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A star edge-coloring of a graph G is a proper edge-coloring without 2-colored paths and cycles of length 4. For a graph G, let the list star chromatic index of G be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. In this paper we prove that the list star chromatic index of every k-degenerate graph G with maximum degree ∆ is at most (3k -2)∆k 2 + 2. For K 4 -minor free graphs (k = 2), we decrease this bound to 3∆ -3, ∆ ≥ 3. We do not use the discharging method but rather we use the fundamental structural properties of k-degenerate graphs and K 4 -minor free graphs.

Introduction

All the graphs in this paper are finite and simple. For a graph G, we denote by V (G), E(G), δ(G) and ∆(G) its vertex set, edge set, minimum degree and maximum degree, respectively. For a vertex u in G we denote by N G (u) the set of its neighbors and by d G (v) = |N G (u)| its degree. A vertex of degree k is called a k-vertex. A k-neighbor of v is a k-vertex adjacent to v.

A proper vertex (respectively, edge) coloring of G is an assignment of colors to the vertices (respectively, edges) of G such that no two adjacent vertices (respectively, edges) receive the same color. A star coloring of G is a proper vertex coloring of G such that the union of any two color classes induces a star forest in G, i.e. every connected component of this union is a star. The star chromatic number of G, denoted by χ s (G), is the smallest integer k for which G admits a star coloring. This notion was first mentioned by Grünbaum [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] in 1973 (see also [START_REF] Fertin | On star coloring of graphs[END_REF]).

In 2008, Liu and Deng [START_REF] Liu | An upper bound on the star chromatic index of graphs with δ ≤ 7[END_REF] proposed to study a natural variation of the star coloring problem: coloring the edges of a graph under the same constraints (alternatively, to investigate the star chromatic number of line graphs). In this context, they defined a star edge-coloring of a graph G as a proper edge-coloring such that every 2-colored connected subgraph of G is a path of length at most 3. In other words, we forbid bi-colored 4-cycles and 4-paths in G (by a d-path we mean a path with d edges). We say that G is star edge k-colorable if it admits a star edge-coloring with k colors. The star chromatic index of G, denoted by χ ′ st (G), is thus defined as the smallest integer k such that G is star edge k-colorable.

A proper edge-coloring of a graph G is called acyclic (respectively, strong) if there is no bicolored cycle (respectively, 3-path) in G. The acyclic (respectively, strong) chromatic index of G, denoted by χ ′ a (G) (respectively, χ ′ s (G)), is the minimum number of colors needed for an acyclic (respectively, strong) edge-coloring of G. Let us give an immediate remark: for any graph G, we have:

χ ′ a (G) ≤ χ ′ st (G) ≤ χ ′ s (G)
By using Lovász's Local Lemma [START_REF] Erdős | Problems and results on 3-chromatic hypergraphs and some related questions[END_REF], Liu and Deng [START_REF] Liu | An upper bound on the star chromatic index of graphs with δ ≤ 7[END_REF] proved the following upper bound.

Theorem 1.1. [START_REF] Liu | An upper bound on the star chromatic index of graphs with δ ≤ 7[END_REF] For every G with maximum degree ∆ ≥ 7, χ ′ st (G) ≤ ⌈16(∆ -1)

3 2 ⌉.
The star edge-coloring has recently been investigated by many authors. Deng and Liu [START_REF] Deng | Star edge-coloring of trees[END_REF] (see also [START_REF] Bezegová | Star edge-coloring of some classes of graphs[END_REF]) proved that any tree may be star edge-colored with ⌊ 3 2 ∆⌋ colors. Moreover, the bound is tight. Bezegovà et al. [START_REF] Bezegová | Star edge-coloring of some classes of graphs[END_REF] showed that χ ′ st (G) ≤ ⌊ 3 2 ∆⌋ + 12 for every outerplanar graph G, and conjectured that χ ′ st (G) ≤ ⌊ 3 2 ∆⌋ + 1 for every such G of maximum degree at least 3. In [START_REF] Dvořák | Star chromatic index[END_REF], Dvořák, Mohar and Šámal, showed that even determining the star chromatic index of the complete graph K n with n vertices is a difficult problem. They gave the following bounds:

2n(1 + o(1)) ≤ χ ′ st (K n ) ≤ n 2 2 √ 2(1+o(1)) √ log(n) log n 1 4
.

They also studied the star chromatic index of subcubic graphs, that is, graphs with maximum degree at most 3. They proved that χ ′ st (G) ≤ 7 for every subcubic graph G, and they made the following conjecture Conjecture 1. [START_REF] Dvořák | Star chromatic index[END_REF] For every subcubic graph G, χ ′ st (G) ≤ 6. If Conjecture 1 is confirmed, then this bound is best possible. Indeed, they notice that the cubic complete bipartie graph K 3,3 is not star edge 5-colorable.

