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In uncertainty quantication, multivariate sensitivity analysis (MSA) extends variancebased sensitivity analysis to cope with the multivariate response, and it aims to apportion the variability of the multivariate response into input factors and their interactions. The rst-order and total-eect covariance matrices from MSA, which assess the eects of input factors, provide useful information about interactions among input factors, the order of interactions, and the magnitude of interactions over all model outputs. In this paper, rst, we propose and study generalized sensitivity indices (GSIs) using the rst-order and total-eect covariance matrices. The new GSIs make use of matrix norms when partial orders such as the Loewner ordering on covariance matrices is not possible, and we obtain the classical GSIs using the Frobenius norm. Second, we propose minimum variance unbiased estimators (MVUEs) of the rst-order and total-eect covariance matrices, and third, we provide an ecient estimator of the rst-order and total (classical) GSIs. We also derive the consistency, the asymptotic normality, and the asymptotic condence regions of these estimators. Our estimator allows for improving the GSIs estimates.

Multivariate sensitivity analysis ([1; 2; 3; 4; 5; 6; 7]) extends variance-based sensitivity analysis ([8; 9; 10]) to cope with the multivariate response. It provides the generalized sensitivity indices, which allow for assessing interactions among input factors, the order of interactions, and the magnitude of interactions over all model outputs.

So far, we distinguish mainly two approaches of MSA. The rst approach is based on the classical, multivariate analysis of variance, and it is well suited for factorial designs ( [1; 4; 3; 2]). The second approach is based on the functional, multivariate analysis of variance by sampling input values randomly or quasi-randomly ([2; 5; 7]).

For both MSA approaches, the GSIs (rst-order and total indices) can be computed using either the original model outputs or a transformation of the latter (e.g., principal components), thereby showing the existence of an invariant property of the GSIs ( [4; 5]). The transformation becomes interesting when quantifying the sensitivity in a given direction, dened by eigenvectors or another orthogonal basis ( [START_REF] Campbell | Sensitivity analysis when model outputs are functions[END_REF]).

Recently, MSA has been adapted to spatial outputs ( [START_REF] De Lozzo | Sensitivity analysis with dependence and variancebased measures for spatio-temporal numerical simulators[END_REF]), and it has been compared to an extension of MSA using the Hilbert-Schmidt independence criterion ( [START_REF] De Lozzo | Sensitivity analysis with dependence and variancebased measures for spatio-temporal numerical simulators[END_REF]). The GSIs from MSA have also been compared to new types of GSIs for multivariate outputs based on a vector projection or direction of eigen space [12; 7]).

For complex systems or expensive models, a meta-modeling or emulator approach is an attractive way to compute GSIs ( [13; 12]). However, in the following text, we focus on sampling-based methods for estimating GSIs.

The estimator of Sobol' indices has been improved in the case of single response models. It is known in [14; 15] that the new estimator of the rst-order and total Sobol' indices is based on a minimum variance unbiased estimator of the rst-order and total-eect variances thanks to the theory of U-statistics. In the case of multivariate response models, the denitions of all types of GSIs make use of covariance matrices (rst-order and total-eect covariance matrices), including the denitions proposed in [START_REF] Gamboa | Sensitivity indices for multivariate outputs[END_REF], the aggregated Sobol' indices used in [START_REF] Lamboni | Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models[END_REF], and those from [12; 7].

While the former denitions aims at assessing the inuence of input factors on the trace of the covariance matrices (magnitudes), the latter accounts for both the magnitudes and the directions simultaneously. Thus, it is worth interesting to use all valuable information contained in the rst-order and total-eect covariance matrices to assess the inuence of a given input factor, and to better estimate these covariance matrices, including the o-diagonal elements.

In this paper, rst, we propose and study new types of GSI using the rst-order and total-eect covariance matrices. The new GSIs make use of matrix norms when partial orders such as the Loewner ordering on these covariance matrices does not exist, and we obtain the classical GSIs (from papers [2; 5]) using the Frobenius norm.

Second, we propose a minimum variance unbiased estimator of the rst-order and total-eect covariance matrices, and third, we provide an ecient estimator of the classical rst-order and total GSIs. We also derive the consistency, the asymptotic normality, and the asymptotic condence regions of these estimators.

The paper is organized as follows: in Section 2, we recall the multivariate Hoeding decomposition, and we propose the re-organized decomposition that allows for assessing the overall contribution of input factors through the total-eect function.

While Section 3 proposes new denitions of GSIs using some matrix norms, Section 4 provides and studies the estimators of the rst-order and total-eect covariance matrices, including the joint estimator of the classical GSIs (from [2; 5]). The joint estimator makes use of a function with two types of inputs (kernel of degree (p, q)).

In Section 5, we use a proxy measure for choosing the convenient degree of the kernel (p, q), and we provide an algorithm for computing the two covariance matrices. We demonstrate the applicability of these results by means of numerical tests in Section 6. Section 7 concludes this work.

Notation and preliminary

Throughout the paper, f (X) denotes a multivariate response model (i.e., f (X) ∈ R N ) with d random input factors X = (X 1 , . . . , X d ). We use u as a non-empty subset of {1, 2, . . . , d}, and we use |u| for its cardinality (i.e., the number of elements in u). Let X u = {X j , j ∈ u} be a subset of input factors and X ∼u denote the vector containing all input factors except X u . We have the following partition: X = (X u , X ∼u ). We use µ(X) = µ(X 1 , . . . , X d ) as the joint probability measure or distribution of input factors. We assume throughout the paper that input factors are independent (assumption A1) and all model outputs have nite second moments For a matrix Σ, the Frobenius norm of Σ is given by

(assumption A2); that is, E ||f (X)|| 2 L 2 <
||Σ|| 2 F = i, j |Σ ij | 2 = T r ΣΣ T .
The spectral norm of Σ is the square root of the largest eigenvalue of Σ T Σ, that is,

||Σ|| 2 S = max λ, det(Σ T Σ -λI) = 0 .
The l p norm is dened as follows:

||Σ|| lp = i, j |Σ ij | p 1/p , and 
||Σ|| lp = ||Σ|| F if p = 2.
Let Σ 1 and Σ 2 be two symmetric and positive semi-denite matrices (i.e., v

T Σ i v ≥ 0 ∀ v ∈ R N , i = 1, 2
). The Loewner ordering on matrices Σ 1 and Σ 2 is dened as follows:

Σ 1 Σ 2 if Σ 2 -Σ 1 is positive semi-denite .

Multivariate Hoeding decomposition

A transformation may be applied to the model outputs f (X), of the form

D w f (X),
where D w is a N ×N weighting matrix. For instance, in the case of the model outputs with dierent units, some transformations may be used to obtain unit-less outputs.

Remark 1. A classical way to obtain unit-less outputs is to divide each output by its standard deviation, that is, D -1 w = diag(w) is a diagonal matrix with w representing the vector of the standard deviations of the outputs. One may use w as a vector containing the expectation of the absolute value of each output ( [START_REF] Xu | The new importance measures based on vector projection for multivariate output: application on hydrological model[END_REF]). In the following text, we use f (X) as either the original model outputs or a given transformation of the latter.

Under the independence assumption A1, the multivariate Hoeding decomposition ( [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF]; [START_REF] Efron | The jacknife estimate of variance[END_REF]) is given by

f (X) = f ∅ + d j f j (X j ) + d j 1 <j 2 f j 1 j 2 (X j 1 , X j 2 ) + . . . + f 1...d (X 1 , . . . , X d ) = f ∅ + u⊆{1,2,...d} f u (X u ) , (2.1) 
where

f ∅ = E [f (X)] is the expectation of the model output, f j (X j ) = E [f (X)|X j ]-f ∅ , and f u (X u ) = E [f (X)|X u ]- v⊆{1,2,...d} v⊂u f v (X v ) for a non-empty subset u ⊆ {1, 2, . . . , d}. The function f j (X j ) = E [f (X)|X j ] -f ∅ in (2.
1) contains the information provided by X j only to the model outputs. It is used to quantify the single contribution of X j over model outputs. Moreover, we have the following property:

E X j [f u (X u )] = 0, ∀ j ∈ u. In general, E [f (X)|X u ] -f ∅ allows
for quantifying the single contribution of the input factors X u over model outputs. We refer to this function as the rst-order function.

