic Householder transformations, which are rank-one modification of the identity. Features of the reduction are highlighted and a general algorithm is derived. Then, we study different possibilities to specify the general algorithm in order to built better versions. We are led to two variants numerically more stables that we compare to JHESS algorithm. Also, some numerical experiments for comparing the different algorithms are given.

Introduction

Let A be a 2n × 2n real matrix. The SR factorization consists in writing A as a product SR, where S is symplectic and R = R 11 R 12 R 21 R 22 is such that R 11 , R 12 , R 22 are upper triangular and R 21 is strictly upper triangular [START_REF] Bunse-Gerstner | Matrix factorizations for symplectic QR-like methods[END_REF][START_REF] Della-Dora | Numerical linear algorithms and group theory[END_REF]. This decomposition plays an important role in structure-preserving methods for solving the eigenproblem of a class of structured matrices.

More precisely, the SR decomposition can be interpreted as the analogue of the QR decomposition [START_REF] Golub | Matrix Computations[END_REF], when instead of an Euclidean space, one considers a symplectic space : a linear space, equipped with a skew-symmetric inner product (see for example [START_REF] Salam | On theoretical and numerical aspects of symplectic Gram-Schmidt-like algorithms[END_REF] and the references therein). The orthogonal group with respect to this indefinite inner product, is called the symplectic group and is unbounded (contrasting with the Euclidean case).

There are two classes of methods for computing the SR decomposition. The first lies in the Gram-Schmidt like algorithms and leads to the symplectic Gram-Schmidt (SGS) algorithms. The second class is constructed from a variety of elementary symplectic transformations. Each choice of such transformations leads to the corresponding SR decomposition. Since these elementary transformations are quite heterogeneous, the SR decomposition is considerably affected by their choice.

Results on numerical aspects of SGS-algorithms can be found for example in [START_REF] Salam | On theoretical and numerical aspects of symplectic Gram-Schmidt-like algorithms[END_REF]. These algorithms and their modified versions are usually involved in structure-preserving Krylov subspace-type methods, for sparse and large structured matrices.

In the literature, the symplectic elementary transformations involved in the SR decomposition can be partitioned in two subsets. The first subset is constituted of two kind of both symplectic and orthogonal transformations introduced in [START_REF] Paige | A Schur decomposition for Hamiltonian matrices[END_REF][START_REF] Van Loan | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[END_REF] and a third symplectic but non-orthogonal transformations, proposed in [START_REF] Bunse-Gerstner | A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation[END_REF]. In fact, in [START_REF] Bunse-Gerstner | Matrix factorizations for symplectic QR-like methods[END_REF], it has been shown that SR decomposition of a general matrix could not be carried out by using only the above orthogonal and symplectic transformations. An algorithm, named SRDECO, based on these three transformations was derived in [START_REF] Bunse-Gerstner | A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation[END_REF].

From linear algebra point of view, the SR decomposition via SRDECO algorithm does not correspond to the analogue of Householder QR decomposition, since SRDECO involves transformations which are not elementary rank-one modification of the identity (transvections), see [START_REF] Artin | Geometric Algebra[END_REF][START_REF] Golub | Matrix Computations[END_REF].

In [START_REF] Salam | Symplectic Householder Transformations for a QR-like decomposition, a Geometric and Algebraic Approaches[END_REF] a study, based on linear algebra concepts and focusing on the construction of the analogue of Householder transformations in a symplectic linear space, has been accomplished. This has led to the second subset of transformations. Such analogue transformations, which are rank-one modification of the identity are called symplectic Householder transformations. Their main features have been established, especially the mapping problem has been solved. Then, the analogue of Householder QR decomposition in a symplectic linear space has been derived. The algorithm SRSH for computing the SR decomposition, using these symplectic Householder transformations has been then presented in details. Unlike Householder QR decomposition, the new algorithm SRSH involves free parameters and advantages may be taken from this fact. It has been demonstrated how these parameters can be determined in an optimal way providing an optimal version [START_REF] Salam | Optimal symplectic Householder transformations for SR-decomposition[END_REF] of the algorithm (SROSH). The error analysis and computational aspects of this algorithm have been studied [START_REF] Salam | Error analysis and computational aspects of SR factorization, via optimal symplectic Householder Transformations[END_REF]. Also, recently, a mathematical and numerical equivalence between modified symplectic Gram-Schmidt and Householder SR algorithms (typically SRSH or SROSH) have been established in [START_REF] Salam | Equivalence between modified symplectic Gram-Schmidt and Householder SR algorithms[END_REF]. Computational aspects and numerical comparisons between SGS and SROSH have clearly showed the superiority of SROSH over SGS.

In order to build a SR-algorithm (which is a QR-like algorithm) for computing the eigenvalues and eigenvectors of a matrix [START_REF] Watkins | The Matrix Eigenvalue Problem : GR and Krylov subspace methods[END_REF], a reduction of the matrix to an upper J-Hessenberg form is crucial. This is due to the fact that the final algorithm we are looking for should have O(n 3 ) as complexity.

In [START_REF] Bunse-Gerstner | A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation[END_REF], a reduction of a general matrix to an upper J-Hessenberg form is presented, using to this aim, the three symplectic transformations of the above first subset. The algorithm, called JHESS, is based on an adaptation of SRDECO.

