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ABSTRACT LORENTZ SPACES AND KOTHE DUALITY

ANNA KAMINSKA AND YVES RAYNAUD

ABSTRACT. Given asymmetric Banach function space F and a decreasing positive weight
won I = (0,a), 0 < a < oo, the generalized Lorentz space Ag., is defined as the
symmetrization of the canonical copy F,, of E on the measure space associated with
the weight. A class of functions Mg ., is similarly defined in the spirit of Marcinkiewicz
spaces as the symmetrization of the space w E,,. Differently from the Lorentz space,
which is a Banach function space, the class Mg, does not need to be even a linear
space; but we show that if the weight w is regular then this class is normable. Let
also Q g, be the smallest fully symmetric Banach function space containing Mg .,. The
Kothe duality of these classes is developed here. The K&the dual of the class Mg ., is
identified as the Lorentz space Ag/ ., while the Kothe dual of Agw is Qg . Several
characterizations of Qg ., are obtained, one of them states that a function belongs to
QE,w if and only if its level function in Halperin’s sense with respect to w, belongs
to MEg,w. The other characterizations are by optimization with respect to the Hardy-
Littlewood submajorization order. These results are applied to a number of concrete
Banach function spaces. In particular a new description of the Kéthe dual space is
provided for the classical Lorentz space Ap . and for the Orlicz-Lorentz space Ay, w,
which correspond respectively to the cases £ = L, and ¥ = L.

Given a positive locally integrable weight w on an interval I = (0,a), 0 < a < o0,
and p € [1,00), the classical Lorentz space A, is the set of measurable functions f
having a non-increasing rearrangement f* such that || ;(f*)Pwdm < oo, where m denotes
the Lebesgue measure. This class is a symmetric Banach function space and the formula
1 fllpow = (J;(f*)Pwdm < 00)'/P defines a norm if and only if the weight w is non-increasing
[1, 13]. Orlicz-Lorentz spaces may be defined in a similar way. Following [9], given an
Orlicz function ¢, consider the modular ® defined on the set of Lebesgue measurable
functions LY(I) by

B(f) = /[ o (F*)w dm.

Then the Orlicz-Lorentz space A, is the set of f € L%(I) such that {c: ®(f/c) < oo} # 0.
If w is non-increasing then ® is convex, Ay, is a linear subset and an ideal in L°(I), and
the formula || f||ow = inf{c : ®(f/c) < 1} defines a norm, called the Luxemburg or
second Nakano norm, for which A ,, is complete and symmetric. Clearly if ¢(t) = t* we
recover the classical Lorentz space Ay, so that Orlicz-Lorentz spaces are a generalization
of ordinary Lorentz spaces. We refer to [12, 10] for a study of Kéthe duality of Orlicz-
Lorentz spaces.

Our goal in this paper is to generalize further the class of Orlicz-Lorentz spaces by
replacing Orlicz spaces by general symmetric Kéthe function spaces. We will use the fact
that the classical Lorentz spaces A, ., and the Orlicz-Lorentz spaces A, ., respectively, are
symmetrizations [11] with respect to the Lebesgue measure of the spaces L, and Orlicz
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spaces L, on the measure space (I,wdm), respectively. Clearly the latter spaces are
weighted L,(I,wdm) and L, (I, wdm) spaces respectively, and thus they are symmetric
with respect to the measure wdm on I. Thus it is natural to consider symmetrizations,
with respect to m, of arbitrary Kothe function spaces £ which are symmetric with respect
to the measure wdm. However, since we do not want the space parameter, which will
play the role of the exponent p or the Orlicz function ¢, to depend on the weight w,
we choose to take as space £ the natural copy F, on the measure space (I,wdm) of a
symmetric Kéthe function space E defined on the measure space (J,m) where J is an
interval (0,b), b € (0,00]. The symmetrization of E,, will thus be denoted by Ag,, and
called a generalized Lorentz space.

In this paper w will always denote a non-increasing weight. We assume also that F
is fully symmetric that is E is hereditary by Hardy-Littlewood submajorization and the
norm is monotone with respect to this submajorization. It follows from these hypotheses
that the set A, is a linear space and that the formula || f|a5 ,, = [[f*]|£, defines a norm
on it. In fact Ag,, is a fully symmetric Banach function space.

The goal is to provide a description of the Kéthe dual space of the Lorentz space Ag
in this abstract form, following the pattern of our previous article [12] on Orlicz-Lorentz
spaces. It was proved in [7] that when the weight w is regular the Kéthe dual of A, is
equal to the symmetrization of the Kothe dual of the weighted Orlicz space (L),. Since
(Ew) = w - (E')y with equal norms, where E’ means the Kothe dual of E, it is natural
to introduce for a general symmetric space E, not only for Kothe duals, the “class” Mg,
defined by

Mg, ={fcL’(I): ffcw-E,} ={f € L°%I): f*/w € E,}.

This class is closed under scalar multiplication but not necessarily by sums, hence it
may even not be a linear subspace of L°(I). It may be equipped with a gauge 1l Mg =
| f*/wl| g, , which is positively homogeneous, faithful, monotone and symmetric. In section
4 we prove that if the weight w is regular then the class Mg, is a linear subspace of L(I)
and its gauge is equivalent to a norm. The proof of this latter result is based on an
optimization formula for the gauge which is of interest by itself, namely

1/ llag,., = nf{[|f/v]le, : v = 0,v" = w,suppv > supp f}.

A similar formula was proved in the setting of Orlicz spaces and modulars, in our article
[12]. The proof depended on a certain inequality for rearrangements and weights [12,
Proposition 2.1], that cannot have any equivalent form in the present setting. Here this
argument is replaced by a completely new one, namely a submajorization formula for
rearrangements and weights, which is stated and proved in section 3 (see Theorem 3.1).

Although the class Mg ,, may not be a vector space and its gauge may not be convex,
its Kothe dual space can be defined as the domain of finiteness of the dual function norm
LO(I) — [0, 4+00],

T — { [1ssldm g € M. Nl < 1},

which is an ideal in L°(I) normed by the above function norm, and a Banach function
space with Fatou property.

The next step, performed in section 5, is to show that the Koéthe dual of Mg ,, coincides
isometrically with the Lorentz space Ag,,, where E’ is the Kothe dual space of E. The
proof of this fact is very similar to that given in the setting of Orlicz-Lorentz spaces in
[12]. As a corollary we obtain that if the weight w is regular, and E has Fatou property,
then the Kéthe dual to Ag ,, is equal as a set to Mg ,,, with equivalence of their respective
norm and gauge.
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In section 6 we introduce the class Qg ,, consisting of all elements of L°(I) which are
submajorized by some element of Mg ,,. It is easy to verify that Qg ., is an ideal in L9(1),
which is clearly hereditary by submajorization and contains Mg ,,. The formula

(0.1) IfllQe.. = nf{llgllary, : f < g},

where the symbol < denotes the Hardy-Littlewood submajorization, defines a very natural
gauge on (), which turns out to be a norm. Equipped with this norm, Qg,, is a fully
symmetric Banach function space, the smallest one containing Mg ,,. Moreover its Kothe
dual space coincides isometrically with Ags .

If E has Fatou property one may exchange the roles of E and E’, thus (Qg' w) = Agw,
and (Agw) = (Qgw)”. For deriving our final duality result that (Ag,) = Qprw, we
need to know that Qg ,, has Fatou property, and thus equals to its second Kothe dual.
This is shown in section 6. A general proof of the latter fact does not seem easy without
knowledge of a minimizer g for the right hand side of the equation (0.1) defining the Qg .,
norm of an element f. In fact Halperin’s level function f© of the decreasing rearrangement
f* is such a minimizer, in other words we prove that || f|qy., = 1170 azyy -

At this point we should remark that the path followed here differs from that in [12],
where the spaces (), ., were not introduced. Instead we initiated there another scale of
spaces P, ., the analogue of which we define and discuss now.

In section 7 we define the class Pg ,, consisting of the union of all classes Mg, for all
positive decreasing weights v submajorized by w. This class is equipped with the gauge

11l g = L flars, 2 0,0 <0 < wh.

Contrary to the case of Orlicz-Lorentz spaces, we did not find direct evidence that these
classes are linear and these gauges are norms. In the present paper this fact is proven
indirectly, at least if £/ has Fatou property, by showing that Pg ., = @£, with equality
of gauges.

Finally we obtain three different formulas of the norm in the dual Kothe space to Lorentz
space Ag . In fact we have that for f € (Agw),

02) Ifllap,y = nf{llglar, , - f < g} = mf{l[ fllar, , v < w0 >0,01} =l -

Let us mention that the expression of the dual norm on (Ag,,)" given in terms of the
level function by equation (0.2) is implicit in Sinnamon’s work [22] (see Theorem 2.2 and
Corollary 2.4 there), as it appears clearly once the relationship between Sinnamon’s level
functions and Halperin’s ones has been elucidated like in [4, p. 64]. Our methods however
are different and the two infimal expressions in (0.2) seem to be new.

If E = L, is an Orlicz space then Ag,, is an Orlicz-Lorentz space Ay, [11, 12], and we
obtain that the norm in its dual space is expressed in three different ways following from
equalities (0.2). But in section 8.2 we consider L,(J) as a modular function space [16],
equipped with its natural convex modular

1,(f) = /J o(1f]) dm.

Then the Orlicz-Lorentz space A, ,, inherits of a modular structure defined by the convex
modular ®,(f) = [; ¢(f*)wdm, while the class M, ,, is equipped with the (non-convex)

modular My, (f) == [; ¢ (%) wdm. Set
P(f) = inf{My(f) : v <w,v > 0,v ]} and Q(f) = inf{My(g) : f < g}.

These formulas define convex modulars on L°, the associated modular spaces of which
coincide with the space P, = Q. The modular P was introduced in [12] and further
studied in [10], where it was proved that P(f) = M, (f°) under the additional hypothesis
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that ¢ is an N-function. In section 8.2 we show that Q(f) = My(f°) (without any
hypothesis on ). Combined with the preceding result of [10] we obtain that Q(f) =
P(f) = My(f°) if  is an N-function.

At the end of section 2 for generalized Lorentz spaces, as well as in the final section 9
for dual spaces, we discuss a number of examples where the space E is more specified. In
particular if F is itself a classical Lorentz space it turns out that Ag,, is another Lorentz
space.

1. PRELIMINARIES

Let 1 be a measure defined on a o-algebra A of subsets of Q and L%(€, A, ) be the set of
all classes of p-measurable real valued functions on €2, modulo equality almost everywhere,
and let LY (€2, A, 1) be the cone of all non-negative functions from L°(Q, A, n). Since in
this article Q2 will typically be an interval of the real line and p a measure equivalent
to the Lebesgue measure m, there will be no ambiguity in the shorter notation L°(Q),
where A will be implicitly the algebra of Lebesgue-measurable sets. Similarly the space
of bounded measurable functions will be unambiguously denoted by L. (€2). As for the
spaces L,(€, A, 1), 1 < p < oo, they depend on p and should be denoted by L,(€2, ), or
simply L,(I) when  is an interval I and p is the Lebesgue measure. When there is no
ambiguity, the usual symbols L, and L., stand for the spaces of p-integrable functions
and essentially bounded functions on €2, respectively. Their norms are denoted by || f|l,
for f € L, and || f||« for f € Lo.

A subset S of LY(Q) is called solid if for any f € L°(Q) and g € S with |f| < |g| a.e.
we have f € S. An ideal in L°(Q) is a solid linear subspace. A Banach function space
E over (9, A, p), is an ideal in L%(Q), equipped with a monotone norm | - ||z, that is
Iflle < |lgllg whenever |f| < |g| a.e., f,g € E, complete with respect to this norm, and
with full support (no element in Ly, except 0, is disjoint from all elements in F). The
Banach function space E satisfies the Fatou property whenever for any f € L°(Q), f, € E
such that f, 1 f a.e. and sup,, ||fn||g < oo it follows that f € E and || fullg T ||fllz. We
say that E is order continuous whenever for every sequence (f,) C E with f, | 0 a.e. we
have || fn||z {4 0.

For any f € L°(€), we will use the notation {f > s} for the set {t € Q : f(t) > s}, where
the symbol ”>" can be replaced by <, < or >. Throughout the whole paper the terms
increasing or decreasing are reserved for non-decreasing or non-increasing, respectively.
Given f € L%(Q), the distribution of f with respect to p is the function d’;(s) = u{l|f] > s},
s > 0, and its decreasing rearrangement f*#(t) = inf{s > 0 : d}(s) < t}, t € [0, u(2)).
Given two measure spaces (£, A;, i1;), i = 1,2, we say that f; € L%(;) are equimeasurable
if dii! (s) = dZ(s), s > 0, which equivalently means that """ = f,"*%.

A Banach function space E over (2,4, u) is called a symmetric space whenever || f||g =
llg|| g for every equimeasurable functions f,g € E. Recall that the fundamental function
of a symmetric space E is ¢g(t) = ||xallg, u(4) = t, t € [0,u(2)). We say that the
support of the symmetric space F is the entire set 2 whenever x4 € F for any A € A with
u(A) < oo.

The Hardy-Littlewood order f <, g for locally integrable f,g € L(Q2) is defined by
the inequality [} f**dm < [ g** dm for every z € (0,1(€2)). If @ = (0,a), a < oo, and
p = m one writes simply f < g. Clearly f <, g if and only if f*# < g*#. Recall that
(f+g)"F < f5F 4 g~*. We call E a fully symmetric space if E is symmetric and if for
any f € L%(Q) and g € E with f <, g we have that f € E and || f||g < ||g] &-
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The Kothe dual space E’ of a Banach function space F is the collection of all measurable
functions f € L%(Q) such that

1l = sup { [ sl ol < 1} < o0,

The space E’ equipped with the norm ||-|| g/ is a complete Banach function space satisfying
the Fatou property. If F is order continuous then the dual space E* equals the K&the
dual F’, in the sense that the only functionals in E* are the maps f — fQ fgdu, g € E'.
If in addition E is a symmetric space then E’ is fully symmetric, and

1(€2) e s
1l = sup /0 Forgdm : (gls < 1.

