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Abstract 

Lipid nanocarriers incorporating glycerides, polyethylene glycol (PEG)-stearates and 

phospholipids have attracted great attention for in vivo diagnostic, in vivo imaging, activated or 

non-activated targeted drug delivery. For quality control purposes, the development of 

appropriate methods for the quantification of their lipid components is needed. In the present 

study, we developed an analytical method for lipid quantification in formulated nanoparticles. 

PEG-stearates and glycerides were analyzed in a single run by RP-UPLC-ELSD using a two-

step gradient elution program, while the analysis of phospholipids was accomplished by HILIC-

UPLC-ELSD after isolation using an SPE silica column. Using both isolated compounds and 

commercial lipid standards, calibration curves were produced using second-order polynomials 

to attain the quantitative evaluation of each lipid excipient. Relative standard deviation of all 

analytes was between 0.9% and 5.3% for intra-day precision and recovery ranged from 83.5% 

to 112.2%. The presented method was successfully implemented to study the manufacturing 

process and stability of the formulated lipid excipients during long-term storage and 

accelerated conditions. The formulation lipid yield was determined and found equal to 82.5%. 

Keywords: lipid nanoparticles, UPLC, ELSD, reversed-phase HPLC, HILIC, SPE, 

triglycerides, phospholipids, polyethylene glycol, validation 
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1. Introduction  

Since the early stages of nanotechnologies, nanomedicines (NMs) have received great 

attention due to their ability to overcome the limitations of traditional drug delivery modalities. 

Although numerous nanosized carriers have led to tremendous research activities and 

demonstrated significant therapeutic advantages for a multitude of biomedical applications, to 

date, only 50 NMs have been marketed [1]. In comparison to conventional formulation 

technology, their clinical translation is far more complex and requires an expensive and time-

consuming process for which many issues have been identified as obstacles [2–4]. For 

instance, an adequate understanding of how they interact with biological systems is 

fundamental, which requires comprehensive physicochemical characterization. In addition, the 

use of proper, rational and specific characterization methods is essential for large-scale 

production, according to Good Manufacturing Practices (GMP) standards, and quality controls 

are needed to achieve batch-to-batch consistency on a daily basis. The latter requirement is 

particularly important since batch-to-batch variation of NMs affects their physicochemical 

properties, pharmacokinetic parameters, and/or pharmacodynamics interactions [2,3].  

Despite the arsenal of NMs currently under preclinical development or in clinical trials, lipid 

nanocarriers, especially liposomes, are dominant on the NMs market and were the first-FDA 

approved NMs [5,6]. In addition to natural and/or synthetic phospholipids as their main 

constituent, liposomes often contain functionalized lipids, such as PEGylated materials 

containing polyethylene glycol (PEG) chains that are intended to support escape from the 

reticuloendothelial system [7]. As an alternative to liposome-based drug carriers, solid lipid 

nanoparticles (SLN) have been developed in order to increase loading capacity of lipophilic 

drugs and overcome chemical/physical stability issues [8–10]. General ingredients include 

solid lipid(s), such as triglycerides, partial glycerides, fatty acids, steroids and waxes.  

For more than 10 years, our research group has been developing lipid nanocarriers known as 

Lipidots®, which have demonstrated utility in the delivery of therapeutic agents, and for disease 

monitoring and diagnosis by fluorescence imaging [11,12]. As a nanocarrier, Lipidots® have 

been proved to possess a high colloidal stability over several months. In addition, particle size 

and viscosity of the core can be tuned, resulting in high payloads, controlled drug release and 

improved drug bioavailability to appropriate biological sites [13]. More recently, our lipid 

nanocarriers showed great potential as innovative delivery systems of protein antigens by 

chemical modification of the shell [14,15]. Far more complex than liposomes, our lipid 

nanocarriers are composed of a lipid core comprising a mixture of saturated and unsaturated 

glycerides, and a surfactant shell comprising a mixture of PEGylated surfactants and 

phospholipids. To facilitate potential clinical utility and regulatory approval, a large panel of 
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analytical and physicochemical methods have been developed and used to extensively 

characterize our Lipidots® platform [16,17]. Subsequently, we sought to develop and validate 

an analytical method that would allow the quantification of all individual excipients belonging 

to lipid-based nanoparticles. 

From an analytical point of view, the quality of these pharmaceuticals must be assured through 

the development of appropriate methods to characterize and quantify their lipid components 

and degradation products [18,19]. For this purpose, high-performance liquid chromatography 

(HPLC) is the technique of choice because of its ability to separate lipids into different classes 

or species based on their alkyl chain lengths and/or head group polarity [20–23]. For instance, 

reversed-phase (RP)-HPLC has become the most popular method for separating and 

analyzing triglyceride species in oils and fats, because it operates on the principle of both chain 

length and degree of unsaturation of fatty acids, thus enabling separation of individual 

triglyceride molecules [24,25]. Concerning the analytical measurements of PEGylated 

materials, methods involving coordination complexes, enzymatic/antibody detection or 

chromatographic techniques have been developed [26,27]. The analysis of phospholipids has 

also been accomplished by RP-HPLC, normal phase (NP)-HPLC or hydrophilic interaction 

liquid chromatography (HILIC) [28–31].  

Over the past 10 years, ultra-performance liquid chromatography (UPLC) has greatly improved 

resolution over traditional HPLC analysis in a wide range of applications. UPLC uses sub-2 µm 

porous stationary phase particles and operates with high linear velocities >9000 psi. The 

significant advantages of UPLC over HPLC include dramatic increases in resolution, speed 

and sensitivity, which simplify the characterization of complex samples like those containing 

lipids [32–36].  

Evaporating light-scattering detection (ELSD), first described by Charlesworth [37], is a quasi-

universal detector than can detect any analyte less volatile than the mobile phase [38,39]. 

ELSD has become popular to detect and monitor the separation of poor UV-absorbers, such 

as phospholipids [40–44], PEG [45–48] and triglycerides [49–52]. This detection technique was 

chosen in these studies for several reasons. First, this equipment is well established in the 

quality control of liposome suspensions [53,54]. Second, contrary to UV and refractive index 

(RI) detection, solvent selection and gradient elution are not limiting factors [55,56]. Finally, 

compared with charged aerosol detectors (CAD), ELSD has a very low background noise with 

solvents commonly used in RP-HPLC lipid analysis (methanol, isopropanol, acetonitrile) [57].  

In this work, two distinct chromatographic methods were used: a RP-UPLC-ELSD method for 

the determination of PEGylated surfactants and glycerides, a HILIC-UPLC-ELSD method for 
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the assessment of phospholipids. The full analytical method was applied to study the 

manufacturing process and stability of the formulated lipid excipients during long-term storage 

and under accelerated conditions.  