In this paper, we focus on the reduction of a general matrix, to an upper J-Hessenberg form, using only the symplectic Householder transformations (the second subset above). We show how this reduction can be constructed. The new algorithm, which will be called JHSH algorithm, is based on an adaptation of SRSH algorithm. A variant of JHSH, named JHOSH is then obtained by taking some optimal choice of the free parameters. The JHOSH is numerically better than JHSH. However, to enforce the accuracy in the computations, we are led to derive another variant, based in replacing when possible, each symplectic non-orthogonal transformation by another one, which is symplectic and orthogonal. This gives rise to JHMSH algorithm.

In this work, we restrict ourselves to the construction of such algorithms and the study of their features. Numerical aspects of the new algorithms and new insights on JHESS algorithm (breakdowns/near-breakdowns and their prediction, different strategies of curing breakdowns/near-breakdowns, ...) are very important questions and deserve a detailed study in a devoted work. Nevertheless, we give an illustrating numerical example, showing in particular that the algorithms JHESS, JHMSH behave quite similarly.

The remainder of this paper is organized as follows. Section 2, is devoted to the necessary preliminaries. In the section 3, we introduce the method of reducing a general matrix to an upper J-Hessenberg, based only on the use of symplectic Householder transformations, which are rank-one modification of the identity. Also, we present the different variants, motivated by numerical considerations. In the section 4, numerical experiments and comparisons between JHESS, JHMSH and JHOSH are given. We conclude in the section 5.

Preliminaries

Let J 2n (or simply J) be the 2n-by-2n real matrix

J 2n = 0 n I n -I n 0 n , (1) 
where 0 n and I n stand respectively for n-by-n null and identity matrices.

The linear space R 2n with the indefinite skew-symmetric inner product

(x, y) J = x T Jy (2) 
is called symplectic. For x, y ∈ R 2n , the orthogonality x ⊥ y stands for (x, y) J = 0. The symplectic adjoint x J of a vector x, is defined by

x J = x T J. (3) 
The symplectic adjoint of M ∈ R 2n×2k is defined by

M J = J T 2k M T J 2n . (4) 
A matrix S ∈ R 2n×2k is called symplectic if

S J S = I 2k . (5) 
The symplectic group (multiplicative group of square symplectic matrices) is denoted S. A transformation T given by

T = I + cvv J where c ∈ R, v ∈ R ν (with ν even), (6) 
is called symplectic Householder transformation [START_REF] Salam | Symplectic Householder Transformations for a QR-like decomposition, a Geometric and Algebraic Approaches[END_REF]. It satisfies

T -1 = T J = I -cvv J . (7) 
The vector v is called the direction of T.

For x, y ∈ R 2n , there exists a symplectic Householder transformation T such that T x = y if x = y or y J x = 0. When y J x = 0, T is given by

T = I + 1 y J x (y -x)(y -x) J .
Moreover, each non null vector x can be mapped onto any non null vector y by a product of at most two symplectic Householder transformations [START_REF] Salam | Symplectic Householder Transformations for a QR-like decomposition, a Geometric and Algebraic Approaches[END_REF]. 3. Upper J -Hessenberg reduction via symplectic Householder transformations

Toward the algorithm

Let {e 1 , . . . , e 2n } be the canonical basis of R 2n and a ∈ R 2n be a given vector. We seek for symplectic Householder transformations T 1 and T 2 such that

T 1 a = ρe 1 , (8) 
for certain ρ ∈ R and

T 2 e 1 = e 1 , T 2 a = µe 1 + νe n+1 , (9) 
for certain µ, ν ∈ R. The fact that T 2 is a symplectic isometry yields the necessary condition

(T 2 a) J (T 2 e 1 ) = a J e 1 , (10) 
which implies ν = a n+1 (the n + 1th component of a) and µ is arbitrary. We get Theorem 1. Let ρ = 0, µ be arbitrary scalars and ν = a n+1 . Setting

c 1 = - 1 ρa J e 1 , v 1 = ρe 1 -a, c 2 = - 1 a J (µe 1 + νe n+1 ) , v 2 = µe 1 + νe n+1 -a,
then

T 1 = I + c 1 v 1 v J 1 ( respectively T 2 = I + c 2 v 2 v J 2 ) satisfy (8) (respectively( 9)). (11) 
Remark 1. Since the n + 1th component of v 2 is zero, T 2 keeps the n + 1th component of T 2 x unchanged, for any x ∈ R 2n . More on the properties of such transformations T 1 or T 2 can be found in [START_REF] Salam | Optimal symplectic Householder transformations for SR-decomposition[END_REF][START_REF] Salam | Error analysis and computational aspects of SR factorization, via optimal symplectic Householder Transformations[END_REF].

We also need the following

Theorem 2. Let v ∈ R 2n , with the partition v = [0 T , u T , 0 T , w T ] T , where [u, w] ∈ R (n-i)×2 , for a given integer 1 ≤ i ≤ n -1 and set ṽ = [u T , w T ] T .
Consider the symplectic transformations T = I + cvv J and T = I + cṽṽ J . We have

∀α ∈ R i , ∀β ∈ R i , ∀x ∈ R n-i , ∀y ∈ R n-i , T [α T , x T , β T , y T ] T = [α T , x T , β T , y T ] T , with [x T , y T ] T = T [x T , y T ] T . Proof. We have v J [α T , x T , β T , y T ] T = u T y -w T x = [u T w T ]J[x T y T ] T . Then T [α T , x T , β T , y T ] T = [α T , x T , β T , y T ] T +c[0 T , u T , 0 T , w T ] T [u T w T ]J[x T y T ] T . We check easily x y = x y + c u w [u T w T ]J x y = T x y , and 
T [α T , 0 T , β T , 0 T ] T = [α T , 0 T , β T , 0 T ] T .
Note that the Theorem 2 remains valid if one takes T J instead of T. This result, with Theorem 1, constitute the main tool on which the SR factorization (based on symplectic Householder transformations) is constructed. We will adapt this tool for reducing a general matrix to an upper J-Hessenberg form, based on these symplectic Householder transformations.