For the theory of Banach function and symmetric spaces we refer to the excellent books
[1, 13, 23].

Given f,g € L°(Q) denote f A g = min{f, g} a.e., f Vg = max{f,g} ae., fr = fVO
a.e. and f_ = —f V0 a.e.. By m denote always the Lebesgue measure on subsets of real
numbers R. Recall that for f € L; + Loo(Q2), x € (0, u(£2)),

(L.1) / frttdm = inf{|lgllL + 2|kl : g € L1,h € Loo, f = g+ h}
0

~ inf [/Q<|f| ) dt Am]

A>0

(see e.g. Theorem 6.2 in [1, Ch. 2] and its proof; Exercise 1 on p. 87). It is well known
(cf. Proposition 1.8, p.43, [1]) that for any 0 < p < oo,

n(Q)
/ P du = / (F)P dm,
Q 0

in which formula we can replace |f|P by ¢(|f|) where ¢ : Ry — R, is any increasing
continuous function.

Let I = (0,a), where 0 < a < oo, and L = L°(I) be the space of all real valued Lebesgue
measurable functions on I. If @ = I and g = m then the distribution and decreasing
rearrangement of a measurable function f are denoted by d; and f*, respectively. The
support of f is denoted by supp f.

Let us recall a useful connection between a measurable function and its decreasing re-
arrangement. Let f be a measurable function on I and f* be its decreasing rearrangement.

Proposition 1.1.

(i) [1, Ryff’s Theorem 7.5] If a < oo, or if supp f has finite measure, there exists an
onto and measure preserving transformation T : I — I, that is T is measurable and
m(771(A)) = m(A) for each measurable subset of I, such that |f| = f* o .

(ii) [1, Corollary 7.6] If supp f has infinite measure, and lim;_, o f*(t) = 0, then such a
measure preserving transformation T exists but only from supp f onto the support
of f*. The equation |f|(t) = f* o7(t) is valid for t € supp f.

We shall need to consider a third case that we settle as follows.

Lemma 1.2. Let I = (0,00) and f be a measurable function in I such that limy_,o f*(t) =
a > 0. Then for each € > 0 there exists an onto and measure preserving transformation
T7:I — I such that |f| < (1+¢)ffor.

Proof. Set f = |f| V (1 + €)a. Note that (f)* = f*V (1 +e)a < (1 +¢)f*. Since
m{|f] > (1 4+ ¢)a} < oo, by Ryff’s theorem we may find an onto measure preserving
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transformation 7 : I — I such that (|f| — (1 +€)a)+ = (f* — (1 +€)a)4 o 7. Adding the
constant (1 + ¢)a to both sides yields f = (f)* o 7. Then

Ifl<f=(f)or<(1+e)fror. 0

We will assume throughout the paper that w : I — (0, 00) is a decreasing positive weight
function. Then dw = wdm is a measure on I such that w(A) = [, wdm for Lebesgue
measurable subsets A C I. The symbols dy and " will be reserved for the distribution
and decreasing rearrangement of f respectively, with respect to the measure w. Define

t 00
W(t):/owdm, tel, W(oo):/o wdm if T =(0,00).

Let further b = w(I) = W(a) € (0,+o0c] and J = (0,b). The interval J will be always
equipped with the Lebesgue measure m. It may happen that ¢ = co and b < oo if w is
integrable on I, or that a < co and b = oo if w is not integrable near 0. If the weight w is
integrable near 0, it is integrable on any finite interval, and then clearly W (t) < oo for all
t € I. We say that the weight w is regular if W (t) < Ctw(t) for some C' > 1 and all t € I.

Throughout the paper the symbol E will always stand for a fully symmetric Banach
function space contained in LY(.J) with its support equal to .J.

2. LORENTZ SPACES Afg 4,

2.1. Spaces E,. Given a fully symmetric space £ C L°(J), let E, be the subset of
LY = L°(I) and || - ||, the functional on E,, such that

EBy={fel’:f**eE}, |flp,="lz f€Eu
The space E,, is a fully symmetric space on I for the measure w. Note that if f € L°(T)
then f** € LO(J). If E = Ly(J), 1 < p < oo, then E,, = (L,),, is traditionally called a
weighted L, space on I, which is not symmetric with respect to the measure m. However
this is an ordinary Ly-space on (/,w) in the sense that for f € E,, = (Lp),, we have [1,
Proposition 1.8, p.43]

[ reran= [ sryean = [\ras= [ 157,

so that [|fll(z,). = (f; | f|Pwdm)'/P. Clearly it is symmetric with respect to the measure
w.
Let ¢ : [0,00) — [0, 00) be an Orlicz function, that is ¢(0) = 0, ¢ is convex and positive
on (0,00). Then for f € L°(J) define the Orlicz modular as

1,(f) = /J (1f]) dim,

and the Orlicz space Ly(J) [1] as a collection of f € L°(J) such that for some A > 0,
I (|f|/A) < oo. It is a Banach fully symmetric space equipped with either of the norms,
the Luxemburg norm ||f[l, = inf{\ > 0 : I,(|f|/A) < 1} or the Orlicz norm || f[|, =
infi~ot(1 + I,(f/t)). Analogously as for L,-spaces, if E = L,(J) then Ey, = (Ly)w is a
weighted Orlicz space symmetric with respect to the measure w, associated with the Orlicz
modular

[ otreeyam= [ sy wan.

I

Remark 2.1. The space E,, over (I,w) where dw = wdm can be called a generalized
weighted space induced by the space E over (J,m) and the weight w on I. In general, E,,
is a Banach function space in L°(I) which is non symmetric with respect to the Lebesgue
measure but isometrically order isomorphic to E on (J,m).
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This is a simple consequence of a general theorem of Caratheodory on isomorphisms of
separable atomless measure algebras [20, Chap. 15, Theorem 4], but a far more elementary
proof may be given in the present case.

Indeed, there exists a bijective, bimeasurable map S : I — J which is measure preserving
ie. m(S(A)) = w(A) for all measurable A C I. This result follows from general facts
in measure theory, but such a map will be explicitly exhibited below. Since for every
f € L%I) and t > 0 we have {|f o S71| >t} = S{|f| >t} we see that

(2.1) dos-1(t) = m(|f o ST > t) = m(S{|f| > t}) = w(| f| > t) = d} (t).

Hence (f o S~1)* = f*%. Thus f € E,, if and only if fo S~ € E and ||f||g, = |f*“|r =
1(foS ™|z =|foS |z Themap T :LOI)— L°(J): f — foS~!is a linear order
isomorphism, so that F,, = T~!(E) must be an ideal of L°(I). The restriction of T to E,,
is the wished Banach lattice isometry.

Now for the sake of constructing a map S as requested in the preceding paragraph, we
consider two cases.

a) If W < oo on I, then W is a bijective, bimeasurable, measure preserving map from
(I,w) onto (J,m), so that we may set S = W.

Indeed, since w > 0 is integrable on every finite segment (0,z) C I, the map W is
a homeomorphism from I onto W(I) = J. The pushforward measure of w by W is
wo W~ =m, the Lebesgue measure, as can be seen easily on intervals [x,y] C I,

. . . w(y)
wW™([z,y])) = w([W ™ (z), W (y)]) :/ wdm =y -z =m([z,y]),
W1 (z)

it follows that m(W (A)) = w(A) for all measurable A C I.

b) If W(t) = oo for t > 0 we choose o € I = (0,a), and set W, (t) = fiwdm for
t € I. Letting c = f;wdm, and K = (—o0,c), W, is a bijective, bimeasurable, measure
preserving map from (I, w) onto (K, m). It is then a standard exercise to exhibit a bijective,
bimeasurable, measure preserving map U from (K, m) onto (J, m), and we set S = UoW,,.

Since the case W < oo is the main one considered in this article, except in sections 3 and
4, we collect the preceding information relative to this case in the following proposition.

Proposition 2.2. Assume that W < oo on I. Then
(i) Every f € L°(I) is equimeasurable with respect to w to f o W=t € L°(J) with
respect to m. Consequently,
(foW ™) = fov.
(i) f € L°(I) belongs to E,, if and only if f o W~! belongs to F, and then

£z, = ILf o W&

Consequently, E,, is an ideal in L°(I), it is fully symmetric for the measure dw = wdm,
and the map f + f o W~! induces an order isometry from E,, onto E.

2.2. Generalized Lorentz spaces. Define now the Lorentz space Ag, as the sym-
metrization of E,, [12], that is

Apw=A{f € L°(): f* € Eu}s | fllap, = IIF* 15

If W(t) = oo for t > 0, then J = (0,00) and if f is a decreasing nonnegative function in
LO(I), then df = 00 X[o,f(04) and f** = f(04) - xs. It follows that Ap. = {0} except
if £ contains the function 1, in which case Ag , = Loo(1).

For the rest of this section we disregard the above degenerate case and assume that
W < ooon I.
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For the Orlicz space £ = L,(J), Ag, is the Orlicz-Lorentz space Ay ., defined in [12],
that is || flla,., = I/, - () =7, 1 <p< oo, then Ay = Apuw (3, 6].

If E = Loo(J) then By = Loo(I) = Ag .

Other examples are given at the end of the present section.

Proposition 2.3. Let W < oo on 1.
(i) The support of Ap . is I.
(ii) For all f € Ag .,
-1
[fllag. = 1f e W™ e

(iii) The functional ||-||ay.,, is @ norm, and the Lorentz space A, is a fully symmetric
Banach space. If E has Fatou property then Ag., has also this property. If E is
order continuous then Ag,, is also order continuous.

Proof. (i) Let A C I with m(A) < co. Then W(m(A)) < oo and

,w

IXAllAg..w = IX©map B0 = IXGomanlE = IXOW @) B < 00
since by assumption the support of E is J.
(ii) In view of w > 0 on I, the function W : I — J is a strictly increasing homeomor-

phism. By Proposition 2.2 the functions f for w and f o W~ for m are equimeasurable,
that is df = dyoy-1. So [ = (fo W~1)* and hence

1Flapw = 1 lBw = 1)l = F o W[5
(iii) For f € L1 + L and g € Ag,, with f < g, and « € J we have

z W=1(z) W—1(z) x
/ f*OW_ldm:/ f*wdmg/ g*wdm:/ g oW tdm
0 0 0 0

by Hardy’s inequality [1, Proposition 3.6, Ch.2]. Hence f* o W~! < g* o W~! € E and so
by the assumption of full symmetry of E and by (ii) we get f*oW~! € E, hence f € Ag ),
and
1f A = 17 e W HE < llg o WHE = llgllag,,-

Now if f,g € Ag. we have f*,¢g* € E,, hence f* + ¢g* € E,,, which means that f* +¢g* €
Ag,,. Moreover |[f* + g*(|ag, = I/* + 9" e, < If* 0 + 97E0 = 1/ I8, + 97 |Ag,-
Then by the well known submajorization (f + ¢)* < f* 4+ g* [1, Theorem 3.4], it follows
from the preceding observation that f + g € Ag,, and

If+9lap. W+ Mg, <N lapw + 19" ag W = 1 lag., +19lag.,

Therefore | - |[A,, is a fully symmetric norm.

The normed function space Ag ,, is complete since it is a symmetrization of the complete
space Fy, [12, Lemma 1.4].

Suppose now that E has the Fatou property. Take f,, f € L°(I), f, T f a.e., and
sup || fullag., < oo. Then froW™' 1 f*o W™t ae., and by (i) sup|/fi c Wl =
sup || fnllap., < oo. Now by the Fatou property of £, f* o W™l e Eso f € Agy, and
I fullagw = Ifh oW HE 1 | f* o W Hg =|Ifllag,- The statement on order continuity
of Ag., can be proved analogously. (]

Applications. Proposition 2.3(ii) allows to compute some Lorentz spaces.

Ezample 2.4 (Reiteration). Let wy,wy be two locally integrable decreasing positive weights
on Iy = (0,a1), resp. Iy = (0,Wi(a1)), where Wi(z) = [ widm for x € It, and Wa(x) =
fg wodm for x € Iy. For every symmetric space E on J = (0,b), b = Wa(Wi(ay)), it
holds that AAE,wszl = Ag . with equal norms, where w = (wg o Wh)wy.
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Proof. For f € L°(I;) we have f € Mg, if and only if f* o Wit € Ap ., (I2), that
is if (f* o Wl_l) o W2_1 belongs to E. Setting W = W5 o Wi, W is an increasing concave
function with a derivative defined almost everywhere by W/ = (w9 o Wi)wy =: w, which
is a decreasing weight on I;. Then f € AAE,wQ,uu if and only if f* o W~! € E, that is
f € Agw. The fact that both norms coincide is straightforward. g

For definition of the Marcinkiewicz space My see section 6.

Ezample 2.5 (Marcinkiewicz-Lorentz spaces). Let Iy, I2, w1, w2 be as in Example 2.4 and
My, (I2) be the Marcinkiewicz space associated with the weight wo. Then the Lorentz space
Ay, wy consists of f € LO(Iy) such that

1

= sup ———— w1 dm < oo.
1= sup ggprs [

Proof. Clearly f € Ay, w, if and only if f*o W' € My, (), that is

1
F* oWy, = sup
H v, ter, Wa(t)

The result follows by performing first the substitution for W, 1(s) in the integral, then
the change ¢ = Wi (z) in the supremum. O

t
/ frow(s)ds < 0.
0

Recall if (E, || - ||g) and (F,| - ||F) are two fully symmetric Banach function spaces over
the same interval J, then the Banach function spaces £ N F and E + F' equipped with
the standard norms || fl|pnr = max{[|f||e, [ fllr} and || fllp+r = inf{||fille + [l f2llF : f =
fi+ fo, fi € E, fo € F} respectively, are also fully symmetric. This is evident for the
intersection space F N F, while for the sum space E 4+ F' it is an immediate consequence
of the following decomposition property for the submajorization.

Fact 2.6. If f,g1,92 € Lg_ are locally integrable with f < g1 + g2 then there is a decompo-
sition f = f1 + fo into non-negative functions such that fi < g1 and fa < ga.

