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Abstract

We show that the maximal probability of equiprobable unambiguous discrimination of a set of pure quantum states is
given by the minimal eigenvalue of the Gram matrix of this set. We illustrate this result with several examples important
for the protocols of quantum key distribution realized with weak coherent states of light.

Keywords: unambiguous state discrimination, quantum key distribution, quantum measurement theory, coherent
states

1. Introduction

If a quantum system is prepared in one state |ψ〉 of a
given set {|ψk〉, k = 1, ..., N}, its state can be determined
with certainty by a measurement only when all the states
of this set are mutually orthogonal [1]. If at least two states5

of the set are non-orthogonal, the procedure of determining
the state |ψ〉, called quantum state discrimination, cannot
give the true answer in each trial. There are two different
approaches to treating this problem in the quantum mea-
surement theory. The first approach consists in allowing10

errors in the measurement outcomes. Different strategies
can be pursued in designing the optimal measurement:
minimizing the average error in one measurement [2] or
maximizing the retrieved information in measurements of
long blocks [3]. The second approach consists in allowing15

the failure of the discrimination procedure [4, 5, 6, 7, 8].
If the discrimination succeeds, which happens with some
probability PD < 1, then the state is determined with cer-
tainty. Otherwise, the discrimination fails. The failure is
known to the experimentalist and represents thus an ad-20

ditional measurement outcome. In the case of failure no
information on the state is available and this state can
only be randomly guessed, which results inevitably in an
error. In a long series of trials such errors are more fre-
quent than the errors of the minimal-error measurement of25

the first approach, however the positions of the erroneous
outcomes are known with much higher precision, which
is crucial for some applications. Such an unambiguous
state discrimination (USD) procedure realizes a quantum
measurement with N + 1 outcomes: one outcome for each30

state and one more outcome for the failure (inconclusive
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outcome). The measurements of this type are especially
important for the analysis of security of quantum key dis-
tribution (QKD) systems [9, 10], where USD can be used
by the adversary for monitoring the communication of the35

legitimate users and blocking it in the case of an incon-
clusive outcome [11]. Experimental schemes for USD of
coherent states of light have been developed on the basis
of linear optics and photon counting [12, 13].

USD with two equiprobable states has been analyzed40

by Ivanovic [4], Dieks [5] and Peres [6], who have found
that the success probability in this case is PD = 1 −
|〈ψ1|ψ2〉|. The case of different a priori probabilities has
been studied by Jaeger and Shimony [7]. The general case
of N states with arbitrary a priori probabilities {ηk} has45

been treated by Chefles [8], who has shown that the USD
is possible if and only if the states of the set are linearly in-
dependent. In the same paper the positive operator-values
measure (POVM) realising the USD is constructed and the
average probability of success is written as PD =

∑
k ηkPk,50

where Pk is the conditional probability of the true out-
come when the state |ψk〉 is prepared. The problem of
maximizing PD for a given set of states and a priori prob-
abilities attracted much attention [14, 15, 16, 17, 18], and
efficient numerical algorithms have been found. Analytical55

expressions for the POVM and the average success prob-
ability for N > 2 are known only for the special case of
a symmetric set of states, where each state is produced
in a cyclic manner from the previous one by means of a
unitary rotation, and equiprobable measurements, where60

all conditional probabilities are the same Pk = PD [19].
Equiprobable measurements are highly likely to be optimal
in the case of equiprobable a priori probabilities, which is
a typical situation in quantum communications. However,
the states used for quantum encoding not always belong65

to the class of symmetric ones.
In this Letter we derive a simple formula for the prob-
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ability of success of a USD restricted to equiprobable mea-
surements, we show that PD in this case is given by the
minimal eigenvalue of the Gram matrix of the set of quan-70

tum states, Gkl = 〈ψk|ψl〉. This result includes naturally
the well-known properties of equiprobable USD: In the
case of linearly dependent states PD = 0, since Gkl is de-
generate and its minimal eigenvalue is zero, and in the case
of two states it gives the Ivanovic-Dieks-Peres probability75

as a solution of the second-order characteristic equation.
This result is important for calculating the efficiency of the
USD attack on a QKD system, where the exact description
of the measurement is not necessary, but only the value of
the probability of success.80

In Section 2 we review briefly the USD theory of Ref. [8]
and formulate its main results as two lemmas. In Section
3 we discuss the symmetric (Löwdin) orthogonalisation of
a set of linearly independent states. Writing quantum op-
erators in the Löwdin basis and applying the lemmas we85

prove the theorem containing the main result of this Let-
ter. In Section 4 we consider several examples where the
minimal eigenvalue of the Gram matrix can be rather eas-
ily calculated analytically. Section 5 concludes the Letter.