The Hoeding decomposition in (2.1) can be organized as follows ([18; 19]):

f (X) = f ∅ + g u (X u , X ∼u ) + h ∼u (X ∼u ) , (2.2) with g u (X u , X ∼u ) = v⊆{1,2,...d} v∩u =∅ f v (X v ).
The decomposition in (2.2) is also unique under the independence assumption A1. By denition, the function g u (•) in (2.2) contains all information brought by the input factors X u to the model outputs, and it is sucient to quantify the overall contribution of X u over model outputs. We refer to this function as the total-eect function (TEF).

Based on the re-organized Hoeding decomposition in (2.2), we can show that

g u (X u , X ∼u ) = f (X) -E [f (X) |X ∼u ] . (2.3) Indeed, since E [g u (X u , X ∼u ) |X ∼u ] = 0, Equation (2.2) implies E [f (X) |X ∼u ] = f ∅ + h ∼u (X ∼u )
, and gives (2.3).

Remark 2. Equation (2.3) generalizes the total-eect function for the single response proposed in ([19; 14]) to the multivariate response.

Any denition of the rst-order and total GSIs of X u should be based on the random vectors E [f (X)|X u ] -f ∅ and g u (X u , X ∼u ), respectively. We often measure the variability of a random vector by its variance. By taking the covariance of Equation (2.1) and bearing in mind the L 2 orthogonality, we have the following covariance decomposition assuming that assumptions A1 and A2 hold.

Σ = v⊆{1, 2, ..., d} D v , (2.4 
)

with Σ = C ov [f (X)] and D v = C ov [f v (X v )].
3. First-order and total-eect covariance matrices: new GSIs

Using the variance measure, the denition of the sensitivity indices for the multivariate response should be based on the following covariance matrices.

The rst-order covariance matrix is given by

Σ u = C ov [E (f (X)|X u )] . (3.5)
Further, the total-eect covariance matrix is given by

Σ tot u = C ov [g u (X u , X ∼u )] . (3.6) 
Using Equations (2.2 , 2.3, 2.4, 3.6) and bearing in mind the L 2 orthogonality, we can see that the total-eect covariance matrix is also given by ([3; 2; 7])

Σ tot u = v⊆{1, 2, ..., d} v∩u =∅ D v . (3.7)
Regarding the model outputs, the rst-order and total-eect covariance matrices of X u provide all information about X u , including the parts of correlations among model outputs. The covariance matrices Σ u and Σ tot u are symmetric and positive semi-denite (i.e., v

T Σ u v ≥ 0 and v T Σ tot u v ≥ 0 ∀ v ∈ R N )
. Moreover, we have the following properties using the Loewner ordering

Σ u Σ tot u . (3.8) Indeed, Σ tot u -Σ u = v⊆{1, 2, ..., d} u⊂v D v
, with D v positive semi-denite. Thus, (3.8) generalizes the inequality between the rst-order and total eects in the case of multivariate response models. As Σ tot u accounts for interactions, it should be preferred for ranking input factors. In the same sense, when the Loewner ordering exists for ma-

trices Σ tot j , j = 1, 2, . . . , d, that is, Σ tot j 1 Σ tot j 2
. . . Σ tot j d with j i ∈ {1, 2, . . . , d} and i = 1, 2, . . . , d, the input factor X j d will be the most inuential input factor, followed by X j d-1 .

The prioritization of input factors based on the covariance matrices is straightforward for the single response (N = 1), as the covariance matrices are scalars. In the case of the multivariate response, we should apply a matrix norm on the covariance matrices (Σ u , Σ tot u ) prior to prioritize input factors when the Loewner ordering on matrices Σ u and Σ tot u is not possible. Thus, new denitions of the sensitivity indices for the multivariate response become possible regarding the choice of the matrix norm. In the following text, we choose three matrix norms that are complementary.

Classical generalized sensitivity indices and Frobenius norm

A classical extension of the variance to a random vector is the expectation of the L 2 norm of the centered vector. In previous works ([3; 2; 5]), the denitions of the GSIs rely on this measure, and the harmonized denitions are given below.

Denition 1. Let f (X) ∈ R N be the model outputs with d random inputs X and Σ, Σ u , and Σ tot u be the covariance matrices of the model outputs, the rst-order and the total-eect functions, respectively.

The rst-order GSI of X u is dened as follows:

GSI u = T r (Σ u ) T r (Σ) . (3.9)
Further, the total GSI of X u is gven by

GSI Tu = T r (Σ tot u ) T r (Σ)
.

(3.10)

By using the Frobenius norm, the GSIs denitions in (3.9) and (3.10) can be expressed as follows:

GSI F u = Σ 1/2 u 2 F ||Σ 1/2 || 2 F , (3.11) 
and

GSI F Tu = (Σ tot u ) 1/2 2 F ||Σ 1/2 || 2 F . (3.12) 
Remark 3. Let V be an N × N orthogonal matrix (i.e., V T V = I k ), the rst-order and total GSIs of X u are invariant by left-composing f (X) by V, that is,

GSI F u (Vf (X)) = T r [C ov (VE [f (X)|X u ])] T r [C ov (Vf (X))] = GSI u , (3.13) 
and

GSI F Tu (Vf (X)) = T r [C ov (V [g u (X u , X ∼u )])] T r [C ov (Vf (X))] = GSI Tu . (3.14) 
When V contains the eigenvectors of Σ, the denitions in (3.13) and (3. The denitions in (3.11) and (3.12) include only the diagonal elements of the covariance matrices. Thus, the GSIs provide the contributions of input factors to the sum of the variance of the model outputs (called inertia).

New generalized sensitivity indices based on the spectral norm

The spectral norm can bring some information about the correlations between the components of the total-eect function g u (X) for instance. While strong correla-tions between the components of g u (X) will lead to a high value of the spectral norm of (Σ tot u ) Denition 2. Let f (X) ∈ R N be the model outputs with d random inputs X and Σ, Σ u , and Σ tot u be the covariance matrices of the model outputs, the rst-order and total-eect functions, respectively.

The rst-order GSI of X u is dened as follows:

GSI S u = Σ 1/2 u 2 S ||Σ 1/2 || 2 F . (3.15)
Further, the total GSI of X u is given by

GSI S Tu = (Σ tot u ) 1/2 2 S ||Σ 1/2 || 2 F . (3.16) 
In Definition 2, Σ 1/2 2 F is used as a constant of normalization, and it allows the derivation of the following properties of the new indices.

Proposition 1. Let f (X) ∈ R N be the model outputs with d random inputs X, V be an N × N orthogonal matrix. If assumptions A1 and A2 hold, then i) the indices GSI S u and GSI S Tu satisfy

0 ≤ GSI S u ≤ GSI S Tu ≤ 1 ; (3.17)
ii) the indices GSI S u and GSI S Tu are invariant by left-composing f (X) by V, that is,

GSI S u (Vf (X)) = GSI S u (f (X)) , (3.18) 
and

GSI S Tu (Vf (X)) = GSI S Tu (f (X)) . (3.19) 
Proof. See AppendixA.

New generalized sensitivity indices based on the l p -norm

The l p -norm of Σ tot u (||Σ tot u || lp ) accounts for all elements of Σ tot u , including the o-diagonal elements. It includes the correlations between the components of the total-eect function g u (X) in the analysis. Thus, strong correlations between the components of g u (X) will increase the value of ||Σ tot u || lp .

Based on the l p -norm, we dene the new generalized sensitivity indices below.

Denition 3. Let f (X) ∈ R N be the model outputs with d random inputs X and Σ, Σ u , and Σ tot u be the covariance matrices of the model outputs, the rst-order and total-eect functions, respectively.

The rst-order GSI of X u is dened as follows:

GSI lp u = ||Σ u || lp N ||Σ 1/2 || 2 F . (3.20) 
Further, the total GSI of X u is given by

GSI lp Tu = ||Σ tot u || lp N ||Σ 1/2 || 2 F . (3.21) In Denition 3, N Σ 1/2 2
F is used as a constant of normalization, and it allows the derivation of the following properties of the new indices.