This fact is an easy consequence of the well known characterization of submajorization
by Calderén, namely that f < g if and only if there exists a substochastic linear operator
T such that |f| = T'|g| ([13, Theorem II-3.4], or [1, Chap.3, Proposition 2.4 and Theorem
2.10)).

In the following example we shall use a monotone version of Fact 2.6, that is based
on a monotone refinement of Calderén’s theorem by Bennett and Sharpley [2, Theorem
5], [1, Remark 7.6, Theorem 7.7] (see also [14, §3] for a different proof), i.e. if f,g are
non-negative locally integrable and decreasing functions, such that f < g then f = Tg for
some positive substochastic operator T which preserves the cone of decreasing non-negative
functions. Thus we obtain.

Fact 2.7. If f,q1,92 are non-negative decreasing locally integrable functions with f <
g1 + g2 then there is a decomposition f = fi + f2 into non-negative decreasing functions
such that fi1 < g1, fa < go.

Ezample 2.8 (Intersections and sums). Let E, F be fully symmetric Banach function spaces
defined on the same interval J, and w a locally integrable decreasing positive weight on I
with W(I) = J. Then Apnpw = Apw N Arw and Apy o = Apw + Apy with equality of
norms.

Proof. The formula for the Lorentz space of an intersection is straightforward, so we treat
only the sum case.
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From E C E + F, with norm-decreasing inclusion it follows immediately that Ag, C
AE4+F,w, with norm-decreasing inclusion. Similarly A, C Apir.w, and thus Ag,, +
Arw C Ag4+F . Moreover this inclusion is norm-decreasing.

As for the converse inclusion, let f € Apip,. We have f* o W™! € E + F, hence
for any ¢ > 0 there are g € E,h € F such that f*o W=! = g+ h and ||g||z + |h|Fr <
(1+¢)||f*oW Y| gyrr. Then f*oW =1 < g*+h*, and by of Fact 2.7 there exist decreasing
non-negative functions g, hy such that

g1 <g", hy <h* and f* oW1 =g+ h1.

We have then g1 € E and hy € F. Setting k = gi1oW,l = hioW, we have f* = k4. Since
k, 1 are non-negative decreasing and koW ! € E, loW~! € F, we have k € Agw, 1 € Apy
with [|k|lag,, = llgille < llglle, [Uap, = [IPille < [|2[|lF. It follows f € Apw + Apw with

1 Agw+tre < lglle +12lF < @+ f oW Hprr = L+l flapr

3. AN INEQUALITY FOR REARRANGEMENTS OF FUNCTIONS AND WEIGHTS

Let v € LY = L%(I), I = (0,a). It defines a measure dv = vdm on I in the usual
way by setting v(A) = fA vdm, where A C I is Lebesgue measurable. If f € LY then by
Y we denote the decreasing rearrangement of f with respect to the measure v. This
is a decreasing function on the interval J, := (0,v(I)). Clearly f = x{y>0 f v-a.e., so
I = (Xqu>01f)™". If v has a rearrangement v* such that v* = w, then we have

(3.1) V(I)Z/IU:/IU*:/Iw:w(I):b,

and so J, = (0,b) = J does not depend on v in that case. If E is a symmetric space on
J then FE, is defined as in the case of a decreasing weight by f € E, <— f" € F,
where f*" is the decreasing rearrangement of | f| relative to the measure v. Then again,
FE, is a symmetric Banach function space on I equipped with the measure v, which is
order-isometric to F.

If supp f C supp v then we agree that (f/v)(t) =0 for ¢t ¢ supp f.

Theorem 3.1. Let v € LQL be such that v* = w. Assume f € L1 + Loo(I) with supp f C

suppv. Then
w v

In particular if f/v € E, then f*/w € E,, and ||f*/w| g, < |f/v|E&,-
We prove first two lemmas.
Lemma 3.2. For any f,g € LY we have (f Ag)* < f* A g*.

Proof. First notice that m({f* > s} N {g* > s}) = m{f* > s} Am{g* > s}, s > 0, since
the sets {f* > s} and {¢g* > s} are two intervals with the same lower bound 0. Thus we
have

ding(s) =m{f Ng> st =m{f>stn{g>s}
<m{f >s} Am{g> s} =m{f* > s} Am{g" > s}
=m({f" >s}N{g" > s}) =m{f" Ag" > s} = dppg-(5),
which implies (f A g)* < f* A g*. O
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Lemma 3.3. For every f,g € Lg such that f*,g* < oo, it holds

[ =i < [(7 - g,
Proof. We assume first that 0 < f is bounded. Note that
(f=9+=Ff—-frg (FF=g)+=f—fAg"
Then by Lemma 3.2 we have for every t € I,

/(f — ) edm = / — g dm</0t(f*—(ng)*))dm

But since f* < (f = fAg)*+ (f Ag)* and fo fAg)* < oo by boundedness of f,

[ =rgan= [ pam- [¢rgran< [ - rngram= [15-))dm

Therefore for every t € I = (0, a),

t t
[ =gres [-9.
0 0
Letting t 1 a we obtain

[ =awans [ -gdran= [ -9

If 0 < f is not bounded, letting f, = fAn, n € N, we get fi 1 f* a.e. and thus

(fr—=g")+ 1 (f*—g")+ ae. aswell as (fn, —g)+ T (f — g9)+ a.e.. Now by the monotone
convergence theorem,

Jr =g ywdm= tim (g = g)edm < tim [ =) dm= [ (7 =g)sdm

g

Remark 3.4. Using Lemma 3.2 and Lorentz-Shimogaki inequality [1, Chapter 3, Theorem
7.4] for rearrangements, we obtain in fact the more powerful result

(ff=9 )+ =< (f—9)+
Indeed since f > f A g, Lorentz-Shimogaki’s theorem gives f* — (f Ag)* < f — f A g and
(=9 ) =" Ng <[ =(frng) < f=Frhg=(f—9)+
However Lemma 3.3, which requires only quite elementary ingredients in its proof, will
suffice for our purpose.

Proof of Theorem 3.1. By Lemma 3.3, for every A > 0 we have
/<f—)\> wdm:/(f*—)\w)+dm: ff =)L dm
I\w + I

(
< [an-swyam= [ (2 )

Now in view of the equality (1.1), for any = € J,

/m <f*>*7w dm = inf [/ <f*)\) wdm+)\x}
0 w A>0 I w +
, /] AN
<pp[[ (7 0) vamead] = [1(2) o

and the proof is completed. O
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Proposition 3.5. Let f € L° have a finite decreasing rearrangement f*. If I is a finite
interval (0,a), or I = (0,00) with limy_, f*(t) = 0, then there exists v € LY such that

v* ' =w, suppv Dsuppf and <f) = <f> '

w v

If I = (0,00) and tlim f*(t) > 0 then for every e > 0 there exists 0 < v € L° such that
— 00

v =w and <f>*v <(l1+¢) <f*> *ﬂﬂ'
v w

Proof. The proof will make use of the following fact.

(a) If 7 : I — I is a measure preserving transformation, w is a weight on I and v = wor,
then clearly v* = w. Moreover for every h € LY we have h** = (hoT)*".

Indeed for every A > 0, and g € LY we have {goT > A} = (go7) ' (A, 00) = (7710
g H(\,00) =77 ({g > A}). Thus got and g are equimeasurable for the measure m, and
it follows that [, go7dm = [, gdm. Setting now g = x>y w, we get

w({h > A}) = /[ Xgpony Wi, = /I (e © 7) (wo ) dm

- / N(rororyodm = v({ho T > A}),

hence h for w and h o T for v are equimeasurable, and so h*" = (hoT)"".

Let us come back now to the proof of Proposition 3.5 itself. We consider several cases.

If the support of f has finite measure, then by Proposition 1.1 (i), there exists a measure
preserving onto transformation 7 : I — I such that |f|(t) = f* o 7(¢), t € I. Then setting
v =worT, we have v > 0, v* = w, and by (a), f*/w for dw = wdm and (f*/w) o 7 for
dv = vdm are equimeasurable. But (f*/w)or = (f*o7)/(woT) = |f|/v, and the desired
equality of rearrangements follows.

If now the support of f has infinite measure and lim;_,, f*(¢) = 0, by Proposition 1.1
(ii) there exists a measure preserving transformation 7 from the support of f onto the
support of f*, such that |f|(t) = f* o7(t) for t € supp f. Define v(t) = w o 7(t) for ¢
in the support of f and v(t) = 0 otherwise. By the assuption that the support f has
infinite measure we have that supp f* = (0, 00). Then we have supp v = supp f and again
v* = w. In fact the conclusions of (a) remain valid when defining h o 7(t) = 0 for any
t & supp f = suppwv. Thus the conclusion (f*/w)*" = (f/v)*" remains valid provided we
define (f/v)(t) =0 for t & supp f.

Finally if I = (0,00) and lim;_,o f*(¢) > 0, then by Lemma 1.2 for every £ > 0 there
exists a measure preserving onto transformation 7 : I — I such that |f| < (1+¢) f*o .
Defining the weight v = w o 7, we have v > 0 on I. By (a), v* = w and

(1)< (00" s o(£2) o 2]

Given 0 < v € LY(I), let us introduce some notation. Set

t
V(t) = / vdm and assume V' =w, V(t)<oo, tel.
0

Then V is an increasing, not necessarily strictly increasing, and continuous function from
I onto J = (0,b) since V(a) = [fv*dm = [Jwdm = W(a) = b. Fort € J, the set
V~Ht} is a closed subinterval of I. Let

N, ={te J:m(V{t}) >0}
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Clearly the set N, is finite or countable. If ¢ € N, then v vanishes a.e. on V~1{t}. If
t & N, then V~1(t) is defined unambiguously as the unique element in V=1{t}.
For f € LY with supp f C suppwv define f o V=1 by

0 if t € Ny,

(3:2) fovTin = {f(v—l(t)) it e\ N,

With the convention (3.2) above the submajorization result of Theorem 3.1 as well as
Proposition 3.5 may be restated in a more transparent way when the weight w is such
that W(t) < oo for all ¢t € I.

Corollary 3.6. If W < oo on I, then for any v € L9F(I) with v* = w, and every
f € L1+ Loo(I) with supp f C suppv we have

L o I/I/_1 < i

w v
Moreover if I = (0,a) with a < oo orif I = (0,00) and lim;_o f*(t) = 0, then there exists
v E L(jr with supp f C suppv such that v* = w and

(Gew) = (o)
w v

If I = (0,00) and tlim f*(t) > 0 then for every e > 0 there exists v > 0 on I such that
—00

(fr) zwoa (Eon)

Proof. Let N,, = {t,} be an enumeration of N, and set A = J,, V"'{t,}. Then A C I
and v(A) = [,vdm=0.If t ¢ Athen (foV 1) oV ()= f(t),andso (foV oV =f
v-a.e. on I. Moreover for any h € Lg and ¢t > 0 by the change of variable formula it holds

oV~ L

V¥ =w and

33 m{h>t) = /X(t,oo) o hdm = /X(m) ohoVdy = v{hoV > t}.
I I
It follows that h for m and h o V for v are equimeasurable. In particular
m{|floV >t} =v{(|floV ) oV >t} =v{|f] > t},

and so f o V™! for m and f for v are equimeasurable. Hence % o V! for m and % for v
are equimeasurable, and so
* *,0
(G =)
v v

By a similar argument {7* oW1 for m and f—uj for w are equimeasurable as well, and hence

* * %\ *,W
(o) = (%)
w w
Now the conclusion follows directly from Theorem 3.1 and Proposition 3.5. U

Remark 3.7. Let 0 < v € LO(I) with V(t) < oo for all t € I, v be the measure vdm and
Jy = (0,v(I)). Let E be a symmetric space on J,. Then for every h € E, hoV € E, and
the map T : h — h oV is a surjective order isometry from E onto E,.

Proof. Indeed by (3.3), h for m and h o V for v are equimeasurable, thus 7' embeds
isometrically £ into E,. Moreover for every f € E, we have f = T(f o V1), thus T is
surjective. Here f o V! is defined as (3.2) where J is replaced by J,. O
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4. SPACES Mg 4,

In this section we define a class Mg, of functions contained in L° = LO(I) which will
be used later for investigating the Kothe dual of the Lorentz space Ag .

4.1. Definition and properties. Let the class Mg, and the gauge on Mg ,, be defined

by
_ ﬁ *, W
Euw w

Although the class Mg ,, does not need to be even linear it has several properties
analogous to those in symmetric spaces, so a similar terminology is used here as may be
seen below.

f*

Mg.w = {f eV EEw} and || fllarg., = Hf
w w

E

Proposition 4.1. (i) The class Mg, is a solid symmetric subset of L°, that is
I fllneg = N f In1g,, and if f € L% g € Mg, and |f| < |g| a.e. then f € Mg,
and |t < gl

(ii) For all x € I, X(0,2) € MEw. Consequently the support of Mg, is equal to the
entire interval 1.
(i) The fundamental function ¢ury ,(*) = | X(0,2)|Mp.., T € I, verifies

Gt (7) < 205(1 A D) <x + w(lx)) .

(iv) If W < o0 on I, then

fe Mg, ffowfleE and HfHMEw:‘fOWl
’ w

w

E

(v) If E has the Fatou property then the class Mg, has this property, that is for every
feLl 0< fr € Mpy with fu 1 f a.e. and sup, || follrg,, = K < 0o we have
feMpw and || fl|mg,, = K.

Proof. (i) It is clear by symmetry and ideal properties of E,,.
(ii) For every x € I we have

1 1
/ dw:/ —wdm = x,
0o w 0o w

thus the function h, = %X(O,m) € L1(I,w). On the other hand h,; < 1/w(x) a.e. equiva-
lently w-a.e. on I, and so it is bounded w-a.e. on I. Hence h, € Lo (I,w). Consequently
hy € L1 N Loo(I,w). Therefore hy™ € Ly N Loo(J,m). Indeed, it is clear that

(4.1) 175 oo = 1/w(z).