2. Materials and Methods  

2.1 Materials 

Suppocire NCTM (SC) was purchased from Gattefossé (Saint-Priest, France). MyrjTM S40, 

polyethylene glycol (PEG) 40 stearate (S40), and Super Refined Soybean oil (SB) were 

obtained from Croda Uniquema (Chocques, France). Lipoid S75 (S75, soybean lecithin) was 

provided from Lipoid GmbH (Ludwigshafen, Germany). All these excipients were 

pharmaceutical grade and used as received for preparing lipid nanoparticles. L-α-

phosphatidylcholine (Soy PC, >99% purity, 840054C) and L-α-phosphatidylethanolamine (Soy 

PE, >99% purity, 840024C) used as standards at respectively 25 mg/mL and 10 mg/mL in 

chloroform were purchased from Avanti Polar Lipids, Inc. (Alabaster, USA). For Soy PC, the 

unsaturated fatty acids are palmitic (C16:0, 14.9%) and stearic (C18:0, 3.7%) and the 

unsaturated fatty acids are oleic (C18:1, 11.4%), linoleic (C18:2, 63%) and linolenic (C18:3, 

5.7%). For Soy PE, the unsaturated fatty acids are palmitic (C16:0, 17.7%) and stearic (C18:0, 

2.2%) and the unsaturated fatty acids are oleic (C18:1, 5.0%), linoleic (C18:2, 65.5%) and 

linolenic (C18:3, 7.4%). Acetonitrile (ACN), methanol (MeOH), isopropanol (IPA), hexane 

(HEX), diethyl ether (DEE) and chloroform (CHCl3), ammonium formate, ammonium acetate, 

sodium acetate and formic acid (50% in water) were supplied by Sigma Aldrich (Saint-Quentin-

Fallavier, France). Standards of triacylglycerols (TAGs) including trilinolein (LLL) and triolein 

(OOO) were obtained from Nu-check (Elysian, USA). All chemicals and reagents were 

analytical grade and were used without any further purification. HPLC-grade water (MQ, 

specific resistance=18.2 MΩ.cm) was obtained from a Classic DI MK2 water purification 

system (Elga, UK) and was used in all experiments. Lipid nanoparticles were formulated using 

a VCX750 Ultrasonic processor from Sonics (Newtown, USA) equipped with a 3 mm-diameter 

microtip. The balance was an XP105 from Mettler Toledo (Columbus, USA), the centrifuge was 

a Heraeus Pico 17 from Thermo Scientific (Waltham, USA) and the vortex was a Reax top 

from Heidolph (Swabach). The measurement of pH in chromatographic mobile phases was 

determined using a FiveEasy Bench Meter from Mettler Toledo (Columbus, USA) calibrated 

using commercial buffers before each measurement.  

2.2 Chromatographic conditions for lipid quantification using UPLC-ELSD 

analysis  

Chromatographic analysis of the lipid nanoparticles components was performed using an 

Acquity UPLC
 
H-Class system from Waters (Milford, USA) coupled with an Alltech 3300 
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Evaporating Light Scattering detector (ELSD) from Grace (Columbia, USA). Separation of the 

different compounds was achieved using two chromatographic methods involving two different 

columns, both equipped with a guard column of the same material (1.6 μm, 5 x 2.1 mm, 90 Å, 

Waters). On the one hand, quantification of SC, SB and S40 was performed using reversed-

phase mode with a CORTECS UPLC C18 column (1.6 μm, 150 x 2.1 mm, 90 Å, Waters). For 

the following, this method will be referred to as QMC18. Separation was achieved using a 

gradient program involving 3 eluents: water (eluent A), methanol (eluent B) and 25% v/v ACN 

in IPA (eluent C). For better reproducibility, the latter mobile phase was gravimetrically 

prepared daily. Chromatographic separation was carried out according to the following 

scheme: t0 min: 30%A/70%B at 0.25 mL/min, t3.0 min: 10%A/90%B at 0.3 mL/min, t7.0 min: 

100%B at 0.3 mL/min, t22.0 min: 35%B/65%C at 0.3 mL/min, t25.0 min: 35%B/65%C at 

0.3 mL/min, t25.1 min: 30%B/70%C at 0.25 mL/min and finally isocratic conditions 

(30%A/70%B) for 4.9 min at 0.25 mL/min. The total duration of the method was 30 min. The 

drift tube temperature of the detector was maintained at 45°C with the optimum flow rate of the 

nebulizing gas (nitrogen) fixed at 2.0 L/min. The gain was fixed at 4. On the other hand, 

phospholipids belonging to S75 were quantified by hydrophilic interaction liquid 

chromatography (HILIC) using a CORTECS UPLC HILIC column (1.6 μm, 150 x 2.1 mm, 90 

Å, Waters). Hereafter, this method will be referred to as QMHILIC. Separation was achieved 

using a gradient program with two eluents. 10 mM ammonium formate (pH=3) was mixed with 

ACN in a ratio 5:95 (v/v) to produce mobile phase A or 50:50 (v/v) to produce mobile phase B. 

Chromatographic separation was carried out using the following scheme: t0 min: 100%A, t5.0 

min: 65%A/35%B, t8.0 min: 65%A/35%B, t9.0 min: 100%A and finally isocratic conditions 

(100%A) for 8 min. The flow rate of the eluent was 0.5 mL/min. The drift tube of the detector 

was maintained at 60°C with a flow of N2 fixed at 2.5 L/min and the gain was set at 2. In both 

chromatographic methods, the injection volume was 5 μL, the column and autosampler 

temperatures were fixed at 40°C and 25°C, respectively. Data acquisition and processing were 

performed using Empower 3 chromatographic software through Waters SAT/IN module. 

