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Abstract

In uncertainty quanti�cation, multivariate sensitivity analysis (MSA) extends variance-

based sensitivity analysis to cope with the multivariate response, and it aims to

apportion the variability of the multivariate response into input factors and their

interactions. The �rst-order and total-e�ect covariance matrices from MSA, which

assess the e�ects of input factors, provide useful information about interactions

among input factors, the order of interactions, and the magnitude of interactions

over all model outputs. In this paper, �rst, we propose and study generalized sensi-

tivity indices (GSIs) using the �rst-order and total-e�ect covariance matrices. The

new GSIs make use of matrix norms when partial orders such as the Loewner or-

dering on covariance matrices is not possible, and we obtain the classical GSIs using

the Frobenius norm. Second, we propose minimum variance unbiased estimators

(MVUEs) of the �rst-order and total-e�ect covariance matrices, and third, we pro-

vide an e�cient estimator of the �rst-order and total (classical) GSIs. We also derive

the consistency, the asymptotic normality, and the asymptotic con�dence regions of

these estimators. Our estimator allows for improving the GSIs estimates.

Keywords: Generalized sensitivity indices, Matrix norms, Multivariate sensitivity

analysis, MVU estimators, U-statistics.

1. Introduction1

Comprehensive, mathematical, and multivariate response models (such as dy-2

namic models) are widely used as experimental tools for supporting decision making3

in natural or human-induced phenomena. They often include numerous uncertain4

input factors. These uncertainties can strongly a�ect the model output(s) and pose5

certain di�culties when building scenarios. Assessing the e�ects of input factors on6
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the whole model outputs is interesting for practitioners prior to scenario-building,1

model-reducing, or model diagnostic activities.2

3

Multivariate sensitivity analysis ([1; 2; 3; 4; 5; 6; 7]) extends variance-based sen-4

sitivity analysis ([8; 9; 10]) to cope with the multivariate response. It provides the5

generalized sensitivity indices, which allow for assessing interactions among input6

factors, the order of interactions, and the magnitude of interactions over all model7

outputs.8

So far, we distinguish mainly two approaches of MSA. The �rst approach is based9

on the classical, multivariate analysis of variance, and it is well suited for factorial10

designs ([1; 4; 3; 2]). The second approach is based on the functional, multivariate11

analysis of variance by sampling input values randomly or quasi-randomly ([2; 5; 7]).12

For both MSA approaches, the GSIs (�rst-order and total indices) can be computed13

using either the original model outputs or a transformation of the latter (e.g., princi-14

pal components), thereby showing the existence of an invariant property of the GSIs15

([4; 5]). The transformation becomes interesting when quantifying the sensitivity in16

a given direction, de�ned by eigenvectors or another orthogonal basis ([1]).17

18

Recently, MSA has been adapted to spatial outputs ([11]), and it has been com-19

pared to an extension of MSA using the Hilbert-Schmidt independence criterion20

([11]). The GSIs from MSA have also been compared to new types of GSIs for mul-21

tivariate outputs based on a vector projection or direction of eigen space [12; 7]).22

For complex systems or expensive models, a meta-modeling or emulator approach23

is an attractive way to compute GSIs ([13; 12]). However, in the following text, we24

focus on sampling-based methods for estimating GSIs.25

26

The estimator of Sobol' indices has been improved in the case of single response27

models. It is known in [14; 15] that the new estimator of the �rst-order and total28
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Sobol' indices is based on a minimum variance unbiased estimator of the �rst-order1

and total-e�ect variances thanks to the theory of U-statistics. In the case of multi-2

variate response models, the de�nitions of all types of GSIs make use of covariance3

matrices (�rst-order and total-e�ect covariance matrices), including the de�nitions4

proposed in [5], the aggregated Sobol' indices used in [2], and those from [12; 7].5

While the former de�nitions aims at assessing the in�uence of input factors on the6

trace of the covariance matrices (magnitudes), the latter accounts for both the mag-7

nitudes and the directions simultaneously. Thus, it is worth interesting to use all8

valuable information contained in the �rst-order and total-e�ect covariance matrices9

to assess the in�uence of a given input factor, and to better estimate these covari-10

ance matrices, including the o�-diagonal elements.11

12

In this paper, �rst, we propose and study new types of GSI using the �rst-order13

and total-e�ect covariance matrices. The new GSIs make use of matrix norms when14

partial orders such as the Loewner ordering on these covariance matrices does not15

exist, and we obtain the classical GSIs (from papers [2; 5]) using the Frobenius norm.16

Second, we propose a minimum variance unbiased estimator of the �rst-order and17

total-e�ect covariance matrices, and third, we provide an e�cient estimator of the18

classical �rst-order and total GSIs. We also derive the consistency, the asymptotic19

normality, and the asymptotic con�dence regions of these estimators.20

21

The paper is organized as follows: in Section 2, we recall the multivariate Hoe�d-22

ing decomposition, and we propose the re-organized decomposition that allows for23

assessing the overall contribution of input factors through the total-e�ect function.24

While Section 3 proposes new de�nitions of GSIs using some matrix norms, Section25

4 provides and studies the estimators of the �rst-order and total-e�ect covariance26

matrices, including the joint estimator of the classical GSIs (from [2; 5]). The joint27

estimator makes use of a function with two types of inputs (kernel of degree (p, q)).28
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In Section 5, we use a proxy measure for choosing the convenient degree of the kernel1

(p, q), and we provide an algorithm for computing the two covariance matrices. We2

demonstrate the applicability of these results by means of numerical tests in Section3

6. Section 7 concludes this work.4

Notation and preliminary5

Throughout the paper, f(X) denotes a multivariate response model (i.e., f(X) ∈6

RN) with d random input factors X = (X1, . . . , Xd). We use u as a non-empty7

subset of {1, 2, . . . , d}, and we use |u| for its cardinality (i.e., the number of ele-8

ments in u). Let Xu = {Xj, j ∈ u} be a subset of input factors and X∼u denote9

the vector containing all input factors except Xu. We have the following partition:10

X = (Xu,X∼u). We use µ(X) = µ(X1, . . . , Xd) as the joint probability measure or11

distribution of input factors. We assume throughout the paper that input factors12

are independent (assumption A1) and all model outputs have �nite second moments13

(assumption A2); that is, E
[
||f(X)||2L2

]
< +∞. We use P(·) for the probability,14

E(·) for the expectation, V(·) for the variance, Tr(·) for the trace, Cov(·) for the15

covariance,
(
n
p

)
for the number of combinations for selecting p objects out of n, and16

D−→ and
P−→ for the convergence in distribution and in probability respectively.17

18

For a matrix Σ, the Frobenius norm of Σ is given by

||Σ||2F =
∑
i, j

|Σij|2 = Tr

(
ΣΣT

)
.

The spectral norm of Σ is the square root of the largest eigenvalue of ΣTΣ, that

is,

||Σ||2S = max
{
λ, det(ΣTΣ− λI) = 0

}
.
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The lp norm is de�ned as follows:

||Σ||lp =

(∑
i, j

|Σij|p
)1/p

,

and ||Σ||lp = ||Σ||F if p = 2.1

2

Let Σ1 and Σ2 be two symmetric and positive semi-de�nite matrices (i.e., vTΣiv ≥

0 ∀v ∈ RN , i = 1, 2). The Loewner ordering on matrices Σ1 and Σ2 is de�ned as

follows:

Σ1 � Σ2 if Σ2 − Σ1 is positive semi-de�nite .

2. Multivariate Hoe�ding decomposition3

A transformation may be applied to the model outputs f(X), of the formDwf(X),4

whereDw is aN×N weighting matrix. For instance, in the case of the model outputs5

with di�erent units, some transformations may be used to obtain unit-less outputs.6

Remark 1. A classical way to obtain unit-less outputs is to divide each output by its7

standard deviation, that is, D−1
w = diag(w) is a diagonal matrix with w representing8

the vector of the standard deviations of the outputs. One may use w as a vector9

containing the expectation of the absolute value of each output ([12]). In the following10

text, we use f(X) as either the original model outputs or a given transformation of11

the latter.12

Under the independence assumption A1, the multivariate Hoe�ding decomposi-13

tion ([16]; [17]) is given by14

f(X) = f∅ +
d∑
j

fj(Xj) +
d∑

j1<j2

fj1j2(Xj1 , Xj2) + . . .+ f1...d(X1, . . . , Xd)

= f∅ +
∑

u⊆{1,2,...d}

fu(Xu) , (2.1)

where f∅ = E [f(X)] is the expectation of the model output, fj(Xj) = E [f(X)|Xj]−f∅,15

and fu(Xu) = E [f(X)|Xu]−
∑

v⊆{1,2,...d}
v⊂u

fv(Xv) for a non-empty subset u ⊆ {1, 2, . . . , d}.16

17

5



The function fj(Xj) = E [f(X)|Xj] − f∅ in (2.1) contains the information pro-1

vided by Xj only to the model outputs. It is used to quantify the single con-2

tribution of Xj over model outputs. Moreover, we have the following property:3

EXj
[fu(Xu)] = 0, ∀ j ∈ u. In general, E [f(X)|Xu] − f∅ allows for quantifying the4

single contribution of the input factors Xu over model outputs. We refer to this5

function as the �rst-order function.6

7

The Hoe�ding decomposition in (2.1) can be organized as follows ([18; 19]):8

f(X) = f∅ + gu(Xu,X∼u) + h∼u(X∼u) , (2.2)

with gu(Xu,X∼u) =
∑

v⊆{1,2,...d}
v∩u6=∅

fv(Xv).9

10

The decomposition in (2.2) is also unique under the independence assumption11

A1. By de�nition, the function gu(·) in (2.2) contains all information brought by12

the input factors Xu to the model outputs, and it is su�cient to quantify the overall13

contribution of Xu over model outputs. We refer to this function as the total-e�ect14

function (TEF).15

16

Based on the re-organized Hoe�ding decomposition in (2.2), we can show that17

gu(Xu,X∼u) = f(X)− E [f(X) |X∼u] . (2.3)