A natural generalization of star edge-coloring is list star edge-coloring. An edge list L for a graph G is a mapping that assigns a finite set of colors to each edge of G. Given an edge list L for a graph G, we say that G is L-star edge-colorable if it has a star edge-coloring c such that c(e) ∈ L(e) for every edge of G. The list-star chromatic index, ch ′ st (G), of a graph G is the minimum k such that for every edge list L for G with |L(e)| = k for every e ∈ E(G), G is L-star edge-colorable.

For any graph G, it is obvious that ch ′ st (G) ≥ χ ′ st (G). Dvořák, Mohar and Šámal [5, Question 3] asked whether ch ′ st (G) ≤ 7 for every subcubic G. Kerdjoudj, Kostochka and Raspaud [START_REF] Kerdjoudj | List star edge-coloring of subcubic graphs[END_REF], gave a partial answer to this question. Theorem 1.2. [START_REF] Kerdjoudj | List star edge-coloring of subcubic graphs[END_REF] For every subcubic graph Wang [14] proved: Theorem 1.3. [START_REF] Wang | Strong chromatic index of k-degenerate graphs[END_REF] The strong chromatic index for each k-degenerate graph with maximum degree

G, ch ′ st (G) ≤ 8. Let k ∈ N. A graph G is k-degenerate if δ(H) ≤ k for every subgraph H of G. Recently,
∆ is at most (4k -2)∆ -k 2 + 2.
As a corollary, it immediately holds that for every integer k, every k-degenerate graph G is star edge ((4k -2)∆k 2 + 2)-colorable. We improve this bound by proving:

Theorem 1.4. Every k-degenerate graph G of maximum degree ∆ and k ≥ 2 satisfies ch ′ st (G) ≤ (3k -2)∆ -k 2 + 2.
We also consider the class of K 4 -minor free graphs which are exactly the subgraphs of series parallel graphs [START_REF] Duffin | Topology of series-parallel networks[END_REF]. Since the K 4 -minor free graphs are 2-degenerate [START_REF] Duffin | Topology of series-parallel networks[END_REF], by applying the previous theorem we have ch ′ st (G) ≤ 4∆ -2 for any graph G which is K 4 -minor free and contains at least one edge. It is well known that if a graph G is K 4 -minor free with ∆ ≥ 3 then χ ′ (G) ≤ ∆ (G is belongs to Class I, see for example [START_REF] Juvan | List-edge coloring of series-parallel graphs[END_REF]). Faudree, Schelp, Gyárfás [START_REF] Faudree | The strong chromatic index of graphs[END_REF] proved that every planar graph G with maximum degree ∆ has strong chromatic index bounded by 4∆ + 4. By using the technique of this nice proof and the fact that a K 4 -minor free graph has a chromatic number at most 3, it is easy to prove that every K 4 -minor free graph G with ∆ ≥ 3 has strong chromatic index bounded by 3∆. In [START_REF] Wang | Strong chromatic index of K 4 -minor free graphs[END_REF], Wang et al. improve this bound: Theorem 1.5. [START_REF] Wang | Strong chromatic index of K 4 -minor free graphs[END_REF] Every K 4 -minor free graph G with ∆ ≥ 3 has strong chromatic index at most 3∆ -2. Moreover, the bound is tight.

This bound is also a bound for the star chromatic index of K 4 -minor free graphs; we will improve this last bound by proving the following: Theorem 1.6. Let G be a K 4 -minor free graph with maximum degree ∆. Then

ch ′ st (G) ≤ 4 if ∆ = 2; 3∆ -3 if ∆ ≥ 3.
Notice that Theorem 1.6 implies that Conjecture 1 is true for every K 4 -minor free subcubic graph.

The paper is organized as follows: In Section 2, we will prove Theorem 1.4 and in the last section, we will prove Theorem 1.6.

k-degenerate graphs

In the following we will say that two edges are at distance at most 2 if they are adjacent or if they are adjacent to a common other edge. For an edge-coloring φ of a graph G and a vertex v ∈ V (G), φ(v) denotes the set of colors used on the edges incident with v.

To prove Theorem 1.4, we shall make use of the following stuctural lemma given by Chang and Narayanan [START_REF] Chang | Strong chromatic index of 2-degenerate graphs[END_REF]. Lemma 1. [START_REF] Chang | Strong chromatic index of 2-degenerate graphs[END_REF] Let G be a k-degenerate graph. Then there exists a vertex v ∈ V (G) such that v is adjacent to at most k vertices of degree more than k. Moreover, if ∆(G) > k, then such a vertex v can be selected with degree more than k.