We also have that m{hy" >t} = w{h, > t}, t > 0, in view of equimeasurability of hy
with respect to m on J and h, with respect to w on I. Hence

(4.2) IRzl = / BE dim — / m{h > ¢} dm(t)
J 0

:/Ooow{hm >t} dm(t) :/Ihxwdm::v.

It is well known [1, 13] that L1 N Leo(J,m) C E, and so ha' = (x(0,2)/w)*" € E. The
latter means that x (9 ,) € Mg for every x € I. Thus the support of the space Mg, is
the entire interval I.
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(iii) Since F is a symmetric Banach function space it is well known that || f|lg <
ClflltinLes f € E, where C = 2pg(1 Ab) (see [13], Ch. II, Theorem 4.1 and its proof).
From (4.1) and (4.2), ||h"||L,npe. < @+ 1/w(z). Thus

1
1 (0) = el = W57l < 201 00) (24 s ).
(iv) This condition follows directly from Proposition 2.2.

(v) It is immediate by the definition of the space Mg, and the properties of the rear-
rangements. |

From Theorem 3.1, Proposition 3.5 and Corollary 3.6 we obtain directly the next result.

Proposition 4.2. For any f € Mg, we have
. f

£l = mf{HU

with the convention that ||g||g = oo for every g ¢ E, and f(t)/v(t) = 0 whenever f(t) = 0.

Moreover if W < oo on I, then for f € L we have that f € Mg, if and only if
% o V=l € E for some v > 0 with v* = w and suppv D supp f.

cv > 0,0" =w,suppov D suppf}
E,

Remark 4.3. The class Mg, does not need to be either linear or normable. Let E be
an Orlicz space L, then the class Mg, is the class M., considered in [12]. In view of
[12, Proposition 3.4] the class M, ,, may not be linear, while by [12, Proposition 4.14 and
Example 4.15] it may be linear but not normable.

4.2. Normability. Before we prove the main result on normability of the class Mg ,, we
need the following lemma.

Lemma 4.4. Let wy, we be two decreasing positive weights on I such that for some
constant C > 1 it holds that wy < Cwsy a.e.. Then for every function f € L° we have

*,W2 *,W1
(&) e(t)”
wy wy
Consequently, if fI widm = fI wodm = b and E is a fully symmetric space on J = (0,b)

then M., C ey with | fllnsg,, < C1f sty for € Mpu,-

Proof. Setting wy = wy dm, by the well known formula ([1], Ch. 2, Proposition 3.3, [13],
p.64, (2.14)) we get for x € I,

x *,W2
/ <f> dm = sup mdqu = sup / | f| dm,
0 w2 UJQ(A)SQE A W2 w2 (A)SQE A

and a similar equation holds true for w;. Clearly w; < Cws a.e. implies that sup [, [f|dm <
w2(A)<z

sup [, |fldm. Thus
w1 (A)<C

f ) s )

But for C > 1, Cx € (0,a) and a non-negative decreasing function h on (0, a) we have

Cx T T T T
/ hdmg/ hdm+h(x)x(0—1)§/ hdm+(C—1)/ hdm:C'/ hdm,
0 0 0 0 0

and the conclusion follows. O
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Proposition 4.5. Assume that the weight w is regular that is W(t) < Ctw(t) for some
C >1andallt €I. Then Mg, is a vector space and the formula

(4.3) A== inf{z 1fillags,, = Y 1Fil > \f!}
i=1 i=1

defines a lattice norm |||-|| on Mg, such that

(4.4) A< 1 lazg 0 < CHIN-

Consequently the class Mg ,, is a normable vector lattice.

Proof. We will prove that for any finite family f1,..., f, in Mg, we have

<O fill g

MEg =1

(4.5)

where C' is the constant of regularity of w. Then |||-||| defined by (4.3) is a vector lattice
norm on Mg, equivalent to the gauge || f||rp - In fact we will verify (4.4).
We claim that

(4.6) (i} (zn; f)) oW < CZZ”; <£ 0 Vi1>*

for every non negative functions v, ..., v, with supp f; C supp v;, j =w,i=1,...,n,

where V,~ Lare deﬁned as in the proof of Corollary 3.6, since V(¢ fo vidm < f Pordm =
fo wdm = W (t) < oo for all t € I. The statement of the claim then implies the followmg

()] =%

=1
Taking the infimum of every right term with respect to v; with v] = w and supp f; C
suppv; for i = 1,...,n, we get by Proposition 4.2,

((Ee) ),

and consequently in view of Proposition 4.1(iv) we obtain the desired inequality (4.5).
Now in order to finish it is enough to prove claim (4.6), which is equivalent to the
following inequality

‘ (Z?:lfi)*o 1>* - x(‘fﬂo ‘—1>*
(4.7) /0< " W deC;/O oVt dm. zed

For any measurable v > 0 with V(¢ fovdm < oo, t €I, and f € L° such that

supp f C suppuv, by equlmeasurablhty of f/v for dv = vdm and (f/v) o V! for m we
have that (f/v)*Y = ((f/v) o V~1)*. Hence by (1.1) for any x € .J,

S0 S S L . |f]
/0<UOV 1> dm—/o (v) dm—)l\r;%{/f(v—/\>+dl/—l—/\x}

:ir;%{/lﬂﬂ —)\v)+dm+/\x}.

iy
Uz

E

oW1

)

E

5
w
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Thus the righthand side of (4.7) has the following form

(4.8) R(a:)::g/om<‘£‘ov;_l>*dm— A1n>f0 {/Zm Aivi) +dm+2)\x}

The function s — sy is subadditive and non-decreasing on R. Hence a.e. on I,
n n n n
( e Zm-) < (z - Dm) <3051 A
i=1 i=1 i=1 i=1
Thus by (4.8), in view of (1.1) we get for z € J,

R(xz) > inf - Aivi | d Ai
@z, o (5 Ere) a2
inf inf - A i | d A
agg.nwgo[/[( , ZM)+ m et Az

+

\zz o

[/( —)\> vdm + Az
1 v + |
— inf / (Zi:l ) " dm

veconv(vi,...,vn) Jo v

x
= inf
veconv(vi,...,un) Jo

If v € conv(vy,...,v,) we have v = > 7" | ayv; for some a; > 0 with Y " ;| a; = 1. Since by
v = w we have V;(t) < W(t) for every 0 < ¢ < a, with equality V;(a) = lim,_,,- Vi(t) =
W(a) = lim; ,,- W(t), we obtain V(t) = > 7" a;Vi(t) < D% oW (t) = W(t) for t € I
with V(a) = W (a), so that the continuous function V' maps I onto J, and we may define
V=1 as in the proof of Corollary 3.6. We also have v* < > | v} = w, hence

t
Ho* (1) < / vt < W) < Ctw(t), tel
0

by regularity of w. But then for every v € conv(vy,...,v,), letting V. (¢ fo v*, we get
forx € J,

/;()Z?sz\ OV_1>* dm > /z<(2?:1fi)* V*_1>* im
—c/ ( Y1 fi)| W_1>*dm—:L(:v),

where the first inequality results from Corollary 3.6 with v*, V, playing the role of w, W
respectively, and the second one by Lemma 4.4 applied to the weights v* and w. Thus
CR(z) > L(z), and this proves the claim and completes the proof.

O
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5. KOTHE DUALITY OF ME .

The Kothe dual of the class Mg, is defined as for a Banach function space, as the set
of elements f € L° = L°(I) such that

[l atpay = sup { [ Vsl dm g € M. Nl < 1} < ool

The set (Mg,,)" is an ideal in L° on which f — | fll(r15,., ) defines a vector lattice norm.
Equipped with this norm, the space (Mg,,,)" becomes a symmetric Banach function space,
as it may be shown directly; but this will be also a consequence of the next theorem.

Theorem 5.1. If W < oo on I, then the Kothe dual of Mg, equals Agr ., isometrically,
that s || fll(arg.y = 1fllAg ., -

Proof. The proof will be done in several steps.

a) Aprw C (M) and the inclusion is norm-decreasing i.e. | fll(ap.,)y < Iflla,
Indeed it f € Apry and g € Mg, then in view of the assumption W < oo and Proposition
4.1 (iv) we get

(5.1) /|fg|dm</f * dm = /f*gwdm / “ oWl < oW~ >dm

_ _ g*
<|ff oW e T owt| = =1l = 1flag gl
w E Euw ’

which shows that || fll(ap.,) < [ fllag .,

b) Now we will show that for every f € Ap,, we get the equality of the norms
1fllargy = I fllAg - Assume first that 0 < f € Apr,, is decreasing, and so f o wt
also decreasing. Then for any € > 0 we can find a decreasing non-negative function h € £
with ||h||g = 1 and satisfying

1Fllag, —c=lFfo W m—c< /

(foW Hhdm = /f(hoW)wdm.
J I

Setting g = (h o W) w, we have
(5.2) /1 fgdm > flla, , — &,

while g/w = ho W € E,, with |g/w||g, = ||h||lg = 1 by Proposition 2.2. Now since ¢ is
decreasing we have g € Mg, and ||g|rmp,, = |g/wlz, = 1. Then by (5.1) and (5.2) we
get [|fllvgwy = 1flAg .
Let us reduce now the general case when f is not decreasing to the preceding one.
First assume that m(supp f) < oo. Then by Proposition 1.1(i) there exists a measure
preserving and onto transformation 7 on I such that |f| = f* o 7. Let g be chosen to
satisfy (5.2) for f* in place of f. Then

63) [1gor)dm = [(ongor)dn= [ Faam =15 lry, == Iflas, e

and ||g o 7|l s ., = ll9llarg., = 1.

Now let m(supp f) = co. There exists a sequence of functions f,, with m(supp(f,)) < oo
and such that |f,| 1 |f| a.e.. Hence f; 1 f* a.e., and by the Fatou property of Ags,, (see
Proposition 2.3) we get || fallag , T 1flag.,-

Now by (5.3) for each f,, we can find g, > 0 with ||g,||rr,, = 1 and such that

1
[ falondm > 1fallag, = %, men.
I
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Then
1

1t 2 5 [ {folgo > 1 (Ul = 5 ) =l

c¢) By a) and b) we have that Agr,, C (Mg,,)" and this inclusion is isometric, so Agr ,, is
a closed ideal in (Mp,,)’. This ideal is order dense, since it contains the bounded functions
with finite measure supports, and moreover it has the Fatou property. It follows that Ag:
is equal to (Mg,)'. In fact if 0 < f € (Mg,,)" there exists a sequence (f,) C Apr,, with
0 < fo 1 fae. Moreover ||fulla, = lfallarg,.y < Ifll(ap,,)y- Then by the Fatou
property of Apr o, f € A/ . O

The next result is a generalization of [7, Theorem 2(i)].

Corollary 5.2. Let W < oo on I. If E has the Fatou property and w is regular, then
(Aprw) = Mg, as sets with the gauge || - ||my,, equivalent to the norm || - [[(a,, . y-

Proof. 1t is well known that a Banach function lattice F' has the Fatou property if and only
if F' = F" isometrically [15, 23]. The gauge || - |[a,,, is not a norm, but it is equivalent
to a lattice norm on Mg, by Proposition 4.5. Moreover by Proposition 4.1 the class
(MEw, || - |mp.,,) has the Fatou property. Now analogously as in the proof of Theorem 1,
page 470 in [23], or page 30 in [15] one can show that

(Mpw)" = Mg, assets, and |- |(ar, )7 1 equivalent to || - [[arg, -
Then by Theorem 5.1 we get the equality of sets Mg, = (Mgw)” = (Apr ) with
equivalence of || - [[arg,, and [ - |, )
Il
6. SPACES Qg w
In this chapter we introduce a new space related to the class Mg ,,.

6.1. Definition and properties.

Definition 6.1. We denote by Qg the set of elements of L° = L°(I) which are subma-
jorized by elements of Mg ,,. For f € Qg we set
1 llQe... = mf{llgllag,, : f < g}

Given a positive and decreasing weight w on I and assuming that W < oo, recall that
the Marcinkiewicz function space My is defined as

_ 0. '
My = {7 € 2251l =sup 32 L < oo

and the space L + Myy is the set of all functions f € L° such that
11l ary = f{[|2llr + lgllany = fF=h+g, hely, g€ Mw} < oo
The spaces (M, || - ||ary ) and (L1 + Mw, || - |1, +M, ) are fully symmetric spaces [1, 13].

Theorem 6.2. Let w be a weight function such that W < oo on 1.
(i) The class Qg is a solid linear subspace of Ly + My such that

(6.1) [z sarw < ClfllQe. with C<(1AD)/or(1AD).
(ii) The functional || - ||qy.,, i a norm on Qg -
(iii) Qrw equipped with the norm | - ||y, is the smallest fully symmetric Banach

function space containing the class Mg .
(iv) We have (QE,w)" = Mg with equality of norms.
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Proof. (i) If f € Mg, then f*/w € E,. The space E,, is fully symmetric with respect
to the measure dw = wdm on I by Proposition 2.2, so Ey,, < (L1 + Loo)(I,w) with the

embedding constant C' < 5 I(Ale\b) by [13, Ch. II, Theorem 4.1] and the fact that £ and

E,, have the same fundamental function. Since w is positive, the norms in Lo (I,w) and
L (I) are equal. Thus for any € > 0 there exist g € L1(/,w),h € Loo(I,w) such that

frjw=g+hand |lg]lL, 1w + hllee < ClIf*/wlE, +€=ClfllMp,, +€
Then f* = gw + hw, ||gwlly = llgllz, (1.0) and [|hwl[rry, < [[Plloollwl|ary = [|hllco- Hence

1 2y ranw < llgwlly + [[hwllany < llgllz,qw) + [Pl < Clifllag. + 6

which gives || fllz, 4+ < Clflmg, for any f € Mp,,.

Assume now that f € Qg and choose g € Mg, such that f < g and | g[|pp,, < (1+
e)llfllQp.. Since L1+ My is fully symmetric and by the previous paragraph g € L1+ My,
we have f € L1 + My and

1Ly +anw < Ml9llLitany < Cligllarg,, < CA+ )l fllQp..-

Letting then ¢ — 0, we obtain (6.1). It is also clear that Qg is a solid subset in L; + Myy.