Indeed, since E [gu(Xu,X∼u) |X∼u] = 0, Equation (2.2) implies E [f(X) |X∼u] =18

f∅ + h∼u(X∼u), and gives (2.3).19

20

Remark 2. Equation (2.3) generalizes the total-e�ect function for the single re-21

sponse proposed in ([19; 14]) to the multivariate response.22

Any de�nition of the �rst-order and total GSIs of Xu should be based on the23
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random vectors E [f(X)|Xu] − f∅ and gu(Xu,X∼u), respectively. We often measure1

the variability of a random vector by its variance. By taking the covariance of2

Equation (2.1) and bearing in mind the L2 orthogonality, we have the following3

covariance decomposition assuming that assumptions A1 and A2 hold.4

Σ =
∑

v⊆{1, 2, ..., d}

Dv , (2.4)

with Σ = Cov [f(X)] and Dv = Cov [fv(Xv)].5

6

3. First-order and total-e�ect covariance matrices: new GSIs7

Using the variance measure, the de�nition of the sensitivity indices for the mul-8

tivariate response should be based on the following covariance matrices.9

10

The �rst-order covariance matrix is given by11

Σu = Cov [E (f(X)|Xu)] . (3.5)

Further, the total-e�ect covariance matrix is given by12

Σtot
u = Cov [gu(Xu,X∼u)] . (3.6)

Using Equations (2.2 , 2.3, 2.4, 3.6) and bearing in mind the L2 orthogonality,13

we can see that the total-e�ect covariance matrix is also given by ([3; 2; 7])14

Σtot
u =

∑
v⊆{1, 2, ..., d}

v∩u6=∅

Dv . (3.7)

Regarding the model outputs, the �rst-order and total-e�ect covariance matrices15

of Xu provide all information about Xu, including the parts of correlations among16

7



model outputs. The covariance matrices Σu and Σtot
u are symmetric and positive1

semi-de�nite (i.e., vTΣuv ≥ 0 and vTΣtot
u v ≥ 0 ∀v ∈ RN). Moreover, we have the2

following properties using the Loewner ordering3

Σu � Σtot
u . (3.8)

Indeed, Σtot
u −Σu =

∑
v⊆{1, 2, ..., d}

u⊂v
Dv, with Dv positive semi-de�nite. Thus, (3.8)4

generalizes the inequality between the �rst-order and total e�ects in the case of mul-5

tivariate response models. As Σtot
u accounts for interactions, it should be preferred for6

ranking input factors. In the same sense, when the Loewner ordering exists for ma-7

trices Σtot
j , j = 1, 2, . . . , d, that is, Σtot

j1
� Σtot

j2
� . . . � Σtot

jd
with ji ∈ {1, 2, . . . , d}8

and i = 1, 2, . . . , d, the input factor Xjd will be the most in�uential input factor,9

followed by Xjd−1
.10

11

The prioritization of input factors based on the covariance matrices is straightforward12

for the single response (N = 1), as the covariance matrices are scalars. In the case of13

the multivariate response, we should apply a matrix norm on the covariance matrices14

(Σu, Σtot
u ) prior to prioritize input factors when the Loewner ordering on matrices15

Σu and Σtot
u is not possible. Thus, new de�nitions of the sensitivity indices for the16

multivariate response become possible regarding the choice of the matrix norm. In17

the following text, we choose three matrix norms that are complementary.18

3.1. Classical generalized sensitivity indices and Frobenius norm19

A classical extension of the variance to a random vector is the expectation of the20

L2 norm of the centered vector. In previous works ([3; 2; 5]), the de�nitions of the21

GSIs rely on this measure, and the harmonized de�nitions are given below.22

23

De�nition 1. Let f(X) ∈ RN be the model outputs with d random inputs X and Σ,24

Σu, and Σtot
u be the covariance matrices of the model outputs, the �rst-order and the25
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total-e�ect functions, respectively.1

2

The �rst-order GSI of Xu is de�ned as follows:3

GSIu =
Tr (Σu)

Tr (Σ)
. (3.9)

Further, the total GSI of Xu is gven by4

GSITu =
Tr (Σtot

u )

Tr (Σ)
. (3.10)

By using the Frobenius norm, the GSIs de�nitions in (3.9) and (3.10) can be5

expressed as follows:6

GSIFu =

∣∣∣∣∣∣Σ1/2
u

∣∣∣∣∣∣2
F

||Σ1/2||2F
, (3.11)

and7

GSIFTu
=

∣∣∣∣∣∣(Σtot
u )

1/2
∣∣∣∣∣∣2
F

||Σ1/2||2F
. (3.12)

Remark 3. Let V be an N ×N orthogonal matrix (i.e., VTV = Ik), the �rst-order8

and total GSIs of Xu are invariant by left-composing f(X) by V, that is,9

GSIFu (Vf(X)) =
Tr [Cov (VE [f(X)|Xu])]

Tr [Cov (Vf(X))]
= GSIu , (3.13)

and10

GSIFTu
(Vf(X)) =

Tr [Cov (V [gu(Xu,X∼u)])]

Tr [Cov (Vf(X))]
= GSITu . (3.14)

When V contains the eigenvectors of Σ, the de�nitions in (3.13) and (3.14) come11

down to an aggregation of the Sobol indices across all principal components ([4; 3;12

2]).13

The de�nitions in (3.11) and (3.12) include only the diagonal elements of the14

covariance matrices. Thus, the GSIs provide the contributions of input factors to15

the sum of the variance of the model outputs (called inertia).16

3.2. New generalized sensitivity indices based on the spectral norm17

The spectral norm can bring some information about the correlations between18

the components of the total-e�ect function gu(X) for instance. While strong correla-19

9



tions between the components of gu(X) will lead to a high value of the spectral norm1

of (Σtot
u )

1/2
(i.e.,

∣∣∣∣∣∣(Σtot
u )

1/2
∣∣∣∣∣∣

S
), uncorrelated components will reduce

∣∣∣∣∣∣(Σtot
u )

1/2
∣∣∣∣∣∣2
S
to2

the highest value of the variances of these components. Based on the spectral norm,3

we de�ne the new generalized sensitivity indices as follows.4

5

De�nition 2. Let f(X) ∈ RN be the model outputs with d random inputs X and6

Σ, Σu, and Σtot
u be the covariance matrices of the model outputs, the �rst-order and7

total-e�ect functions, respectively.8

9

The �rst-order GSI of Xu is de�ned as follows:10

GSISu =

∣∣∣∣∣∣Σ1/2
u

∣∣∣∣∣∣2
S

||Σ1/2||2F
. (3.15)

Further, the total GSI of Xu is given by11

GSISTu
=

∣∣∣∣∣∣(Σtot
u )

1/2
∣∣∣∣∣∣2
S

||Σ1/2||2F
. (3.16)

In Definition 2,
∣∣∣∣Σ1/2

∣∣∣∣2
F
is used as a constant of normalization, and it allows12

the derivation of the following properties of the new indices.13

14

Proposition 1. Let f(X) ∈ RN be the model outputs with d random inputs X, V15

be an N ×N orthogonal matrix. If assumptions A1 and A2 hold, then16

17

i) the indices GSISu and GSISTu
satisfy18

0 ≤ GSISu ≤ GSISTu
≤ 1 ; (3.17)

ii) the indices GSISu and GSISTu
are invariant by left-composing f(X) by V, that19

is,20

GSISu (Vf(X)) = GSISu (f(X)) , (3.18)

and21

GSISTu
(Vf(X)) = GSISTu

(f(X)) . (3.19)

Proof. See AppendixA.22

�23
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3.3. New generalized sensitivity indices based on the lp-norm1

The lp-norm of Σtot
u (||Σtot

u ||lp) accounts for all elements of Σtot
u , including the2

o�-diagonal elements. It includes the correlations between the components of the3

total-e�ect function gu(X) in the analysis. Thus, strong correlations between the4

components of gu(X) will increase the value of ||Σtot
u ||lp .5

6

Based on the lp-norm, we de�ne the new generalized sensitivity indices below.7

8

De�nition 3. Let f(X) ∈ RN be the model outputs with d random inputs X and9

Σ, Σu, and Σtot
u be the covariance matrices of the model outputs, the �rst-order and10

total-e�ect functions, respectively.11

12

The �rst-order GSI of Xu is de�ned as follows:13

GSI lpu =
||Σu||lp

N ||Σ1/2||2F
. (3.20)

Further, the total GSI of Xu is given by14

GSI
lp
Tu

=
||Σtot

u ||lp
N ||Σ1/2||2F

. (3.21)

In De�nition 3, N
∣∣∣∣Σ1/2

∣∣∣∣2
F
is used as a constant of normalization, and it allows15

the derivation of the following properties of the new indices.16

17

Proposition 2. Let f(X) ∈ RN be the model outputs with d random inputs X. If18

assumptions A1 and A2 hold, then the indices GSI l1u and GSI l1Tu
satisfy19

0 ≤ GSI l1u ≤ 1 and 0 ≤ GSI l1Tu
≤ 1 . (3.22)

Proof. See AppendixB.20

�21

3.4. Comparison of the three types of the generalized sensitivity indices22

The three types of the GSIs provide di�erent information about input factors,23

and it is possible to come up with di�erent ranking of input factors. However, we24

have the following relationship between the three types of the GSIs.25

11



GSISu ≤ GSIFu ≤ NGSI l1u . (3.23)