We will prove that the list star edge-coloring for each k-degenerate graph of maximum degree ∆ and

k ≥ 2 is at most ch ′ st (G) ≤ (3k -2)∆ -k 2 + 2.
Proof of Theorem 1.4. We proceed by contradiction. Let G be a minimum counterexample to the theorem that minimizes |E(G)| + |V (G)|. We can assume by minimality that G is connected. We denote by ∆ the maximum degree of G. Hence for some list L of G, with |L(e)| = (3k -2)∆-k 2 +2 for every edge e of G, k ≥ 2, the graph has no star edge-coloring from L. By Lemma 1, there exists a vertex v adjacent to at most

t ≤ k vertices {v 1 , v 2 , • • • , v t } of degree more than k. Let {u 1 , u 2 , • • • , u l } (l > 0) be the other neighbors of v. We have t + l ≤ ∆, therefore l ≤ ∆ -t, t ≤ k. Let G ′ = G \ {vu 1 , vu 2 , • • • , vu l }.
By minimality of G, there exists a star edge-coloring φ of G ′ from the restriction of L to E(G ′ ). Now consider an edge vu i . We compute the number S of colored edges of G ′ which are at distance at most 2 from vu i in G. It is easy to see that if we can color vu i with a color different from the colors of those edges at distance at most 2 in G, then we will not create any bicolored 4-paths or 4-cycles. The colors of those edges will be called the forbidden colors for vu i . From each vertex u j (j = i) we have at most k -1 such incident edges. From u i we have at most (k -1)∆ edges at distance at most 2 from vu i . And from v we have to count at most t∆(G) edges. Hence in total we have:

S ≤ (k -1)∆ + (l -1)(k -1) + t∆ Since l ≤ ∆ -t S ≤ (k -1)∆ + (∆ -t -1)(k -1) + t∆ It follows that: S ≤ t(∆ + 1 -k) + 2k∆ -k + 1 -2∆
Since t ≤ k, we have:

S ≤ k(∆ + 1 -k) + 2k∆ -k + 1 -2∆ = k∆ + k -k 2 + 2k∆ -k + 1 -2∆ = (3k -2)∆ -k 2 + 1 Suppose that N G (u i ) = {v, u (i) 1 , u (i) 2 , • • • , u (i)
ℓi }, where i ∈ {1, 2, • • • , l} and ℓ i ≤ k -1. We will extend the coloring φ to G as follows (we let φ ′ denote this new coloring). We colour each edge vu i for i ∈ {1, • • • , l}, in order.

• For vu 1 , we forbid the colors of the edges of G ′ at distance at most 2 from vu 1 in G. Since |L(vu 1 )| ≥ (3k -2)∆k 2 + 2, we have at least one available color to color vu 1 such that no bi-colored 4-path or 4-cycle is created.

• For vu j j ≥ 2, since φ ′ (vu i ) / ∈ φ(u m ) (i < j, m ≥ j), we can use the colors of φ(u h ) (h < j) to color vu j , if they are not in φ(v). So these colors are not forbidden. We now count the forbidden colors for vu j . We make the same computation as above, but we replace the set of the colors of φ(u i ) (i < j) by the color of φ ′ (vu i ). Hence we have at least the same number (which is ≥ 1) of available colors to color vu j . We can color vu j without creating any bi-colored 4-path or 4-cycle.

Hence we have extended the coloring φ to G, which is a contradiction.

K 4 -minor free Graphs

For the proof of Theorem 1.6 we will use the following fundamental structural properties of K 4 -minor free graphs.

We define

S G (u) = {x ∈ V (G)|[d G (x) ≥ 3 and ux ∈ E(G)] or [ there exists z ∈ V (G), d G (z) = 2, uz ∈ E(G), zx ∈ E(G)]}. Let D G (u) = |S G (u)| Lemma 2.
[13] Let G be a K 4 -minor free graph, one of the following holds:

1. G contains a 1-vertex.

G contains two adjacent 2-vertices.