(ii) By (6.1) we have that | - ||, is faithful, that is [|f[|g,, = O implies f = 0 a.e..
Since the homogeneous property of || - ||y, is clear, we need only to show the triangle
inequality. For any € > 0 and f1, fo € Qg w, choose g1, g2 € Mg ,, with

fi = gi and [|gillarg,, < A+ fillop., i=1,2
Then
(fitf)<fi+f<9+9.

Since g7 /w € Ey, ¢ = 1,2, and E,, is a linear space, we have (g7 + ¢g5)/w € E,, and so
97 + 95 € Mpy. Thus fi + fo € Qg . Moreover, since E,, is a normed space we get

g1 + 92llasp., = (91 + 92)/wlE, < llgi/wlE, +1l92/wllE, = l91ll7g., + lg2ll2p,..-
Thus

11+ fellep. < g1 + 92llmp., < l9illarg., + 119200, < U+ ) fillp. + 1 f2llQp.)-

Letting ¢ — 0 we obtain that the homogeneous functional || - ||g, , is subadditive, and
thus it is a norm on Qg .

(iii) By definition of | - ||z, if f < g, f € L° and g € Qg then f € Qg and
1flop. < l9ll@p.- Clearly ||f*llos. = [IfllQp.- Hence Qg is fully symmetric. To
prove that Qg is complete, by the Rlesz criterion it is sufficient to show that if (f,,) is a

non-negative sequence in Qg ., with Z | fallQg.., < oo then the series Z fn converges in
n=1 n=1

QF,w- In view of completeness of L + My and (6.1), Z fn converges in L1 + Myy.
For every n choose gn € Mg with ||gallarg, < (1 —|—E)”anQE , and fp, < g,. Then

(18

lgnllrtg,., < (L+e) > [fnll@p,. < oo, andsince |gnllarg,, = ll95/wllE, it follows that
1 n=1

gl= §

o]
>~ gr converges in the Banach function space E,,. Therefore
n=1

1 & qr
EZQZ =

o
>
n=1

)
1+2) Y | fallos.
n=1

00
<.
Ew n=1

MEg w
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<

QE,w
o0
S Z anHQE,w

QE,w n=1

(o]
< > \fallQg., — 0 when m — oo
QE,w n=m ’

o o0 o0
On the other hand ) f, < > gi, thus ) f, € Qg and by the above
n=1

n=1 n=1

S fa
n=1

o0 o0
> 9n

n=1

fn

n=1

o0
< (1+¢) X2 Ifnll@p..- Letting e — 0 we obtain
n=1

MEg

Similarly for every m € N we have

> fo

oo
and thus ) f,, converges in Qg ., which achieves the proof of the completness of Qg .

=

Finally if F' is a fully symmetric Banach function space containing Mg ,,, it contains
also any function that is submajorized by a function of Mg, that is, it contains Qg .,
which shows that Qg is the smallest fully symmetric Banach function space containing
the class Mg .

(iv) In view of the assumption W < oo, by Theorem 5.1 it is enough to show that
the Ko6the dual spaces (Qpw) and (Mg,,)" are equal as sets with equal norms. Since
Mg C QEw, and the norm in Q g, is clearly smaller than the gauge in Mg ,,, the reverse
inclusion (Qgw)" C (MEgw)" holds for their Kothe duals and [|A[(az, ) < [1hll(@p..) -

Conversely if h € (Mg,,), f € Qp.w and € > 0, let us choose g € Mg, with f < g and
9llatp,0 < (1+ ) fllgy,, Then

/|fh| dm < /f*h* dm  (Hardy-Littlewood inequality [1, Theorem 2.2])
I I

< / g*h*dm  (Hardy’s lemma [1, Proposition 3.6], f* < g*, h* is decreasing)
I

< g™ stz 10" 0,0y < A+ lQpw 12l (05,0 -

Letting e — 0 we obtain that h € (Qg.w) With [[All(g, .y < 1A,y s and so Al ) =
17l @y O

6.2. Link with Halperin’s level functions. In this section let w be a positive decreas-
ing weight function on I such that W < oo on I. For f = f* locally integrable on I, define
after Halperin [6] for 0 < a < < oo, o, € I = (0,a), a < oo,

F(a, B)

B B
W(.p) = [ wdm, Fla.p) = [ fim. Ro.p) = 55

and for 8 = oo,
R(a, ) = R(a, 00) = limsup R(a, t).

t—o0
Then («a, 8) C I is called a level interval (resp. degenerate level interval) of f with respect
to w if B < oo (resp. B = o0) and for each t € (a, 3),

R(a,t) < R(e, B) and 0 < R(«, ).

Level intervals can be equivalently assumed to be open, closed or half-closed. If a level
interval is not contained in any larger level interval, then it is called mazimal level interval
of [ with respect to w, or just maximal level interval and in short m.Li.. In [6], Halperin
proved that maximal level intervals of f with respect to w are pairwise disjoint and unique
and therefore there is at most countable number of maximal level intervals.

Definition 6.3. [6] Let f € LY be non-negative, decreasing and locally integrable on I.
Then the level function f° of f with respect to w is defined as

0 = R(a, f)w (t) if t belongs to some maximal level interval (o, 3),
N () otherwise.
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For a general f € L°, 0 < a < 8 < 00, o, B € I, we define
B t
£ = (), Fla,B) :/ Fdm, and F(t) :/ frdm, tel.
« 0

Fact 6.4 (Properties of level functions). Let f € L1 4+ Lo, and w be a decreasing
locally integrable weight function on I.
(i) [6, Theorem 3.6] f°/w is decreasing. Consequently in view of w being decreasing,
10 is decreasing as well.
(ii) [6, Theorem 3.2] f < f°. Moreover if x does not belong to a m.l.i., fow fodm =
Jo f*dm, and so if I is finite, [, fOdm = [; f*dm.
(iii) [6, Theorem 3.7] If f < g then f° < g¢°.

Remark 6.5. (1) If I = (0,a) with a < co then for every f € Ly, || f]l1 = ||f°|l1 by (ii) in
Fact 6.4. Therefore fO(t) < oo for t € (0, a).

(2) If I = (0,00) there exist functions f € L + Lo with a degenerate level function,
that is f = co on I. Indeed, consider f = 1 on I, then R(0,t) = t/W(t) is increasing.
Hence (0,00) is a m.li. of f, and if tllglo t/W(t) = oo then R(0,00) = oo, and so fV =
R(0,00) - w = o0.

Note that if an interval (a,o00) with @ > 0 is a m.Li. of a function f then R(a,00) < oo
since f%(a) < co and f° is decreasing. Thus the only possible degenerate level function is

identically equal to oo on I = (0,00). For f¥ to be degenerate it is necessary and sufficient
that limsup F'(t)/W(t) = occ.
t—o00

(3) When I = (0, 00) there are two simple cases where f¥ is non-degenerate.
(3a) Let f € L. Then tlim F(t)/W(t) = tlim (f(;5 )W) = |fll1/W(0) < .

If W(o0) = o0 and (a,00), a > 0, is a m.Li. of f, then R(a,00) = 0 and so R(a,t) <
R(a,00) = 0 for all t > a. Hence f*(t) =0 for t > a, and so || f|l1 = ||f°|l1 by (ii) in Fact
6.4, and consequently fY < oo on (0,00) and so f° is non-degenerate.

If W(o0) < oo and if f has an infinite m.Li. say (a,00) with a > 0, then for t > a we

have fO(t) = R(a,c0)w(t) = VF;,((Z’z))w(t) < 0o. Clearly fO(t) < oo for t € (0,a), and so f°
is non-degenerate. Moreover || f|1 = || f°[|1.

(3b) Let f € My. Then by definition we have f < Cw where C' = || f||ar, . Hence
0 < Cw® by (iii) of Fact 6.4. But w® = w, and so fot fO%dm < CW(t) for t € I. Thus
1 € My with || £ sy < |1 f]lazy, - Therefore fO is non-degenerate. In addition by f < f°
we have || f|lamy < 1f0any» and it follows the equality of norms || f|| s, = I| £l asye -

The above two simple cases (3a) and (3b) may be combined as follows.
Lemma 6.6. f € L1 + My if and only if f° € Ly + My, and || f|l1, 4+ = |fN £y0s00 -

Proof. Assume || f||r,+am,, < 1. We have f = g+ h with some g € Ly, h € My such
that ||glli + [|Allany < 1. Then f* < g* +h* < g* + ||hllag,w. It follows that f0 <
(g* + ||l ayw)®. Tt is easy to see that g* + Cw and g* have the same m.li. and that
(" + Cw)® = ¢° + Cw, C = ||h||psyy, - Then

1 zs 0 < Ml9” + Cwllziinty < Ng°ll1 + Ihllary 1wl = llgll + Illag, < 1.

This shows that || f°| L, +any < || f]lL,+s for every f € Ly + My, The converse inclusion
and inequality follow from f < f©. 0

Notation & Remark 6.7. If g,h € L% then we write g <., h if ¢5% < h*%. Clearly if
h € E, and g <y h then g € By, and ||g||g, < ||| E,-
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I

Lemma 6.8. For f € My, 1w we have — <, —
w

Proof. Note that the hypothesis f € M, . is the right one for ensuring that f*/w
is locally integrable in measure w, that is integrable on every set of finite measure w. It
implies also that f* € L1 + My C L1 + My (see Example 9.2), thus by Lemma 6.6,
the level function f° < oo belongs to L; + My too.

By (1.1) we have to prove that for each = € J,

(6.2) inf [/I (£° - /\w)+dm+)\x] < inf [

A>0 A>0

/(f*—)\w)+dm+)\w .

I
If (o, 8) C I is a non-degenerate m.Li. of f* we have for any A\ > 0,

[ =)z ([ wam)

= (F(O[?B) - )‘W(a76))+ = (R(OZ,B) - )\)+W(C¥,B)

B B
~ [ (Bl@.) = Npywdm = [ (1~ xw).dm.

Consider now a degenerate m.l.i. (a,00) of f*. Since R(a,t) < R(a,00) for all ¢t > «
and R(a,00) = limsup,_, ., R(a,t), there exists a sequence (t,) such that ¢, T oo with
R(a,t,) T R(a,00). Then as above we have for each n € N,

tn

/at” (f* = Aw)  dm > / (R(a, t) — ) ywdm.

«

Passing to the limit n — oo we obtain

o0

[ = am> [ )= )

On the complementary set C of the union of all the m.Li. we have f0 = f*, and thus

[ =) am = [ (5= ), i

Adding this equality with all the inequalities we obtained on each m.l.i. we get

/I(fo - )\w)+dm < /I(f* —)\w)+dm,
which implies (6.2). O

If fe€ Mgy, then f € My, 1.« and so by Lemma 6.8, %0 <w %, and so by Notation
& Remark 6.7, [ f%)/asy., = |0/ wllz, < 57 /wls, = If s, Thus we get the next
result.

Lemma 6.9. If f € Mg, then fOe Mg and ”fOHME,w <N fllarg -

Now we prove that submajorization for level functions implies an inequality for their
gauges in Mg 4.

0 0
Lemma 6.10. For f,g € L1 + Lo, f° < ¢° if and only if f— <w 9. Consequently, if
w w

f<gandg®e Mg, then fOe ME ., and moreover ||f0||ME,w < HQOHME,w-
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Proof. Let f < ¢°. By Fact 6.4(i) the functions f°/w, ¢°/w are both decreasing. There-
fore by Proposition 2.2 (i), for z € J,

z / 0\ *W 0 W=1(z) r0
/<{u> dm = /(J;)OW ) /OW / %wdm
0 0 0
W—1(x) go *,W
[ [ ()
0 0 0 \w
0

and so — <y, 9 The proof of the opposite implication is similar.
w w

0 0
Now by Fact 6.4(iii) if f < g then f% < ¢°, and by the preceding *— <, g—, which
w w

implies that | f°l|are,, = [If°/wl e, <l9°/wlE, = 19°lg,.-
|

Theorem 6.11. A function f € L1+ My belongs to Qg if and only if its level function
1 relative to w belongs to Mg ., and then 1flos. = ||f0”ME’w.

Proof. If f € Ly + My then f*,f° < oo on I and f < f° by Fact 6.4 (ii). Thus if
% € Mg, then f € Qp., and 1flgp. < HfOHME’w. Conversely if f € Qp, there is
g € Mg, with f < g, and for any such g we have by Lemmas 6.9 and 6.10 that ¢° € Mg,
and fOe M E,w and moreover

HfOHME,w S HQOHME,'LU S ||g||ME,w

It follows that ”fOHME,w <\ fllgs..- =

Proposition 6.12. If E has the Fatou property then so has Qg ., and moreover (Ag )" =
QEw with equal norms.

Proof. If Qg has the Fatou property, then since by Theorem 6.2 we have Agr , = (QE,w)’
with equal norms, it follows that (Ag,,) = (Q E,w)// = QE,w with equal norms.

It remains to prove that (Jg ., has the Fatou property when E has the property. Let
fo T f ae. with f, € Qg and sup, [|full@p., = K < oo. Since by Theorem 6.2 (i),
| full 2+ < CllfnllQe,,, and L1+ My has the Fatou property, we have that f € Li+Myy,
and fr 1 f* a.e.

Letting g, = f, by Theorem 6.11 we have g, € Mg with ||gn|ar,., = |fallQp.-
Moreover g, and f° are decreasing and f, < g, < f° by Fact 6.4. Now by Helly’s
Selection Theorem [19, Chapter 8, Section 4] we may find a subsequence (gp,) which
converges a.e. to some g. By Proposition 4.1, Mg, has the Fatou property and so
g € Mg, with ||gllyg,, < liminf gy, [lvp, = liminf | f,, [lgg, < K. If we show that
f <gthen f € Qr .y, and

limsup || fo, lop.. < 1flQe. < 9llag,, <liminf[[fo, llos.,,

which shows that || fullgs., T fllQg., the Fatou property of Qp -
Assume further without loss of generality that g, — ¢ a.e.. By the monotone conver-
gence theorem we get for t € I,

t t
lim/ In dm:/ frdm.
nJo 0

For every « € I there is N such that for n > N we have g,(a) < g(a™) + 1 < o0, and so
forall t > a, n > N, gn(t) < g(a™) + 1. Now by the Lebesgue Dominated Convergence
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Theorem, for t € I,

t t
lim/ gndm:/gdm.