2.3 Chromatographic conditions for lipid identification using UPLC-TOF/MS 

analysis  

An Agilent-1260 UPLC system coupled to a 6230B TOF mass spectrometer (Agilent 

Technologies, Santa Clara, USA) was used. For the separation, a CORTECS UPLC C18 

column (1.6 μm, 150 x 2.1 mm, 90 Å, Waters) equipped with a guard column (1.6 μm, 5 x 

2.1 mm, 90 Å, Waters) was used. The working parameters were established as follows: flow 

rate 0.3 mL/min, column temperature 45 °C, injection volume 5 µL, and auto-sampler ambient 

temperature (20-25°C). Separation was achieved using a gradient program with 2 eluents: 

methanol (eluent A) and 25% v/v ACN in IPA (eluent B). Both mobile phases contained 
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ammonium acetate (0.05% w/v) and sodium acetate (0.001% w/v). Chromatographic 

separation was carried out using the following scheme: t0 min: 100%A, t15.0 min: 35%A/65%B, 

t18.0 min: 35%A/35%B, t19.0 min: 100% and finally isocratic conditions (100%A) for 11 min. The 

optimized mass spectrometric conditions are positive electrospray ionization (ESI) mode, 

drying gas (N2) flow rate 8.0 L/min, drying gas temperature 325°C, nebulizer pressure 50 psi, 

fragmentor potential 175 V, capillary voltage 3500 V, octapole radio frequency voltage (Oct 

RFV) 750 V and skimmer voltage 65 V. Data acquisition and analysis were performed using 

MassHunter software (Agilent Technologies). A calibrating solution (G1969-85000, ES-TOF 

Tuning Mix) was used daily to obtain accurate mass measurements for each peak from the 

total ion chromatogram. The ESI-MS spectra were obtained at m/z range of 100 to 1500.  

Samples (SB and SC) were dissolved at 85 and 95 µg/mL, respectively, in a mixture of IPA 

and MeOH (1:1, v/v).  

2.4 Isolation of Myrj™ S40 components using preparative HPLC 

Isolation was carried out using a Waters Auto Purification LC/MS system, equipped with a 2545 

Binary Gradient Module, a 515 HPLC pump, a 2767 Sample Manager, a 2998 Photodiode 

Array (PDA) detector and a 3100 mass detector. Separation was achieved using an XBridge 

BEH Prep C18 column (5 µm, 19 x 100 mm, 130 Å, Waters) equipped with a guard column (5 

µm, 19 x 10 mm, 130 Å, Waters). The flow rate was 14.0 mL/min, and the injection volume 

was 300 µL. The separations were carried out at room temperature (20-25°C) and used a 

gradient program with two eluents: water (eluent A) and methanol (eluent B). The 

chromatographic separation was carried out according to the following scheme: t0 min: 

80%A/20%B, t3.0 min: 15%A/85%B, t15.0 min: 13%A/87%B, t18.0 min: 100%B, t35.0 min: 100%B, 

t36.0 min: 80%A/20%B, t40.0 min: 80%A/20%B. Prior to the isolation, Myrj™ S40 was dissolved 

at 250 mg/mL in a mixture of CHCl3 and MeOH (2:1, v/v). Detection was performed in positive 

ionization electrospray mode with the following source conditions: capillary voltage 3.5 kV, 

cone voltage 35 V, source temperature 150°C, desolvation temperature 450°C, desolvation 

gas flow 900 L/h, and cone gas flow 50 L/h. Instrument control and data acquisition were 

performed using MassLynx SCN627 4.1 software. Fraction collection was triggered 

automatically by signals from the MS detector at m/z = 1538, 1732, 1760, 1584, 1952 and 

1980. The minimum intensity threshold was fixed at 200,000. For each collected fraction, 

methanol was evaporated by rotary evaporation (50°C) and the fractions were freeze-dried 

and stored at -20°C. The purification yield was around 45%.   

2.5 Solid phase extraction of the phospholipids  

PC and PE phospholipids from S75 excipient were quantified after separation using a normal 

solid phase extraction (SPE) method [58]. SEP-PAK Silica Vac cartridges (3 cc, 200 mg, 55-

105 µm) were used, together with an extraction manifold from Waters (Milford, USA). After 
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conditioning with 3 mL hexane, 500 µL of a solution containing 25 mg/mL total excipient 

materials was loaded and slowly eluted by gravity to ensure good retention of phospholipids. 

Non-polar lipids were eluted with 2 mL of a mixture of HEX:DEE (8:2, v/v) followed by 2 mL of 

HEX:DEE (1:1, v/v). Phospholipids were then recovered in 5 mL volumetric flasks by elution 

with 2 mL of methanol followed by 2.5 mL of a mixture of CHCl3:MeOH:MQ (3:5:2, v/v/v). 

Volumetric flasks were filled up to the mark with methanol, leading to a solution containing 

2.5 mg/mL of total lipids. Cleaning efficacy was determined by measuring the concentration of 

each excipient with or without SPE using QMC18. Recovery was evaluated by comparing two 

calibrations curves performed for Soy PC and Soy PE, with or without SPE, i.e. performed with 

or without adding the other excipients (SC, SB and S40).  

2.6 Validation  

2.6.1 Calibration  

Individual stock solutions of SB (10 mg/mL), SC (20 mg/mL), PEGylated components (PEG-

OH, PEG-C16 and PEG-C18, 5 mg/mL each), Soy PC (2.5 mg/mL) and Soy PE (1 mg/mL) 

were prepared in a mixture of CHCl3:MeOH (2:1, v/v). Using the same solvent mixture, SB, SC 

and PEGylated components (PEG-OH, PEG-C16 and PEG-C18) stock solutions were diluted 

to achieve standard concentrations in the range of 136 to 408 µg/mL, 46-136 µg/mL and 62-

186 µg/mL, respectively. A calibration curve for PEG-OH was also performed in the range of 2 

to 6 µg/mL. For Soy PC and Soy PE, calibrations were performed with or without the other 

excipients (SB, SC and PEGylated components spiked at their theoretical concentrations), 

meaning with or without applying the SPE protocol. With SPE, Soy PC and Soy PE solutions 

were prepared in the range from 606 to 1820 µg/mL and 83 to 250 µg/mL, respectively. 

Volumetric flasks were then made up to the mark using a mixture of CHCl3 and MeOH (2:1, 

v/v) and the SPE protocol was applied. Final concentrations of Soy PC and Soy PE were in 

the range of 61 to 182 µg/mL for PC and 9-26 µg/mL for PE. Without SPE, Soy PC and Soy 

PE stock solutions were directly diluted with CHCl3:MeOH:MQ (3:5:2, v/v/v), without the other 

excipients, to achieve standard concentrations in the range of 61 to 182 µg/mL for Soy PC and 

9-26 µg/mL for Soy PE. Each solution was prepared and systematically injected in triplicate 

using the suitable analytical method described above (QMC18 and QMHILIC). For the 

quantification of PC and PE, we used the calibration curves obtained after the SPE process. 