2. Unambiguous state discrimination90

We start with a definition of USD measurement, which
includes the trivial case of zero discrimination probability.

Definition. USD of a set of N ≥ 2 states {|ψk〉, k = 1, ..., N}
is a generalized measurement characterized by a POVM

including N positive operators
{

Π̂k, k = 1, ..., N
}
for con-

clusive outcomes, satisfying the zero-error condition

〈ψl|Π̂k|ψl〉 = Pkδkl, 0 ≤ Pk ≤ 1, (1)

and one more positive operator Π̂0 for the inconclusive out-
come (failure), such that together these operators represent
a resolution of identity

N∑
k=1

Π̂k + Π̂0 = Î , (2)

where Î is the identity operator on the space S spanned by
the states of the considered set.

When a quantum system in some state |ψ〉 is measured,95

the probability of the kth outcome is 〈ψ|Π̂k|ψ〉 and is equal
to Pk if |ψ〉 = |ψk〉 and to zero if |ψ〉 is some other state
of the set. The probability of the inconclusive outcome for
|ψ〉 = |ψk〉 is 〈ψk|Π̂0|ψk〉 = 1 − Pk. Note also that from

the Cauchy-Schwarz inequality for the states Π̂
1/2
k |ψl〉 and100

Π̂
1/2
k |ψm〉 we obtain

|〈ψl|Π̂k|ψm〉|2 ≤ 〈ψl|Π̂k|ψl〉〈ψm|Π̂k|ψm〉 (3)

= P 2
k δklδkm,

wherefrom
〈ψl|Π̂k|ψm〉 = Pkδklδkm, (4)

i.e. the operators of conclusive events are diagonal in the
basis of the discriminated states.

By the above definition we accept the possibility of a
zero discrimination probability for some states. It is easy105

to see that in the case of a linearly dependent set of states
this is always the case.

Lemma 1. USD of a linearly dependent set of states is
characterized by al least one zero probability Pk.

Proof. In the case of linear dependence we can write

|ψl〉 =

N∑
m=1

flm|ψm〉 (5)

with at least one non-zero off-diagonal element flm 6= 0,
l 6= m. Substituting Eq. (5) into the zero-error condition
(1) and applying Eq. (4) we obtain

|flm|2Pkδkm = Pkδkl. (6)

Since the matrix flm for linearly dependent states can be110

non-diagonal, there should be at least one Pk = 0.

For linearly independent set of states the POVM can be
built as follows [8]. The operators of conclusive outcomes
are Π̂k = qkPk|ψ⊥k 〉〈ψ⊥k |, where the state |ψ⊥k 〉 is “recip-
rocal” to |ψk〉, i.e. it belongs to the space S and satisfies115

〈ψi|ψ⊥k 〉 = ckδik, with some non-zero ck, while qk = |ck|−2.
In practical calculations, the state |ψ⊥k 〉, reciprocal to |ψk〉,
can be found at the end of the Gram-Schmidt orthogonal-
ization procedure, applied to the initial set of state with
the state |ψk〉 put to the end. The operator of the in-120

conclusive outcome Π̂0 is determined from Eq. (2) as the
complement to the identity for the operators of conclusive
outcomes.

Since the reciprocal states and the numbers qk are
uniquely determined by the initial set of states, the only125

degree of freedom in the definition of the POVM is con-
nected to the conditional probabilities Pk. Positivity of
Π̂0 imposes a restriction on the possible values of Pk.
Optimisation strategies have been developed for finding
a POVM maximizing the average success probability PD130

[14, 15, 16, 17, 18]. In this work we restrict our considera-
tion to equiprobable measurements with Pk = PD, playing
an important role in the security analysis of QKD proto-
cols. In this particular case, which we call “equiprobable
USD”, the optimal POVM, maximizing PD can be deter-135

mined from the structure of the set of reciprocal states, as
formulated by the following lemma [8].