On the other hand by g, < f°,
/ gndmg/ fodmzzg(a),
0 0

where the function £(-) depends only on f and w, and it is continuous because f° €
L1 4+ Mw by Lemma 6.6 and thus is not degenerate. Then since f, < gy, for every t € I,

t t t t t
/ f*dm:lim/ f;dmglimsup/ gndmge(a)+/ gdmgs(a)—i—/ gdm.
0 " Jo n 0 a 0

Since e(a) — 0 when o — 01, we get for all t € I,

t t
/f*dmé/ gdm,
0 0

and we obtain that f < g as desired. a

Remark 6.13. A shorter proof of Proposition 6.12 can be given using the fact that the level
functions of an increasing sequence of functions form themselves an increasing sequence,
and if f, converge to f a.e. then fO converge to fY a.e.. This result was given by G.
Sinnamon for his version of level functions, in the special case of a uniformly bounded
sequence on a right-finite interval [21]. It may be transferred to Halperin’s level functions
using the results of [4], in the corresponding special case of functions in My ,, on a finite
interval while the correct frame for our study is that of functions having a W-concave
majorant [4]. The proof presented above avoids this problem and moreover it uses only
Halperin’s reference paper [6] for the sake of bibliographical simplicity.

Despite that the space F,, is considered over I with the measure dw = wdm, the space
(Ey)" will always denote its Kothe dual computed with respect to the Lebesgue measure
m on I as it is done below.

Lemma 6.14. For any f € (Ey)" we have || f|(g,y = H£H(E’) . Moreover (Ey)" = (E")w
with equality of norms. °

Proof. In view of Proposition 2.2 we get
/
1l may = sup{ [ flgdm:lgls, < 1} _ sup{ / Ml wim : gz, <1
I ] w
—sw{ [ (Low)gowan: lgow s <1
J

:sup{/J (‘ﬂoW’l>~hdm:HhHE§1}
e, -
w I w

This proves the first part. Using this once for E, then for E we get

h h
1 Fllgayr = sup{ [ 1flndm: Wl < 1,} ~ up { [ 151 wim: H
I I w w

—sup{ [(swgam oo, <1} = [

(E)w

<1}
(E)w

= £ ey
(B
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which proves the second part. O
Lemma 6.15. The equality (Ag)" = Apr, holds with equal norms.

Proof. We use the fact that if F' is a Banach function space, then f > 0 belongs to F” with
|| fllz» < 1if and only if there exists a sequence 0 < f,, 1 f a.e., with f, € F, || fullr <1
for all n € N [23, Ch. 15, §66, Theorem 1].

Assume first that f € (Ag,)” withnorm <1, and let 0 < f,, T f a.e. with || fnlla,, <
Then fr 1 f* ae., and f; € Ey, ||fillp, < 1. Hence f* € (Ey)" with ||f*|l(z,)
However by Lemma 6.14, (Ey)" = (E"),, and so f € Agr,, with [[flla,, , < 1.

Conversely, let f € Apry, with |f[la,, , < 1, then f* € (E"), with [[f*[[zm), < 1.
Since (E")y, = (Ey)", there exists 0 < g, T f* € Ey,, with ||gs|lg, < 1. Then

g = (gno W 1 frowh

1.
1.

A

Setting hy, = gn'* o W, we have h,, are non-negative and decreasing on I. Clearly h,, T f*

and by = gn™, 50 [[hnllag,, = lIhnlle, = B2 le = llgn*lle = llgnll, < 1. Therefore
e (MApw)” with [[fll(ag.) = [f*ll(Ap.)y” < 1, which shows the desired equality of
spaces and norms. O

The next corollary states an important result on Koéthe duality of generalized Lorentz
spaces Ag,,. As a corollary we obtain a new description of the Kothe dual space of the
Orlicz-Lorentz space (see section 8.2 for details).

Corollary 6.16. Let w be a decreasing positive weight on I and W < oo. We have
(AEw) = Qprw with equal norms.

Proof. By general theory of Banach function lattices [23, Theorem 2, p.457], Ag,,, and its
Kothe bidual (Ag,,)” have the same Kothe duals. The result follows then by applying
Proposition 6.12 to E’ since E’ has the Fatou property, and then Lemma 6.15. d

As an immediate corollary of Theorem 6.11 and Corollary 6.16 we obtain a generaliza-
tion of the Holder-Halperin inequality [6, Theorem 4.2].

Corollary 6.17. Let w be a decreasing positive weight on I and W < oo. For f € L° we

have
Hfo”M / foo S ME/7 ,
{1110 € Ar o = 1) = {11710 )
1

00 otherwise.
Consequently Hf”(AE,w)’ = HfOHME',w = ||fHQE,’w for every f € (Apw)'.

Proof. The left member is finite if and only if f € (Apw) = Qprw. In this case
1flap.w)y = 1flQp .. = 1 f°llaz,, - Conversely if the right side is finite then f is non-
degenerate and belongs to Mg ,,. Thus f < f° implies that f € Qew=ABw)"

O

7. SPACES Ppg

We assume in this chapter that W < oo on 1.

Definition 7.1. We denote by Pg, the union of the classes Mg ,, where v is a positive
decreasing weight submajorized by w on I. The symbol v | means that v is decreasing.
This set is equipped with the gauge

£l pe = i0f {[| fllarg, :v > 0,0 1,0 <w}.
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Our goal is to show that || - [|p, , is a symmetric norm, and in fact Pr., = Qp.w as
sets and || - ||pp,, = || - l@gp.,,- From the next lemma it follows that the gauge on Pg,, is
faithful.

Lemma 7.2. We have Mg,, C Pg., C Mgy, where w(t) = WT(t), t € I, and these

inclusions are gauge-decreasing.

Proof. The first inclusion and the corresponding gauge inequality are clear. Conversely for
each v < w we have tv(t) < V(t) < W(t), where V (t) = fotvdm, t € I. Hence v(t) < w(t),
t € I, and in view of Lemma 4.4, Mg, C Mg g, with | f|lrg , < | fllamg,. Taking the
infimum with respect to v < w we obtain Pg. C Mgy with ||fllag, < [flpg., for
f S PE,w-

Lemma 7.3. Ifv is a positive decreasing weight such that v < w and h € E,, is decreasing
then h € E, and ||h||g, < ||hlE,-

Proof. By Hardy’s Lemma [1, Proposition 3.6, p. 56| since (h — \); is decreasing and
v < w, for every A > 0 we have

/I(h — At vdm < /I(h — A) 4 wdm.

Then in view of identity (1.1) for any z € J,

/ h*Ydm = inf [/(h — )y vdm + /\4
0 A>0 | Jr

< inf U(h — )4 wdm + /\x} - / RS dim,
A>0 I 0

and so h™Y < ™. Thus since F is fully symmetric and h*" € FE we have that h*" € F
and so h € E,. Moreover ||h||g, = [|R*"||lg < ||h*"|| g = ||k &, - O

Proposition 7.4. We have (Pg.) = Mg with equal norms.

Proof. Since Mg, C P, with gauge decreasing inclusion, we have (Pg.,) C (Mp) =
Agr . by Theorem 5.1, and the inclusion is norm decreasing.
Conversely if g € Pg,, and € > 0, there is v < w such that

g€ Mpy and |lgllag, < (1+e)lgllpg,,-
Let f € Agr 4. Then f* € (E'),, and by Lemma 7.3, f* € (E’),, hence f € Ags, with
1fllag, = I @y, <0 N@)., = 1fllag - Then by Theorem 5.1, fg € Ly with

/I\fg\ dm < || fllag N9llsg, < T+ Fllag,l9lPg.

Thus f € (Ppw) with [[fl(ps.y < (1 +¢e)lflla, - Since e > 0 is arbitrary we obtain
that the inclusion Ag ,, C (Pg )" is norm decreasing. Il

Consider the inverse level function w’/ of w with respect to a non-negative decreasing
and locally integrable function f, that was introduced in [10, Remark 4.4]. It is defined as

w! (£) = { R{ (t,)ﬁ) if ¢ belongs to some maximal level interval («, /),

[e%
w(t) otherwise.
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Comparing this with Definition 6.3 of f* we have that fO(t) = R(a, B)w(t) if t € (a, ),
and thus

f(t)
(7.1) wl(t) = ¢ £°()

w(t) otherwise.

w(t) ifte(a,p),

By definition of the level function we can show directly that f(¢) > 0 for ¢ € («, 3). Hence
f%>0on (o, ) and since w is positive on I, so wf is also positive on I. Moreover w/ is
decreasing and w/ < w [10, Remark 4.4]. For arbitrary f € Ly + My we define w/ = w/".
Now we are ready to compare the classes Qg With Pg .

Proposition 7.5. Q. C Pg,. and the inclusion is gauge decreasing.

* 0
Proof. By Theorem 6.11 we have || f|lgg . = [[f°llamg - Clearly f—f = f— By Fact 6.4(i)
: ‘ w w

the latter function is decreasing. Hence by Lemma 7.3 and Theorem 6.11 we get

S I* 10 10 B
atyar =7, <], =], = 17 = 15005,
and a fortiori ||f”PE,w < ”fHQEw O

Remark 7.6. By Lemma 7.2 and Proposition 7.5 we have Mg, C Qgw C Ppw C ME, g,
with gauge-decreasing inclusions. In particular if w is regular the four classes coincide as
sets, and the gauges are equivalent, and we recover that in this case the class Mg, is
normable (Proposition 4.5).

Corollary 7.7. If E has the Fatou property then Pg., = QE. isometrically, that is
1 flPg. = IfllQp,., for every f € Pg .. Consequently the class Pr., is a fully symmetric
Banach function space having all properties discussed in Section 6.

Proof. By the Fatou property E” = E, and Propositions 7.4, 7.5 and Theorem 6.16 we
have Qrw C Prw C (Pew)” = (A w) = Qrrw = QEw, and these inclusions are gauge
decreasing. Hence Pg,, = Qg With equality of norms. O

Since E’ has the Fatou property we have Pgr,, = Qpr ., by Corollary 7.7, and Qg =

(Ag.w) by Corollary 6.16, thus we get the following result which generalizes [10, Theorem
2.2], [12, Corollary 4.12] from Orlicz-Lorentz to abstract Lorentz spaces:

Corollary 7.8. For any fully symmetric Banach function space E, we have (Ag.) =
Pg: o tsometrically.

Now we investigate the order continuity of spaces Mg, and Pg .

Proposition 7.9. If E is an order continuous symmetric space then Mg, and Pg,, are
order continuous.

Proof. By Proposition 4.2 and the definition of Pg,,, for each f € Mg, resp. f € Pg y,
we have

(7.2) [ flatg = it {1f/0ll, : v € Vark, resp. | fllpy, = int{lf/vll, : v € Vpl,
where
Vi = {v € LY, v* = w,suppv D supp f},
Vp={v e L9F,O < v* < w,suppv D supp f}.
Since for each v € Vy, v* = w, we have V(a) = [;vdm = [;wdm = b. Thus J, = J,
and by Remark 3.7 each E,, v € V), is order isometric with E, so by order continuity of
E. E, is also order continuous.
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As for E,, v € Vp, we note that V(a) < W(a) = b, so that J, = (0,V(a)) C J = (0,b).
By Remark 3.7, the space E,, is order isometric to the space x s, E, a band in E, and thus
it is also order continuous.

If (fn) is a non-negative decreasing sequence in Mg, respectively Pg ,,, with f, | 0
a.e., choose v in Vs, respectively Vp, such that fi/v € E,. Then f,/v | 0 a.e. and
thus | fullz, 4 0. Since [|fullarg,, < Ifa/vls,. respectively |fallpp,, < |l fu/vlls, . we get
fn = 0in Mg, respectively Pg . O

Recall that the norm of E is p-concave for some 1 < p < oo, if for some C' > 0, for
every fy € B, i=1,...,n, n € N, it holds

n l/p n 1/p
(Z \fi\p> >C <Z ”fi”%) :
=1 E =1

The largest such constant C' is called concavity constant of .
Applying the approach as in the proof of Proposition 7.9, we can show the following
statement about the p-concavity of Mg, or Pg ,,, which generalizes [12, Corollary 3.6].

Proposition 7.10. If E is p-concave, 1 < p < oo, then so are the gauge of Mg, and the
norm of Pg ., with p-concavity constants not exceeding that of E.

Proof. Let f; € Mg, i=1,...,n, and € > 0. Then by (7.2) there exists v € Vs such

that
n 1/p 1 n 1/p
v () || (BSr)
=1 Mg =1 E,
Since E, is order isometric to E, so the norm || - ||z, is also p-concave with the same

constant, and thus

fi

v

P 1/p n 1/p
) >C (Z ufin’;@,w> -
Ey i=1

The part on the space Pg, we do analogously applying that E, is order isometric to
the space xj, E.

e(§

=1

O

Recall the definition of the Banach envelope of a quasi-normed linear space (X, || - ||x)
[8, pp. 27-28]. Denote by (X*,|| - ||x~) the dual space to X, that is the space of linear
functionals which are bounded with respect to the quasinorm || - || x. It is a Banach space
equipped with the usual norm || - || x+. Let us define a functional on X by

|z]lz = sup{[f(z) : f € X", and [[f[[x- <1}.

If X* separates the points of X then [ - | ¢ is a norm on X. Then the Banach envelope X
of X is simply the completion of the normed linear space (X, || - [[¢). One can show that
the Banach envelop of X is the smallest Banach space (X, || - |¢) such that ||z ¢ < [lz|x
for z € X and (X)* = X*.