2.6.2 Detection and quantification limits 

The limit of detection was determined for PEG-OH and Soy PE using calibration curves at low 

concentrations where linear models can be applied. Calibration curves were obtained in the 

range from 2 to 6 µg/mL for PEG-OH and 9-26 µg/mL for Soy PE. The limits of detection (LOD) 

and quantification (LOQ) were thus estimated based on the standard deviations of the y-

intercepts of regressions analysis (σ) and the slope (S), by the following equations LOD = 3.3 
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σ/S and LOQ = 10 σ/S. Since the calibration curve for SB, SC and PC could not be fitted using 

linear models, the LOD values were calculated by injecting samples containing known low 

concentrations of analytes and blank solutions. LOD and LOQ were then calculated by the 

following equations LOQ = 3.hmax.R and LOQ =  10.hmax.R where R is the response factor 

(concentration divided by the peak height corresponding to the low concentration sample) and 

hmax is the height obtained for blank solutions between RT ± 10 FWHM (RT = retention time of 

the compound and FWHM = full-width-half-maximum). Low concentrations were 42, 79 and 

5 µg/mL respectively for SB, SC and Soy PC. For SB and SC, the highest peaks were used 

(RT at 19.4 and 17.5 min, respectively).  

2.6.3 Accuracy and precision using lipid standards  

The accuracy and precision were measured by analyzing lipid standards solution using 3 

concentrations (60%, 100% and 120% of target concentration). Stock solutions of lipid 

standards were mixed together in a mixture of CHCl3 and MeOH (2:1, v/v) to attain 15, 25 and 

30 mg/mL of total lipids. These solutions were prepared singly. The analysis of SB, SC and 

S40 were performed after diluting each solution of total lipids equivalent to 0.6, 1.0 and 1.2 

mg/mL. For the QMC18 method, 3 diluted solutions per concentration were prepared. For the 

QMHILIC method, the SPE protocol was performed in triplicate. All samples were injected in 

triplicate. Concentrations of each component were then calculated for each injection using the 

calibration curves previously obtained. The accuracy was reported as a relative error of the 

measured concentration over the nominal concentration (RE, %), and the precision was 

expressed as the relative standard deviation (RSD, %). 

2.6.4 Precision using nanoparticle suspensions 

The intra-day (repeatability) and inter-day (intermediate precision) of the analytical method 

were evaluated over a period of 3 days using a single nanoparticle suspension (100 mg/mL). 

Each day, 3 pre-weighed tubes containing 1 mL of suspension were frozen then freeze-dried. 

After 24 h, each tube was weighed, and the obtained mass compared to the theoretical mass 

to evaluate the precision on the freeze-drying step and express the concentration of each 

component per mL. For each tube, the overall process of preparation and quantification 

described above (section sample preparation) was performed. All samples were injected in 

triplicate. The system repeatability was also evaluated by injecting a single sample 6 times 

using QMC18 and QMHILIC methods. Concentration of each component was then obtained 

for each injection using the calibration curves obtained previously. Precision was expressed 

as the relative standard deviation (RSD, %). The percent recovery (%) was calculated by using 

the theoretical and experimental concentrations of the lipids.   
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2.7 Manufacturing of lipid nanoparticle suspensions 

Lipid nanoparticles (LNP) were prepared according to our previously reported method 

[13,59,60]. In a typical procedure leading to 50 nm diameter particle dispersion (F50), an oil 

premix was prepared including, respectively, 85, 255, and 65 mg of SB, SC, and S75. After 

homogenization of the lipid phase at 40°C, the continuous phase, composed of 345 mg of 

MyrjTM S40 dissolved in 1X PBS aqueous buffer (1X Phosphate Buffer Saline: 10 mM 

phosphate, 154 mM NaCl, pH 7.4) was introduced. The vial was then placed in a 20°C water 

bath and sonication cycles were performed during 20 min with intervals of 10 s “Pulse On” and 

30 s “Pulse Off”. After filtering the suspension of nanoparticles (at a lipid equivalent of 200 

mg/mL) through a 5 µm cellulose Millipore membrane, the purification step was carried out 

overnight using dialysis (1X PBS, MWCO: 12 kDa). Lipid nanoparticles were finally formulated 

at a theoretical total concentration of lipids of 100 mg/mL and then filtered through a 0.22 µm 

cellulose Millipore membrane for sterilization before immediate characterization.  

2.8 Analytical sample preparation from nanoparticle suspensions 

For each suspension of 50 nm nanoparticles prepared at 100 mg/mL of total lipids, 1 mL was 

transferred to an Eppendorf tube and freeze-dried overnight, using a Freezone 2.5 Liter 

Benchtop freeze dry system from Labconco (Kansas City, USA). In a typical procedure, 

solutions at 25 mg/mL were prepared by dissolving 50 mg of lyophilized powder in a mixture 

of CHCl3:MeOH (2:1, v/v) in a 2 mL volumetric flask and left to stand for 1 h to allow 

precipitation of salts. For the quantification of SC, SB and S40, 200 µL of previous solutions 

were diluted in 5 mL volumetric flasks using a mixture of CHCl3 and MeOH (2:1, v/v) to obtain 

solutions at 1 mg/mL of total lipids. Each dilution was performed in triplicate. Samples were 

analyzed in triplicate by using QMC18 method. S75 phospholipids were quantified after 

extraction using normal SPE as described in section 2.5, where 500 µL of the solution at 

25 mg/mL of lyophilized materials was loaded onto the cartridges. Samples were then 

submitted to QMHILIC method and analyzed in triplicate. For clarity, concentration of the lipid 

components along the analytical procedure is presented in Table S1.   

2.9 Functional aspect of the analytical method 

2.9.1 Following-up of the manufacturing process 

For a suspension containing 50 nm lipid nanoparticles, the lipid excipients were quantified at 

5 steps of the manufacturing process:  before sonication (reference), after sonication, after 

filtration on a 5 µm cellulose Millipore membrane, after dialysis and after filtration on 0.22 µm 

cellulose Millipore membrane. This final suspension corresponds to a standard suspension of 

nanoparticles theoretically at 100 mg/mL of lipids. To avoid a lack of reproducibility due to the 

premix preparation, lipid and continuous phases were originated from the same parent 
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solution. At each step of the protocol, one of the samples was freeze-dried. Then, for each 

sample, the entire dried powder was dissolved in CHCl3:MeOH (2:1, v/v), left to stand for 1 h 

and diluted to 25 mg/mL (theoretical concentration). The analytical procedure previously 

described was then applied on each solution. Results are expressed as the percentage of 

components compared to quantities measured before sonication. 