The J-Hessenberg reduction : the JHSH algorithm

We explain here the steps of the algorithm by illustrating the general pattern. Let A ∈ R 2n×2n be a given matrix and set A (0) = A. We will use the notation A (i 1 :i 2 ,j 1 :j 2 ) , A (i 1 :i 2 ,:) , A (:,j 1 :j 2 ) to denote respectively the submatrix obtained from the matrix A by deleting all rows and columns except rows i 1 until i 2 and columns j 1 until j 2 , by deleting all rows except rows i 1 until i 2 , by deleting all columns except columns j 1 until j 2 . 1. The first step of the algorithm relies in determining a symplectic Householder transformation H 1 (i.e. c 1 ∈ R and v 1 ∈ R 2n ), with H 1 e 1 = e 1 , to zero out entries 2 through n and entries n + 2 through 2n of the first column of A (0) . The vector e 1 stands for the first canonical vector of R 2n . The transformation H 1 corresponds to the transformation T 2 , given in Theorem 1. Set v 1 the direction vector of H 1 . Since H 1 e 1 = e 1 , we obtain v J 1 e 1 = v T 1 Je 1 = 0. Thus the n + 1th component of v 1 is zero. It follows that for any vector x, the n + 1th component of

H 1 x remains unchanged. The direction v 1 of H 1 is given by v 1 = A (1) (1,1) e 1 + A (0) (n+1,1) e n+1 -A (0) (:,1) , where A (1)
(1,1) is an arbitrary given scalar. Notice that we have also H J 1 e 1 = e 1 , and hence the first column of H 1 and H J

1 is e 1 . Thus, multiplying A (0) on the left by H 1 leaves unchanged the n + 1th row and creates the desired zeros in the first column. We get

A (1) = H 1 A (0) =       A (1) (1,1) A (1) (1,2:n) A (1) (1,n+1:2n) 0 A (1) (2:n,2:n) A (1) 
(2:n,n+1:2n)

A (0) (n+1,1) A (0) (n+1,2:n) A (0) (n+1,n+1:2n) 0 A (1) 
(n+2:2n,2:n) A (1) (n+2:2n,n+1:2n)      
.

The step involves the free parameter A

(1,1) . Multiplying H 1 A (0) on the right by H J 1 leaves the first column of

H 1 A (0) H J 1
unchanged, and we obtain

A (1) = H 1 A (0) H J 1 =       A (1) (1,1) A (1) (1,2:n) A (1) (1,n+1:2n) 0 A (1) (2:n,2:n) A (1) 
(2:n,n+1:2n)

A (0) (n+1,1) A (1) (n+1,2:n) A (1) (n+1,n+1:2n) 0 A (1) 
(n+2:2n,2:n) A (1) (n+2:2n,n+1:2n)       .
The next step consists in choosing a symplectic Householder H 2 to zero out the entries 3 through n, the entries n + 2 through 2n of the n + 1th column of A (1) . To do this, let Ã(1

) = A (1) (2:n,2:n) A (1) (2:n,n+1:2n) A (1) 
n+2:2n,2:n A

(1) n+2:2n,n+1:2n be the the matrix obtained from A (1) by deleting the first column and the first and the n + 1th rows. And let A

(2,n+1) = 0 be an arbitrary given scalar. We apply H2 = I 2n-2 + c 2 ṽ2 ṽJ 2 given by Theorem 1, with ṽ2 =

u 2 w 2 = A (2) (2,n+1) e 1 -Ã(1) (:, n) ∈ R 2n-2 , u 2 ∈ R n-1 , w 2 ∈ R n-1
, where e 1 stands for the first canonical vector of R 2n-2 . We obtain

à (2) = H2 Ã(1) =    A (2) (2,2:n) A (2) 
(2,n+1) A

(2) (2,n+2:2n)

A (2) (3:n,2:n) 0 A (2) (3:n,n+2:2n) A (2) (n+2:2n,2:n) 0 A (2) (n+2:2n,n+2:2n)    .
The transformation H2 corresponds to the choice T 1 in Theorem 1. Setting

H 2 = I 2n + c 2 v 2 v 2 J , with v 2 =     0 u 2 0 w 2     ∈ R 2n then H 2 is a symplectic
Householder transformation. Using Theorem 2, we get

A (2) = H 2 A (1) =         A (1) (1,1) A (1) (1,2:n) A (1) (1,n+1) A (1) (1,n+2:2n) 0 A (2) (2,2:n) A (2) (2,n+1) A (2) (2,n+2:2n) 0 A (2) (3:n,2:n) 0 A (2) (3:n,n+2:2n) A (0) (n+1,1) A (1) (n+1,2:n) 
A

(n+1,n+1) A

(n+2:2n,2:n) 0 A (2) (n+2:2n,n+2:2n)         . (1) (n+1,n+2:2n) 0 A (2) 
H 2 leaves the first and the n + 1 th rows of H 2 A (1) unchanged. It leaves the first column of H 2 A (1) unchanged, and creates the desired zeros in the column n + 1.