Likewise, we have1

GSISTu
≤ GSIFTu

≤ NGSI l1Tu
. (3.24)

It comes out that GSIFTu
= NGSI l1Tu

in the presence of uncorrelated components2

of the total-e�ect function gu(X), and GSISTu
= GSIFTu

for some correlations between3

the components of gu(X).4

4. Estimators of the �rst-order and total-e�ect covariance matrices and5

their traces6

The de�nitions of GSIs are based on the �rst-order and total-e�ect covariance7

matrices. In this section, we construct the estimators of the �rst-order and total-8

e�ect covariance matrices Σu and Σtot
u , and we investigate their performance using9

the theory of U-statistics.10

11

The theory of U-statistics allows for deriving the properties of an estimator ([20],12

[21] [22], [16; 23]). However, it requires, �rst, to �nd a kernel (i.e., a function13

with expectation coinciding exactly with our parameter of interest), and second, to14

propose the estimator of our parameter using this kernel.15

4.1. Kernel functions for the �rst-order and total-e�ect covariance matrices16

For integers p ≥ 2, q ≥ 2, let
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu and17 (

X
(1)
∼u, . . . ,X

(q)
∼u

)
be q i.i.d copies of X∼u. We consider a function with two types18

of inputs
(
X

(1)
u , . . . ,X

(p)
u

)
and

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
. This function is called a kernel of19

degree (p, q) in the theory of U-statistics; it has q + p arguments.20

21

To estimate the �rst-order and total-e�ect covariance matrices, we de�ne the22

following kernels. The kernel K(·) for the �rst-order covariance matrix is given by23

12



K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

=
1

p2(p− 1)q(q − 1)

p∑
j=1

q∑
l=1

q∑
i 6=l

×

 p∑
j1=1
j1 6=j

[
f(X(j)

u ,X(l)
∼u)− f(X(j1)

u ,X(l)
∼u)
]×

 p∑
j2=1
j2 6=j

[
f(X(j)

u ,X(i)
∼u)− f(X(j2)

u ,X(i)
∼u)
]

T

.

(4.25)

Further, the kernel Ktot(·) for the total-e�ect covariance matrix is de�ned as1

follows:2

Ktot
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

=
1

p2(p− 1)q

p∑
j=1

q∑
l=1

×

 p∑
j1=1
j1 6=j

[
f(X(j)

u ,X(l)
∼u)− f(X(j1)

u ,X(l)
∼u)
]×

 p∑
j2=1
j2 6=j

[
f(X(j)

u ,X(l)
∼u)− fs(X(j2)

u ,X(l)
∼u)
]

T

.

(4.26)

The kernels K
(
X

(1)
u , . . . ,X

(p)
u ,X

(1)
∼u, . . . ,X

(q)
∼u

)
and Ktot

(
X

(1)
u , . . . ,X

(p)
u ,X

(1)
∼u, . . . ,X

(q)
∼u

)
3

are symmetric under independent permutations of the �rst arguments (X
(1)
u , . . . ,X

(p)
u )4

and the second arguments (X
(1)
∼u, . . . ,X

(q)
∼u). Indeed, the kernels values do not change5

if we permute the position of X
(i1)
u and X

(i2)
u in one hand, and the position of X

(j1)
∼u6

and X
(j2)
∼u in the other hand, with i1, i2 ∈ {1, 2, . . . , p} and j1, j2 ∈ {1, 2, . . . , q}.7

Theorem 1 gives other properties of these kernels.8

9

Theorem 1. Let
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu and

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
be q10

i.i.d copies of X∼u, with p, q ≥ 2. If assumptions A1 (independent inputs) and A211

(E
[
||f(X)||2L2

]
< +∞) hold, then we have12

E
[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

= Σu ; (4.27)

13



E
[
Ktot

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

= Σtot
u . (4.28)

Proof. See AppendixC.1

�2

Theorem 1 shows that the kernels K(·) (resp. Ktot(·)) is an unbiased estimator of Σu3

(resp. Σtot
u ). Both kernels are symmetric, and we can use the theory of U-statistics4

of two samples to obtain the statistical properties of the estimators based on the5

kernels K(·) and Ktot(·).6

7

Remark 4. In Theorem 1, q can take the value 1 (q = 1) in the case of the kernel8

Ktot(·). However, for estimating both Σu and Σtot
u with the same number of model9

runs, we need to have q ≥ 2.10

4.2. Estimators of the �rst-order and total-e�ect covariance matrices11

This section provides the MVU estimators of Σu and Σtot
u and the main theorems12

about the properties of these estimators. Theorems 2 and 3 deal with these issues.13

14

Theorem 2. Let X =
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu, Y =

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
15

be q i.i.d copies of X∼u, Xi =
(
X

(1)
i,u , . . . ,X

(p)
i,u

)
and Yi =

(
X

(1)
i,∼u, . . . ,X

(q)
i,∼u

)
,16

i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If17

assumptions A1, A3 (E ||f(X)||4L2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have18

19

i) the minimum variance unbiased estimator of Σu for a given (p, q) and m is20

given by21

Σ̂u =
1

mp2(p− 1)q(q − 1)

m∑
i=1

p∑
j=1

q∑
l=1

q∑
k 6=l

 p∑
j1=1
j1 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j1)
i,u ,X

(l)
i,∼u)

]

×

 p∑
j2=1
j2 6=j

[
f(X

(j)
i,u,X

(k)
i,∼u)− f(X

(j2)
i,u ,X

(k)
i,∼u)

]
T

,

(4.29)

14



and we have1

2

E
(

Σ̂u

)
= Σu ; (4.30)

ii) if m→ +∞, Σ̂u is consistent, that is,3

Σ̂u
P−→ Σu . (4.31)

Proof. See AppendixD.4

�5

In Theorem 2, the estimator Σ̂u is an average of the kernel K(·) over i =6

1, 2, . . . ,m, withm the sample size. The kernel K
(
X

(1)
i,u , . . . ,X

(p)
i,u ,X

(1)
i,∼u, . . . ,X

(q)
i,∼u

)
7

requires p i.i.d copies of Xu and q i.i.d copies of X∼u. For di�erent values of (p, q)8

and m, Σ̂u does not use the same information for computing Σu. Similar to Theorem9

2, Theorem 3 provides a MVUE of Σtot
u .10

11

Theorem 3. Let X =
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu, Y =

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
12

be q i.i.d copies of X∼u, Xi =
(
X

(1)
i,u , . . . ,X

(p)
i,u

)
and Yi =

(
X

(1)
i,∼u, . . . ,X

(q)
i,∼u

)
,13

i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If14

assumptions A1, A3 (E ||f(X)||4L2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have15

16

i) the minimum variance unbiased estimator of Σtot
u for a given (p, q) and m is17

given by18

Σ̂tot
u =

1

mp2(p− 1)q

m∑
i=1

p∑
j=1

q∑
l=1

 p∑
j1=1
j1 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j1)
i,u ,X

(l)
i,∼u)

]

×

 p∑
j2=1
j2 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j2)
i,u ,X

(l)
i,∼u)

]
T

,

(4.32)

and we have19

20

E
(

Σ̂tot
u

)
= Σtot

u ; (4.33)

15



ii) if m→ +∞, Σ̂u is consistent, that is,1

Σ̂tot
u
P−→ Σtot

u . (4.34)

Proof. See AppendixE.2

�3

Theorems 2 and 3 provide interesting estimators of the �rst-order and total-e�ect4

covariance matrices, and these estimators can be used to obtain the most in�uential5

input factors when the Loewner ordering on these matrices exists. These estimators6

are going to be used for estimating the three types of GSIs proposed in Section 3.7

4.3. Estimators of the classical generalized sensitivity indices8

In this section, we investigate the estimations of the classical GSIs de�ned in9

[2; 5]. To make use of the theory of U-statistics in the case of the estimation of the10

non-normalized �rst-order GSI, we de�ne the following kernel.11

K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

= Tr

[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]
,

(4.35)

with K(·) the kernel de�ned in (4.25).12

13

It is obvious that the kernel K(·) is symmetric with respect to its �rst and sec-14

ond arguments. As the kernel K(·) is the sum of the diagonal elements of K(·) by15

de�nition, it is equal to the following kernel.16

17

16



K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

=
2

p2(p− 1)q(q − 1)

p∑
j=1

q−1∑
l=1

q∑
i=l+1

×

Tr


 p∑

j1=1
j1 6=j

[
f(X(j)

u ,X(l)
∼u)− f(X(j1)

u ,X(l)
∼u)
]
 p∑

j2=1
j2 6=j

[
f(X(j)

u ,X(i)
∼u)− f(X(j2)

u ,X(i)
∼u)
]

T .