2.9.2 Stability of excipients in nanoparticles under storage and accelerated 
thermal conditions 

Stability of the excipients have been evaluated under storage conditions at 4°C for 50 nm 

(F50), 80 nm (F80) and 120 nm (F120) formulations using our analytical procedure. The 

corresponding composition of the formulations is presented in Table S2. At t = 0, 15, 30, and 

60 days, 1 mL of each suspension (a single suspension per size) was taken and freeze-dried 

before applying our overall process of quantification. To study degradation of excipients under 

accelerated thermal conditions, freshly prepared suspensions of F50, F80 and F120 were 

stirred at 300 rpm in an incubator at 60°C. At t = 3, 7, 15 and 30 days, 1 mL of each suspension 

was collected and immediately freeze-dried before applying our overall quantification process. 

Each sample was injected in triplicate using QMC18 and QMHILIC methods. Results are 

presented as residual quantities of each compound compared to their respective quantities at 

t = 0. The amount of the excipients for the suspensions of F80 and F120 nanoparticles are 

different to that of F50 (Table S2). In order to use the same calibration, our sample preparation 

protocol was adapted (in terms of sample weight and dilution) to inject the amount of excipients 

(target concentration) previously defined for 50 nm lipid nanoparticles.  

3. Results & Discussion 

The aim of this study was to develop an analytical method to quantify each component of our 

lipid nanoparticle (LNP) formulation. Such a method may facilitate the bench-to-bedside 

translation of our nanomedicine by ensuring reliability and reproducibility during large-scale 

manufacturing. The excipients of the nanoparticle matrix consist of a lipid core containing a 

mixture of lipids and surfactants, Super RefinedTM Soybean oil (SB) oil and Suppocire NBTM 

(SC), stabilized by a shell of Lipoid® S75 (S75) and MyrjTM S40 (S40). The nanoparticles were 

manufactured by dispersion via ultrasonication of the lipid phase containing SB, SC and S75 

excipients in an aqueous phase (PBS only) containing PEGylated surfactants (S40). Fig. 1(a) 

illustrates the whole core/shell architecture of the nanoparticles whilst detailing the chemical 

structures of the lipid excipients. 

3.1 Composition of lipid excipients 

All crude excipients used for LNP manufacturing were carefully selected for their GMP grade 

and provided from manufacturers guaranteeing long-term supply in large amount, thus 
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ensuring future large-scale production. Each of them was used as received and stored as 

recommended by manufacturers. None of the raw materials consisted of one pure lipid but 

were instead composed of a mixture of parent components. As certificates of analysis (CoA) 

mention only the percentages of different fatty acid chains, fine identification of the glyceride-

based compounds had to be performed using different separative techniques coupled with 

mass spectrometry (MS) to elucidate the composition of different mono- (MAGs), di- (DAGs) 

and triglycerides (TAGs) within each crude excipient. Isolation of lipid compounds is also 

crucial to be able to produce standards when none are commercially available, which can be 

used to produce calibration curves for quantitative analysis.  

MyrjTMS40 (S40). Based on supplier information, S40 is a non-ionic surfactant described as a 

PEG fatty acid ester (PEGylated stearate) with an ethylene oxide (EO) distribution of around 

40 units. According to the CoA, the fatty acid esters are a mixture of palmitate and stearate 

saturated fatty acids, usually termed C16:0 and C18:0, respectively. Using LC/MS analysis 

performed on a preparative scale (Fig. S1), 3 peaks were observed at 7.2, 14.5 and 19.1 min 

and respectively assigned to polyethylene glycol (PEG-OH), polyethylene glycol palmitate 

(PEG-C16) and polyethylene glycol stearate (PEG-C18), respectively, with distribution of EO 

between 25 and 47 units. Indeed, single charged sodium adducts [M+Na]+ showed mass 

differences of 238 (acid palmitic minus OH) and 266 (acid stearic minus OH) respectively for 

PEG-C16 and PEG-C18, compared to PEG-OH. As an example, for a species corresponding 

to 32 units of EO (exact mass = 1426.85), single charged sodium adducts [M+Na]+ were 

observed at m/z = 1449.99, 1688.27 and 1716.27 for PEG-OH, PEG-C16 and PEG-C18, 

respectively. Finally, preparative reversed-phase HPLC was performed to collect each 

PEGylated species, thus allowing quantitative analysis through calibration curves.  

Super RefinedTM 
Soybean oil (SB). SB is a complex mixture of acylglycerols with saturated 

and unsaturated fatty acids, 73-93% being unsaturated fatty acids (FA) (Fig. 1(b)). The 

saturated fatty acids are palmitic (C16:0) and stearic (C18:0) and the unsaturated fatty acids 

are oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acid. Due to the low polarity of these 

compounds (log P>5), the use of water for their analysis by RP-HPLC is generally avoided in 

the mobile phase, leading to non-aqueous reversed-phase (NARP) chromatography. The most 

commonly used solvents for NARP chromatography of oils are low polarity solvents such as 

acetonitrile/dichloromethane, isopropanol/acetonitrile, isopropanol/acetonitrile/hexane with or 

without gradient elution [25,61–64]. Here, SB was analyzed by NARP-UPLC coupled with a 

time-of-flight (TOF) mass spectrometer (MS) by using a linear gradient of 

methanol/isopropanol/acetonitrile (Fig. S2(a)). As the intensity of the total ion current is 

relatively low using non-aqueous solvent system, ammonium acetate and sodium acetate were 

added to the solvent in order to increase the ionization efficiency without affecting the retention 

time [65]. Under these conditions, molecular adducts of sodium [M+Na]+ and ammonium 



 12

[M+NH4]+ were formed, as observed in the MS spectra obtained for standards of trilinolein 

(LLL) and triolein (OOO) (Fig. S2(b) and Fig. S2(c), respectively). For LLL, [M+Na]+ and 

[M+NH4]+ adducts were observed at m/z = 901.72 and 896.76, respectively, which is in good 

agreement with the theoretical values (m/z = 901.73 and 896.77, respectively). For OOO, 

[M+Na]+ and [M+NH4]+ adducts were observed at m/z = 907.77 and 902.81, respectively, 

which is also in very good agreement with the theoretical vales (m/z = 907.77 and 902.82, 

respectively). In order to identify the peaks obtained for SB (Fig. S2(a)), experimental 

molecular masses (sodium and ammonium adducts) obtained for each peak were collected 

and assigned to TAG species (Table S3) with reference to the literature [36,49,66,67]. On 

reversed-phase columns, it is very well known that the separation of TAGs occurs according 

to the combined effect of chain length of the FA-moieties contained in a given TAG species 

plus their degree of unsaturation; each double bond reduces the retention by the equivalent of 

about 2 carbon atoms. The analysis of TAG mixtures is often complicated by the occurrence 

of nearly identical molecular species or critical pairs, which exhibit similar chromatographic 

behavior on reversed-phase columns. Critical pairs are described as molecular species with 

the same equivalent carbon number (ECN) defined by the following equation: 

ECN = CN – (2 x NDB), where CN is the sum of carbon atoms in the aliphatic residues and 

NDB is the sum of double bonds per TAG [68]. Here, thanks to the assignment of each peak, 

the elution of TAGs belonging to SB occurred according to the ECN and each peak is actually 

a cluster of TAGs possessing the same ECN (Fig. S2(a) and Table S3).  