The multiplication of H 2 A (1) on the right by H J 2 leaves the first and the n + 1th columns of H 2 A (1) H J 2 unchanged. We obtain

A (2) = H 2 A (1) H J 2 =         A (1) (1,1) A (2) (1,2:n) A (1) (1,n+1) A (2) (1,n+2:2n) 0 A (2) (2,2:n) A (2) (2,n+1) A (2) (2,n+2:2n) 0 A (2) (3:n,2:n) 0 A (2) (3:n,n+2:2n) A (0) (n+1,1) A (2) (n+1,2:n) A (1) (n+1,n+1) A (2) (n+1,n+2:2n) 0 A (2) 
(n+2:2n,2:n) 0 A (2) (n+2:2n,n+2:2n)         .
It is worth noting that H 2 e 1 = e 1 and H 2 e n+1 = e n+1 . Thus the first column (respectively the n + 1th column) of H 2 and H J 2 is e 1 (respectively e n+1 ). In the next step, we want to zero out the entries 3 through n and n + 3 through 2n of the second column of A (2) and the entries 4 through n and n+3 through 2n of the column n + 2 of A (2) . Let Ã(2) be the matrix obtained from A (2) by deleting the first, the n + 1th rows, and the corresponding columns,

ie. Ã(2) = A (2) (2:n,2:n) A (2) (2:n,n+2:2n) A (2) 
(n+2:2n,2:n) A

(2) (n+2:2n,n+2:2n) .

2.

We apply now exactly the same two steps of 1., to the new size reduced matrix Ã(2) . In other words, we choose a symplectic Householder transformation H3 , which means to compute a vector ṽ3 = [u T 3 , w T 3 ] T with u 3 ∈ R n-1 , w 3 ∈ R n-1 and a real c 3 such that H3 = I + c 3 ṽ3 ṽJ 3 zero out the entries 2 through n-1 and the entries n+1 through 2n-2 of the first column of Ã(2) with H3 e 1 = e 1 ∈ R 2n-2 . Here e 1 stands for the first canonical vector of R 2n-2 . The transformation H3 corresponds to the transformation T 2 , in Theorem 1. Let e n denote the nth canonical vector of R 2n-2 . The direction vector ṽ3 of H3 is given by ṽ3 = A

(2,2) e 1 + Ã(2) (n, 1)e n -Ã(2) (:, 1), where A

(3) (2,2)
is an arbitrary non zero scalar. H3 leaves unchanged the nth row of H3 Ã(2) . We get

à (3) = H3 Ã(2) =       A (3) (2,2) A (3) (2,3:n) 
A

A

A

(n+2,2) A (2) (n+2,3:n) A (2) (n+2,n+2:2n) 0 A (2) 
(n+3:2n,3:n) A

(3) (n+3:2n,n+2:2n)

     
.

Remark that the nth component of ṽ3 is zero. Take now

v 3 = [0 u T 3 |0 w T 3 ] T and set H 3 = I + c 3 v 3 v J 3 .
Then H 3 is obviously a symplectic Householder transformation of order 2n. The components 1, n+1 and n+2 of v 3 are equal to zero. Thus H 3 leaves the rows 1, n + 1 and n + 2 of H 3 A (2) unchanged and satisfy H 3 (e 1 ) = e 1 , H 3 e 2 = e 2 and H 3 e n+1 = e n+1 . Thus H 3 leaves the first and the n + 1th columns of H 3 A (2) unchanged and zero out the entries 3 through n and the entries n + 3 through 2n of the second column.

We have

A (3) = H 3 A (2) =            A (1) (1,1) A (2) (1,2) A (2) (1,3:n) A (1) (1,n+1) A (2) (1,n+2:2n) 0 A (3) (2,2) A (3) (2,3:n) A (2) (2,n+1) A (3) (2,n+2:2n) 0 0 A (3) (3:n,3:n) 0 A (3) (3:n,n+2:2n) A (0) (n+1,1) A (2) (n+1,2) A (2) (n+1,3:n) A (1) (n+1,n+1) A (2) (n+1,n+2:2n) 0 A (2) (n+2,2) A (2) (n+2,3:n) 0 A (2) (n+2,n+2:2n) 0 0 A (3) (n+3:2n,3:n) 0 A (3) (n+3:2n,n+2:2n)           
.

The transformation H J 3 leaves the column 1, 2 and n + 1 of

H 3 A (2) H J 3
unchanged since H J 3 (e 1 ) = e 1 , H J 3 e 2 = e 2 and H J 3 e n+1 = e n+1 . We get

A (3) = H 3 A (2) H J 3 =            A (1) (1,1) 
H J 4 leaves unchanged the first, the second, the n + 1, n + 2 columns of A (4) = H 4 A (3) H J 4 since H J 4 (e i ) = e i for i = 1, 2 , n + 1, n + 2. Hence, we get

A (4) =              A (1) (1,1) A (2) (1,2) A (4) (1,3:n) A (1) (1,n+1) A (3) (1,n+2) A (4) (1,n+3:2n) 0 A (3) (2,2) A (4) (2,3:n) A (2) (2,n+1) A (3) (2,n+2) A (4) (2,n+3:2n) 0 0 A (4) (3,3:n) 0 A (4) (3,n+2) A (4) (3,n+3:2n) 0 0 A (4) (4:n,3:n) 0 0 A (4) (4:n,n+3:2n) A (0) (n+1,1) A (2) (n+1,2) A (4) (n+1,3:n) A (1) 
(n+1,n+1) A