Lemma 2. The maximal success probability PD for an
equiprobable USD of a set of linearly independent states
{|ψk〉, k = 1, ..., N} is given by PD = λ−1max, where λmax is
the maximal eigenvalue of the operator

Λ̂ =

N∑
k=1

|ψ⊥k 〉〈ψ⊥k |
|〈ψ⊥k |ψk〉|2

. (7)
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Proof. The positivity of Π̂0 together with Eq. (2) require
that the eigenvalues of

∑
k Π̂k = PDΛ̂ are not greater than

1. It means that the set of possible POVM corresponds to140

PD ∈
[
0, λ−1max

]
, hence the maximal probability of success.

Lemma 2 allows one to calculate the maximal suc-
cess probability for any initial set of linearly independent
states. However, this task requires building a set of recip-145

rocal states by a tedious Gram-Schmidt orthogonalisation
algorithm, whose length increases with the growth of di-
mensionality of the initial set of states. In the next sec-
tion we will see that another orthogonalisation procedure,
the Löwdin or symmetric orthogonalisation, is much better150

suited to the considered problem.

3. Löwdin orthogonalisation

Let us write the states of the initial set of linearly in-
dependent states in a form of row vector and express them
via the states of some orthonormal basis {|v1〉, ..., |vN 〉} on
S: (

|ψ1〉 ... |ψN 〉
)

=
(
|v1〉 ... |vN 〉

)
L, (8)

where L is a complex N ×N matrix. This matrix is non-
unitary in general and satisfies

L†L =

 〈ψ1|
...
〈ψN |

( |ψ1〉 ... |ψN 〉
)

= G, (9)

where G is the Gram matrix of the initial set of states.
Among various bases on S there is one whose trans-

form matrix is Hermitian and is given by L = L† = G
1
2 .155

The orthonormal basis obtained in this way was first in-
troduced by Löwdin [20] and is characterized by minimal
distance from the non-orthogonal set [21]. Moreover, the
whole orthogonalization procedure is symmetric with re-
spect to the initial set. The Löwdin basis has proven to160

be highly efficient for the analysis of entanglement of two-
mode Schrödinger cat states [22].

Representing the operator Λ̂ as a matrix in the Löwdin
basis we obtain

Λ =

 〈v1|
...
〈vN |

 Λ̂
(
|v1〉 ... |vN 〉

)
(10)

= G−
1
2

 〈ψ1|
...
〈ψN |

 Λ̂
(
|ψ1〉 ... |ψN 〉

)
G−

1
2

= G−
1
2 IG−

1
2 = G−1,

where I is the N ×N identity matrix. We see that in the165

Löwdin basis the matrix of the operator Λ̂ is the inverse
of the Gram matrix G. Thus, its maximal eigenvalue is
equal to the inverse of the minimal eigenvalue of the Gram
matrix and we arrive to the following theorem.

Theorem. The maximal success probability PD for an170

equiprobable USD of a set of any states {|ψk〉, k = 1, ..., N}
is given by the minimal eigenvalue of its Gram matrix
Gkl = 〈ψk|ψl〉.

Proof. In the case of linearly independent states the proof
follows from Lemma 2 and Eq. 10. In the case of linearly175

dependent states the minimal eigenvalue of the Gram ma-
trix is zero, and so is the probability of success PD by
Lemma 1.

Note, that in the case of equiprobable USD of a linearly
dependent set the only possible POVM, by Lemma 1, is180

the trivial one, composed of Π̂0 = Î and all other operators
zero.

The Löwdin basis allows one to find also the POVM of
the equiprobable USD. Consider the states(

|ψ̃1〉 ... |ψ̃N 〉
)

=
(
|v1〉 ... |vN 〉

)
G−

1
2 . (11)

It is easy to see that 〈ψ̃1|
...

〈ψ̃N |

( |ψ1〉 ... |ψN 〉
)

= G−
1
2 IG

1
2 = I, (12)

which means that the reciprocal states are given by |ψ⊥k 〉 =

ck|ψ̃k〉 and the operators of the POVM are Π̂k = PD|ψ̃k〉〈ψ̃k|.