Suppocire NBTM (SC). According to the manufacturer, SC is a mixture of mono- (MAGs), di- 

(DAGs) and triglycerides (TAGs) with saturated fatty acids and an overall hydroxyl value of 20-

30% (Fig. 1(b)). The saturated fatty acids are mostly lauric (C12:0), myristic (C14:0), palmitic 

(C16:0) and stearic (C18:0). In a similar way to SB, SC was analyzed by using NARP-UPLC-

TOF/MS (Fig. S3). Each peak was assigned using [M+Na]+ and [M+NH4]+ adducts and the 

ECN was calculated for each acylglycerol (Table S4). Having a very similar chemical 

composition as SB, the elution of acylglycerol species belonging to SC occurred with 

increasing ECN. As SC is only composed of saturated fatty acids, each peak corresponds to 

one acylglycerol species, contrary to SB, for which each peak is a cluster of TAGs with the 

same ECN. While it was possible to precisely identify TAGs from SB, we were not able to 

identify precisely the composition of each peak (fatty acids composition) as MS spectra showed 

only the presence of intense protonated molecular [M+Na]+ and [M+NH4]+ adduct ions, and not 

their respective mono- and diacyglycerol ions. For instance, it is impossible to distinguish 

tripalmitin (PPP, TAG(C16:0/C16:0/C16:0)) from palmitoyl-myristoyl-stearoyl-glycerol (PMS, 

TAG(C14:0/C16:0/C18:0)). However, this analysis was able to determine the ECN of each 

peak. Surprisingly, we found that SC was only composed of DAGs and TAGs.  
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Lipoid® S75 (S75). Phospholipids (PLs) are amphiphilic and polar molecules with a structure 

similar to triacylglycerols, except that a phosphate group is typically found in the sn-3 position 

of the glycerol backbone. As a mixture of PLs, S75 is composed of 71.6% phosphatidylcholine 

(PC) blended with less than 9.9% phosphatidylethanolamine (PE) and 1.8% 

lysophosphatidylcholine (LPC). According to the manufacturer, their saturated fatty acids are 

mostly palmitic (C16:0, 17-20%) and stearic (C18:0, 2-5%) and their unsaturated fatty acids 

are oleic (C18:1, 8-12%), linoleic (C18:2, 58-65%) and linolenic (C18:3, 4-6%). Contrary to the 

PEGylated species belonging to S40, preparative HPLC on S75 was not needed because 

standards of PLs possessing a very similar composition of fatty acids (see materials section) 

were commercially available. These standards (L-α-phosphatidylcholine (soy PC) and L-α-

phosphatidylethanolamine (soy PE)) were purchased from Avanti Polar Lipids, Inc (Alabster, 

USA) [69] for direct identification based on the retention time and for quantitative analysis 

through calibration curves.    

3.2 Method development  

During the development process, the challenge was to set-up a reliable, simple and sensitive 

method leading to a precise quantification of each excipient (SB, SC) or the major species of 

each excipient (i.e. PEG-OH/PEG-C16/PEG-C18 for S40, PC/PE for S75). One particular 

obstacle to be overcome was to properly separate and sensitively detect PC and PE from S75, 

while avoiding interferences due to the presence of the other crude excipients. By using only 

one mode of chromatography (reversed-phase) and a single run, this appeared challenging 

and consequently, two distinct chromatographic methods were needed for analyzing lipids from 

SB, SC and S40 crude excipients on the one hand, and phospholipids (PC/PE) from S75 on 

the other.  

3.2.1 RP-UPLC-ELSD analysis of SB, SC and S40 excipients  

Herein, a novel reversed-phase UPLC-ELSD method was successfully developed for the 

separation and detection of the lipids belonging to SB, SC and S40 crude excipients. This 

method, named QMC18 in the manuscript, involved a two-step gradient elution program 

(Table 1). The first step (from 0 to 7.0 min) corresponds to the separation of PEGylated 

surfactants belonging to S40 crude excipient using a linear gradient elution with a 

water/methanol mobile phase. This method, originally developed on a HPLC system by Lee et 

al. [70], was transferred and optimized to our UPLC system. Using this linear gradient program, 

PEGylated surfactants of S40 (PEG-OH, PEG-C16 and PEG-C18) were baseline separated in 

the order of increasing time of 1.7, 6.3 and 6.9 min (Fig. 2(c)). As previously described, highly 

purified standards of PEG-OH, PEG-C16 and PEG-C18 were obtained by preparative HPLC 

(Fig. S4). Calibration curves of S40 (184-552 µg/mL) and PEG-OH, PEG-C16, and PEG-C18 

standards (62-186 µg/mL) were used to determine the proportion of each PEGylated surfactant 
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within the S40 crude excipient. The identified PEG components were calculated to represent 

71.3% (w/w) of S40 crude excipient composed of PEG-OH (30.1% (w/w), PEG-C16 (34.6% 

(w/w) and PEG-C18 (35.3% (w/w)). The second step of the reversed-phase UPLC-ELSD 

method (from 7.0 to 25.0 min) corresponds to the separation and detection of acylglycerol 

species belonging to SB and SC excipients employing the same linear gradient of 

methanol/isopropanol/acetonitrile that was previously used for their analysis by NARP-UPLC-

TOF/MS. This method allowed the elution to be achieved without using dichloromethane or 

hexane solvents, which are often incompatible with the PEEK-based tubing and rings of 

conventional HPLC systems. As shown in Fig. S5 and S6, the chromatograms of SB and SC 

obtained by ELSD mirrored those acquired using TOF/MS. A correlation was thus been made 

regarding the elution of acylglycerols that still occurred in the order of increasing ECN. As this 

quantification method had to be as fast and simple as possible, it was not necessary to 

separate critical pairs, which would have led to increased complexity of the final signature of 

the excipients.  