(4.36)

Further, for the estimation of the non-normalized total GSI, we de�ne the fol-1

lowing kernel.2

3

Ktot
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

= Tr

[
Ktot

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]
,

(4.37)

with Ktot the kernel de�ned in (4.26).4

5

The kernel K(·) is symmetric with respect to its �rst and second arguments.6

Other properties of the kernels K and Ktot are given in Corollary 1.7

8

Corollary 1. Let
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu and

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
be9

q i.i.d copies of X∼u, with p, q ≥ 2. If assumptions A1 (independent inputs) and10

A2 (E
[
||f(X)||2L2

]
< +∞) hold, then we have11

E
[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

= Tr(Σu) ; (4.38)

12

E
[
Ktot

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

= Tr(Σ
tot
u ) . (4.39)

Proof. The proofs are straightforward using Equations (4.27-4.28), the linearity13

of the expectation, and the linearity of the trace function (Tr(·)).14

�15

17



Corollary 1 shows that the kernels K(·) (resp. Ktot(·)) will lead to a general-1

ized, unbiased estimator of Tr(Σ)u (resp. Tr(Σ
tot
u )), which is the non-normalized2

�rst-order (resp. total) GSI of Xu. Both kernels are symmetric in their �rst and3

second arguments, and this property allows for using the theory of U-statistics of4

two samples to obtain the statistical properties of estimators based on the kernels5

K(·) and Ktot(·) ([20], [21] [22], [16; 23]).6

4.4. Joint estimator of the classical �rst-order and total generalized sensitivity in-7

dices8

This section aims to provide the joint estimator of the classical GSIs. The follow-9

ing theorems give the minimum variance unbiased estimator of the non-normalized10

GSIs as well as its variance and its asymptotic distribution for a given degree (p, q)11

of the kernel. Based on the kernels K(·) and Ktot(·), we de�ne Kt(·) as follows:12

Kt

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

=

 K
(
X

(1)
u , . . . ,X

(p)
u ,X

(1)
∼u, . . . ,X

(q)
∼u

)
Ktot

(
X

(1)
u , . . . ,X

(p)
u ,X

(1)
∼u, . . . ,X

(q)
∼u

)
 .

(4.40)

Of course, the multivariate kernel Kt(·) is symmetric in its �rst and second13

arguments. For j, i ∈ {0, 1, . . . , d}, we de�ne Σj,l as14

Σj,l = V
(
E
[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)
|X(1)

u , . . . ,X(j)
u ,X(1)

∼u, . . . ,X
(l)
∼u
])
.

Regarding MSA, Σj,l is the �rst-order covariance matrix of
(
X

(1)
u , . . . ,X

(j)
u ,X

(1)
∼u, . . . ,X

(l)
∼u

)
15

associated with the kernel Kt(·). In particular, Σp,q is the covariance matrix of the16

kernel Kt(·). Now, we have all elements to derive the joint estimator of GSIs. Corol-17

lary 2 deals with this issue.18

19

18



Corollary 2. Let X =
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu, Y =

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
1

be q i.i.d copies of X∼u, Xi =
(
X

(1)
i,u , . . . ,X

(p)
i,u

)
and Yi =

(
X

(1)
i,∼u, . . . ,X

(q)
i,∼u

)
,2

i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If3

assumptions A1, A3 (E ||f(X)||4L2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have4

5

i) the minimum variance unbiased estimator of [Tr (Σu) Tr (Σtot
u )]

T
for a given6

(p, q) and m is given by7

8

[
T̂r (Σu)
̂Tr (Σtot

u )

]
=

[
2

mp2(p−1)q(q−1)

∑m
i=1

∑p
j=1

∑q−1
l=1

∑q
k>l

2
mp2(p−1)q

∑m
i=1

∑p
j=1

∑q
l=1

×Tr

[(∑p
j1=1
j1 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j1)
i,u ,X

(l)
i,∼u)

])
×Tr

[(∑p
j1=1
j1 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j1)
i,u ,X

(l)
i,∼u)

])
×
(∑p

j2=1
j2 6=j

[
f(X

(j)
i,u,X

(k)
i,∼u)− f(X

(j2)
i,u ,X

(k)
i,∼u)

])T
]

×
(∑p

j1=1
j2 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j2)
i,u ,X

(l)
i,∼u)

])T
]
 ;(4.41)

ii) the mean square error of [Tr (Σu) Tr (Σtot
u )]

T
is9

mE

∣∣∣∣∣
∣∣∣∣∣
[

T̂r (Σu)
̂Tr (Σtot

u )

]
−
[

Tr (Σu)
Tr (Σtot

u )

]∣∣∣∣∣
∣∣∣∣∣
2
 = Tr (Σp,q) ; (4.42)

iii) if m→ +∞, we have the asymptotic normality, that is,10

√
m

([
T̂r (Σu)
̂Tr (Σtot

u )

]
−
[

Tr (Σu)
Tr (Σtot

u )

])
D−→ N (0,Σp,q) . (4.43)

Proof. See AppendixF.11

�12

Corollary 2 gives an interesting (joint) estimator of the non-normalized GSIs of13

Xu, and the theorem below provides the joint estimator of GSIs of Xu.14

15

Theorem 4. Let X =
(
X

(1)
u , . . . ,X

(p)
u

)
be p i.i.d copies of Xu, Y =

(
X

(1)
∼u, . . . ,X

(q)
∼u

)
16

be q i.i.d copies of X∼u, Xi =
(
X

(1)
i,u , . . . ,X

(p)
i,u

)
and Yi =

(
X

(1)
i,∼u, . . . ,X

(q)
i,∼u

)
,17

19



i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If1

assumptions A1, A3 (E ||f(X)||4L2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have2

3

i) the joint estimator of GSIs of Xu ([GSIu, GSITu ]T ) for a given (p, q) and m4

is given by5

[
ĜSIu

ĜSITu

]
=

1

T̂r (Σ)
×

[
2

mp2(p−1)q(q−1)

∑m
i=1

∑p
j=1

∑q−1
l=1

∑q
k>l

2
mp2(p−1)q

∑m
i=1

∑p
j=1

∑q
l=1

×Tr

[(∑p
j1=1
j1 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j1)
i,u ,X

(l)
i,∼u)

])
×Tr

[(∑p
j1=1
j1 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j1)
i,u ,X

(l)
i,∼u)

])
×
(∑p

j2=1
j2 6=j

[
f(X

(j)
i,u,X

(k)
i,∼u)− f(X

(j2)
i,u ,X

(k)
i,∼u)

])T
]

×
(∑p

j1=1
j2 6=j

[
f(X

(j)
i,u,X

(l)
i,∼u)− f(X

(j2)
i,u ,X

(l)
i,∼u)

])T
]
 , (4.44)

where T̂r (Σ) = Tr

[
1

M−1

∑M
i=1

(
f(Xi)− f̄

) (
f(Xi)− f̄

)T]
is the estimator of the model6

inertia and f̄ = 1
M

∑M
i=1 f(Xi) is the estimator of the model mean for M model runs;7

8

ii) the estimator
[
ĜSIu ĜSITu

]T
is consistent, that is,9

[
ĜSIu ĜSITu

]T P−→ [GSIu GSITu ]T ; (4.45)

iii) if m→ +∞ and m/M → 0, we have the asymptotic normality, that is,10

√
m

([
ĜSIu ĜSITu

]T
− [GSIu GSITu ]T

)
D−→ N

(
0,

Σp,q

[Tr (Σ)]2

)
; (4.46)

iv) the 100× (1− α)% asymptotic con�dence regions for [GSIu GSITu ]T is given11

by12

P

m([ ĜSIu

ĜSITu

]
−
[

GSIu
GSITu

])T

Γ̂−1

([
ĜSIu

ĜSITu

]
−
[

GSIu
GSITu

])
≤ T 2(α)

 = 1−α ,

(4.47)

with Γ̂ = Σ̂p,q

[Tr(Σ)]2
, and T 2(α) the 100α percentile of the Hotelling T-square distribu-13

tion.14

Proof. See AppendixG.15

�16
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Remark 5. In practice, we can estimate the covariance matrix Γ, and the con�dence1

regions are the ellipsoid with center
[
ĜSIu ĜSITu

]T
and axes −+

√
λiT 2(α)vi, where2

λi and vi are the eigenvalues and eigenvectors of Γ̂ respectively.3

5. Choice of the degree of the kernel and algorithm4

5.1. Proxy measure for the choice of the degree of a kernel5

A classical way of choosing the degree (p, q) of a kernel consists in using a proxy6

measure for the variance of this kernel, as the variance of the kernel involves fourth7

moments, which are often unknown and hard to estimate ([24]). A proxy measure8

is a part of the upper bound of the variance that is based on known coe�cients9

(see [24] for comprehensive details). It aims at overcoming the estimation of fourth10

moments during the estimation of variances, and it is based on the minimum-norm11

quadratic estimation (MINQE) or the MINQUE and MINQIE versions using unbi-12

asedness or invariance as constraints (see [25]). In paper [24], the author generalized13

the principle of MINQE to deal with the variances of the estimators of sensitivity14

indices, and the author in [14; 15] used the MINQE approach to identify the degree15

of the kernel for estimating both Sobol's �rst-order and total indices.16

17

The MINQE approach used in [14; 15] can be adapted to the kernels K(·) and18

Ktot(·) of this paper, and it leads to the following conclusions: �rst, the proxy19

measure does not depend on the value of q. Thus, the value of q = 2 should be used20

as the referenced value of the degree of the kernel, and we should expect to have21

good results with q ≤ p. And second, the value p = 2 serves as the referenced degree22

for p, as the proxy measure increases with p. AppendixH deals with these issues.23

5.2. Algorithm: design scheme and main steps for the estimations of the �rst-order24

and total-e�ect covariance matrices25

For a given degree (p, q) and sample size m, the following steps are used to com-26

pute the d �rst-order and total-e�ect covariance matrices, including the GSIs.27

21



1

Algorithm 1. Main steps with q ≤ p.2

3

i) Sample p input values (matrices) of type m× d (X1, . . . , Xp).4

5

ii) For each factor Xj, replace the jth column of X1 with the jth column of6

X2, . . . , Xp to obtain p− 1 new matrices (X2j, . . . , Xpj).7

8

iii) Run the model for X1 and for the p − 1 input values X2j, . . . , Xpj to obtain9

p outputs (matrices of type m×N): Y1, Y2j, . . . , Ypj.10

11

iv) Repeat steps ii) and iii) q − 1 times by replacing X1 with X2, X3, . . ., Xq.12