The following result is a generalization of [12, Corollary 4.13]. We refer to section 8.2

where the spaces Mg, and Pg,, are interpreted in the case of E' being an Orlicz space
L.
Corollary 7.11. Let E be a fully symmetric order continuous Banach function space with
Fatou property. If moreover Mg ,, is a linear space and its gauge is a quasinorm, and if
E is order continuous, then Pg,, is the Banach envelope of Mg.,,. Consequently if w is
reqular and E is order continuous then Pg ., = Mg, with equivalent norm and gauge.
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Proof. Clearly Mg, C Pg.. Since by Proposition 7.9, Mg ,, and Pg,, are both order
continuous their topological dual spaces coincide isometrically with their Kéthe duals. By
Theorem 5.1 and Proposition 7.4 we have that (Mg )" = Agr . = (Pgw)’. Since moreover
Pg 4, is a Banach space by Corollary 7.7, it must be the Banach envelope of Mg ,,. The
second part results from Proposition 4.5. (|

8. APPLICATIONS TO MODULAR AND ORLICZ-LORENTZ SPACES

Here we apply the results obtained in the previous sections to Orlicz spaces I/ = L.
A special feature of these spaces, as well as of Orlicz-Lorentz spaces, is that their Banach
space structure is induced by a modular space structure. In the present section we intro-
duce modular structures on the spaces Pr, ., and Qr,, . by defining two convex modulars
P, Q, which have the same domain My, . @ Pr,w = QrL,w- These modulars have the
same Luxemburg, resp. Orlicz norms, which are also the norms on Py, »w and Q1 »w When
L, is equipped with its Luxemburg, resp. Orlicz norms. The modular P has been already
defined in [12, 10]. This allows to compare the present work for L, spaces with the results
in those papers. The introduction of the modular Q seems however to be new.

8.1. Modular spaces. We start with an introduction to modular spaces [16, 18].

Definition 8.1. Let X be a real vector space. For an extended real valued functional
p: X — [0, 00] consider the following conditions.
(i) p(0) =0 and p(—z) = p(z) for every z € X.
(ii) If z € X and p(tz) = 0 for every t > 0 then z = 0.
(iii) p is convex.
(iii") For every = € X, the extended real valued function ¢t — p(tz) is convex.
If p satisfies conditions (i), (iii) then p is called a pseudo-modular, and a modular if it
satisfies also (ii). If p fulfills (i), (ii), (iii’) then p will be called a convex along rays-modular
(in short, CAR-modular). There is also a notion of CAR-pseudo-modular for which (ii)
has not to be satisfied. In all preceding cases, the modular domain X, consists of all z € X
such that p(tz) < oo for some ¢ > 0.
Note that in Musielak’s classical terminology [16], our ‘modular’ functionals would be
called ‘convex semi-modular’.

It is easy to check that for p a (pseudo-) modular, X, is a vector space, and for p a
CAR-modular it may be only shown to be a symmetric cone.

If p is a modular (resp. a pseudo-modular) then two norms (resp. semi-norms) on X,
are classically associated with p, which are defined as follows.

— the Luzemburg (or second Nakano [18]) norm is the Minkowski functional of the
convex set U = {z € E : p(xz) < 1}, thus

(8.1) ]|, = inf{A > 0: p(z/A) <1},
— the Orlicz (or first Nakano [18]) norm is given by Amemiya’s formula [16]
L+ p(Ax) x
0 _ _— = —
52 oty = o =57 =g (e ()

There is another expression of the Luxemburg norm, similar to Amemiya’s formula. In
fact we have

o vp(Ar) z
(8.3) lzllp = inf ——— = inf (tvio (?)) '

Indeed,

inf(tVip(t~lz)) > inf tA inf tp(t ' z) = |z||, A lim tp(t~lz) = ||z|,,
U R AR+ Il 2 fi, o) = el



31

since by convexity of p, the map t + tp(t~1x) is decreasing on (0,00). On the other hand

. —1 . —1
inf(t Vip(i™ ) < t;ﬁle”p(t\/tp(t x)) = [lzll,
since p(t~1z) <1 for t > ||z,

It is clear that a pseudo-modular is a modular if and only if the associated Luxemburg
or Orlicz semi-norms are norms.

If we replace the modular p by a CAR-modular then all formulas (8.1), (8.2) and (8.3)
remain valid although the functionals ||-||, and ||- ”2 are not norms on X, since the triangle
inequality may be not satisfied. They are however gauges that is positively homogeneous
functionals.

By (8.2) and (8.3), the equivalence of | - ||, and || - Hg is immediate.

Lemma 8.2. Let X be a vector space and p : X — [0,00] be a (pseudo-, CAR-) modular
on X. Let py, : X — [0,00], v € V, be a family of CAR-modulars on X. If

= inf v )
p(x) = inf py(2)

then the modular domain of p is
X,=J X,
veY
and its associated norms are
|zll, = inf{[|z[l,, : v €V} and |z|p = nf{|z]p, : veV}.
Proof. For x € X we have

. —1\\ _ - . 1 . . 1 .
lzllp = inf(¢ v tp(t™")) = inf(t v ¢ inf p,(t™"2)) = if inf¢(1V py(t™"2)) = inf [lz[l,,.

The formula for Amemiya norm follows analogously. O
Lemma 8.3. Let X C L°(Q) be a vector space which is closed under rearrangements, i.e.
f* € X whenever f € X. Assume p: X — [0, 00| satisfies conditions (i), (ii) of Definition
8.1, p is convex on the cone of decreasing non-negative functions in X, p is symmetric
that is p(f*) = p(f), and p is monotone that is p(f) < p(g) if |f| < lgl, f,9 € X. Then
for fe X,
p(f) =inf{p(g") : f < 9,9 € X}

s a symmetric pseudo-modular on X, monotone with respect to the relation <, with as-
sociated Luzemburg and Amemiya semi-norms given respectively by

Ifllp=inf{lgll,: f<g,9€ X} and |fI[ =inf{|gll): f <g,9 € X}.
Proof. Tt is clear that the functional p satisfies (i) of Definition 8.1, and is symmetric and
monotone with respect to <. Now let fi, fo € X5 with p(f;) < 0o, i =1,2, and t1,t2 >0
with ¢ + to = 1. Given & > 0 choose ¢1,92 € X such that f; < g; and p(g;) < p(fi) + &,
i =1,2. Then in view of
tifi +tafe < tLff +tafs < tigl +tags,

we have, by symmetry and convexity of p on the cone of decreasing functions

p(trf1 +taf2) < p(tigy +t2gs) < tip(g1) +tap(g2) < tip(f1) +tap(fa) +¢,

which shows that p is convex. Since p is a CAR-modular, formulas (8.2) and (8.3) are
satisfied. Moreover,

_ . —r,—1 _ . . —1 % _ . . —1 _ .
11l = inft(1V p(t™"f)) inft(1V inf p(t™g")) = inf inft(1V p(t™"g) = inf [lgll,,

where g € X. Similarly we get the second formula associated with Amemiya functional.
O
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8.2. Orlicz-Lorentz spaces and their Kéthe duals. Assume in this section that W <
oo on I. Let £ = L, be an Orlicz space on J. As was mentioned in section 2.1, L, is
a modular space generated by the modular I,(f) = [;¢(|f|)dm. Then E, = (Ly)w is
the set of f € LY(J) such that for some A > 0, [, p(A|f])wdm < oo, so it is a modular
space defined by the modular [; (| f|)w dm. Hence the generalized Lorentz space Ar,,
consists of all f € LO(I) such that f* € (Ly)y, so it is a modular space corresponding to
the modular

(3.4) B(f) = [ elswdm

1

This space is usually called an Orlicz-Lorentz space and is denoted by Ay, [9, 11, 12].
Setting now for f € L = LO(1),

M) = [ (L) wam,

then the functional M is a CAR-modular on L°. By definition, the space M}, »w consists of
all f € LY such that f*/w € (Ly)qw. It follows that this space is the modular space induced
by the CAR-modular M. Moreover the Luxemburg and Amemiya gauges associated with
the modular M on My, , coincide with those defined in section 4.1 on Mg, when ' = L,
is equipped with its Luxemburg and Amemiya norms respectively.

Now we will characterize the spaces Qr, . and Pr .-

Lemma 8.4. Let for f € LY,

(8.5)  P(f):=inf {My(f):v<w, v>0, v]} where My(f)= /Icp <J;*> vdm.

Then P is a convexr modular with domain P, . and the Luzemburg and Orlicz norms
associated with this modular coincide with the norms on P ., giwen by Definition 7.1,
associated with the Luxemburg and Orlicz norms respectively on L.

Proof. The modular P is convex by [12, Theorem 4.7] and its proof. By convexity of ¢
it is clear that the function t + M,(tf) is convex for every f € L°. Therefore M, is a
CAR-modular for every v > 0. The last part of the lemma is a consequence of Lemma, 8.2

by letting p(f) =P(f), V={v <w, v>0, vl} and p,(f) = M,(f). O
Lemma 8.5. Let for f € L°
(8.6) Q(f) :==inf {M(g): f <g, g€ M w}.

Then Q is a convex modular with modular domain Qr, . and the Luzemburg and Orlicz
norms associated with this modular coincide with the norms on Qr, .« given by Definition
6.1, associated with the Luxemburg and Orlicz norms respectively on L.

Proof. Applying Lemma 8.3, with p(f) = M(f) and p(f) = Q(f) gives that Q is a sym-
metric pseudo-modular, and by Lemma 8.2 its Luxemburg and Orlicz semi-norms coincide
with the norms on Q1 . given by Definition 6.1, when L, is equipped with its Luxemburg
and Orlicz norms, respectively. In particular those semi-norms are in fact norms and Q is
a modular. O

The next fact is well known and can be easily deduced from [5, Theorem 7.4.1]. We pro-
vide in Appendix a completely different and self-contained proof of it for the convenience
of the reader.

Fact 8.6. Let ¢ : [0,00) — [0,00) be a convex increasing function. If f,g € L1 + Loo C
LO(Q, A, p) with f < g then »(f) <. ¥(9)-
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Proposition 8.7. The modular Q(f) for f € QL w is expressed in terms of the level

function fO by
0
QN =) = [ ¢ (f) w drm.
I w

Proof. Let f € QL w, then for each g € My, such that f < g we have 2 < ¢° by Fact
6.4(iii). Since (f°/w) o W1 is decreasing, it follows that (f°/w)o W=t < (¢°/w) o W1,
which by Proposition 2.2 (i) is equivalent to f9/w <., ¢°/w. We also have ¢°/w <, g*/w
by Lemma 6.8, whence by Fact 8.6 above

P(fO/w0) <w (g° /w) <w @(g"/w).

It follows that M(f%) < M(g), and so M(f%) < Q(f). Since f < f° by Fact 6.4(ii),
Q(f) < M(f9), and the proof is finished. O

In view of Corollary 7.7, Qr,w = PL,w, With equal norms, and we will further use the
notation (introduced in [12] for the domain of the modular P)

Mgo,w = Qwa = PLV,,w

According to whether L, is equipped with its Luxemburg or Orlicz norm, the space
M is equipped with two different norms that we denote by || - || s, ., resp. || - H(/J\/[%w'
Each of these norms has two different expressions corresponding to the respective defini-
tions of the norms in @ Lyw and P .. Moreover by Theorem 6.11 the norm of a function
in Qr,w is the gauge of the corresponding level function in Mg, ,,. We have thus:

Theorem 8.8. Let ¢ be an Orlicz function and w be a decreasing positive weight function
on I =(0,a), a < oo, such that W < oo on I. Then for f € M, we have

87 s =mf{Ifllm, + v < w0 >0, v} =f{llglv: £ =g} =1F
88)  Iflnm,,., = mf{llfIRe, : v =<w,v>0, vi}=mf{llgl}s f =g} =11
where || - |, || - [lm, are Luzemburg, and || - ||9;, ]| - ”%41, are Amemiya gauges.

On the other hand, M, ,, is the modular space induced by both modular Q and P. To
each of the modulars @, P are associated its Luxemburg and Orlicz norms. It appears
that both the Luxemburg norms of @, P coincide with || - |z, ,, and the Orlicz norms
with || %, ..

Applying the results developed so far we obtain additional insight on these modular
structures.

Theorem 8.9. Let ¢ be an Orlicz function and w be a decreasing positive weight function
on I =(0,a), a < oo, such that W < oo on I. Then

(8.9) Q(f) = M(f*) = Mys (f) > P(f).
For f € My, we have

(8.10) 1M = Iflle = [ fllas
(8.11) 115, = 1B = 11£11G

If in addition ¢ is a N-function that is lims_,0 ¢(s)/s = 0 and lims o p(s)/s = 00, and
either I is finite or W (oo) = [;~ wdm = oo, then

(8.12) P(f) = M(f°) = Q(f).
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Proof. The first part of (8.9) follows from Proposition 8.7 and the second one from equality
(7.1). Since wf < w, Ms(f) > P(f).

Equations (8.10), (8.11) follow from Lemmas 8.5 and 8.4.

Under the additional assumptions when ¢ is N-function and W(oco) = oo, the first
equation in (8.12) has been presented in Theorem 4.8 in [10]. O

Now let us summarize all known results describing the Kothe dual of the Orlicz-Lorentz
space Ay . For the space A, by |- [a,,,, and |- H(/)\%w denote the Luxemburg and Orlicz
norm respectively. Recall that ¢.(t) = sup,so{st — ¢(s)}, t > 0, is the complementary
function to the Orlicz function . -

In the next theorem we state complete descriptions of the dual spaces of the Orlicz-
Lorentz space equipped with two standard Luxemburg and Orlicz norms. Recall indeed
that the Orlicz-Lorentz space A, = Ay has a natural modular space structure given
by the modular ® defined in the equation (8.4), with respect to which A, is equipped
with both a Luxemburg norm || - [|5,,,, and an Orlicz norm || - H9\¢ - It is easy to see that
these norms are identical to the norms of Ar, ., when the Orlicz space L, is equipped
respectively with its own Luxemburg or Orlicz norm.

Theorem 8.10. Let ¢ be an Orlicz function and w be a decreasing positive weight function
on I =(0,a), a < oo, such that W < oo on I. Then the Kéthe dual spaces to the Orlicz-
Lorentz spaces (Apw, || - |Ap0) and (Apaw, || - H%w ) are as follows

Ao | 180.) = Moo | I, ) and (B, 17113, )" = Moo, |- M. ),

where the norms || - [, , and || - H9\/hp , are given by (8.7) and (8.8), respectively, where
@ 1is replaced by py.