(3)

(n+1,n+2) A (4) (n+1,n+3:2n) 0 A (2) (n+2,2) A (4) (n+2,3:n) 0 A (3) (n+2,n+2) A (4) (n+2,n+3:2n) 0 0 A (4) (n+3:2n,3:n) 0 0 A (4) (n+3:2n,n+3:2n)              .
3. The jth step is now clear. It involves two sub-steps. The first consists in finding H 2j-1 , i.e. the scalar c 2j-1 and the vector v 2j-1 such that H 2j-1 = I + c 2j-1 v 2j-1 v J 2j-1 leaves the rows 1, . . . , j -1, the rows n + 1, . . . , n + j, the columns 1, . . . , j -1, and the columns n + 1, . . . , n + j -1 of H 2j-1 A (2j-2) unchanged and zero out the entries j + 1 through n and the entries n + j + 1 through 2n of the jth column. The vector v 2j-1 ∈ R 2n has the structure

v 2j-1 = [0 T , u T 2j-1 , 0 T , w T 2j-1 ] T , with u 2j-1 ∈ R n-j+1 , w 2j-1 ∈ R n-j+1
. The first component of w 2j-1 is zero.Thus H 2j-1 e i = e i for i = 1, . . . , j and for i = n + 1, . . . , n + j -1. The jth column H 2j-1 A (2j-2) (:, j) is transformed as follows

H 2j-1 A (2j-2) (:, j) =       A (2j-2) (1 : j -1, j) A (2j-1) (j, j) 0 A (2j-2) (n + 1 : n + j, j) 0       {j -1} {1} {n -j} {j} {n -j} .
The entry A (2j-1) (j, j) is a free parameter.

The multiplication of H 2j-1 A (2j-2) on the right by H J 2j-1 leaves the columns 1, . . . , j, and the columns n + 1, . . . , n + j -1, of H 2j-1 A (2j-2) H J 2j-1 unchanged. The coefficient c 2j-1 , the vector v 2j-1 and hence the symplectic transformation H 2j-1 are simply and explicitly given by Theorem 1. The matrix

A (2j-1) = H 2j-1 A (2j-2) H J 2j-1 has the desired form. Let us set H2j-1 = I + c 2j-1 ṽ2j-1 ṽJ 2j-1 , ṽ2j-1 = [u T 2j-1 , w T 2j-1 ] T , where [u 2j-1 , w 2j-1 ] ∈ R α j ×2
, with α j = n -j + 1 and Ã(2j-2) (:, j) the jth column of Ã(2j-2) obtained from A (2j-2) (:, j) by deleting the rows 1, . . . , j -1 and rows n + 1, . . . , n + j -1. We obviously obtain H2j-1 Ã(2j-2) (:, j) = A (2j-1) (j, j)e 1 + A (2j-2) (n + j, j)e α j +1 . Here e 1 and e α j +1 denote the first and the α j + 1th canonical vectors of R 2α j .

In a similar way, the second sub-step consists in finding H 2j , i.e. the scalar c 2j and the vector v 2j such that H 2j = I + c 2j v 2j v J 2j leaves the rows 1, . . . , j, the rows n + 1, . . . , n + j, the columns 1, . . . , j, and the columns n + 1, . . . , n + j -1 of H 2j A (2j-1) unchanged and zero out the entries j + 2 through n and the entries n + j + 1 through 2n of the n + jth column. The vector v 2j ∈ R 2n has the structure

v 2j = [0 T , u T 2j , 0 T , w T 2j ] T , with u 2j ∈ R n-j , w 2j ∈ R n-j .
Thus H 2j e i = e i for i = 1, . . . , j and for i = n+1, . . . , n+j.

The n + jth column of H 2j A (2j-1) (:, n + j) is transformed as follows

H 2j A (2j-1) (:, n + j) =       A (2j-1) (1 : j, n + j) A (2j) (j + 1, n + j) 0 A (2j-1) (n + 1 : n + j, n + j) 0       {j} {1} {n -j -1} {j} {n -j} . The entry A (2j) (j + 1, n + j) is a free parameter.
The multiplication of H 2j A (2j-1)) on the right by H J 2j leaves the columns 1, . . . , j, and the columns n + 1, . . . , n + j, of H 2j A (2j-1) H J 2j unchanged. The coefficient c 2j , the vector v 2j and hence the symplectic transformation H 2j are explicitly given by Theorem 1. The matrix A (2j) = H 2j A (2j-1) H J 2j has the desired form.

Let us set H2j = I + c 2j ṽ2j ṽJ 2j , with ṽ2j = [u T 2j , w T 2j ] T , where [u 2j , w 2j ] ∈ R β j ×2 , β j = n -j and Ã(2j-1) (:, n + j) the n + jth column of Ã(2j-1) obtained from A (2j-1) (:, n+j) by deleting the rows 1, . . . , j and rows n+1, . . . , n+j. We obviously obtain H2j Ã(2j-1) (:, n + j) = A (2j) (j + 1, n + j)e 1 . Here e 1 denotes the first canonical vector of R 2β j .

Thus, it is worth noting that each step j involves two free parameters A (2j-1) (j, j) and A (2j) (j + 1, n + j), and that these parameters are located as highlighted above, in the corresponding symplectic Householder transformations H 2j-1 and H 2j (or equivalently H2j-1 and H2j ).