13

v) Use the above model evaluations and the estimators in (4.29), (4.32), and14

(4.44) to obtain the estimates of the �rst-order and total-e�ect covariance matrices15

in one hand, and the GSIs estimates in the other hand.16

From the description in Algorithm 1, the number of model evaluations carried17

out in step iii) is m + m × (p − 1) × d = m [(p− 1)× d+ 1]), as Y1 is used for the18

computation of each index. Thus, the computational cost or the total number of19

model runs for the computation of the d indices is mq [(p− 1)d+ 1]), as we repeat20

in total step ii-iii) q times. Algorithm 1 can be used to compute the GSIs of a subset21

of input factors Xu, with |u| > 1. We should modify the step ii) of Algorithm 1 as22

follows: replace the columns of X1, which indices are in u, with the same columns23

of X2, . . . , Xp to obtain p− 1 new matrices (X2j, . . . , Xpj).24

25

The computational cost does not explicitly include the dimensionality of the26

outputs. In classical statistics, we should require the sample size m to be greater27

than the dimensionality of the outputs N in order to have better estimations. How-28

ever, the original outputs can be transformed into a few new outputs that preserve29

much or all information (e.g., principal components [4]). In this case, we can use30

the invariance property of some estimators to obtain the GSIs estimates. For very31

high dimensionality of the outputs, modern estimators of eigenvectors and principal32

components should be used ([26]).33

34
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6. Numerical tests1

In this section, we perform some numerical tests to compare the e�ectiveness of2

our estimations depending on the degree (p, q) of the symmetric kernel. We present3

the following: i) the functions used to illustrate our approach, ii) the main choices4

made to obtain the results, and iii) the numerical results.5

6.1. Test functions6

To illustrate our approach, we consider two types of functions as follows: func-7

tions with a small number of inputs (d = 2, d = 3), and functions with a medium8

number of inputs (d = 10). We also give the classical GSIs ([2; 5]) of these functions.9

6.1.1. Multivariate exponential function (d = 2)10

The multivariate exponential function includes two independent inputs following11

a normal distribution N (0, 1). It is de�ned as follows:12

f(x) =

 exp(x1 + 2x2)

x4
1x

2
2

 . (6.48)

The classical GSIs for this function are listed in Table 1

j 1 2
GSIj 0.016 0.359
GSITj

0.641 0.984

Table 1: Generalized Sensitivity Indices (GSIs) of the multivariate exponential function

13

This function belongs to the class of functions with important interactions among14

input factors.15

6.1.2. Multivariate Ishigami's function (d = 3)16

The multivariate Ishigami function includes three independent input factors fol-17

lowing a uniform distribution on [−π, π], and it provides three outputs. It is de�ned18
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as follows:1

f(x) =


sin(x1) + 7 sin2(x2) + 0.1x4

3 sin(x1)

sin(x1) + 5.896 sin2(x2) + 0.1x4
3 sin(x1)

sin(x1) + 6.494 sin2(x2) + 0.125x4
3 sin(x1)

 . (6.49)

The classical GSIs for this function are listed in Table 2.

j 1 2 3
GSIj 0.345 0.372 0.000
GSITj

0.628 0.372 0.284

Table 2: Generalized Sensitivity Indices (GSIs) of the multivariate Ishigami function

2

6.1.3. Multivariate Sobol's function (d = 10)3

The multivariate Sobol function includes 10 independent input factors following4

a uniform distribution on [0, 1]. It is de�ned as follows:5

f(x) =



∏d=10
j=1

|4xj − 2|+A[1,j]

1 +A[1,j]∏d=10
j=1

|4xj − 2|+A[2,j]

1 +A[2,j]∏d=10
j=1

|4xj − 2|+A[3,j]

1 +A[3,j]∏d=10
j=1

|4xj − 2|+A[4,j]

1 +A[4,j]


. (6.50)

According to the values of A (matrix of type 4 × d), this function has di�erent6

properties:7

• if

A =



0 0 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52

0 1 4.5 9 99 99 99 99 99 99

1 2 3 4 5 6 7 8 9 10

50 50 50 50 50 50 50 50 50 50


,

the resulting values of the classical GSIs are those listed in Table 3.8
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j 1 2 3 4 5 6 7 8 9 10
GSIj 0.491 0.297 0.025 0.015 0.010 0.008 0.007 0.007 0.006 0.006
GSITj

0.605 0.406 0.034 0.021 0.014 0.013 0.011 0.011 0.010 0.009

Table 3: Generalized Sensitivity Indices (GSIs) of the multivariate Sobol function of type A

Thus, only a few inputs are important and the function has a low e�ective1

dimension (function of type A);2

• if

A =



10 10 10 10 10 10 10 10 10 10

20 1 20 20 20 20 20 20 20 20

50 50 50 50 50 50 50 50 50 50

60 60 60 60 60 60 60 60 60 60


,

the resulting GSI values are those listed in Table 4. Thus, all input factors are

j 1 2 3 4 5 6 7 8 9 10
GSIj 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099
GSITj

0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101

Table 4: Generalized Sensitivity Indices (GSIs) of the multivariate Sobol function of type B

3

important, but there is no interaction among these inputs. The function has4

a high e�ective dimension (function of type B);5

• If

A =



0 0 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52

0 1 4.5 9 99 99 99 99 99 99

50 50 50 50 50 50 50 50 50 50

0 0 0 0 0 0 0 0 0 0


,

the function belongs to the class of functions with important interactions6

among input factors. The GSI values are listed in Table 5. Due to these7

important interactions, it is clear that all input factors are important. The8

function has a high e�ective dimension (function of type C).9
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j 1 2 3 4 5 6 7 8 9 10
GSIj 0.055 0.041 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
GSITj

0.291 0.277 0.247 0.246 0.246 0.246 0.246 0.246 0.246 0.246

Table 5: Generalized Sensitivity Indices (GSIs) of the multivariate Sobol function of type C

Remark 6. To obtain the exact values of GSIs listed in Tables 1-5, we use the1

aggregated de�nition of GSIs ([4]), that is,2

GSIj =

∑d
i=1Di,j∑d

i=1 V [fi(X)]
,

GSITj
=

∑d
i=1D

tot
i,j∑d

i=1 V [fi(X)]
,

where Di,j (resp. Dtot
i,j ) is the non-normalized �rst-order (resp. total) index of Xj3

associated with the ith component of f(X) (i.e., fi(X)).4

5

The values of V [fi(X)], Di,j, and D
tot
i,j for di�erent single-response models, used6

in this paper, can be found in [14; 27; 28; 29].7

6.2. Implementation issues8

In this paper, we used Sobol's design from the R-package randtoolbox ([30]) to9

generate input values according to their probability measure. We considered six10

values of the degree, as follows: (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p =11

5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). We used (p = 2, q = 2) as the12

referenced value of the degree, and we added the degree (p, q = 2) to assess the13

numerical impact of q (i.e., �x q = 2 and consider various choices for p).14

15

For a given value of the degree (p, q), we increased the sample size (m) by 30 from16

5 up to 500 depending on the convergence of estimations. For a fair comparison,17

we computed the indices for degrees (p, q), (p = 2, q = 2), and (p, q = 2) using the18

same number of model evaluations, that is, the sample size (mr) for the referenced19

estimator (p = 2, q = 2) is mr = round(qm[(p− 1)d+ 1]/(2d+ 2)) for a given (p, q)20

(see Section 5.2). We also added the up-to-date estimator of the classical GSIs (from21

papers [5; 29]) implemented in the R-package sensitivity ([31]).22
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We used the root mean square error (RMSE) to assess the accuracy of our estima-1

tions. For each sample size (m) and for each degree (p, q), we replicate the process2

of computing the indices R = 30 times (changing the seed randomly when sampling3

input values). The average RMSE of the d �rst-order indices is de�ned as follows:4

5

RMSEd =
1

d

d∑
j=1

√√√√ 1

R

R∑
r=1

(
ĜSIj,r −GSIj

)2

, (6.51)

where GSIj and ĜSIj,r are the true and estimated values, respectively, of the �rst-6

order index of a given factor Xj, j = 1, 2, . . . , d. Furthermore, ĜSIj,r is the �rst-7

order estimate for a given replication r. We used the same expression of RMSE for8

the total indices GSITj
.9

6.3. Numerical results and discussion10

6.3.1. Estimates of the three types of the generalized sensitivity indices11

Tables 6 and 7 show the estimates of the three types of the GSIs for the mul-12

tivariate exponential function and Ishigami function, respectively, when the sample13

size m = 1000 and the degree (p = 2, q = 2).14

First-order GSIs Total GSIs
GSIF GSIS GSIl1 GSIl2 GSIFT GSIST GSIl1T GSIl2T

X1 0.117 0.070 0.066 0.042 0.769 0.653 0.403 0.332
X2 0.316 0.316 0.180 0.158 0.968 0.918 0.517 0.460

Table 6: Estimates of the three types of GSIs for the multivariate exponential function

First-order GSIs Total GSIs
GSIF GSIS GSIl1 GSIl2 GSIFT GSIST GSIl1T GSIl2T

X1 0.349 0.349 0.347 0.116 0.626 0.626 0.621 0.209
X2 0.376 0.376 0.375 0.125 0.376 0.376 0.375 0.125
X3 0.002 0.002 0.002 0.001 0.280 0.280 0.277 0.093

Table 7: Estimates of the three types of GSIs for the multivariate Ishigami function

It comes out that the three types of GSIs give the same ranking of input fac-15

tors for both functions. For more information about the estimations, we also added16
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the asymptotic con�dent regions of the GSIs of both functions in AppendixI. The1

asymptotic con�dent regions of the GSIs for the multivariate exponential function2

show a high uncertainty on the total GSIs. This high uncertainty highlights the dif-3