G contains a vertex u with d

G (u) ≥ 3 such that D G (u) ≤ 2.
For Lemma 2.3 see Figure 1. A partial edge-coloring of a graph G is an edge-coloring of a subgraph G ′ of G (where G ′ can equal G). We will use in the proofs of Theorem 1.6 the following Lemma proved in [START_REF] Kerdjoudj | List star edge-coloring of subcubic graphs[END_REF] . Lemma 3. [START_REF] Kerdjoudj | List star edge-coloring of subcubic graphs[END_REF] Let φ be a partial star edge-coloring of a graph G and uv be an uncolored edge. If α is a color satisfying at least one of the two properties below, then, the coloring φ ′ obtained from φ by coloring uv with α also is a partial star edge-coloring of G. a. For every

u x 1 x 2 x t x (a) u x 1 x 2 x t x (b) u y y 1 y 2 y r x 1 x 2 x t x (c) u y y 1 y r x 1 x 2 x t x (d) u y x 1 x t x (e) u y y 1 y r x 1 x t x (f)
x ∈ N [u] ∪ N [v], α / ∈ φ(x). b. φ(u) ∩ φ(v) = ∅, α / ∈ φ(u) ∪ φ(v)
, and among the edges incident with the neighbors of v or u, only the pendant edges may have color α.

Proof of Theorem 1.6

The case for ∆ = 2, it is known that every cycle has a list star edge-coloring from any 4-uniform list. Indeed, the square of any cycle of length n = 5 has a list 4-coloring, and if n = 5, then we can color two nonadjacent edges with one color, say c, and all other 3 edges with different colors distinct from c. In the following we assume that ∆ ≥ 3.

Suppose to the contrary that Theorem 1.6 is not true. We consider the class of the K 4 -minor free graphs G. Hence there exists in this class a graph with maximum degree equal to k ∈ N * and k ≥ 3, such that for some list L with |L(e)| = 3k -3 for each edge e ∈ E(G), the graph has no star edge-coloring from L. We consider the smallest k for which such a counterexample exists. Let G k be the class of K 4 -minor free graphs with maximum degree at most k. Now let H ∈ G k be a counterexample to Theorem 1. Proof. Suppose that H * contains two adjacent 2-vertices u and v. Let u 1 (resp. v 1 ) be the other neighbor of u (resp. v) with a degree greater than 1. If u has 1-neighbors in H, let u ′ i , for i ∈ {1, • • • , ℓ} and ℓ ≤ k -2, denote the neighbors of u of degree 1. Consider the graph

H ′ = H \ {uu ′ 1 }. By minimality of H, H ′ has a star edge-coloring φ from L. Since |L(uu ′ 1 ) \ (φ(u) ∪ φ(u 1 ) ∪ {φ(vv 1 )})| ≥ 1, we color uu ′ 1 with a color c ∈ L(uu ′ 1 ) \ (φ(u) ∪ φ(u 1 ) ∪ {φ(vv 1 )})
. Hence, by Lemma 3.b we obtain a star edge-coloring of H from L, a contradiction. We conclude that d H (u) = 2. Similarly, d H (v) = 2.

Assume now that H contains two adjacent 2-vertices u and v. Case 1: k = 3. Note that |L(e)| = 6 for each edge e ∈ E(H). Let N H (v 1 ) ⊆ {v, v 2 , v 3 } (maybe only one of v 2 , v 3 exists) and N H (u 1 ) ⊆ {u, u 2 , u 3 }. Let H ′ = H \ {uv}. By minimality of H, H ′ admits a star edge-coloring φ from L. φ is a partial star edge-coloring of H. We will try to extend φ to uv from L.

• If |L(uv) \ (φ(u 1 ) ∪ φ(v 1 ))| ≥ 1, then we color uv with a color a ∈ L(uv) \ (φ(u 1 ) ∪ φ(v 1 )).

Hence, by Lemma 3.a, we obtain a star edge-coloring of H from L, which is a contradiction. 

(φ(u) ∪ φ(x))| ≥ k -2 ≥ 2, we color uu 1 with a color c ∈ L(uu 1 ) \ (φ(u) ∪ φ(x))
. Hence, by Lemma 3.a we obtain a star edge-coloring of H from L, a contradiction. We conclude that u has no 1-neighbors in H.

Let H ′ = H \ {ux 1 }. By minimality of H, the graph H ′ has a star edge-coloring from L. We will extend φ to H as follows. Since |L(ux

1 ) \ (φ(x) ∪ φ(u))| ≥ 3k -3 -(2k -1) ≥ 1 if ux / ∈ E(H * ) (and |L(ux 1 ) \ (φ(x) ∪ φ(u))| ≥ 3k -3 -(k + t -2) ≥ 3k -3 -(2k -2) ≥ 2 if ux / ∈ E(H * ))
, by Lemma 3.a, we can extend the coloring to H by coloring ux 1 with a color in L(ux 1 ) \ (φ(x) ∪ φ(u)), which is a contradiction. Hence in both cases we obtain a star edge-coloring of H from L, which is a contradiction. We conclude that u has no 1-neighbors in H. We now consider, the following two subcases:

Case 1.1: k = 3. Then w.l.o.g, let M (u, x) = {x 1 } and M (u, y) = ∅ Assume that N H (x) = {u, x 1 , x ′ }. Let H ′ = H \ {x 1 }.
By minimality of H, the graph H ′ has a star edge-coloring φ from L. We will extend φ to H as follows.