At the last step (the n -1th step), we obtain

H 2n-2 . . . H 2 H 1 A(H 2n-2 . . . H 2 H 1 ) J = H 11 H 12 H 21 H 22 = H ∈ R 2n×2n , with
H 11 , H 21 , H 22 upper triangular and H 12 upper Hessenberg. We get A = S J HS with S = H 2n-2 . . . H 1 . The entries of the diagonal of H 11 are the free parameters A (2j-1) (j, j), ie. H 11 (j, j) = A (2j-1) (j, j) for j = 1, . . . , n. Also, elseif a n+1 == 0 display('division by zero'); return else

v = a aux ; c = aux 2 ρ × a n+1 ; v(1) = 1; end end Algorithm 5. function [c, v] = sh2(a)
%compute c and v such that T 2 e 1 = e 1 , and T 2 a = µe 1 + νe n+1 , %µ is a free parameter, and

T 2 = (eye(twon) + c * v * v * J); % a = [a 1 , . . . , a 2n ]. twon = length(a); n = twon/2; J = [zeros(n), eye(n); -eye(n), zeros(n)]; if n == 1 v = zeros(twon, 1); c = 0; %T = eye(twon); else choose µ; ν = a n+1 ; if ν == 0 display('division by zero') return else v = µe 1 + νe n+1 -a, c = 1 a n+1 (µ -a 1 )
; end end

JHOSH, JHMSH algorithms

From an linear algebra point of view, JHSH is the analogue in the symplectic case, of the algorithm performing the Hessenberg reduction of a matrix via Householder transformations in the Euclidean case. Recall that JHSH involves two free parameters at each step. The question is then how these free parameters can be chosen? In the sequel, we show how one can take benefit from these free parameters in some optimal way. In order to get an algorithm numerically stable as possible, the free parameters are chosen so that the symplectic Householder transformations used in the reduction have minimal norm-2 condition number. The choice of such parameters is as follows [START_REF] Salam | Optimal symplectic Householder transformations for SR-decomposition[END_REF] : Theorem 6. Let a = [a 1 , . . . , a 2n ] ∈ R 2n be a given vector and {e 1 , . . . , e 2n } be the canonical basis of R 2n . Take ρ = sign(a 1 ) a 2 , µ = a 1 ± ξ and

ν = a n+1 , with ξ = 2n i=2,i =n+1 a 2 i .
Setting

c 1 = - 1 ρa J e 1 , v 1 = ρe 1 -a, c 2 = - 1 a J (µe 1 + νe n+1 ) , v 2 = µe 1 + νe n+1 -a,
then For these choices of the free parameters, we refer to T 1 (respectively T 2 ) as the first optimal symplectic Householder (osh1) transformation (respectively the second optimal symplectic Householder osh2) transformation. This optimal version of JHSH is referred to as JHOSH algorithm and is given as follows : [START_REF] Paige | A Schur decomposition for Hamiltonian matrices[END_REF][START_REF] Van Loan | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[END_REF] can be used to replace the symplectic transformations H 2j , to zero desired components of a vector. The first type is

T 1 = I + c 1 v 1 v J 1 ( respectively T 2 = I + c 2 v 2 v J 2 ) satisfy (8) (respectively( 9)), (12) with 
H(k, w) = diag(I k-1 , P ) 0 0 diag(I k-1 , P ) , (13) 
where

P = I -2ww T /w T w, w ∈ R n-k+1 .
The transformation H(k, w) is just a direct sum of two "ordinary" n-by-n Householder matrices [START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF]. We refer to H(k, w) as Van Loan's Householder transformations. The second type is

J(k, c, s) = C S -S C , (14) 
where c 2 + s 2 = 1, and

C = diag(I k-1 , c, I n-k ), S = diag(0 k-1 , s, 0 n-k ).
J(k, c, s) is a Givens transformation, which is an "ordinary" 2n-by-2n Givens rotation that rotates in planes (k, k + n) [START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF]. We refer to J(k, c, s) as Van Loan's Givens rotation. Van Loan's Householder and Givens transformations are both orthogonal and symplectic. It is worth noting that for i = k and i = n + k, we have J(k, c, s)e i = e i . Also, we have J(k, c, s)e k = ce k -se n+k and J(k, c, s)e n+k = se k + ce n+k . Thus, J(k, c, s) applied to a vector a, leaves unchanged all the rows of J(k, c, s)a except rows k and n + k. It is obvious also that H(k, w)e i = e i for i = 1, . . . , k -1 and i = n + 1, . . . , n + k -1.

The modification of the even sub-steps of JHOSH (or JHSH) algorithm is as follows. Let A = [a 1 , . . . , a n , a n+1 , . . . , a 2n ] ∈ R 2n×2n be a given matrix and set A (0) = A. The first sub-step is obtained by creating the desired zeros in the first column, via the H 1 as above. The updated matrix is A (1) . Now, for creating the desired zeros in the column n + 1 and keeping the first column unchanged, we shall use the Van Loan's transformations, instead of H 2 . For k = n, . . . , 2, we compute J(k, c, s) such that a zero is created in position n+k in the n+1th column of J(k, c, s)A (1) . The first column as well as the already created zeros in the current n+1 column of A (1) remain unchanged. The first and the n + 1th columns of J(k, c, s)A (1) leave unchanged when the latter is multiplied on the right by J(k, c, s) T . The matrix A (1) is then updated with A (2) = J(k, c, s)A (1) J(k, c, s) T . So the entries at positions n + 2, . . . , 2n in the n + 1 column of A (2) are zeros. Now, we compute w so that the action of Van Loan's Householder in the product H(2, w)A (2) creates zeros in the positions 3, . . . , n in the n + 1 column. The first column of H(2, w)A (2) as well as the already created zeros remain unchanged. The transformation H(2, w) leaves unchanged the first and the n + 1 columns of the updated matrix