4. Examples185

In this section we consider several examples, where the
maximal probability of equiprobable USD can be easily
obtained. The first example is the case of two states |ψ1〉
and |ψ2〉. The eigenvalues of the Gram matrix

G =

(
1 〈ψ1|ψ2〉

〈ψ2|ψ1〉 1

)
(13)

are easily obtained from the quadratic characteristic equa-
tion in the form g1,2 = 1 ± |〈ψ1|ψ2〉|. The minimal eigen-
value is obviously g2 = 1−|〈ψ1|ψ2〉|, which corresponds to
the Ivanovic-Dieks-Peres probability [4, 5, 6].

The second example is the case of N symmetric states
such that |ψk〉 = Ûk−1|ψ1〉, where Û is a unitary operator
satisfying ÛN = Î [19, 22]. In this case the Gram matrix
depends only on the difference modulo N of its indices,
Gkl = 〈ψ1|Û l−k|ψ1〉, and is therefore a circulant matrix,
whose kth row is a circularly right-shifted (k − 1)th row.
The circulant matrix eigenvalues are given by the discrete
Fourier transform of the first row [23]:

gj =

N∑
k=1

〈ψ1|ψk〉ei2πjk/N , (14)

and to obtain the maximal success probability one needs190

to find the minimum of this expression. The same ex-
pression was obtained by Chefles and Barnett [19] from
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an explicit construction of reciprocal states. The case of
N = 4 corresponds to the states used in realisations of the
BB84 protocol of QKD by means of weak coherent states.195

Indeed, in the polarization encoding there are two modes,
right and left polarized ones, and the four code states can
be written as [24, 25]

|0+〉 = |α〉R ⊗ |α〉L, (15)

|0×〉 = |α〉R ⊗ |iα〉L,
|1+〉 = |α〉R ⊗ | − α〉L,
|1×〉 = |α〉R ⊗ | − iα〉L,

where the ket index denotes the right (R) or left (L) po-
larization. The states |0+〉 and |1+〉 create the rectilin-
ear basis, while the states |0×〉 and |1×〉 create the diag-
onal one. We see, that the state of the right-polarized
mode is the same for all four code states. Thus, the
task of state discrimination can be limited to the left-
polarized mode only, whose states are four coherent states
{|α〉, |iα〉, | − α〉, | − iα〉}. The four eigenvalues of their
Gram matrix can be obtained from Eq. (14) as functions of
the average photon number in one mode ν = |α|2. In the
range of practical values 0 < ν ≤ 2 the minimal eigenvalue
is

gBB84
min = 2e−ν (sinh ν − sin ν) , (16)

which corresponds to the result of Ref. [11].
The third example is the set of two-mode states used in200

the realizations of the BB84 protocol by subcarrier wave
modulation [26, 27, 28, 29]. At low modulation index these
states can be written as [30, 31]

|ψ1〉 = |α〉U ⊗ |α〉L, (17)

|ψ2〉 = | − iα〉U ⊗ |iα〉L,
|ψ3〉 = | − α〉U ⊗ | − α〉L,
|ψ4〉 = |iα〉U ⊗ | − iα〉L,

where the ket index denotes the upper (U) or lower (L)
sideband of the carrier wave. These states belong to the
class of symmetric states and the four eigenvalues of the
Gram matrix are easily obtained from Eq. (14). The min-
imal one is

gSCW
min = (1− e−2ν)2, (18)

where ν = |α|2, as above, is the average photon number in
one polarisation mode.205

The fourth and the last example corresponds to the
case of the BB84 protocol with polarization encoding and
decoy states. Decoy states are different from the signal
ones only by their coherent amplitude β with |β| 6= |α|.
Here we consider only the case of one decoy level, as ini-210

tially proposed by Hwang [32]. This case can be easily
generalized to two levels, usually applied in practice [33],
or any other number of levels. Our task is to discriminate
the set of eight states, composed of four signal states, de-
fined by Eq. (15) and four decoy states obtained from this215

equation by the substitution α → β. These eight states
are shown schematically in Fig. 1.