1. If φ(ux) ∈ φ(y), then there exists a color α ∈ L(xx 1 ) \ (φ(x ′ ) ∪ φ(u)) and β ∈ L(ux 1 ) \ (φ(y) ∪ φ(x) ∪ {α}). By Lemma 3.a, if we color xx 1 with the color α and ux 1 with the color β we obtain star edge-coloring φ ′ of H from L, which is a contradiction.

If φ(ux) /

∈ φ(y), then there exists a color α ∈ L(ux 1 ) \ (φ(y) ∪ {φ(ux), φ(xx ′ )}). Let φ ′ be an edge-coloring obtained from φ by setting φ ′ (ux 1 ) = α. Hence by Lemma 3.a, φ ′ is a partial star edge-coloring of H. We now color xx 1 . Since φ ′ (ux) / ∈ φ ′ (y) and α / ∈ φ ′ (y) ∪ {φ ′ (xx ′ )}, the color φ(uy) can be used to color xx 1 without creating a bi-colored 4-path or 4-cycle. We have

|L(xx 1 ) \ (φ ′ (x ′ ) ∪ {α, φ ′ (ux)})| ≥ 1 , then if we color xx 1 with a color β ∈ L(xx 1 ) \ (φ ′ (x ′ ) ∪ {α, φ ′ (ux)}) we obtain star edge-coloring of H from L, which is a contradiction. Case 1.2: k ≥ 4. We have m(x) ≥ 1. Let M (u, x) = {x 1 , • • • , x t } (t ≥ 1). Consider H ′ = H \ {ux 1 }.
By minimality of H, H ′ has a star edge-coloring φ from L. We will extend φ to H as follows. We have |φ(x) ∪ φ(y) ∪ φ(u)| ≤ 3k -3.

1. If |φ(x) ∪ φ(y) ∪ φ(u)| < 3k -3 then, by Lemma 3.a, a free color remains in L(ux 1 ) to color ux 1 without creating any bi-colored 4-path.

2. If |φ(x) ∪ φ(y) ∪ φ(u)| = 3k -3 then d H * (u) = k
• If m(y) = 0, then t ≥ 2 and all the edges incident to u, x and y in H ′ have different colors. In this case, we can color ux 1 with the color φ(xx 2 ) without creating any bicolored 4-path or 4-cycle.

• If m(y) ≥ 1. Let M (u, y) = {y 1 , • • • , y r } (r ≥ 1)
. All the edges incident to u, x and y in H ′ have different colors. In this case, we can color ux 1 with a color in (L(ux 1 )\(((φ(x) ∪ φ(y) ∪ φ(z))\φ(yy 1 ))) without creating any bi-colored 4-path or 4-cycle.

Thus, we can extend the coloring to H from L, which is a contradiction. coloring to H from L, which is a contradiction. 

(φ(u) ∪ φ(y) ∪ {φ(xx 1 ), φ(xx 2 ), • • • , φ(xx t )})| ≥ 3k -3 -(k + k -2 + t) ≥ 1 (note that 1 ≤ t ≤ k -2)
, there exists at least one available color in L(uu 1 ) \ (φ(u) ∪ φ(y) ∪ {φ(xx 1 ), φ(xx 2 ), • • • , φ(xx t )}) to color uu 1 , which is a contradiction. We conclude that u has no 1-neighbors in H.

We consider the following two subcases: 

|φ(x) ∪ φ(y) ∪ φ(u)| ≤ k + k + t -1 ≤ 3k -3.
• If |L(ux 1 ) \ φ(x) ∪ φ(y) ∪ φ(u)| > 0, then by Lemma 3.a there remains a free color in L(ux 1 ) to color ux 1 without creating any bi-colored 4-path ou 4-cycle. 

• If |L(ux 1 ) \ φ(x) ∪ φ(y) ∪ φ(u)| = 0, then d H * (u) = k -1
) \ (φ 2 (x ′ ) ∪ {α 2 , α 1 })| ≥ 1.
Then we can extend the coloring to H from L by coloring xx 1 with a color Then we color uy 1 with a color belonging to L(uy 1 )\(φ(y)∪φ(u)∪{φ(xx 1 ), φ(xx 2 ), • • • , φ(xx t )}) without creating any bi-colored 4-paths or 4-cycles. Therefore, we can extend the coloring to H from L, which is a contradiction.