Proposition 2. Let f (X) ∈ R N be the model outputs with d random inputs X. If assumptions A1 and A2 hold, then the indices GSI l 1 u and GSI l 1 Tu satisfy

0 ≤ GSI l 1 u ≤ 1 and 0 ≤ GSI l 1 Tu ≤ 1 . (3.22)
Proof. See AppendixB.

Comparison of the three types of the generalized sensitivity indices

The three types of the GSIs provide dierent information about input factors, and it is possible to come up with dierent ranking of input factors. However, we have the following relationship between the three types of the GSIs.

GSI S u ≤ GSI F u ≤ N GSI l 1 u . (3.23)
Likewise, we have

GSI S Tu ≤ GSI F Tu ≤ N GSI l 1 Tu . (3.24) It comes out that GSI F Tu = N GSI l 1
Tu in the presence of uncorrelated components of the total-eect function g u (X), and GSI S Tu = GSI F Tu for some correlations between the components of g u (X).

Estimators of the rst-order and total-eect covariance matrices and their traces

The denitions of GSIs are based on the rst-order and total-eect covariance matrices. In this section, we construct the estimators of the rst-order and totaleect covariance matrices Σ u and Σ tot u , and we investigate their performance using the theory of U-statistics.

The theory of U-statistics allows for deriving the properties of an estimator ( [START_REF] Lehmann | Consistency and unbiasedness of certain nonparametric tests[END_REF],

[21] [START_REF] Lehmann | Elements of Large Sample Theory[END_REF], [16; 23]). However, it requires, rst, to nd a kernel (i.e., a function with expectation coinciding exactly with our parameter of interest), and second, to propose the estimator of our parameter using this kernel.

Kernel functions for the rst-order and total-eect covariance matrices

For integers p ≥ 2, q ≥ 2, let X

u , . . . , X (p) u be p i.i.d copies of X u and

X (1)
∼u , . . . , X (q) ∼u be q i.i.d copies of X ∼u . We consider a function with two types of inputs X

u , . . . , X (p) u and X

(1) ∼u , . . . , X

∼u . This function is called a kernel of degree (p, q) in the theory of U-statistics; it has q + p arguments.

To estimate the rst-order and total-eect covariance matrices, we dene the following kernels. The kernel K(•) for the rst-order covariance matrix is given by

K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = 1 p 2 (p -1)q(q -1) p j=1 q l=1 q i =l ×     p j 1 =1 j 1 =j f (X (j) u , X (l) ∼u ) -f (X (j 1 ) u , X (l) ∼u )     ×     p j 2 =1 j 2 =j f (X (j) u , X (i) ∼u ) -f (X (j 2 ) u , X (i) ∼u )     T . (4.25)
Further, the kernel K tot (•) for the total-eect covariance matrix is dened as follows:

K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = 1 p 2 (p -1)q p j=1 q l=1 ×     p j 1 =1 j 1 =j f (X (j) u , X (l) ∼u ) -f (X (j 1 ) u , X (l) ∼u )     ×     p j 2 =1 j 2 =j f (X (j) u , X (l) ∼u ) -f s (X (j 2 ) u , X (l) ∼u )     T . (4.26)
The kernels K X

u , . . . , X

u , X

∼u , . . . , X

∼u and K tot X

u , . . . , X

u , X

∼u , . . . , X (q) ∼u are symmetric under independent permutations of the rst arguments (X

u , . . . , X

and the second arguments (X

∼u , . . . , X

∼u ). Indeed, the kernels values do not change if we permute the position of

X (i 1 ) u and X (i 2 ) u
in one hand, and the position of X (j 1 ) ∼u and X

(j 2 )
∼u in the other hand, with i 1 , i 2 ∈ {1, 2, . . . , p} and j 1 , j 2 ∈ {1, 2, . . . , q}.

Theorem 1 gives other properties of these kernels.

Theorem 1. Let X (1) u , . . . , X (p) u be p i.i.d copies of X u and X (1) ∼u , . . . , X

∼u be q i.i.d copies of X ∼u , with p, q ≥ 2. If assumptions A1 (independent inputs) and A2

(E ||f (X)|| 2 L 2 < +∞)
hold, then we have

E K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = Σ u ; (4.27) E K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = Σ tot u . (4.28)
Proof. See AppendixC.

Theorem 1 shows that the kernels K(•) (resp. K tot (•)) is an unbiased estimator of Σ u (resp. Σ tot u ). Both kernels are symmetric, and we can use the theory of U-statistics of two samples to obtain the statistical properties of the estimators based on the kernels K(•) and K tot (•).

Remark 4. In Theorem 1, q can take the value 1 (q = 1) in the case of the kernel

K tot (•).
However, for estimating both Σ u and Σ tot u with the same number of model runs, we need to have q ≥ 2.

Estimators of the rst-order and total-eect covariance matrices

This section provides the MVU estimators of Σ u and Σ tot u and the main theorems about the properties of these estimators. Theorems 2 and 3 deal with these issues.

Theorem 2. Let X = X (1) u , . . . ,

X (p) u be p i.i.d copies of X u , Y = X (1) ∼u , . . . , X (q) ∼u be q i.i.d copies of X ∼u , X i = X (1) i,u , . . . , X (p) i,u 
and Y i = X (1) i,∼u , . . . , X

i,∼u , i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If assumptions A1, A3 (E ||f (X)|| 4 L 2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have i) the minimum variance unbiased estimator of Σ u for a given (p, q) and m is given by

Σ u = 1 mp 2 (p -1)q(q -1) m i=1 p j=1 q l=1 q k =l     p j 1 =1 j 1 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 1 ) i,u , X (l) i,∼u )     ×     p j 2 =1 j 2 =j f (X (j) i,u , X (k) i,∼u ) -f (X (j 2 ) i,u , X (k) i,∼u )     T , (4.29)
and we have

E Σ u = Σ u ; (4.30) ii) if m → +∞, Σ u is consistent, that is, Σ u P -→ Σ u . (4.31) 
Proof. See AppendixD.

In Theorem 2, the estimator Σ u is an average of the kernel K(•) over i = 1, 2, . . . , m, with m the sample size. The kernel K X

i,u , . . . ,

X (p) i,u , X (1) 
i,∼u , . . . , X (q) i,∼u requires p i.i.d copies of X u and q i.i.d copies of X ∼u . For dierent values of (p, q)

and m, Σ u does not use the same information for computing Σ u . Similar to Theorem 2, Theorem 3 provides a MVUE of Σ tot u .

Theorem 3. Let X = X (1) u , . . . , X (p) u be p i.i.d copies of X u , Y = X (1) ∼u , . . . , X (q) ∼u be q i.i.d copies of X ∼u , X i = X (1) i,u , . . . ,

X (p) i,u
and Y i = X (1) i,∼u , . . . , X

i,∼u , i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If assumptions A1, A3 (E ||f (X)|| 4 L 2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have i) the minimum variance unbiased estimator of Σ tot u for a given (p, q) and m is given by

Σ tot u = 1 mp 2 (p -1)q m i=1 p j=1 q l=1     p j 1 =1 j 1 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 1 ) i,u , X (l) i,∼u )     ×     p j 2 =1 j 2 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 2 ) i,u , X (l) i,∼u )     T , (4.32)
and we have

E Σ tot u = Σ tot u ; (4.33) ii) if m → +∞, Σ u is consistent, that is, Σ tot u P -→ Σ tot u . (4.34)
Proof. See AppendixE.

Theorems 2 and 3 provide interesting estimators of the rst-order and total-eect covariance matrices, and these estimators can be used to obtain the most inuential input factors when the Loewner ordering on these matrices exists. These estimators are going to be used for estimating the three types of GSIs proposed in Section 3.

Estimators of the classical generalized sensitivity indices

In this section, we investigate the estimations of the classical GSIs dened in [2; 5]. To make use of the theory of U-statistics in the case of the estimation of the non-normalized rst-order GSI, we dene the following kernel.

K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = T r K X (1) u , . . . , X (p) u , X (1) ∼u , . . . ,

X (q) ∼u , (4.35) 
with K(•) the kernel dened in (4.25).

It is obvious that the kernel K(•) is symmetric with respect to its rst and second arguments. As the kernel K(•) is the sum of the diagonal elements of K(•) by denition, it is equal to the following kernel.