Reα

Imα

Figure 1: Eight states of the left-polarized mode in a realisation of
the decoy-state enhanced BB84 protocol with weak coherent states.
Each state is a coherent states and is represented by the σ-area of
its Wigner function. Four states of the inner (blue) circle are the
four signal states. Four states of the outer (red) circle are the four
decoy states. Decoy states have higher mean photon number in this
drawing, as in the original proposal by Hwang [32], though the an-
alytical treatment admits any values of the mean photon number of
the signal and the decoy states.

We group the signal state together with the corre-
sponding decoy one in a two-component row vector

Wk = (|α〉R ⊗ |αk〉L, |β〉R ⊗ |βk〉L) , (19)

where αk = (−i)k−1α and βk = (−i)k−1β. We concate-
nate all four such vectors in one eight-component vec-
tor W = (W1W2W3W4). Now the Gram matrix is220

G = W†W. This matrix can be written in a block form
with the blocks represented by 2× 2 matrices

Gkl = W†
kWl (20)

=

(
〈αk|αl〉 〈α|β〉〈αk|βl〉

〈β|α〉〈βk|αl〉 〈βk|βl〉

)
.

It is easy to see that these blocks depend on the index
difference k − l only, so that the Gram matrix is block-
circulant. This is a consequence of the fact that the state225

pairs are symmetric with respect to the operator Û =
exp{iπa†a/2} where a is the photon annihilation opera-
tor of the left-polarized mode, i.e. Wk = Ûk−1W1. The
eigenvalues of a block-circulant matrix are given by the set
of eigenvalues of all elements of a discrete Fourier trans-230

form of its first block row [34], which in our case are

Fk =

4∑
l=1

i(k−1)(l−1)G1l (21)

=

(
〈α|c̃αk 〉 〈α|β〉〈α|c̃βk〉

〈α|β〉〈β|c̃αk 〉 〈β|c̃βk〉

)
,

4



where

|c̃αk 〉 =

3∑
j=0

eiπ(k−1)j/2|αe−iπj/2〉 (22)

is the unnormalized discrete Fourier transform of the four
coherent states equidistant on the circle, which is known
as rotationally-invariant circular state [22].

Fk is a Hermitian 2× 2 matrix. Its smaller eigenvalue
is

λ
(−)
k =

1

2

(
Tr Fk −

√
(Tr Fk)

2 − 4 det Fk

)
, (23)

and the minimal eigenvalue of G is given by the smallest
eigenvalue of all four matrices

gBB84+decoy
min = min

k
λ
(−)
k . (24)

In Fig. 2 we show the four smaller eigenvalues of the235

matrices Fk in the case where the decoy states contain
2|β|2 = 1 photon on average, as initially proposed by
Hwang [32].
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k=4
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Figure 2: Four eigenvalues λ
(−)
k as functions of the mean photon

number in one mode ν = |α|2 for the BB84 protocol with one level
of decoy states. The decoy states contain ν′ = |β|2 = 0.5 photons

in each mode. The minimal eigenvalue, λ
(−)
2 , gives the USD proba-

bility for the states depicted in Fig. 1. At the point ν = ν′ all four
eigenvalues are zeros. At this point α = β and the set of considered
states is linearly dependent, which means that the USD probability
is zero.

The discrimination probability PD is given by the smaller
eigenvalue of F2 and for ν = |α|2 = 0.15 is equal to240

PD = 1.8 × 10−4, which corresponds to 37 dB of loss.
Note, that a satellite communication line is expected to
have about 40 dB of loss in the down-link configuration
and about 50 dB in the up-link one [35]. It means that
the USD attack on the BB84 protocol in this case should245

be countered either by decreasing the decoy state level,
which is a common practice presently [33], or by random-
izing the phase of the states in the quantum channel [11].

5. Conclusions

In this Letter we have shown that the maximal proba-250

bility of an equiprobable USD of a set of quantum states

is given by the minimal eigenvalue of the Gram matrix of
the set. This result allows one to calculate this probabil-
ity directly, avoiding a construction of the set of reciprocal
states. We have shown that in several special cases analyt-255

ical expressions for the discrimination probability can be
rather easily found. We believe that these results deepen
the understanding of the USD technique and can find nu-
merous applications in the analysis of protocols of QKD
realized with weak coherent states of light.260
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