β 2 ∈ L(xx 1 ) \ (φ 2 (x ′ ) ∪ {α 2 , α 1 }), which is a contradiction. (b) If k ≥ 4 then we begin to color each xx i , for i = {1, • • • , t}, in the order. We color xx 1 with a color β 1 ∈ L(xx 1 ) \ (φ(x ′ ) ∪ φ(y)). Since |L(xx i ) \ (φ(x ′ ) ∪ {φ(uy)})| ≥ 3k -3 -(k + 1) ≥ 2k -4 ≥ k -1, we have enough colors β i ∈ L(xx i ) \ (φ(x ′ ) ∪ {φ(uy)}) to color each xx i , for i ∈ {2, • • • , t}. Let φ 1 be the coloring obtained from φ by setting φ 1 (xx i ) = β i , for i ∈ {2, • • • , t}. By Lemma 3.a, φ 1 is a partial star edge-coloring of H from L. Next, we color the edges ux 1 , • • • , ux t-2 , in order. Since |L(ux i ) \ (φ 1 (x) ∪ φ 1 (y))| ≥ k -3, for i ∈ {1, • • • , t -2}, we have enough colors α i ∈ L(ux i ) \ (φ(x) ∪ φ(y)) to color each ux i , for i ∈ {1, • • • , t -2}.
• If m(x) = 1 then, if |L(uy 1 ) \ (φ(x 1 ) ∪ φ(y) ∪ φ(u))| ≥ 1, we apply Lemma 3.a and we get a contradiction. Otherwise, all edges incident to u, x 1 and y have distinct colors and L(uy 1 ) = φ(x 1 ) ∪ φ(y) ∪ φ(u). Then, by Lemma 3.b, we can color uy 1 with the color φ(x 1 x ′ 1 ), where x ′ 1 is a 1-vertex neighbour of x 1 in H, which is a contradiction.

The contradiction given by Lemma 2 and Claims 3.2, 3.3, 3.6, 3.7 completes the proof of Theorem 1.6.
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 371 H * does not contain a vertex u with d H * (u) ≥ 3 and D H * (u) = 2. Proof. Assume that D H * (u) = 2. Let S H * (u) = {x, y}. Thus all the neighbors of u are either x, y or some neighbors of x or y. The proof is divided into the following cases: If ux ∈ E(H * ) and uy ∈ E(H * ), then let M (u, x) = {x 1 , • • • , x t } and M (u, y) = {y 1 , • • • , y r } (see Figure 1.(c)). W.l.o.g, we suppose m(x) ≥ m(y). Since d H * (u) ≥ 3, we have m(x) ≥ 1. By Claim 3.4, the vertices x 1 , • • • , x t and y 1 , • • • , y r have no 1-neighbors in H. If u has 1-neighbors in H then k ≥ 4. We denote by u i , for i ∈ {1, • • • , ℓ} and ℓ ≤ kd H * (u), the neighbors of u of degree 1. Consider the graph H ′ = H \ {uu 1 }. By minimality of H, H ′ has a star edge-coloring φ from L. We have |φ(x) ∪ φ(y) ∪ φ(u)| ≤ 3k -3. • If |φ(x) ∪ φ(y) ∪ φ(u)| < 3k -3, then by Lemma 3.a a free color remains in L(uu 1 ) to color uu 1 without creating any bi-colored 4-path. • If |φ(x) ∪ φ(y) ∪ φ(u)| = 3k -3, then all the edges incident to u, x and y in H ′ have different colors. So we can color uu 1 with a color in L(uu 1 )\((φ(x) ∪ φ(y) ∪ φ(z))\φ(xx 1 )) without creating any bi-colored 4-path.

Case 2 :

 2 If ux / ∈ E(H * ) and uy / ∈ E(H * ), then let M (u, x) = {x 1 , • • • , x t } and M (u, y) = {y 1 , • • • , y r } (see Figure 1.(d)). W.l.o.g, we suppose m(x) ≥ m(y). Since d H * (u) ≥ 3, we have m(x) ≥ 2 and m(y) ≥ 1. By Claim 3.5, the vertices x 1 , • • • , x t , have no 1-neighbors in H. • If m(y) ≥ 2 then by Claim 3.5, the vertices y 1 , • • • , y r , have no 1-neighbors in H. • If m(y) = 1 then M (u, y) = {y 1 }. If y 1 has 1-neighbors in H, let y (j) 1 , for j ∈ {1, • • • , ℓ ′ } and ℓ ′ ≤ k -2,denote the neighbors of y 1 of degree 1. Consider the graph H ′ = H \ {yy (1) 1 }. By minimality of H, H ′ has a star edge-coloring φ from L.