K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = 2 p 2 (p -1)q(q -1)

p j=1 q-1 l=1 q i=l+1 × T r         p j 1 =1 j 1 =j f (X (j) u , X (l) ∼u ) -f (X (j 1 ) u , X (l) ∼u )         p j 2 =1 j 2 =j f (X (j) u , X (i) ∼u ) -f (X (j 2 ) u , X (i) ∼u )     T     . (4.36)
Further, for the estimation of the non-normalized total GSI, we dene the following kernel.

K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = T r K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u , (4.37) 
with K tot the kernel dened in (4.26).

The kernel K(•) is symmetric with respect to its rst and second arguments.

Other properties of the kernels K and K tot are given in Corollary 1.

Corollary 1. Let X (1) u , . . . , X (p) u be p i.i.d copies of X u and X (1) ∼u , . . . , X (q) ∼u be q i.i.d copies of X ∼u , with p, q ≥ 2. If assumptions A1 (independent inputs) and

A2 (E ||f (X)|| 2 L 2 < +∞) hold, then we have E K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = T r (Σ u ) ; (4.38) E K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = T r (Σ tot u ) . (4.39)
Proof. The proofs are straightforward using Equations (4.27-4.28), the linearity of the expectation, and the linearity of the trace function (T r (•)).

Corollary 1 shows that the kernels K(•) (resp. K tot (•)) will lead to a generalized, unbiased estimator of T r (Σ) u (resp. T r (Σ tot u )), which is the non-normalized rst-order (resp. total) GSI of X u . Both kernels are symmetric in their rst and second arguments, and this property allows for using the theory of U-statistics of two samples to obtain the statistical properties of estimators based on the kernels [16; 23]).

K(•) and K tot (•) ([20], [21] [22],

Joint estimator of the classical rst-order and total generalized sensitivity indices

This section aims to provide the joint estimator of the classical GSIs. The following theorems give the minimum variance unbiased estimator of the non-normalized GSIs as well as its variance and its asymptotic distribution for a given degree (p, q)

of the kernel. Based on the kernels K(•) and K tot (•), we dene K t (•) as follows:

K t X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u =    K X (1) 
u , . . . , X

u , X

∼u , . . . ,

X (q) ∼u K tot X (1) 
u , . . . , X

u , X

∼u , . . . , X (q) ∼u    .

(4.40)

Of course, the multivariate kernel K t (•) is symmetric in its rst and second arguments. For j, i ∈ {0, 1, . . . , d}, we dene Σ j,l as

Σ j,l = V E K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u |X (1) u , . . . , X (j) u , X (1) ∼u , . . . , X (l) ∼u .
Regarding MSA, Σ j,l is the rst-order covariance matrix of X

u , . . . , X

u , X

∼u , . . . , X (l) ∼u associated with the kernel K t (•). In particular, Σ p,q is the covariance matrix of the kernel K t (•). Now, we have all elements to derive the joint estimator of GSIs. Corollary 2 deals with this issue.

Corollary 2. Let X = X (1) u , . . . , X (p) u be p i.i.d copies of X u , Y = X (1) ∼u , . . . , X (q) ∼u be q i.i.d copies of X ∼u , X i = X (1) i,u , . . . , X (p) i,u

and Y i = X (1) i,∼u , . . . , X

i,∼u , i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If assumptions A1, A3 (E ||f (X)|| 4 L 2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have

i) the minimum variance unbiased estimator of [T r (Σ u ) T r (Σ tot u )]
T for a given (p, q) and m is given by

T r (Σ u ) T r (Σ tot u ) = 2 mp 2 (p-1)q(q-1) m i=1 p j=1 q-1 l=1 q k>l 2 mp 2 (p-1)q m i=1 p j=1 q l=1 ×T r p j 1 =1 j 1 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 1 ) i,u , X (l) i,∼u ) ×T r p j 1 =1 j 1 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 1 ) i,u , X (l) i,∼u ) × p j 2 =1 j 2 =j f (X (j) i,u , X (k) i,∼u ) -f (X (j 2 ) i,u , X (k) i,∼u ) T × p j 1 =1 j 2 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 2 ) i,u , X (l) i,∼u ) T       ;(4.41) ii) the mean square error of [T r (Σ u ) T r (Σ tot u )] T is mE   T r (Σ u ) T r (Σ tot u ) - T r (Σ u ) T r (Σ tot u ) 2   = T r (Σ p,q ) ; (4.42)
iii) if m → +∞, we have the asymptotic normality, that is,

√ m T r (Σ u ) T r (Σ tot u ) - T r (Σ u ) T r (Σ tot u ) D -→ N (0, Σ p,q ) . (4.43) 
Proof. See AppendixF.

Corollary 2 gives an interesting (joint) estimator of the non-normalized GSIs of X u , and the theorem below provides the joint estimator of GSIs of X u .

Theorem 4. Let X = X (1) u , . . . , X (p) u be p i.i.d copies of X u , Y = X (1) ∼u , . . . , X (q) ∼u be q i.i.d copies of X ∼u , X i = X (1) i,u , . . . ,

X (p) i,u
and Y i = X (1) i,∼u , . . . , X

i,∼u , i = 1, 2, . . . , m, be two independent samples of size m from X and Y respectively. If assumptions A1, A3 (E ||f (X)|| 4 L 2 < +∞), and A4 (2 ≤ p, 2 ≤ q) hold, then we have i) the joint estimator of GSIs of X u ([GSI u , GSI Tu ] T ) for a given (p, q) and m is given by

GSI u GSI Tu = 1 T r (Σ) × 2 mp 2 (p-1)q(q-1) m i=1 p j=1 q-1 l=1 q k>l 2 mp 2 (p-1)q m i=1 p j=1 q l=1 ×T r p j 1 =1 j 1 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 1 ) i,u , X (l) i,∼u ) ×T r p j 1 =1 j 1 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 1 ) i,u , X (l) i,∼u ) × p j 2 =1 j 2 =j f (X (j) i,u , X (k) i,∼u ) -f (X (j 2 ) i,u , X (k) i,∼u ) T × p j 1 =1 j 2 =j f (X (j) i,u , X (l) i,∼u ) -f (X (j 2 ) i,u , X (l) i,∼u ) T       , (4.44) where T r (Σ) = T r 1 M -1 M i=1 f (X i ) -f f (X i ) -f T is the estimator of the model inertia and f = 1 M M i=1 f (X i )
is the estimator of the model mean for M model runs;

ii) the estimator GSI u GSI Tu T is consistent, that is,

GSI u GSI Tu T P -→ [GSI u GSI Tu ] T ; (4.45)
iii) if m → +∞ and m/M → 0, we have the asymptotic normality, that is,

√ m GSI u GSI Tu T -[GSI u GSI Tu ] T D -→ N 0, Σ p,q [T r (Σ)] 2 ; (4.46) iv) the 100 × (1 -α)% asymptotic condence regions for [GSI u GSI Tu ] T is given by P   m GSI u GSI Tu - GSI u GSI Tu T Γ -1 GSI u GSI Tu - GSI u GSI Tu ≤ T 2 (α)   = 1-α , (4.47) 
with Γ = Σ p,q [Tr(Σ)] 2 , and T 2 (α) the 100α percentile of the Hotelling T-square distribution.

Proof. See AppendixG.

Remark 5. In practice, we can estimate the covariance matrix Γ, and the condence regions are the ellipsoid with center GSI u GSI Tu T and axes - + λ i T 2 (α)v i , where λ i and v i are the eigenvalues and eigenvectors of Γ respectively.

5. Choice of the degree of the kernel and algorithm 5.1. Proxy measure for the choice of the degree of a kernel

A classical way of choosing the degree (p, q) of a kernel consists in using a proxy measure for the variance of this kernel, as the variance of the kernel involves fourth moments, which are often unknown and hard to estimate ( [START_REF] Owen | Variance components and generalized Sobol' indices[END_REF]). A proxy measure is a part of the upper bound of the variance that is based on known coecients (see [START_REF] Owen | Variance components and generalized Sobol' indices[END_REF] for comprehensive details). It aims at overcoming the estimation of fourth moments during the estimation of variances, and it is based on the minimum-norm quadratic estimation (MINQE) or the MINQUE and MINQIE versions using unbiasedness or invariance as constraints (see [START_REF] Rao | Estimation of variance components and applications[END_REF]). In paper [START_REF] Owen | Variance components and generalized Sobol' indices[END_REF], the author generalized the principle of MINQE to deal with the variances of the estimators of sensitivity indices, and the author in [14; 15] used the MINQE approach to identify the degree of the kernel for estimating both Sobol's rst-order and total indices.