A (2) = H(2, w)A (2) H(2, w) T .
At the jth step, the first sub-step is obtained by creating the desired zeros in the jth column , via the H 2j-1 as in JHOSH. The updated matrix is A (2j-1) . Now, the desired zeros in the column n + j are created by using the Van Loan's givens rotations, instead of H 2j . For k = n, . . . , j + 1, we compute J(k, c, s) such that a zero is created in position n + k in the n + jth column of J(k, c, s)A (2j-1) . The columns 1, . . . , j and n + 1, . . . , n + j -1 as well as the already created zeros in the current n + j column of A (2j-1) remain unchanged. The columns 1, . . . , j and n + 1, . . . , n + j of J(k, c, s)A (2j-1) leave unchanged when the latter is multiplied on the right by J(k, c, s) T . The matrix A (2j-1) is then updated with A (2j) = J(k, c, s)A (2j-1) J(k, c, s) T . So the entries at positions n + j + 1, . . . , 2n in the n + j column of A (2j) are zeros. Now, we compute w so that the action of Van Loan's Householder in the product H(j + 1, w)A (2j) creates zeros in the positions j + 2, . . . , n in the n + jth column. The columns 1, . . . , j and n + 1, . . . , n + j -1 as well as the already created zeros in the current n + j column of A (2j) remain unchanged. H(j + 1, w) leaves unchanged the columns 1, . . . , j and n + 1, . . . , n + j of the updated matrix A (2j) = H(j + 1, w)A (2j) H(j + 1, w) T . We obtain the following algorithm tion, for the different algorithms, are displayed in Table 1 and Table 2 respectively. One can observe that JHESS and JHMSH provide sensibly similar results. This is explained by the fact that both use a half of orthogonal and symplectic transformations (numerically stables) and another half of transformations which are only symplectic (but not orthogonal). We emphasize that the backward error A -SHS J and the forward error H -S J AS of JHMSH (respectively JHESS) are of the same order of magnitude. Also, JHOSH presents a significant disadvantage compared to JHESS and JHMSH. This is not surprising since JHOSH uses only symplectic but not orthogonal transformations. Such transformations may be the source of numerical instability. This is the case when these transformations have a large 2-condition number, which corresponds to the presence of a near-breakdown.

Conclusion

In this paper, we introduce a reduction of a matrix to the upper J-Hessenberg form, based on the symplectic Householder transformations, which are rank-one modification of the Identity. This reduction is the crucial step for constructing an efficient SR-algorithm. The method is the analogue of the reduction of a matrix to Hessenberg form, via Householder transformations, when instead of an Euclidean linear space, one takes a sympletctic one. Then the algorithm JHOSH is derived, corresponding to an optimal choice of the free parameters. Furthermore, JHOSH is significantly improved by showing that half of these symplectic Householder transformations may be replaced by Van Loan's symplectic and orthogonal transformations leading to a variant JHMSH which is significantly more stable numerically. The algorithm JHMSH behave quite similarly to JHESS algorithm. Moreover, both may meet fatal breakdown at the same condition. The treatment of breakdowns/near-breakdowns and related topics deserve more investigations and will be the focus of a forthcoming work.

  T 1 (respectively T 2 ) has the minimal norm-2 condition number. Proof. See [9], Lemma 4.1, Lemma 4.3, Lemma 4.4 and Theorem 4.5.

Algorithm 7 .

 7 function [S,H]=JHOSH(A) replace in the body of JHSH the sh1 by osh1 and sh2 by osh2. end. The pseudo code Matlab of osh1 and osh2 is a follows Algorithm 8. function [c, v] = osh1(a) twon = length(a); n = twon/2; J = [zeros(n), eye(n); -eye(n), zeros(n)]; ρ = sign(a(1)) * a 2 ; aux = a(1) -ρ; if aux == 0 c = 0; v = zeros(twon, 1); %T = eye(twon); elseif a n+1 == 0 display('division by zero'); return symplectic transformations, introduced by Paige et al.

Algorithm 10 .= a k r ; s = a n+k r ; end Algorithm 12 .