3.2.2 HILIC-UPLC-ELSD analysis of S75 excipients 

The analysis of S75 crude excipients using the QMC18 method did not produce well-defined 

peaks that could be separated from the other lipid excipients (data not shown). Indeed, RP-

HPLC enables the separation of lipid species as a function of their lipophilic tails and PL 

classes are often difficult to separate, especially when they contain more than one sub-

component [28,31,71]. Moreover, separation of the individual components within the different 

PL classes was not required so we aimed to develop a method that would provide only an 

effective baseline separation of the different phospholipid classes (PE, PC). HILIC, first 

suggested by Alpert [72], has become a good alternative to RPLC for separating polar 

compounds, such as phospholipids, because it is particularly effective at class separation 

[73,74]. HILIC combines the features of both NPLC and RPLC, as it employs polar stationary 

phases, such as silica, which are typical of NPLC, with an organic-dominant mobile phase, 

such as solvent mixtures containing > 50-70% ACN in water or volatile buffers, which is typical 

of RPLC [75]. The pure theoretical HILIC retention mechanism is mainly partitioning of polar 

compounds between the organic-rich mobile phase and the water-enriched layer that is 

partially immobilized on the stationary phase, however, it may also involve more than a simple 

liquid/liquid partitioning [76]. Separation of different phospholipid classes is generally achieved 

by NPLC, whereby distinctive retention occurs according to their polar head group (PE, 

PC, etc.) [41]. However, NPLC uses mobile phases consisting of unpolar solvents (like hexane, 

isooctane or chloroform) as the main constituents, which are not so convenient to handle due 

to their chemical compatibility, volatility and toxicity. Moreover, it is highly time-consuming to 

switch a chromatographic system from RPLC to NPLC, whereas shifting from RPLC to HILIC 
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is straightforward. Therefore, we developed an HILIC-UPLC-ELSD method (QMHILIC) 

allowing an effective baseline separation of S75 phospholipids classes (PE and PC). 

Identification of S75 phospholipids was achieved by comparison of the retention times with 

those of the reference materials (Soy PE and Soy PC), as outlined in Fig. 3(a) and Fig. 3(b). 

PE and PC were well separated under gradient conditions in the order of increasing time of 

4.2 and 5.9 min, eluting according to decreasing polarity PE > PC [43]. By using appropriate 

calibration curves performed with S75 crude excipients and reference materials (Soy PE and 

Soy PC), S75 was found to be composed in weight of PC (75.0%) and PE (12.2%), which is in 

good agreement with the proportions provided by the manufacturer (71.6 and 9.9% for PC and 

PE, respectively). 

3.2.3 Sample preparation 

Sample preparation is one of the most critical issues in analytical method development. For 

the development and validation of our analytical method, 50 nm formulations (F50) were 

exclusively used. Batches of nanoparticles were manufactured by ultrasonication, leading to a 

final theoretical concentration of lipids of 100 mg/mL. The concentrations of SB, SC, S75 and 

S40 were theoretically equal to 11.33 mg/mL, 34.00 mg/mL, 8.67 mg/mL and 46.00 mg/mL, 

respectively (Table S1). According to the previously evaluated crude excipients’ composition, 

the concentration of PEG components was 32.79 mg/mL, which is equivalent to 9.88, 11.34 

and 11.57 mg/mL of PEG-OH, PEG-C16 and PEG-C18, respectively (Table S1). The 

concentration of PC and PE were 6.07 mg/mL and 0.87 mg/mL, respectively (Table S1). Thus, 

the theoretical total quantifiable concentration of lipids was 84.56 mg/mL. As quantification of 

excipients relies on detection of the individual species, disintegration of the nanoparticles must 

be performed first. Methods involving hydro-organic solvents are traditionally used for the 

quantification of encapsulated entities such as drugs and dyes, however the solvents are 

known to destabilize the interface of droplets, which induces solubilization of the active 

ingredients and precipitates the excipients [17,77]. Thus, a transparent solution of all the 

excipients was required for lipid quantification. Here, a freeze-drying step was selected to 

destabilize the oil/water emulsion, and allow the collection of the dried excipients (Fig. 4). After 

weighing the lyophilized powder, lipid excipients were dissolved in a mixture of CHCl3:MeOH 

(2:1, v/v) providing a transparent and homogeneous solution at a theoretical lipid concentration 

of 25 mg/mL. Thereafter, two distinct sample preparation processes were used to quantify the 

corresponding lipids using QMC18 or QMHILIC (Fig. 4). Concentrations of each component 

along the sample preparation process are summarized in Table S1. For the analysis of SB, SC 

and PEG components, the initial solution was diluted 25-fold in CHCl3:MeOH (2:1, v/v) to reach 

a final theoretical lipid concentration of 1 mg/mL. For the analysis of S75 crude excipients using 

QMHILIC, the challenge arose from the presence of interference peaks, which was even more 
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problematic because of the low abundance of PLs within the formulation compared to the other 

lipids. As outlined in the HILIC-UPLC-ELSD chromatogram of the whole lipid formulation 

(diluted 10-fold compared to the extracted sample), a huge amount of non-polar lipids (DAGs 

and TAGs from SB and SC) eluted at the beginning of the gradient run (Fig. S7). More 

importantly, a broad peak corresponding to PEGylated surfactants occurred between 4-8 min 

and interfered with those of PE and PC (eluting at 4.2 and 5.9 min, respectively). Therefore, a 

silica SPE protocol originally developed for the extraction of PLs from milk [58] was applied in 

order to isolate S75 crude excipients and remove the interference peaks from the other lipids. 

This isolation method effectively removed 100% (w/w) of SB and SC, and 75% (w/w) of S40 

(PEG-C16 and PEG-C18) (Fig. S7 and Table S5). An acceptable recovery of PLs was also 

achieved. From 40 to 120% of the analysis/target concentrations, recoveries of PC and PE 

varied from 107.3-99.1 and 101.6-118.4%, respectively (Table S6). Calculations of the 

recoveries were made using the equations of two calibration curves for PC and two others for 

PE, performed with or without SPE, respectively, i.e. with or without the other excipients (S40, 

SB and SC). Comparison of the results obtained in both cases showed that remaining 

PEGylated surfactants (around 25%) tend to overestimate the amount of PC and PE, 

especially at low concentrations. Elution of S75 crude excipients during SPE indicated a 10-

fold dilution of the initial solution, leading to PC and PE contents of 151.6 and 21.7 µg/mL, 

respectively.  