The MINQE approach used in [14; 15] can be adapted to the kernels K(•) and K tot (•) of this paper, and it leads to the following conclusions: rst, the proxy measure does not depend on the value of q. Thus, the value of q = 2 should be used as the referenced value of the degree of the kernel, and we should expect to have good results with q ≤ p. And second, the value p = 2 serves as the referenced degree for p, as the proxy measure increases with p. AppendixH deals with these issues.

5.2. Algorithm: design scheme and main steps for the estimations of the rst-order and total-eect covariance matrices For a given degree (p, q) and sample size m, the following steps are used to compute the d rst-order and total-eect covariance matrices, including the GSIs.

Algorithm 1. Main steps with q ≤ p.

i) Sample p input values (matrices) of type m × d (X 1 , . . . , X p ).

ii) For each factor X j , replace the j th column of X 1 with the j th column of X 2 , . . . , X p to obtain p -1 new matrices (X 2j , . . . , X pj ).

iii) Run the model for X 1 and for the p -1 input values X 2j , . . . , X pj to obtain

p outputs (matrices of type m × N ): Y 1 , Y 2j , . . . , Y pj .
iv) Repeat steps ii) and iii) q -1 times by replacing X 1 with X 2 , X 3 , . . ., X q .

v) Use the above model evaluations and the estimators in (4.29), (4.32), and (4.44) to obtain the estimates of the rst-order and total-eect covariance matrices in one hand, and the GSIs estimates in the other hand.

From the description in Algorithm 1, the number of model evaluations carried

out in step iii) is m + m × (p -1) × d = m [(p -1) × d + 1]
), as Y 1 is used for the computation of each index. Thus, the computational cost or the total number of model runs for the computation of the d indices is mq [(p -1)d + 1]), as we repeat in total step ii-iii) q times. Algorithm 1 can be used to compute the GSIs of a subset of input factors X u , with |u| > 1. We should modify the step ii) of Algorithm 1 as follows: replace the columns of X 1 , which indices are in u, with the same columns of X 2 , . . . , X p to obtain p -1 new matrices (X 2j , . . . , X pj ).

The computational cost does not explicitly include the dimensionality of the outputs. In classical statistics, we should require the sample size m to be greater than the dimensionality of the outputs N in order to have better estimations. However, the original outputs can be transformed into a few new outputs that preserve much or all information (e.g., principal components [START_REF] Lamboni | Multivariate global sensitivity analysis for discrete-time models[END_REF]). In this case, we can use the invariance property of some estimators to obtain the GSIs estimates. For very high dimensionality of the outputs, modern estimators of eigenvectors and principal components should be used ( [START_REF] Mestre | Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates[END_REF]).

Numerical tests

In this section, we perform some numerical tests to compare the eectiveness of our estimations depending on the degree (p, q) of the symmetric kernel. We present the following: i) the functions used to illustrate our approach, ii) the main choices made to obtain the results, and iii) the numerical results.

Test functions

To illustrate our approach, we consider two types of functions as follows: functions with a small number of inputs (d = 2, d = 3), and functions with a medium number of inputs (d = 10). We also give the classical GSIs ([2; 5]) of these functions.

Multivariate exponential function (d = 2)

The multivariate exponential function includes two independent inputs following a normal distribution N (0, 1). It is dened as follows:

f (x) =    exp(x 1 + 2x 2 ) x 4 1 x 2 2    . (6.48)
The classical GSIs for this function are listed in Table 1 j 1 2 GSI j 0.016 0.359 GSI T j 0.641 0.984 Table 1: Generalized Sensitivity Indices (GSIs) of the multivariate exponential function This function belongs to the class of functions with important interactions among input factors.

Multivariate Ishigami's function (d = 3)

The multivariate Ishigami function includes three independent input factors following a uniform distribution on [-π, π], and it provides three outputs. It is dened as follows: 

f (x) =       sin(x 1 ) + 7 sin 2 (x 2 ) + 0.
f (x) =          d=10 j=1 |4 x j -2| + A[1,j] 1 + A[1,j] d=10 j=1 |4 x j -2| + A[2,j] 1 + A[2,j] d=10 j=1 |4 x j -2| + A[3,j] 1 + A[3,j] d=10 j=1 |4 x j -2| + A[4,j] 1 + A[4,j]          . (6.50)
According to the values of A (matrix of type 4 × d), this function has dierent properties: 

• if A =          0 
• if A =         
• If A =         
0 0 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52 We used the root mean square error (RMSE) to assess the accuracy of our estimations. For each sample size (m) and for each degree (p, q), we replicate the process of computing the indices R = 30 times (changing the seed randomly when sampling input values). The average RMSE of the d rst-order indices is dened as follows:

RM SE d = 1 d d j=1 1 R R r=1 GSI j,r -GSI j 2 , (6.51) 
where GSI j and GSI j,r are the true and estimated values, respectively, of the rstorder index of a given factor X j , j = 1, 2, . . . , d. Furthermore, GSI j,r is the rstorder estimate for a given replication r. We used the same expression of RMSE for the total indices GSI T j .

6.3. Numerical results and discussion 6.3.1. Estimates of the three types of the generalized sensitivity indices Tables 6 and7 show the estimates of the three types of the GSIs for the multivariate exponential function and Ishigami function, respectively, when the sample size m = 1000 and the degree (p = 2, q = 2).

First-order GSIs Total GSIs GSI

F GSI S GSI l1 GSI l2 GSI F T GSI S T GSI l1 T GSI l2
T X 1 0.117 0.070 0.066 0.042 0.769 0.653 0.403 0.332 X 2 0.316 0.316 0.180 0.158 0.968 0.918 0.517 0.460 Table 6: Estimates of the three types of GSIs for the multivariate exponential function First-order GSIs Total GSIs

GSI F GSI S GSI l1 GSI l2 GSI F T GSI S T GSI l1 T GSI l2
T X 1 0.349 0.349 0.347 0.116 0.626 0.626 0.621 0.209 X 2 0.376 0.376 0.375 0.125 0.376 0.376 0.375 0.125 X 3 0.002 0.002 0.002 0.001 0.280 0.280 0.277 0.093 Table 7: Estimates of the three types of GSIs for the multivariate Ishigami function It comes out that the three types of GSIs give the same ranking of input factors for both functions. For more information about the estimations, we also added the asymptotic condent regions of the GSIs of both functions in AppendixI. The asymptotic condent regions of the GSIs for the multivariate exponential function show a high uncertainty on the total GSIs. This high uncertainty highlights the difculty of estimating the GSIs of the multivariate exponential function (see Sections 6.3.2-6.3.3). compared to the RMSEs associated with the reference degree (p = 2, q = 2) and the degree (p, q = 2). We also added the RMSEs associated with the up-to-date estimator (from papers [5; 29]).

Comparison of the estimates of the classical generalized rst-order indices

In Figures 12345, the RMSEs of our estimators (this paper), decrease with the number of model evaluations for dierent values of the degree, and we have converging estimations. In these gures, our estimators outperform the up-to-date estimator, with a signicant dierence observed in Figures 1 and5. Moreover, Figure 1 shows that the trends of the RMSEs associated with the up-to-date estimator do not decrease with the total number of model evaluations. Thus, this estimator (i.e. estimator and sampling strategies used) fails to converge. Similar results were obtained in [14; 28].

It can be seen in Figure 1 that the kernel of degree (p = 5, q = 5) performs better compared to the others (degrees (p, q = 2) and (p = 2, q = 2)), while Figure 5 shows that the kernel of degree (p, q = 2) is generally the best among the six kernels, followed by the kernel of degree (p, q). For the remaining models (Figures 2, 3, and4), the referenced degree (p = 2, q = 2) performs generally better compared to the others. The gures show the trends of the average RMSEs for the six values of the degree (p, q) compared to the RMSEs associated with the reference degree (p = 2, q = 2) and the degree (p, q = 2). We also added the RMSEs associated with the up-to-date estimator.