�culty of estimating the GSIs of the multivariate exponential function (see Sections4

6.3.2-6.3.3).5

6.3.2. Comparison of the estimates of the classical generalized �rst-order indices6

Figures 1, 2, 3, 4, and 5 show the RMSEs of the d �rst-order indices when the7

total number of model evaluations increases for the functions in (6.48), (6.49), and8

(6.50) with the three types (Sobol's function of types A, B, and C) respectively. The9

�gures show the trends of the average RMSEs for the six values of the degree (p, q)10

compared to the RMSEs associated with the reference degree (p = 2, q = 2) and11

the degree (p, q = 2). We also added the RMSEs associated with the up-to-date12

estimator (from papers [5; 29]).13

14

In Figures 1−5, the RMSEs of our estimators (this paper), decrease with the15

number of model evaluations for di�erent values of the degree, and we have con-16

verging estimations. In these �gures, our estimators outperform the up-to-date17

estimator, with a signi�cant di�erence observed in Figures 1 and 5. Moreover, Fig-18

ure 1 shows that the trends of the RMSEs associated with the up-to-date estimator19

do not decrease with the total number of model evaluations. Thus, this estimator20

(i.e. estimator and sampling strategies used) fails to converge. Similar results were21

obtained in [14; 28].22

23

It can be seen in Figure 1 that the kernel of degree (p = 5, q = 5) performs24

better compared to the others (degrees (p, q = 2) and (p = 2, q = 2)), while Figure25

5 shows that the kernel of degree (p, q = 2) is generally the best among the six26

kernels, followed by the kernel of degree (p, q). For the remaining models (Figures27

2, 3, and 4), the referenced degree (p = 2, q = 2) performs generally better compared28
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to the others.1

6.3.3. Comparison of the estimates of the classical generalized total indices2

Figures 6, 7, 8, 9, and 10 show the average RMSEs of the d total indices when3

the total number of model evaluations increases for the functions in (6.48), (6.49),4

and (6.50) with the three types (Sobol's function of types A, B, and C) respectively.5

The �gures show the trends of the average RMSEs for the six values of the degree6

(p, q) compared to the RMSEs associated with the reference degree (p = 2, q = 2)7

and the degree (p, q = 2). We also added the RMSEs associated with the up-to-date8

estimator.9

10

We have converging estimations in Figures 6−10. Our estimators outperform the11

up-to-date estimator in Figure 6. The kernel of degree (p, q) gives the best results12

for the model in (6.48), followed by the kernel of degree (2, 2). In the case of Figure13

7, the kernel of degree (2, 2) appears as the best kernel for estimating total indices.14

Furthermore, when increasing (p, q), all estimators become equivalent, including the15

up-to-date estimator.16

17

For the remaining models (Figures 9 and 10), we can �nd a degree that performs18

slightly better and a degree that performs slightly worse than the up-to-date estima-19

tor. Furthermore, the estimates from the degree (2, 2) outperform the results from20

other degrees and become equivalent to the up-to-date estimator when increasing21

the sample size. For Figure 8, we can see that the up-to-date estimator outperforms22

our estimator (p = 3, q = 2) when the sample size is high.23

24

The differences in the estimations of the total GSIs seem to come from the design25

strategies. The better performance of the up-to-date estimator in the case of Figure 826

is probably due to our design scheme, which is well suited for the estimations of the27

�rst-order GSI. Indeed, the estimations of the �rst-order GSI require q ≥ 2 while the28
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estimations of the total GSI can be obtained with q = 1 (see Remark 4). Thus, our1

estimates of the total GSI make use of the available model runs performed for better2

estimating the �rst-order GSI. The worse performance of the up-to-date estimator in3

the case of Figure 6 is due to the di�culty of this approach to capture the �rst-order4

e�ect and important interactions among input factors in the presence of skewed or5

heavy-tailed distributions of input factors.6

7. Conclusion7

In this paper, we propose and study new GSIs using the �rst-order and to-8

tal-effect covariance matrices. The new GSIs make use of matrix norms when the9

Loewner ordering on these covariance matrices does not exist, and we obtain the10

classical GSIs from papers [2; 5] using the Frobenius norm. To estimate these in-11

dices, �rst, we propose a minimum variance unbiased estimator of the �rst-order12

and total-e�ect covariance matrices, and second, we provide an e�cient (joint) esti-13

mator of the �rst-order and total GSIs ([2; 5]). We also derive the consistency, the14

asymptotic distribution, and the asymptotic con�dence regions of these estimators.15

As the joint estimator makes use of a kernel of degree (p, q), we found that a kernel16

of degree (p, q) with the smallest variance should be preferred for estimating the17

classical GSIs. Although the proxy measure is in favor of the degree (2, 2), the18

degree (p, q) can be larger than (2, 2) in practice.19

20

The numerical tests con�rmed the superiority of our estimators of the �rst-order21

GSI compared to the estimator from papers [5; 29]. The superiority of our estimators22

is also observed in the case of total indices, mainly when using challenging models.23

In the case of total indices, our estimator associated with the degree (p = 2, q) is24

an average of the aggregated Jansen estimator ([32]) used in [29], and the di�erence25

of results observed is due to the fact that both approaches use di�erent information26

(input values) to compute total indices.27
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1

It also comes out from numerical tests that we can obtain an ef�cient kernel with2

degree larger than (2, 2) in practice. Furthermore, there is no absolutely e�cient3

degree for all functions or models. Thus, some adaptive strategies are needed to4

properly choose the degree of the kernel, for each input factor, prior to the estima-5

tion of the indices. The strategy should be based on the variance of the kernel, but6

it requires more investigations.7

8

The new indices based on the lp norms provide complementary information about9

the in�uence of input factors, but more investigations are needed to i) identify the10

most interesting value of p, ii) �nd the appropriate constants of normalization, and11

iii) establish a link with the Hilbert-Schmidt norm, which does not require the12

assumption of independence of input factors.13
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Figure 1: First-order indices: Log-RMSEs of the model in (6.48) against the total number of model
evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p =
5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE
(solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted
line), and the RMSE from [29] (dash-dotted line).
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Figure 2: First-order indices: Log-RMSEs of the model in (6.49) against the total number of model
evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p =
5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE
(solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted
line), and the RMSE from [29] (dash-dotted line).
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Figure 3: First-order indices: Log-RMSEs of the model in (6.50) of type A against the total number
of model evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p =
4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the
corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for
degree (2, 2) (dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 4: First-order indices: Log-RMSEs of the model in (6.50) of type B against the total number
of model evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p =
4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the
corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for
degree (2, 2) (dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 5: First-order indices: Log-RMSEs of the model in (6.50) of type C against the total number
of model evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p =
4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the
corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for
degree (2, 2) (dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 6: Total indices: Log-RMSEs of the model in (6.48) against the total number of model
evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q =
4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding
RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2)
(dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 7: Total indices: Log-RMSEs of the model in (6.49) against the total number of model
evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q =
4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding
RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2)
(dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 8: Total indices: Log-RMSEs of the model in (6.50) of type A against the total number of
model evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q =
4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding
RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2)
(dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 9: Total indices: Log-RMSEs of the model in (6.50) of type B against the total number of
model evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q =
4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding
RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2)
(dotted line), and the RMSE from [29] (dash-dotted line).
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Figure 10: Total indices: Log-RMSEs of the model in (6.50) of type C against the total number of
model evaluations (in log10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q =
4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding
RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2)
(dotted line), and the RMSE from [29] (dash-dotted line).
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AppendixA. Proof of Proposition 11

As
∣∣∣∣∣∣D1/2

v

∣∣∣∣∣∣2
S
is the largest eigenvalue of Dv, we have

∣∣∣∣∣∣D1/2
v

∣∣∣∣∣∣2
S
≤ Tr(Dv) for2

v ⊆ {1, . . . , d}, and Tr(Σ) =
∑

v⊆{1, ..., d} Tr(Dv) ≥
∑

v⊆{1, ..., d}

∣∣∣∣∣∣D1/2
v

∣∣∣∣∣∣2
S
. Thus, we3

have GSISu ≤ 1 and GSISTu
≤ 1.4

Point i) is then straightforward bearing in mind Σu � Σtot
u . Indeed, if Σu � Σtot

u5

then
∣∣∣∣∣∣(Σtot

u )
1/2
∣∣∣∣∣∣2

S
≥
∣∣∣∣∣∣Σ1/2

u

∣∣∣∣∣∣2
S
.6

For Point ii), it is su�cient to show that Cov [Vf(X)] and Cov [f(X)] have the same7

largest eigenvalue. It is obvious to see that the two matrices have the same eigen-8

values, and therefore, they have the same largest eigenvalue.9

�10

AppendixB. Proof of Proposition 211

As Dv, v ⊆ {1, . . . , d} are positive semi-de�nite matrices, we have |(Dv)ij| ≤12

(Dv)ii+(Dv)jj
2

and ||Dv||l1 =
∑N

i=1
j=1
|(Dv)ij| ≤

∑N
i=1
j=1

(Dv)ii+(Dv)jj
2

. By arranging the13

right-hand side, we obtain ||Dv||l1 ≤ NTr(Dv) and
∑

v⊆{1, ..., d} ||Dv||l1 ≤ NTr(Σ).14

�15

AppendixC. Proof of Theorem 116

First, we establish some useful equalities for the proofs, and second, we derive17

the two results of Theorem 1. Without loss of generality, we suppose that f(X) is18

centered, that is, E [f(X)] = 0.19

20

Bearing in mind that X
(j1)
u and X

(j2)
∼u are independent for j1 = 1, 2, . . . , p and21

j2 = 1, 2, . . . , q, X
(j1)
u and X

(j2)
u (resp. X

(j1)
∼u and X

(j2)
∼u ) have the same distribution,22

we have the following equalities.23

E
[
f(X(j1)

u ,X(j1)
∼u ) |X(j1)

u

]
= E

X
(j1)∼u

[
f(X(j1)

u ,X(j1)
∼u )