 1012 function [S,H]=JHMSH(A) twon = size(A(:, 1)); n = twon/2; S = eye(twon); f or j = 1 : n -1 J = [zeros(n -j + 1), eye(n -j + 1); -eye(n -j + 1), zeros(n-j + 1)]; ro = [j : n, n + j : 2n]; co = [j : n, n + j : 2n]; [c, v] = osh2(A(ro, j)); % Updating A : A(ro, co) = A(ro, co) + c * v * (v * J * A(ro, co)); A(:, co) = A(:, co) -(A(:, co) * (c * v)) * v * J; % Updating S (if needed): S(:, co) = S(:, co) -c * S(:, co) * (v * v ) * J; for k = 2n : n + j + 1, [c, s] = vlg(k, A(:, n + j)), %Updating A: A(k, co) A(n + k, co) = c s -s c A(k, co) A(n + k, co) ; A(:, k) A(:, n + k) = A(:, k) A(:, n + k) c -ssc ; %Updating S (if needed): S(:, k) S(:, n + k) = S(:, k) S(:, n + k) c -s s c ; end if j ≤ n -2 [β,w]=vlh(j+1,A(:,n+j)); %Updating A: A(j + 1 : n, co) = A(j + 1 : n, co) -β * w * w * A(j + 1 : n, co) A(j+1+n : 2n, co) = A(j+1+n : 2n, co)-β * w * w * A(j+1+n : 2n, co); A(:, j + 1 : n) = A(:, j + 1 : n) -β * A(:, j + 1 : n)w * w ; A(:, n + j + 1 : 2n) = A(:, n + j + 1 : 2n) -β * A(:, n + j + 1 : n)w * w ; %Updating S (if needed): S(:, j + 1 : n) = S(:, j + 1 : n) -β * S(:, j + 1 : n)w * w ; S(:, n + j + 1 : 2n) = S(:, n + j + 1 : 2n) -β * S(:, n + j + 1 : n)w * w ; end end end Algorithm 11. function[c,s]=vlg(k,a) % a = [a 1 , . . . , a 2n ]. twon = length(a); n = twon/2; r = a 2 k + a 2 n+k ; if r = 0 then c = 1; s = 0; else c function[β,w]=vlh(k,a) % a = [a 1 , . . . , a 2n ]. twon = length(a); n = twon/2;

  11 , H 21 , H 22 are upper triangular and H 12 is upper Hessenberg. H is called unreduced when H 21 is nonsingular and the Hessenberg H 12 is unreduced, i.e. the entries of the subdiagonal are all nonzero.

	Symplectic Householder transformations are rotations, i.e. det(T ) = 1 and
	the symplectic group S is generated by symplectic Householder transforma-
	tions.		
	We recall that a matrix H =	H 11 H 12 H 21 H 22	∈ R 2n×2n , is upper J-Hessenberg
	when H		

Table 1 :

 1 Loss of J-orthogonality, A = randn(2n).

Table 2 :

 2 Error of J-Hessenberg reduction, A = randn(2n)
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(n+1,2) A

(3) (n+1,3:n)

A

(n+1,n+1) A

(3) (n+1,n+2:2n)

(n+2,2) A

(3) (n+2,3:n) 0 A

(3) (n+2,n+2:2n)

(n+3:2n,3:n) 0 A

(3) (n+3:2n,n+2:2n)

. Now, deleting the rows 1, 2, n + 1, n + 2 and the columns 1, 2, n + 1 of A (3) and setting Ã(3) = A

(3)

(n+3:2n,3:n) A

(3) (n+3:2n,n+2:2n)

, we find c 4 ∈ R and ṽ4 = u 4 w 4 , with u 4 ∈ R n-2 and w 4 ∈ R n-2 such that the action of The coefficient A

(3,n+2) is an arbitrary chosen scalar. Taking

4 leaves unchanged the rows 1, 2, n + 1, n + 2 and columns 1, 2, and n + 1 of A (4) = H 4 A (3) and creates the desired zeros in the column n + 2. We obtain

.

The entries of the sub-diagonal of H 12 are the free parameters A (2j) (j + 1, n + j), ie. H 12 (j + 1, j) = A (2j) (j + 1, n + j) for j = 1, . . . , n -1. We propose here the algorithm in its general version, written in pseudo Matlab code, for computing the reduction of a matrix to the upper J-Hessenberg form, via symplectic Householder transformations (JHSH algorithm).

Algorithm 3. function [S,H]=JHSH(A)

twon = size(A(:, 1)); n = twon/2; S = eye(twon); We have seen that the symplectic Householder transformations used in JHOSH algorithm have minimal norm-2 condition number, and thus numerically, JHOSH presents a significant advantage over JHSH. However, all these symplectic Householder transformations are not orthogonal. It is well known that it is not possible to handle a SR decomposition using only transformations which are both symplectic and orthogonal (see [START_REF] Bunse-Gerstner | Matrix factorizations for symplectic QR-like methods[END_REF]). Nevertheless, we will show that half of them (all the transformations H 2j above) may be replaced by specified transformations which are both orthogonal and symplectic. Furthermore, we will show that the two type of orthogonal and % w = (w 1 , . . . , w n-k+1 ) T ;

Numerical experiments

In this work, our goal was to introduce an new algorithm for computing a J-Hessenberg reduction of a matrix, via symplectic Householder transformations, which are rank-one modification of the identity. We showed how this reduction may be handled. The reduction process involves free parameters. We outlined how some optimal choice can be done, which gave rise to JHOSH algorithm. In order to enforce accuracy, we succeed to modify the JHOSH algorithm, by replacing half of the involved symplectic transformations with other transformations, which are both orthogonal and symplectic. This gave rise to JHMSH algorithm, which behaves with satisfactory properties and is better than all the previous ones. The algorithms JHESS as well as JHSH and its different variants JHOSH, JHMSH may meet breakdowns/near-breakdowns. Such breakdowns/near-breakdowns occur exactly in the same condition for all these algorithms. This gives rise to very important questions concerning for example the different strategies for curing, when it is possible, such breakdowns/near-breakdowns. For example, a breakdown is encountered in JHMSH algorithm when for a certain call, the function osh2 returns ξ = 0 and ν = 0. A near-breakdown occurs when ξ = 0, ν = 0 and the ration ξ/ν is very large. An extended and detailed study is needed. This will be the focus of a forthcoming paper.

We propose here a numerical example, allowing us the comparison between the different algorithms.

Example : Let us take A = randn(2n) and run JHESS, JHMSH, JHOSH. The loss of J-orthogonality and the error in the J-Hessenberg reduc-