Comparison of the estimates of the classical generalized total indices

We have converging estimations in Figures 678910. Our estimators outperform the up-to-date estimator in Figure 6. The kernel of degree (p, q) gives the best results for the model in (6.48), followed by the kernel of degree (2, 2). In the case of Figure 7, the kernel of degree (2, 2) appears as the best kernel for estimating total indices. Furthermore, when increasing (p, q), all estimators become equivalent, including the up-to-date estimator.

For the remaining models (Figures 9 and10), we can nd a degree that performs slightly better and a degree that performs slightly worse than the up-to-date estimator. Furthermore, the estimates from the degree (2, 2) outperform the results from other degrees and become equivalent to the up-to-date estimator when increasing the sample size. For Figure 8, we can see that the up-to-date estimator outperforms our estimator (p = 3, q = 2) when the sample size is high.

The differences in the estimations of the total GSIs seem to come from the design strategies. The better performance of the up-to-date estimator in the case of Figure 8 is probably due to our design scheme, which is well suited for the estimations of the rst-order GSI. Indeed, the estimations of the rst-order GSI require q ≥ 2 while the estimations of the total GSI can be obtained with q = 1 (see Remark 4). Thus, our estimates of the total GSI make use of the available model runs performed for better estimating the rst-order GSI. The worse performance of the up-to-date estimator in the case of Figure 6 is due to the diculty of this approach to capture the rst-order eect and important interactions among input factors in the presence of skewed or heavy-tailed distributions of input factors.

Conclusion

In this paper, we propose and study new GSIs using the rst-order and total-effect covariance matrices. The new GSIs make use of matrix norms when the Loewner ordering on these covariance matrices does not exist, and we obtain the classical GSIs from papers [2; 5] using the Frobenius norm. To estimate these indices, rst, we propose a minimum variance unbiased estimator of the rst-order and total-eect covariance matrices, and second, we provide an ecient (joint) estimator of the rst-order and total GSIs ([2; 5]). We also derive the consistency, the asymptotic distribution, and the asymptotic condence regions of these estimators.

As the joint estimator makes use of a kernel of degree (p, q), we found that a kernel of degree (p, q) with the smallest variance should be preferred for estimating the classical GSIs. Although the proxy measure is in favor of the degree (2, 2), the degree (p, q) can be larger than (2, 2) in practice.

The numerical tests conrmed the superiority of our estimators of the rst-order GSI compared to the estimator from papers [5; 29]. The superiority of our estimators is also observed in the case of total indices, mainly when using challenging models.

In the case of total indices, our estimator associated with the degree (p = 2, q) is an average of the aggregated Jansen estimator ( [START_REF] Jansen | Analysis of variance designs for model output[END_REF]) used in [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF], and the dierence of results observed is due to the fact that both approaches use dierent information (input values) to compute total indices. It also comes out from numerical tests that we can obtain an efcient kernel with degree larger than (2, 2) in practice. Furthermore, there is no absolutely ecient degree for all functions or models. Thus, some adaptive strategies are needed to properly choose the degree of the kernel, for each input factor, prior to the estimation of the indices. The strategy should be based on the variance of the kernel, but it requires more investigations.

The new indices based on the l p norms provide complementary information about the inuence of input factors, but more investigations are needed to i) identify the most interesting value of p, ii) nd the appropriate constants of normalization, and iii) establish a link with the Hilbert-Schmidt norm, which does not require the assumption of independence of input factors. ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). Degree (p, q) = (

3.0 3.5 4.0 4.5

Degree (p, q) = (5, ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

p 2 (p -1)q(q -1)E K X (1) u , . . . , X (p) u , X (1) ∼u , . . . ,

X (q) ∼u = p j=1 q l=1 q i=1 i =l E         (p -1)f (X (j) u , X (l) ∼u ) - p j 1 =1 j 1 =j f (X (j 1 ) u , X (l) ∼u )     ×     (p -1)f (X (j) u , X (i) ∼u ) - p j 2 =1 j 2 =j f (X (j 2 ) u , X (i) ∼u )     T     = p,q,q j=1 l=1 i=1 i =l E (p -1) 2 f (X (j) u , X (l) ∼u )f (X (j) u , X (i) ∼u ) T - p,q,q j=1 l=1 i=1 i =l E     (p -1) p j 2 =1 j 2 =j f (X (j) u , X (l) ∼u )f (X (j 2 ) u , X (i) ∼u ) T     + p,q,q j=1 l=1 i=1 i =l E     (1 -p) p j 1 =1 j 1 =j f (X (j 1 ) u , X (l) ∼u )f (X (j) u , X (i) ∼u ) T     + p,q,q j=1 l=1 i=1 i =l E         p,p j 1 =1 j 2 =1 j 1 =j j 2 =j f (X (j 1 ) u , X (l) ∼u )f (X (j 2 ) u , X (i) ∼u ) T         .
As the functions f (X

(j 1 ) u , X (l) 
∼u ) and f (X

(j) u , X (i) 
∼u ) are independent for j 1 = j and i = l and the function f (•) is centered, we have

E f (X (j 1 ) u , X (l) ∼u )f (X (j) u , X (i) ∼u ) T = E f (X (j 1 ) u , X (l) ∼u ) E f (X (j) u , X (i) ∼u ) T = 0 . E f (X (j) u , X (l) ∼u )f (X (j 2 ) u , X (i) ∼u ) T = 0 if j 2 = j, l = i .
Using the linearity of the expectation and the above equations, we can write

1 p 2 (p -1)q(q -1)E K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = p,q,q j=1 l=1 i=1 i =l         (p -1) 2 E f (X (j) u , X (l) ∼u )f (X (j) u , X (i) ∼u ) T + p,p j 1 =1 j 2 =1 j 1 =j j 2 =j E f (X (j 1 ) u , X (l) ∼u )f (X (j 2 ) u , X (i) ∼u ) T        
.

By using Equation (C.3), we have 2 p 2 (p -1)q(q -1)E K X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = p,q,q j=1,l=1,i=1,i =l

      (p -1) 2 Σ u + p j 1 =1 j 2 =j 1 j 1 =j E f (X (j 1 ) u , X (l) ∼u )f (X (j 2 ) u , X (i) ∼u ) T       = p,q,q j=1,l=1,i=1,i =l     (p -1) 2 Σ u + p j 1 =1 j 1 =j E f (X (j 1 ) u , X (l) ∼u )f (X (j 1 ) u , X (i) ∼u ) T     = p,q,q j=1,l=1,i=1,i =l (p -1) 2 Σ u + p j 1 =1,j 1 =j Σ u = p,q,q j=1,l=1,i=1,i =l (p -1) 2 Σ u + (p -1)Σ u = p,q,q j=1,l=1,i=1,i =l [p(p -1)Σ u ] = p 2 (p -1)q(q -1)Σ u .
The derivation for the expectation of K tot (•) in Equation (4.28) is similar to the proof of K(•), and it is given below.