Proof. This is is a consequence of Corollary 6.16, and the fact that when E' = L, is an
Orlicz space equipped with its Luxemburg (resp. Orlicz) norm then its Kothe dual E’ is
L, equipped with its Orlicz (resp. Luxemburg) norm. O

Comparing to Theorem 4.8 in [10], the above theorem is more general since it is proved
here without additional assumptions that ¢ is N-function and W(oo) = oco. It is also
more informative since it provides three different formulas for the norms in the dual space
Mg, w- In fact each Luxemburg and Orlicz norm have three formulas expressed by (8.7)
and (8.8), corresponding either to modular Q or P or to level functions. The ones related
to the modular Q are new here.

Finally we obtain a corollary on representation of the dual space for the classical Lorentz
space Ap . If o(t) =1, 1 < p < oo, then we use the following notations

Apw:=Apw and My = My .

In this case p.(t) = plT_qtq and the Orlicz norms on Ly, and M., ,, coincide with the
classical norms on L, and M, ,, respectively. We provide below three different formulas
of the norm in the dual space (Aj4,)*. The formula (8.14) has been presented as Corollary
4.9 in [10], and (8.15) has been proved by Halperin in [6, Theorem 6.1, Corollary, p. 288].
The first expression however, (8.13), is new and it results from the introduction of the

space Qp.w and (Ap.w) = Qg -

Theorem 8.11. Let1 < p < oo, %Jr% =1, and w be a decreasing positive weight function
on I =(0,a), a < oo, such that W < oo on I. Then

(Ap,w)/ = Mq,w'
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If in addition W(oo) = oo when I = (0,00), then the dual space (A, )" is isometric to
Mgw. In fact for every F' € (Ap)* there exists f € Mgy, such that

:/fgdm7 geAp,wv
I

and

813)  IF] = gl = inf { ( / <g*>qw1q) e g}
(8.14) — inf { </I(f*)qvlq> v v <w,v> 0,0 ¢}
(8.15) -(/ [(f*)O]qwl—Q)l/q.

Proof. The Kéthe duality follows from Theorem 8.10. It is also well known and easy to
show that A, ,, is order continuous when W (oo) = oo in the case of I = (0, 00). Therefore
the Kothe dual space is isometric to the dual space via integral functionals [1, Theorem
4.1].

O

Remark 8.12. For f € L° define

Quuw(f) = inf{/go(h)w dm:h ] and f < hw} .
I

This formula was introduced once by K. Nakamura [17], who determined the modular
dual to the natural modular in A, ,, as being Q, ., when ¢ is a N-function satisfying a
Ag-condition and ¢, a complementary function to ¢. Note that

ng,w(f) = inf {M(g) : f < g and g/w |}
Hence clearly Q(f) < Quw(f). On the other hand since f°/w is non-increasing, we have

Quw(f) < M(f%) = ( ) and finally Qp,u(f) = Q(f)-

9. EXAMPLES OF MFE , AND Qg SPACES

Let w be a positive decreasing weight on I = (0, a) such that W < oo on I, and E be
a Banach function space defined on the interval J = (0,b), b = W (a), equipped with the
Lebesgue measure m. In this section we will identify the spaces Mg ,, and Q. for some
classical spaces E. Note that Mg ., Qp.w C LO(I).

Ezample 9.1. If B = L1(J), then (ML, w, ||+ |3y, 1) = (QrLyws |- lQ, ) = (La(D), [ - [[1)-
Proof. Clearly E,, = (L1)y = L1(I,w) is a weighted L; space. We also have

*

feMp ., = %E(Ll)w = /J;wdm<oo = /f*dm<oo = feli(I).
I I
Hence My, ., = L1(I) with the same norms. It follows that @1, ., = L1([), also with the

same norms. O

Ezample 9.2. If E = Loo(J) then
My =A{f : IflIMp . <00} with  [|fllay,, =nf{C: f* < Cw} = || /wllL
(QLocws | @z ) = (M, [[ - [lary)-
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Proof. The weighted space (Lo )q consists of all essentially bounded functions on I with
respect to the measure dw = wdm. Since w is positive both spaces (Loo)w and Lo (1)
coincide with equality of norms. Thus f € Mj,__ ., if and only if J;T* € (Loo)w = Loo(I),
‘f ‘f =inf{C: f* < Cw}.
w w

T ] _
(Loo)w

Note that the gauge || - ||r,__ ,, is not a norm. As for the space Q. w, by its definition
f € Qr. w if and only if there exists g € My, ., with f < g. This is equivalent to

oo

(9.1) ElgGLO,gi,C>0Withg§Cwande€I,/ f*dmg/gdm.
0 0

The above statement is equivalent to fox ffdm < C f(f wdm for all £ € I with the same
constant C' as in (9.1). It follows that f € My, and

”f”QLoo,w = lnf{HgHMLoo,w : f = g7 g € ML007w} = lnf{C : f = g7 g S Cw}
1 x
=inf{C: f<Cw :sup/ frdm = flla -
{ p=sp s | 171t
Thus Q1w coincides with the Marcinkiewicz space My, with the same norms. O

Ezample 9.3. If E = L1 N Loo(J) then

(MrynLoosws | 1Mry0n e ) = (L2 O ML, [+ 120 )
(QleLoo/U)? H ’ ||QL10Loo,w) = (Ll N My, H : ||L10MW)'
Proof. Let f € Mr,nr..w- Then by Proposition 4.1
[ P
112w = || =|T-oW
faftee, W11 Loo)w w L1iNLoo (J)
o s
v L) 1Y Loo ()
f*
=Flle.y V|| = ey VI Iz o = I L2nM L -
Wll(Loo)w

Thus Mp,npew = L1 N Mp, ., with identical gauges.
For every g € L1 N Loow and f < g we have || f]|1 <||g||1, and
[flany = nf{C: f < Cw} < inf{C: g* < Cu} = llgllas,...,.
Thus
Il znnrw = 1F IV [ f i < Mgl VAlgliae. . = N9z -
It follows that Qr,nr.w C L1 N My, and that for every f € Qr,nr. ..,
||f||leMW S ||f”QL1ﬂLoo,w'

Conversely if f € Ly N My then f* € L; and f < Cw where C = || f||ar,,- Then for
every x € I we have

/O " frdm < cw @) A .

We have b = W(a) = sup,c; W(z). If Cb < ||f]|1 then the preceding inequalities mean
that f < Cw. Setting g = Cw we have ||g||1 < ||f]/1 and ”gHMLoo,w = C = |/ f||my, , hence
ge€LinNnMp, ., =MpnL,wand by f < g it follows that f € Qr;nL.w With

Hf”QleLoo,w < ”gHMLlﬂLoo,w < Hle \4 HfHMW
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On the other hand if Cb > || f||1, there exists xy € I such that CW (xzs) = || f||1. Setting
now g = Cwx(o,zy), observe that f < g, [lgli = [[fllx and [|gllsr,, .. = C = l[fllay, and
conclude as above. g

Ezample 9.4. If E = L1 + Loo(J) then

(ML1+L0071U7 H ) HMLlJrLoo,w) = (Ll + MLooﬂU? H : HLl-‘rMLoo,w)v
(QL1+L007UH || : ”QLlJrLoo,w) = (Ll + MW? ” ’ ||L1+Mw)'
Proof. We can show directly that (L1 + Loo)w = (L1)w + (Loo)w = (L1)w + Loo(I) with
equality of norms. By Example 9.2, a function v belongs to Mj,__ ,, if there exists C' > 0
such that v* < Cw. Thus
VS ML1+L<X>71U with ”fHMLlJrLoo,w <1

f*
< g€ (L1)w h € Loo(I): o=9th l9ll(z1)e + 1Plloo <1

— JueLi(Nwel’,C>0:f " =u+uv,v] <Cuwl|uli +C <1 (9.2)
— JueLi(I),veLl’,C>0: f =u+v,0v*" <Cuw,ul; +C <1
> € L1+ M with ||l 40r, ., < 1.
We want to prove that || f*|r,+n ., <1 implies ||fl|r, 4, < 1. Let f* =u+v with
v* < Cw and ||ull;1 + C < 1. Let us consider two cases.
Assume first that either the interval [ is finite or tliglo f*(t) = 0. Then by Proposition

1.1 there exists a measure preserving transformation o, either from I onto I if the support
of f has finite measure or from the support of f onto I if the support of f has infinite
measure, such that f = f*oo. Then f = uwo o+ v oo with v o o,v o o equimeasurable
with w,v respectively. In particular ||u o ||y = |jully and (v o o)* = v* < Cw. Hence
I 2y pp g < 1

The proof is similar if I is infinite and lim f*(¢) > 0, by using now Lemma 1.2.
—00

Therefore we have shown that if || f{|as,, ,_,, <1 then | f[lL, 4, ,, <1, which implies
My, 41w C L1+ My . and that this inclusion is gauge-decreasing.

Let us prove now the converse inclusion. Let f € Ly + Mp o with [|f|[z,4yar, ., <1
and f = u + v be a decomposition with v € Ly(I),v* < Cw and ||ul|; + C < 1. By the
Lorentz-Shimogaki inequality [1, Chapter 3, Theorem 7.4],

foot < () =
it follows that u; := f* —v* € Ly, with ||u1|[1 < |lul[;. Thus
ff=wu + 0", with v* < Cw and |Jui]; +C < 1.

By (9.2) it means that ||f||ML1+LOO,w < 1. Hence Ly + My C M, +1..w, and finally
Ly + My = M, +1. w0 With equal norms.

Now we will show that Qr,+r. w = L1 + Mw with equality of norms. First,
J€QutLow <= F9EMp+rw: [ <9
— dgeLli+Mpr w f=g
= Jucli,IveMi_,:f<ut+v
= Jue Ly, Ive My, ff<u"+v"
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Since f* < u*+v*, then by Fact 2.6 there exists a decomposition f = u'+ v with v/ < u*,
v < v*. Then from u € Ly and v € My,__ ,, it follows that

u' € Ly, o' € M and || fllLiay < 'l + 110 sy < Ml + 1076z -

Thus QL1+Loo,w C L1+ Mwy.

Moreover, in view of the above paragraph if |/ fllq, .., < 1 we may choose g €
Mpy 1 Loow = L1+Mp 0 with f < gand ||g||lL,4+ 0, ,, < 1. Thus there is a decomposition
g =u+v with [lully + ||vllar, , <1. Hence [[fl[z,4ar < lgllziary < llully + [[0llar, <
lully + l[vllar,., .. <1 Hence ||fllz,+amy < [1fllQr, 410, -

As for the converse direction, let f € Ly + My with || f||1, 4, <1 and f =k + h be
a decomposition with ||k||1 + ||2||ar, < 1. Then

[ <E+h" <Ek"+Cw with C = ||h"||a, = || ayy -
Setting g = k* + Cw, we have f < g, and [|Cw||nr,__ , = Cllw/w|l(1.), = |Pllar, - Hence
91l Ly tap g0 < MRl + 1 Cwll Az, = IFIL + ([2llar <1

Since g is decreasing and || - ||, +am, ,, = || IMp, 1o » We have g = g" € Mp, 41w
with [[g[[ar, . <1, hence f € Qun .y, ,, With ||f||QML1+Loo,w < 1. Thus L1 + My C

QML1+Loo,w a‘nd ”fHLI"FMW 2 HfHQL1+Loo7w'
Consequently Ly + Mw = Qumy, ., With equality of norms. O

w

APPENDIX
We give here a self-contained and simple proof of Fact 8.6.

For z,y > 0 set
Y@)=v@)  f o £,

_ T—y
D) {wws) ifz =y,
where 1, is the right derivative of 1. Observe that if 21 < x and y; < yp then D(z1,y1) <
D(z2,y2), by convexity of the function . Indeed if we set a; = min(x;,y;) and b; =
max(x;,v;), ¢ = 1,2, then a1 < ag, by < bg and D(z1,y1) = D(a1,b1) and D(z2,y2) =
D(ag,bs) are the respective slopes of the chords of the graph of ¢ corresponding to the
intervals [a1,b1] and [ag, bo], or the slopes of the right tangent lines in the case a; = b;,
i=1,2.

Since for any f € L°(Q), f** € L0, u(£2)), we may assume without loss of generality
that f,¢g : [0,00) — [0,00) are decreasing non-negative functions. Then the function
D(f,g):t— D(f(t),g(t)) is also decreasing. Assuming that f < g, we want to show that
P(f) < ¢¥(g). We note that for z > 0,

og/o“”gdm_/: fdmz/ox(g—f)dmz/0$(g—f)+dm—/0$(g—f)dm,

thus for x > 0,
/(g_f)—dmﬁ/(g—f)erm
0 0

By Hardy’s Lemma [1, Proposition 3.6, Ch.2] this implies that

T

/ (90— )_Dg. f)dm < | @ n+Dig. prm
0 0
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for x > 0. We have ¢(g) — ¥(f) = (9 — f)D(g, f) and since D(g, f) > 0 it follows that
(V(g) —(f))x = (g — f)=D(g, f). Hence the preceding inequality may be rewritten as

(9.3) /0 ") — (f))— dm < /0 “(lg) — B(f))+ dm.

Supposing that 1/1( f ) is integrable on finite intervals, it implies the same for (¢¥(g) —¥(f))—
since (¢(g) — < ¢(f). Then for any x > 0,

/w ) dm — /w £)dm = /¢(g>—w<f>>dm
- /0 0l9) = ()~ | “(Wlg) — () dm >0,

which implies that ¥(f) < ¥(g). If we have no information on the local integrability of
¥(f), we may apply the above to the couple (f A n,g), where n € N. Indeed we have
fAn<f <g, fAnis decreasing, and ¥(f An) = ¥(f) A ¥(n) is bounded, and thus
integrable on finite intervals. Hence for all n € N, x > 0,

/¢ ) A(n dm</7j)

and passing to the limit n — oo we obtain that ¥(f) < 1¥(g). O

(
(
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