Case 3 :

 3 If ux / ∈ E(H * ) and uy ∈ E(H * ), then let M (u, x) = {x 1 , • • • , x t } and M (u, y) = {y 1 , • • • , y r } (see Figure 1.(f)). If u has 1-neighbors in H, let u i , for i ∈ {1, • • • , ℓ} and ℓ ≤ k -d H * (u), denote the neighbors of u of degree 1. Consider the graph H ′ = H \{uu 1 }. By minimality of H, H ′ has a star edge-coloring φ from L. Since |L(uu 1 ) \

Case 3 . 1 :

 31 m(y) = 0. Then m(x) ≥ 2 and by Claim 3.5 all the verticesx i , for i ∈ {1, • • • , t}, have no 1-neighbors in H. 1. If t ≤ k -2 then d(u) ≤ k -1,t ≥ 2 and k ≥ 4 . We consider the graph H ′ = H \ {ux 1 }. By minimality of H, H ′ has a star edge-coloring φ from L.

Case 3 . 2 :

 32 m(y) ≥ 1 and m(x) ≥ 1. By Claim 3.4 all vertices y j , for j ∈ {1, • • • , r} have no 1-neighbors in H. We consider the graph H ′ = H \ {uy 1 }. By minimality of H, H ′ has a star edge-coloring φ from L.• If m(x) ≥ 2 then by Claim 3.5 x i for i ∈ {1, • • • , t}) have no 1-neighbors in H. Moreover |φ(y) ∪ φ(u) ∪ {φ(xx 1 ), φ(xx 2 ), • • • , φ(xx t )}| ≤ k + t + r -1 + t ≤ 2k + t -2. By hypothesis t ≤ k -2, thus |φ(y) ∪ φ(u) ∪ {φ(xx 1 ), φ(xx 2 ), • • • , φ(xx t )}| ≤ 3k -4.We deduce|L(uy 1 ) \ (φ(y) ∪ φ(u) ∪ {φ(xx 1 ), φ(xx 2 ), • • • , φ(xx t )})| ≥ 1.

  and all the edges incident to u, x and y in H ′ have different colors. Moreover, L(ux a) If k = 3 then it is easy to see that there exist colors α 1 and α 2 such that α 1 ∈ L(ux Then by construction, φ 2 is a partial star edge-coloring of H. Finally, we color the edge xx 1 . Since β 1 / ∈ φ 2 (y), α 2 = φ(uy) and α 1 / ∈ (φ 2 (y)∪{φ 2 (xx ′ )}), the colors β 1 and φ 2 (uy) can be used to color xx 1 such that no bi-colored 4-path or 4-cycle is created. Moreover, |L(xx 1

1 ) = φ(x) ∪ φ(y) ∪ φ(u). In this case, we can color ux 1 with the color φ(xx 2 ) without creating any bi-colored 4-path or 4-cycle.

Therefore, we can extend a coloring to H from L, which is a contradiction.

2. If t = k -1 then we consider the graph

H ′ = H \ {x 1 , x 2 , • • • , x t }. By minimality of H, H ′

has a star edge-coloring φ from L. Let x ′ be the neighbor of x such that x ′ / ∈ M (u, x) (if it exists).

(1 ) \ (φ(y)∪{φ(xx ′ )}) and α 2 ∈ L(xx 2 )\(φ(x ′ )∪{φ(uy), α 1 }). Let φ 1 be the coloring obtained from φ by setting φ 1 (ux 1 ) = α 1 and φ 1 (xx 2 ) = α 2 . By Lemma 3.a, φ 1 is a partial star edge-coloring of H from L. Next, we color the edges ux 2 , xx 1 , in that order. Since |L(ux 2 ) \ (φ 1 (y) ∪ {α 2 , α 1 })| ≥ 1, let φ 2 be the coloring obtained from φ 1 by coloring ux 2 with a color β 1 ∈ L(ux 2 ) \ (φ 1 (y) ∪ {α 2 , α 1 }).