As

g u (X u , X ∼u ) = f (X u , X ∼u ) -E Xu [f (X u , X ∼u )] (see Equation (2.3)), the ex- pectation E [g u (X u , X ∼u )] = E [g u (X u , X ∼u ) | X ∼u ] = 0. For j 1 = j 2 , we have E g u (X (j 2 ) u , X (j 1 ) ∼u )g u (X (j 1 ) u , X (j 1 ) ∼u ) T = 0 . (C.4) Indeed, A = E g u (X (j 2 ) u , X (j 1 ) ∼u )g u (X (j 1 ) u , X (j 1 ) ∼u ) T = E E g u (X (j 2 ) u , X (j 1 ) ∼u )g u (X (j 1 ) u , X (j 1 ) ∼u ) T | X (j 1 ) ∼u = E E g u (X (j 2 ) u , X (j 1 ) ∼u ) | X (j 1 ) ∼u E g u (X (j 1 ) u , X (j 1 ) ∼u ) T | X (j 1 ) ∼u = E 00 T
The expectation of K tot is given by qp 2 (p -1)E K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = p,q

j=1 l=1 E         p j 1 =1 j 1 =j f (X (j) u , X (l) ∼u ) -f (X (j 1 ) u , X (l) ∼u )     ×     p j 2 =1 j 2 =j f (X (j) u , X (l) ∼u ) -f (X (j 2 ) u , X (l) ∼u )     T     .
qp 2 (p -1)E K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = p,q j=1 l=1

E         p j 1 =1 j 1 =j
g u (X (j) u , X (l) ∼u ) -g u (X (j 1 ) u , X (l) ∼u )

    ×     p j 2 =1 j 2 =j
g u (X (j) u , X (l) ∼u ) -g u (X (j 2 ) u , X (l) ∼u )

    T     = p,q j=1 l=1 E         (p -1)g u (X (j) u , X (l) ∼u ) - p j 1 =1 j 1 =j g u (X (j 1 ) u , X (l) ∼u )     ×     (p -1)g u (X (j) u , X (l) ∼u ) - p j 2 =1 j 2 =j g u (X (j 2 ) u , X (l) ∼u )     T     = p,q j=1 l=1
E (p -1) 2 g u (X (j) u , X (l) ∼u )g u (X (j) u , X (l) ∼u ) T p,q j=1 l=1 E     (p -1)

p j 1 =1 j 1 =j
g u (X (j 1 ) u , X (l) ∼u )g u (X (j) u , X (l) ∼u )

T     - p,q j=1 l=1 E     (p -1) p j 2 =1 j 2 =j
g u (X (j) u , X (l) ∼u )g u (X (j 2 ) u , X (l) ∼u )

T     + p,q j=1 l=1 E         p j 1 =1 j 1 =j j 2 =1 j 2 =j g u (X (j 1 ) u , X (l) ∼u )g u (X (j 2 ) u , X (l) ∼u ) T        
.

Using the linearity of the expectation, Equation (C.4), and the fact that Σ tot u = 1 C ov g u (X

(j 1 )
u , X (j 1 ) ∼u ) = E g u (X

(j 1 )
u , X (j 1 ) ∼u )g u (X

(j 1 )
u , X (j 1 ) ∼u ) T , we obtain the result, 2 51 that is, qp 2 (p -1)E K tot X (1) u , . . . , X (p) u , X (1) ∼u , . . . , X (q) ∼u = p,q

j=1 l=1         (p -1) 2 Σ tot u + p j 1 =1 j 1 =j j 2 =1 j 2 =j
E g u (X (j 1 ) u , X (l) ∼u )g u (X (j 2 ) u , X (l) ∼u )

T         = p,q j=1 l=1       (p -1) 2 Σ tot u + p j 1 =1 j 1 =j j 2 =j 1 E g u (X (j 1 ) u , X (l) ∼u )g u (X (j 2 ) u , X (l) ∼u ) T       = p,q j=1 l=1     (p -1) 2 Σ tot u + p j 1 =1 j 1 =j E g u (X (j 1 )
u , X (l) ∼u )g u (X (j 1 ) u , X (l) ∼u ) T 

AppendixD. Proof of Theorem 2

Consider Z i = (X i , Y i ), i = 1, 2, . . . , m, an independent sample of size m.

Theorem 1 shows that

E [K (Z 1 )] = Σ u .
The corresponding U-statistic of Σ u is

Σ u = 1 m m i=1 K (Z i ) = 1 m m i=1 K X (1) 
i,u , . . . , X

i,u , X

i,∼u , . . . , X

i,∼u .

The U-statistic Σ u is an average of the kernel K (Z i ) over i = 1, 2, . . . , m, and it is symmetric, as the kernel K(•) is symmetric. Now, let vec( Σ u ) be the vectorization of Σ u , that is, a vector containing the rst column of Σ u , followed by the second column, and so on. It is obvious that vec( Σ u ) is an unbiased estimator of vec(Σ u ), and it is symmetric w.r.t the two type of inputs. Then, it follows from the theory of U-statistics ([21; 16; 23; 33]) that vec( Σ u ) is the unique, uniformly minimum variance unbiased estimator of vec(Σ u )

for the class of functions having nite 4 th moment, and we have the following results: First order GSI Total GSI Figure I.12: Asymptotic 90% condent regions of the classical GSIs for the multivariate Ishigami function. The rst ellipsoid is the condent regions of the GSIs of X 1 , the second one is the condent regions of the GSIs of X 2 , and the last one is the condent regions of the GSIs of X 3 .

  , and multivariate response models (such as dy-2 namic models) are widely used as experimental tools for supporting decision making 3 in natural or human-induced phenomena. They often include numerous uncertain 4 input factors. These uncertainties can strongly aect the model output(s) and pose 5 certain diculties when building scenarios. Assessing the eects of input factors on 6 the whole model outputs is interesting for practitioners prior to scenario-building, model-reducing, or model diagnostic activities.

  +∞. We use P(•) for the probability, E(•) for the expectation, V(•) for the variance, T r (•) for the trace, C ov (•) for the covariance, n p for the number of combinations for selecting p objects out of n, and D -→ and P -→ for the convergence in distribution and in probability respectively.

  14) come down to an aggregation of the Sobol indices across all principal components ([4; 3; 2]).

  values are those listed in Table4. Thus, all input factors are j 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 GSI T j 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 Table4: Generalized Sensitivity Indices (GSIs) of the multivariate Sobol function of type B important, but there is no interaction among these inputs. The function has a high eective dimension (function of type B);

  to the class of functions with important interactions among input factors. The GSI values are listed in Table 5. Due to these important interactions, it is clear that all input factors are important. The function has a high eective dimension (function of type C).

Figures 1 ,

 1 Figures 1, 2, 3, 4, and 5 show the RMSEs of the d rst-order indices when the total number of model evaluations increases for the functions in (6.48), (6.49), and (6.50) with the three types (Sobol's function of types A, B, and C) respectively. The gures show the trends of the average RMSEs for the six values of the degree (p, q)

Figures 6 , 7 , 8 , 9 ,

 6789 Figures 6, 7, 8, 9, and 10 show the average RMSEs of the d total indices when the total number of model evaluations increases for the functions in (6.48), (6.49), and (6.50) with the three types (Sobol's function of types A, B, and C) respectively.

  FIGURES 1

Figure 1 :

 1 Figure1: First-order indices: Log-RMSEs of the model in (6.48) against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 2 :

 2 Figure2: First-order indices: Log-RMSEs of the model in (6.49) against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 3 :

 3 Figure3: First-order indices: Log-RMSEs of the model in (6.50) of type A against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 4 :

 4 Figure4: First-order indices: Log-RMSEs of the model in (6.50) of type B against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 5 :

 5 Figure5: First-order indices: Log-RMSEs of the model in (6.50) of type C against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 6 :

 6 Figure 6: Total indices: Log-RMSEs of the model in(6.48) against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 7 :

 7 Figure 7: Total indices: Log-RMSEs of the model in(6.49) against the total number of model evaluations (in log 10 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

Figure 10 :

 10 Figure 10: Total indices: Log-RMSEs of the model in (6.50) of type C against the total number of model evaluations (in log 10) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from[START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

=

  qp 2 (p -1)Σ tot u .

(i) unbiasedness EFigure I. 11 :

 unbiasedness11 Figure I.11: Asymptotic 90% condent regions of the classical GSIs for the multivariate exponential function. The rst ellipsoid is the condent regions of the GSIs of X 1 and the second one is the condent regions of the GSIs of X 2 .

Table 2 :

 2 Generalized Sensitivity Indices (GSIs) of the multivariate Ishigami function 6.1.3. Multivariate Sobol's function (d = 10) The multivariate Sobol function includes 10 independent input factors following a uniform distribution on [0, 1]. It is dened as follows:

	1 x 4 3 sin(x 1 )

Table 3 :

 3 Generalized Sensitivity Indices (GSIs) of the multivariate Sobol function of type A Thus, only a few inputs are important and the function has a low eective dimension (function of type A);

	0 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52		
	0 1 4.5 1 2 3	9 4	99 5	99 6	99 7	99 8	99 9	99 10	      	,
	50 50 50	50	50	50	50	50	50	50		
	the resulting values of the classical GSIs are those listed in Table 3.		

  one is the condent regions of the GSIs of X 2 .