]
= E

X
(j2)∼u

[
f(X(j1)

u ,X(j2)
∼u )

]
, (C.1)
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where E
X

(j1)∼u

[
f(X

(j1)
u ,X

(j1)
∼u )

]
means that the expectation is taken with respect to1

X
(j1)
∼u .2

3

Likewise, we have4

E
[
f(X(j1)

u ,X(j1)
∼u ) |X(j1)

∼u
]

= E
X

(j1)
u

[
f(X(j1)

u ,X(j1)
∼u )

]
= E

X
(j2)
u

[
f(X(j2)

u ,X(j1)
∼u )

]
. (C.2)

According to Equation (3.5) and using Equation (C.1), the �rst-order covariance5

matrix is also given by6

Σu = E
[
f(X(j1)

u ,X(j1)
∼u )f(X(j1)

u ,X(j2)
∼u )T

]
, (C.3)

with j1 6= j2. Indeed,7

Σu = E
[
f(X(j1)

u ,X(j1)
∼u )f(X(j1)

u ,X(j2)
∼u )T

]
= E

(
E
[
f(X(j1)

u ,X(j1)
∼u )f(X(j1)

u ,X(j2)
∼u )T |X(j1)

u

])
= E

(
E
[
f(X(j1)

u ,X(j1)
∼u ) |X(j1)

u

]
E
[
f(X(j1)

u ,X(j2)
∼u )T |X(j1)

u

])
= E

(
E

X
(j1)∼u

[
f(X(j1)

u ,X(j1)
∼u )

]
E

X
(j2)∼u

[
f(X(j1)

u ,X(j2)
∼u )T

])
= E

(
E

X
(j1)∼u

[
f(X(j1)

u ,X(j1)
∼u )

]
E

X
(j1)∼u

[
f(X(j1)

u ,X(j1)
∼u )

]T)
= Cov

(
E
[
f(X(j1)

u ,X(j1)
∼u ) |X(j1)

u

])
Now, we have all elements to start the proof of Equation (4.27) related to the8

�rst-order covariance matrix (K(·)).9
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p2(p− 1)q(q − 1)E
[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

=

p∑
j=1

q∑
l=1

q∑
i=1
i 6=l

E


(p− 1)f(X(j)

u ,X(l)
∼u)−

p∑
j1=1
j1 6=j

f(X(j1)
u ,X(l)

∼u)



×

(p− 1)f(X(j)
u ,X(i)

∼u)−
p∑

j2=1
j2 6=j

f(X(j2)
u ,X(i)

∼u)


T

=

p,q,q∑
j=1
l=1
i=1
i 6=l

E
[
(p− 1)2f(X(j)

u ,X(l)
∼u)f(X(j)

u ,X(i)
∼u)T

]

−
p,q,q∑
j=1
l=1
i=1
i 6=l

E

(p− 1)

p∑
j2=1
j2 6=j

f(X(j)
u ,X(l)

∼u)f(X(j2)
u ,X(i)

∼u)T



+

p,q,q∑
j=1
l=1
i=1
i 6=l

E

(1− p)
p∑

j1=1
j1 6=j

f(X(j1)
u ,X(l)

∼u)f(X(j)
u ,X(i)

∼u)T



+

p,q,q∑
j=1
l=1
i=1
i 6=l

E


p,p∑
j1=1
j2=1
j1 6=j
j2 6=j

f(X(j1)
u ,X(l)

∼u)f(X(j2)
u ,X(i)

∼u)T

 .

As the functions f(X
(j1)
u ,X

(l)
∼u) and f(X

(j)
u ,X

(i)
∼u) are independent for j1 6= j and

i 6= l and the function f(·) is centered, we have

E
[
f(X(j1)

u ,X(l)
∼u)f(X(j)

u ,X(i)
∼u)T

]
= E

[
f(X(j1)

u ,X(l)
∼u)
]
E
[
f(X(j)

u ,X(i)
∼u)T

]
= 0 .
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Likewise, we have

E
[
f(X(j)

u ,X(l)
∼u)f(X(j2)

u ,X(i)
∼u)T

]
= 0 if j2 6= j, l 6= i .

Using the linearity of the expectation and the above equations, we can write1

p2(p− 1)q(q − 1)E
[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

=

p,q,q∑
j=1
l=1
i=1
i 6=l

(p− 1)2E
[
f(X(j)

u ,X(l)
∼u)f(X(j)

u ,X(i)
∼u)T

]
+

p,p∑
j1=1
j2=1
j1 6=j
j2 6=j

E
[
f(X(j1)

u ,X(l)
∼u)f(X(j2)

u ,X(i)
∼u)T

]
 .

By using Equation (C.3), we have2

p2(p− 1)q(q − 1)E
[
K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

=

p,q,q∑
j=1,l=1,i=1,i 6=l

(p− 1)2Σu +

p∑
j1=1
j2=j1
j1 6=j

E
[
f(X(j1)

u ,X(l)
∼u)f(X(j2)

u ,X(i)
∼u)T

]


=

p,q,q∑
j=1,l=1,i=1,i 6=l

(p− 1)2Σu +

p∑
j1=1
j1 6=j

E
[
f(X(j1)

u ,X(l)
∼u)f(X(j1)

u ,X(i)
∼u)T

]
=

p,q,q∑
j=1,l=1,i=1,i 6=l

[
(p− 1)2Σu +

p∑
j1=1,j1 6=j

Σu

]

=

p,q,q∑
j=1,l=1,i=1,i 6=l

[
(p− 1)2Σu + (p− 1)Σu

]
=

p,q,q∑
j=1,l=1,i=1,i 6=l

[p(p− 1)Σu]

= p2(p− 1)q(q − 1)Σu .
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�1

The derivation for the expectation of Ktot(·) in Equation (4.28) is similar to the2

proof of K(·), and it is given below.3

4

As gu(Xu,X∼u) = f(Xu,X∼u) − EXu [f(Xu,X∼u)] (see Equation (2.3)), the ex-5

pectation E [gu(Xu,X∼u)] = E [gu(Xu,X∼u) |X∼u] = 0. For j1 6= j2, we have6

E
[
gu(X(j2)

u ,X(j1)
∼u )gu(X(j1)

u ,X(j1)
∼u )T

]
= 0 . (C.4)

Indeed,7

A = E
[
gu(X(j2)

u ,X(j1)
∼u )gu(X(j1)

u ,X(j1)
∼u )T

]
= E

[
E
(
gu(X(j2)

u ,X(j1)
∼u )gu(X(j1)

u ,X(j1)
∼u )T |X(j1)

∼u
)]

= E
[
E
(
gu(X(j2)

u ,X(j1)
∼u ) |X(j1)

∼u
)
E
(
gu(X(j1)

u ,X(j1)
∼u )T |X(j1)

∼u
)]

= E
[
00T

]
The expectation of Ktot is given by8

qp2(p− 1)E
[
Ktot

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

=

p,q∑
j=1
l=1

E


 p∑

j1=1
j1 6=j

[
f(X(j)

u ,X(l)
∼u)− f(X(j1)

u ,X(l)
∼u)
]

×

 p∑
j2=1
j2 6=j

[
f(X(j)

u ,X(l)
∼u)− f(X(j2)

u ,X(l)
∼u)
]

T .
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Bearing in mind Equation (C.2), we have1

f(X(j)
u ,X(l)

∼u)− f(X(j1)
u ,X(l)

∼u) = f(X(j)
u ,X(l)

∼u)− E
X

(j)
u

[
f(X(j)

u ,X(l)
∼u)
]

+E
X

(j1)
u

[
f(X(j1)

u ,X(l)
∼u)
]
− f(X(j1)

u ,X(l)
∼u)

= gu(X(j)
u ,X(l)

∼u)− gu(X(j1)
u ,X(l)

∼u) .

Likewise, we have

f(X(j)
u ,X(l)

∼u)− f(X(j2)
u ,X(l)

∼u) = gu(X(j)
u ,X(l)

∼u)− gu(X(j2)
u ,X(l)

∼u) .

Thus, the expectation of Ktot becomes2
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qp2(p− 1)E
[
Ktot

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

=

p,q∑
j=1
l=1

E


 p∑

j1=1
j1 6=j

[
gu(X(j)

u ,X(l)
∼u)− gu(X(j1)

u ,X(l)
∼u)
]

×

 p∑
j2=1
j2 6=j

[
gu(X(j)

u ,X(l)
∼u)− gu(X(j2)

u ,X(l)
∼u)
]

T

=

p,q∑
j=1
l=1

E


(p− 1)gu(X(j)

u ,X(l)
∼u)−

p∑
j1=1
j1 6=j

gu(X(j1)
u ,X(l)

∼u)



×

(p− 1)gu(X(j)
u ,X(l)

∼u)−
p∑

j2=1
j2 6=j

gu(X(j2)
u ,X(l)

∼u)


T

=

p,q∑
j=1
l=1

E
[
(p− 1)2gu(X(j)

u ,X(l)
∼u)gu(X(j)

u ,X(l)
∼u)T

]

−
p,q∑
j=1
l=1

E

(p− 1)

p∑
j1=1
j1 6=j

gu(X(j1)
u ,X(l)

∼u)gu(X(j)
u ,X(l)

∼u)T



−
p,q∑
j=1
l=1

E

(p− 1)

p∑
j2=1
j2 6=j

gu(X(j)
u ,X(l)

∼u)gu(X(j2)
u ,X(l)

∼u)T



+

p,q∑
j=1
l=1

E


p∑

j1=1
j1 6=j
j2=1
j2 6=j

gu(X(j1)
u ,X(l)

∼u)gu(X(j2)
u ,X(l)

∼u)T

 .