  Let φ 2 be the coloring obtained from φ 1 by setting φ 2 (ux i ) = α i , for i ∈ {1, • • • , t -2}. By Lemma 3.a, φ 2 is a partial star edge-coloring of H from L. We now color the edges ux t-1 and ux t . Since β t-1 and β t do not belonging to φ 2 (x ′ ) ∪ {φ 2 (uy)}, the color of xx ′ can be used to color ux t-1 or ux Finally, as α 1 / ∈ φ 2 (x), β 1 / ∈ φ 2 (y) and β t / ∈ {φ 2 (uy), α 1 }, then β 1 can be used to color ux t . Hence,|L(ux t ) \ (φ 2 (u) ∪ φ 2 (y) ∪ {α t-1 , β 2 , • • • , β t )})| ≥ 1, then we color ux t with a color α t ∈ L(ux t ) \ (φ 2 (u) ∪ φ 2 (y) ∪ {α t-1 , β 2 , • • • , β t }). Therefore, we can extend the coloring to H from L, which is a contradiction.

t . Moreover, |L(ux t-1 ) \ (φ 2 (u) ∪ φ 2 (y) ∪ {β 1 , • • • , β t })| ≥ 1. Then, we color ux t-1 with a color α t-1 ∈ L(ux t-1 ) \ (φ 2 (u) ∪ φ 2 (y) ∪ {β 1 , • • • , β t }).
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• If |L(uv) \ (φ(u 1 ) ∪ φ(v 1 ))| = 0, then all the colors of the set φ(u 1 ) and φ(v 1 ) are distinct.

So, we may assume that L(uv) = {1, . . . , 6}, where φ(uu 1 ) = 1, φ(u 1 u 2 ) = 2, φ(u 1 u 3 ) = 3, φ(v 1 v 2 ) = 4, φ(v 1 v 3 ) = 5, φ(vv 1 ) = 6.

In particular, d H (u 1 ) = d H (v 1 ) = 3. If coloring uv with 4 does not create a bicolored 4-path, we do this and we are done. Otherwise, it means that we create a path of colors 4 and 6, and so 6 ∈ φ(v 2 ). Similarly, after trying to color uv with 5, we conclude that 6 ∈ φ(v 3 ) and so |φ(v 2 ) ∪ φ(v 3 )| ≤ 5. So, we may recolor vv 1 with a ∈ L(vv 1 ) \ (φ(v 2 ) ∪ φ(v 3 )) and color uv with 6. By the definition of a and the fact that all colors 1, . . . , 6 are distinct, the new edge-coloring φ ′ is a star edge-coloring of H from L, which is a contradiction. 

1 }. By minimality of H, H ′ admits a star edge-coloring φ from L. φ is a partial star edge-coloring of H.

. By Lemma 3.a we get a star edge-coloring of H, which is a contradiction. Proof. Suppose that H * contains a cycle ux

1 }. By minimality of H, H ′ admits a star edge-coloring φ from L. φ is a partial star edge-coloring of H from L.

). Hence, by Lemma 3.a, we obtain a star edge-coloring of H from L, which is a contradiction.

As we cannot color xx

(1) 1 with a this implies that we create a bi-colored 4-path x (1)

2 ) = d. Similarly, after trying to color xx

1 with b, we conclude that c ∈ φ(x 2 ). In this case

Hence, we may recolor x 2 x (j) 2 with a free color in L(x 2 x (j) 2 ) not in φ(x) ∪ φ(x 2 ) ∪ φ(u), and we color xx 1 , this means that α = φ(ux 1 ). In this case, it is easy to see that φ(y 1 u) = φ(xx 2 ). Thus, the color φ(xx 2 ) can be used to color yy (1) 1 . Hence, there exists an available color in L(y 1 y

(1) 1 ) \ (φ(y 1 ) ∪ φ(y) ∪ {φ(ux 1 )}). So, we can extend the coloring to H from L, which is a contradiction. We conclude that y 1 has no 1-neighbors in H.

Hence, by Lemma 3.a we obtain a star edge-coloring of H from L, a contradiction. We conclude that u has no 1-neighbors in H. Now consider the graph H ′ = H \ {u}. By minimality of H, H ′ has a star edge-coloring φ from L. We will extend φ to H as follows. First, we color the edges ux i , for i ∈ {1, • • • , t}, in order. We have d(u) = r+t and t

to color each ux i , for i ∈ {1, • • • , t}. Let φ 1 be the coloring obtained from φ by setting φ(ux i ) = α i , for i ∈ {1, • • • , t}. By Lemma 3.a, φ 1 is a partial star edge-coloring of H from L.

Next, we color the edges uy j , for j ∈ {1, • • • , r}, in the order. Since α i / ∈ (φ(x)∪{φ(yy 1 ), • • • , φ(yy r )}), the colors of xx 1 , • • • , xx t can be used to color each uy j , for j ∈ {1, • • • , r}. We have |L(uy j ) \ (φ 1 (y) ∪ φ 1 (u))| ≥ 2k -3t = 2k -3d(u) + r ≥ r, then we have enough colors β j ∈ L(uy j ) \ (φ 1 (y) ∪ φ 1 (u)) to color each uy j , for j ∈ {1, • • • , r}. Therefore, we can extend the