										0.32 0.32
	0.70 0.70							0.40 0.40	
										0.31 0.31
								0.39 0.39	
										0.30 0.30
	0.65 0.65							0.38 0.38		0.29 0.29
	Total GSI Total GSI						Total GSI Total GSI	0.37 0.37	Total GSI	0.28 0.28
	0.60 0.60							0.36 0.36		0.27 0.27
										0.26 0.26
								0.35 0.35	
	0.55 0.55									0.25 0.25
	0.30 0.30	0.32 0.32	0.34 0.34	0.36 0.36	0.38 0.38	0.40 0.40	0.42 0.42	0.35 0.36 0.37 0.38 0.39 0.40 0.35 0.36 0.37 0.38 0.39 0.40		-0.01 0.00 0.01 0.02 0.03 0.04 0.05 -0.01 0.00 0.01 0.02 0.03 0.04 0.05
				First order GSI First order GSI			First order GSI First order GSI		First order GSI
								58	

Remark 6. To obtain the exact values of GSIs listed in Tables 12345, we use the aggregated denition of GSIs ( [START_REF] Lamboni | Multivariate global sensitivity analysis for discrete-time models[END_REF]), that is,

where D i,j (resp. D tot i,j ) is the non-normalized rst-order (resp. total) index of X j associated with the i th component of f (X) (i.e., f i (X)).

The values of V [f i (X)], D i,j , and D tot i,j for dierent single-response models, used in this paper, can be found in [14; 27; 28; 29].

Implementation issues

In this paper, we used Sobol's design from the R-package randtoolbox ( [START_REF] Dutang | randtoolbox: Generating and Testing Random Numbers[END_REF]) to generate input values according to their probability measure. We considered six values of the degree, as follows: (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). We used (p = 2, q = 2) as the referenced value of the degree, and we added the degree (p, q = 2) to assess the numerical impact of q (i.e., x q = 2 and consider various choices for p).

For a given value of the degree (p, q), we increased the sample size (m) by 30 from 5 up to 500 depending on the convergence of estimations. For a fair comparison, we computed the indices for degrees (p, q), (p = 2, q = 2), and (p, q = 2) using the same number of model evaluations, that is, the sample size (m r ) for the referenced

) for a given (p, q)

(see Section 5.2). We also added the up-to-date estimator of the classical GSIs (from papers [5; 29]) implemented in the R-package sensitivity ( [START_REF] Pujol | sensitivity: Sensitivity Analysis[END_REF]). Degree (p, q) = (5, 5) RMSE for degree (p,q) RMSE for degree (p,2) RMSE for degree (2,2) RMSE from Saltelli et al 2010 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line). Degree (p, q) = (

3.0 3.5 4.0 4.5

Degree (p, q) = (5,

3.0 3.5 4.0 4.5

Degree (p, q) = (5,

3.0 3.5 4.0 4.5

Degree (p, q) = (5, 5)

RMSE for degree (p,q) RMSE for degree (p,2) RMSE for degree (2,2) RMSE from Saltelli et al 2010 ) for six values of the degree (p = 3, q = 3), (p = 4, q = 3), (p = 4, q = 4), (p = 5, q = 3), (p = 5, q = 4), and (p = 5, q = 5). For each degree, we show the corresponding RMSE (solid line), the RMSE for degree (p, q = 2) (dashed line), the RMSE for degree (2, 2) (dotted line), and the RMSE from [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF] (dash-dotted line).

AppendixA. Proof of Proposition 1

As D

is the largest eigenvalue of D v , we have D

. Thus, we have GSI S u ≤ 1 and GSI S Tu ≤ 1.

For Point ii), it is sucient to show that C ov [Vf (X)] and C ov [f (X)] have the same largest eigenvalue. It is obvious to see that the two matrices have the same eigenvalues, and therefore, they have the same largest eigenvalue.

AppendixB. Proof of Proposition 2

As D v , v ⊆ {1, . . . , d} are positive semi-denite matrices, we have

and

. By arranging the right-hand side, we obtain

AppendixC. Proof of Theorem 1

First, we establish some useful equalities for the proofs, and second, we derive the two results of Theorem 1. Without loss of generality, we suppose that f

Bearing in mind that X (j 1 ) u and X

∼u are independent for j 1 = 1, 2, . . . , p and j 2 = 1, 2, . . . , q, X (j 1 ) u and X

∼u and X

∼u ) have the same distribution, we have the following equalities.

where E X (j 1 ) ∼u f (X

∼u ) means that the expectation is taken with respect to

∼u .

Likewise, we have

According to Equation (3.5) and using Equation (C.1), the rst-order covariance matrix is also given by

with j 1 = j 2 . Indeed,

u Now, we have all elements to start the proof of Equation (4.27) related to the rst-order covariance matrix (K(•)).

Bearing in mind Equation (C.2), we have

Likewise, we have

Thus, the expectation of K tot becomes 2 AppendixE. Proof of Theorem 3

The proof is similar to the proof derived in AppendixD by replacing K with K tot .

AppendixF. Proof of Corollary 2

For Point i), the proof is similar to the proofs in Sections AppendixD and AppendixE.

Points ii) and iii) are the properties of the multivariate U-statistic associated with the kernel K t (•). It can be found in [21; 16; 23; 33].

AppendixG. Proof of Theorem 4

Point i) is obvious using the denition of GSIs.

Results ii) and iii) are obtained by combining Corollary 2 and Slutsky's theorem.

Comprehensive details of the proof can be found in [14; 15].

Point iv) represents the classical condence regions for a mean vector associated with a multivariate normal distribution.

AppendixH. Proxy measure for the GSI variances

We use the MINQE approach to obtain the best degree of the kernel K t (•).

First, the idea of MINQE consists in expressing the estimator of a sensitivity index as T r Ω T Θ for given coecients Ω. The components of the matrix Θ are the product of functions f (X u , X ∼u ) and f (X v , X ∼v ), with u, v ⊆ {1, 2, . . . , d} (see [24; 14; 15] for a comprehensive treatment). Second, a proxy measure for the variance of the estimator is given by ( [START_REF] Owen | Variance components and generalized Sobol' indices[END_REF])

From Equation (4.42), it comes out that the mean square error of the estimator of the non-normalized GSIs is the trace of the covariance of the kernel K t (•) up to a constant. The trace of the covariance of K t (•) is the sum of the variances of K tot (•)

and K(•). To identify the best degree of K t (•), we start with the methodology used in [14; 15].

For integers j 1 , j 2 , k, l, and i, let Θk j 1 ,l be a matrix of type (p × q -l), with

u , X (i) ∼u ) , j 2 = 1, . . . , p, and i = l + 1, . . . , q.

We use r (k)

T as a vector of size p, with r

as a block diagonal matrix of type p 2 ×q(q-1)/2, and r (k) = r Finally, we use Θ = diag( Θ1 , . . . , Θp ) as a block diagonal matrix of type p 3 × pq(q -1)/2, r = r (1)T , . . . , r (p)T T as a vector of size p 3 , and s = [1, . . . , 1] T as a vector of size qp(q -1)/2.

As the trace of a matrix is the sum of the diagonal elements, the kernel K (•) in (4.36) can be written as follows:

or as a bi-linear form, that is,

Using the denition of the proxy measure in (H.1), the proxy measure for the variance of the kernel K(•) is given by

with r i the i th coordinate of the vector r.

It comes out that the proxy measure does not depend on the value of q. Thus, for a given value of p, any value of q will yield to the same value of the proxy measure of the variance. The value of q = 2 should be used as the referenced value, and we should expect to have good results with q ≤ p.

We can see that the value of V (Ω) increases with p (V |Ω] = 16N 2 if p = 2

and V [Ω] = 64N 2 if p = 3), and we should use small values of p. We use 2 as the referenced value of p.

The proxy measure for the variance of the kernel K(•) is sucient for choosing the degree of the Kernel K t (•), as the model runs performed for estimating the rst-order GSI are sucient for estimating the total GSI. 

AppendixI. Asymptotic condent regions of classical GSIs