Using the linearity of the expectation, Equation (C.4), and the fact that Σtot
u =1

Cov

[
gu(X

(j1)
u ,X

(j1)
∼u )

]
= E

[
gu(X

(j1)
u ,X

(j1)
∼u )gu(X

(j1)
u ,X

(j1)
∼u )T

]
, we obtain the result,2
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that is,1

qp2(p− 1)E
[
Ktot

(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)]

=

p,q∑
j=1
l=1

(p− 1)2Σtot
u +

p∑
j1=1
j1 6=j
j2=1
j2 6=j

E
[
gu(X(j1)

u ,X(l)
∼u)gu(X(j2)

u ,X(l)
∼u)T

]


=

p,q∑
j=1
l=1

(p− 1)2Σtot
u +

p∑
j1=1
j1 6=j
j2=j1

E
[
gu(X(j1)

u ,X(l)
∼u)gu(X(j2)

u ,X(l)
∼u)T

]


=

p,q∑
j=1
l=1

(p− 1)2Σtot
u +

p∑
j1=1
j1 6=j

E
[
gu(X(j1)

u ,X(l)
∼u)gu(X(j1)

u ,X(l)
∼u)T

]

=

p,q∑
j=1
l=1

(p− 1)2Σtot
u +

p∑
j1=1
j1 6=j

Σtot
u


=

p,q∑
j=1
l=1

[
(p− 1)2Σtot

u + (p− 1)Σtot
u

]

=

p,q∑
j=1
l=1

[
p(p− 1)Σtot

u

]
= qp2(p− 1)Σtot

u .

�2

AppendixD. Proof of Theorem 23

Consider Zi = (Xi, Yi), i = 1, 2, . . . , m, an independent sample of size m.

Theorem 1 shows that

E [K (Z1)] = Σu .
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The corresponding U-statistic of Σu is1

Σ̂u =
1

m

m∑
i=1

K (Zi)

=
1

m

m∑
i=1

K
(
X

(1)
i,u , . . . ,X

(p)
i,u , X

(1)
i,∼u, . . . ,X

(q)
i,∼u

)
.

The U-statistic Σ̂u is an average of the kernel K (Zi) over i = 1, 2, . . . , m, and2

it is symmetric, as the kernel K(·) is symmetric.3

4

Now, let vec(Σ̂u) be the vectorization of Σ̂u, that is, a vector containing the5

�rst column of Σ̂u, followed by the second column, and so on. It is obvious that6

vec(Σ̂u) is an unbiased estimator of vec(Σu), and it is symmetric w.r.t the two type7

of inputs. Then, it follows from the theory of U-statistics ([21; 16; 23; 33]) that8

vec(Σ̂u) is the unique, uniformly minimum variance unbiased estimator of vec(Σu)9

for the class of functions having �nite 4th moment, and we have the following results:10

11

(i) unbiasedness

E
[
vec(Σ̂u)

]
= vec(Σu) ;

(ii) consistency

vec(Σ̂u)
P−→ vec(Σu) ;

(iii) asymptotic normality

√
m
(
vec(Σ̂u)− vec(Σu)

)
D−→ N (0,V[vec(K)]) .

Points (i) and (ii) are equivalent to

E
[
Σ̂u

]
= Σu and Σ̂u

P−→ Σu .
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�1

AppendixE. Proof of Theorem 32

The proof is similar to the proof derived in AppendixD by replacing K with Ktot.3

�4

AppendixF. Proof of Corollary 25

For Point i), the proof is similar to the proofs in Sections AppendixD and6

AppendixE.7

Points ii) and iii) are the properties of the multivariate U-statistic associated with8

the kernel Kt(·). It can be found in [21; 16; 23; 33].9

�10

AppendixG. Proof of Theorem 411

Point i) is obvious using the de�nition of GSIs.12

Results ii) and iii) are obtained by combining Corollary 2 and Slutsky's theorem.13

Comprehensive details of the proof can be found in [14; 15].14

Point iv) represents the classical con�dence regions for a mean vector associated15

with a multivariate normal distribution.16

�17

AppendixH. Proxy measure for the GSI variances18

We use the MINQE approach to obtain the best degree of the kernel Kt(·).19

First, the idea of MINQE consists in expressing the estimator of a sensitivity index20

as Tr

(
ΩT Θ̂

)
for given coe�cients Ω. The components of the matrix Θ̂ are the21

product of functions f(Xu,X∼u) and f(Xv,X∼v), with u, v ⊆ {1, 2, . . . , d} (see22
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[24; 14; 15] for a comprehensive treatment). Second, a proxy measure for the variance1

of the estimator is given by ([24])2

V (Ω) =

 ∑
u⊆{1, 2, ..., d}

∑
v⊆{1, 2, ..., d}

|Ωu,v |

2

. (H.1)

From Equation (4.42), it comes out that the mean square error of the estimator3

of the non-normalized GSIs is the trace of the covariance of the kernel Kt(·) up to a4

constant. The trace of the covariance of Kt(·) is the sum of the variances of Ktot(·)5

and K(·). To identify the best degree of Kt(·), we start with the methodology used6

in [14; 15].7

8

For integers j1, j2, k, l, and i, let
(
Θ̂

k

j1,l

)
be a matrix of type (p× q − l), with

(
Θ̂

k

j1,l

)
j2,i

= f(X(j1)
u ,X(l)

∼u)f(X(j2)
u ,X(i)

∼u) ,

j2 = 1, . . . , p, and i = l + 1, . . . , q.9

10

We use r
(k)
•j1 =

[
r

(k)
1 r

(k)
j1
, . . . , r

(k)
p r

(k)
j1

]T
as a vector of size p, with r

(k)
i = −1 if11

i 6= k and r
(k)
k = p − 1 otherwise, Θ̂

k
= diag

(
Θ̂

k

1,1, . . . , Θ̂
k

p,q−1

)
as a block diago-12

nal matrix of type p2×q(q−1)/2, and r(k) =
[
r

(k)T
•1 , . . . , r

(k)T
•p

]T
as a vector of size p2.13

14

Finally, we use Θ̂ = diag(Θ̂
1
, . . . , Θ̂

p
) as a block diagonal matrix of type15

p3 × pq(q − 1)/2, r =
[
r(1)T , . . . , r(p)T

]T
as a vector of size p3, and s = [1, . . . , 1]T as16

a vector of size qp(q − 1)/2.17

18

Now, consider f(·) = [f1(·) f2(·) . . . fN(·)]T . As the trace of a matrix is the sum19

of the diagonal elements, the kernel K (·) in (4.36) can be written as follows:20

21
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K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

=
2

p2(p− 1)q(q − 1)

N∑
n=1

p∑
k=1

q−1∑
l=1

q∑
i=l+1

p∑
j1=1

p∑
j2=1

r
(k)
j1
r

(k)
j2
fn(X(j1)

u ,X(l)
∼u)fn(X(j2)

u ,X(i)
∼u) ,

(H.2)

or as a bi-linear form, that is,1

K
(
X(1)

u , . . . ,X(p)
u ,X(1)

∼u, . . . ,X
(q)
∼u
)

=
2

p2(p− 1)q(q − 1)

N∑
n=1

rT Θ̂ns

=
2

p2(p− 1)q(q − 1)
Tr

(
N∑

n=1

srT Θ̂n

)
.

Using the de�nition of the proxy measure in (H.1), the proxy measure for the2

variance of the kernel K(·) is given by3

V (Ω) = V

(
2

p2(p− 1)q(q − 1)

N∑
n=1

srT

)

=
4

p4(p− 1)2q2(q − 1)2
V

(
N∑

n=1

srT

)

=
4

p4(p− 1)2q2(q − 1)2

qp(q − 1)N

2

p3∑
i=1

|ri|

2

=
N2

p2(p− 1)2

 p3∑
i=1

|ri|

2

, (H.3)

with ri the i
th coordinate of the vector r.4

5

It comes out that the proxy measure does not depend on the value of q. Thus, for6

a given value of p, any value of q will yield to the same value of the proxy measure7

of the variance. The value of q = 2 should be used as the referenced value, and we8
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should expect to have good results with q ≤ p.1

2

We can see that the value of V (Ω) increases with p (V |Ω] = 16N2 if p = 23

and V [Ω] = 64N2 if p = 3), and we should use small values of p. We use 2 as the4

referenced value of p.5

6

The proxy measure for the variance of the kernel K(·) is su�cient for choosing7

the degree of the Kernel Kt(·), as the model runs performed for estimating the8

�rst-order GSI are su�cient for estimating the total GSI.9

AppendixI. Asymptotic con�dent regions of classical GSIs10

Figures I.11-I.12 show the asymptotic 90% con�dent regions of the classical GSIs11

for the multivariate exponential and Ishigami functions respectively. In Figures I.11-12

I.12, the con�dent regions were obtained whenm = 2000 and (p = 2, q = 2) by using13

the R-package car.14
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Figure I.11: Asymptotic 90% con�dent regions of the classical GSIs for the multivariate exponential
function. The �rst ellipsoid is the con�dent regions of the GSIs of X1 and the second one is the
con�dent regions of the GSIs of X2.
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Figure I.12: Asymptotic 90% con�dent regions of the classical GSIs for the multivariate Ishigami
function. The �rst ellipsoid is the con�dent regions of the GSIs of X1, the second one is the
con�dent regions of the GSIs of X2, and the last one is the con�dent regions of the GSIs of X3.
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