3.2.4 Chromatographic signatures of the reverse-engineered nanoformulation  

Beside obtaining a whole lipid signature of the nanoformulation, chromatographic peaks were 

specifically assigned by considering peak overlap that occurs due to the complexity and 

molecular similarity of the lipid species. As outlined by blue arrows in Fig. S8, overlap between 

peaks of SB and SC occurred. According to the identification by TOF/MS (NARP-UPLC-

TOF/MS method), peak overlap mostly appeared for TAGs possessing the same ECN number 

(ECN = 46, 48 and 50), except the one at 17.4 min occurring between LLnL (ECN = 40) from 

SB and a TAG from SC (ECN = 42), which could be assigned to trimyristin (MMM) if composed 

of the same fatty acids (TAG(C14:0/C14:0/C14:0)). A typical QMC18 chromatogram of a 

nanoparticle suspension is presented in Fig. 2(d). The peaks were symmetrical, well resolved, 

well detected, mostly baseline separated, and have reproducible retention times compared to 

those of crude excipients. Peaks corresponding to SC and S40 also overlapped at retention 

times of 9.9, 10.9 and 12.1 min were not assigned for the quantification. For SB and SC, it was 

assumed that the selected peaks mirrored the content of the entire raw materials, contrary to 

S40. Indeed, the peak at 1.7 min corresponding to PEG-OH has almost disappeared in the 

chromatogram obtained for the nanoparticle suspension, emphasizing the necessity of 

quantifying each PEG component rather than the total lipid content of the raw material. For 
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QMHILIC, peaks corresponding to PE and PC at retention times of 4.2 and 5.9 min, 

respectively, were identified in the chromatogram corresponding to the nanoparticle 

suspension and were used for the quantification (Fig. 3(c)). Further investigations also 

demonstrated that the selected peaks used for the quantification were reliable markers of the 

lipid composition. Overall, our chromatographic methods allowed the analysis of a complex 

mixture of excipients belonging to lipid nanoparticles. While rarely used for lipids in drug 

delivery systems, the concept of lipid profiling or lipid fingerprinting could be used for quality 

authentication of lipid nanoparticles in the context of quality control testing of pharmaceuticals. 

More importantly, these analytical methods ideally suit the requirements of the pharmaceutical 

industry for performing quality control of excipients as raw materials. To provide more clarity, 

the analytical parameters of QMC18 and QMHILIC were summarized in Table 2.  

3.3 Method Validation  

The aim of this study was to investigate the validation of the developed analytical procedure to 

prove its applicability for intended quantification of lipid excipients, prior to industrial transfer. 

Methods were validated with respect to linearity, limits of detection (LOD) and quantification 

(LOQ), precision and accuracy (recovery rate) using lipid standards. In addition, repeatability 

and intermediate precision were evaluated on the quantification of lipid excipients from a 

nanoparticle suspension. As outlined in Table 3, target concentrations have been defined 

according to the composition of each lipid excipient and the sample preparation. To facilitate 

method validation, target concentrations of PEG-OH, PEG-C16 and PEG-C18 were 

considered equal to 100, 115 and 115 µg/mL, respectively.  

3.3.1 Calibration 

Consistent with previous reports, ELSD responses in the defined ranges showed a non-linear 

relationship (Fig. S9) due to the dependence of the efficiency of prevalent light-scattering 

processes, namely Rayleigh scattering, Mie scattering, and reflection-refraction, on the 

average particle size [37,78,79]. As previously reported for the analysis of lipids using ELSD, 

a second-order polynomial (quadratic) of the following form was used as a fitting 

model: Y = a0X2 + a1X + a2, where X represents the concentration in µg/mL, a0, a1, and a2 are 

constants and Y is the peak area [21,38,80–82]. This model produced R2 (coefficient of 

determination) values > 0.9977 indicating that the fitting was statistically valid (Table 3). 

Quadratic calibration plots might be too laborious to use in routine quality control studies, due 

to consequent standards preparation and data processing. An alternative approach would 

involve logarithmic linearization by plotting log(peak area) versus log(lipid concentration) [78]. 

Applied to our results, linear functions with good correlation coefficients were obtained for each 
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lipid (Table S7). While this mathematical transformation is acceptable for ICH [83], it can lead 

to an experimental error distortion by simple data flattening [84].  

3.3.2 Detection and quantification limits 

Assessment of LOD and LOQ values were more complex than usual since the calibration 

curves were fitted using quadratic equations. In our study, two methodologies were used, 

depending on the lipid and its range of concentration. For PEG-OH, given its low concentration 

in our samples, calibration between 2.0 and 6.0 µg/mL was performed and a good linearity 

between peak area and concentration was obtained (R2 = 0.9835). However, the use of a 

quadratic equation was deemed more appropriate (1611.8x2 + 4182.9x + 6342, R2 = 0.9962). 

For PE, an acceptable linear relationship was observed between 8.7 and 26.0 µg/mL 

(R2 = 0.9932) but the quadratic fitting was still more appropriate (R2 = 0.9977). These linear 

fittings were used to determine LOD and LOQ values from the SD of the response and the 

slope. In these studies, calibration curves for SB, SC and PC leading to a linear relationship 

between peak areas versus concentration were not performed. Consequently, the LOD and 

LOQ values were calculated by comparing the measured signals from samples having known 

low concentrations of the analyte with blank solutions. The results are presented in Table 3. 

The LODs of PE and PEG-OH were 2.9 and 0.8 µg/mL, respectively. These findings are in 

good agreement with previous reports performed under similar experimental conditions 

(3.4 µg/mL (PE) and 1 µg/mL (PEG) reported by Donato [43] and Zabaleta [46], respectively). 

3.3.3 Repeatability and accuracy using lipid standards 

Repeatability (RSD) and accuracy (RE) were determined by analyzing three replicates at three 

different concentrations (60, 100 and 120% of the target concentration). Each replicate was 

injected in triplicate.  For intra-day precision (repeatability), triplicate measurements of three 

standard solutions (60, 100 and 120%) on the same day were recorded. Accuracies of both 

methods were determined by calculating the percent recoveries of the analytes in the spiked 

samples, based on their theoretical concentration. As presented in Table 4, the repeatability of 

all analytes ranged from 0.9% to 5.3% and the accuracy from 83.5% to 112.2%. For lipid 

analysis repeatability, a value lower than 5% is generally accepted [22,41,54,85].  

3.3.4 Repeatability and intermediate precision on nanoparticle suspensions 

To make sure that this analytical method could be applied for daily quality control along a 

manufacturing process, when consistent precisions is required, intra- and inter-day precisions 

were evaluated directly on a single nanoparticle suspension. The results obtained in these 

studies are presented in Table 5. A specific calibration was performed for PEG-OH at low 

concentration (range: 2.0-6.0 µg/mL, equation: Y = 1611.8x2 + 4182.9x + 6342, R2 = 0.9962) 

due to its removal during dialysis. Relative standard deviations for system repeatability were ≤ 



 19

2.6%, except for PEG-OH (5.9%) as the concentration was close to LOQ. The intra-day 

precision (repeatability) of all analytes was ≤ 7.1% (RSD) and inter-day precision (intermediate 

precision) ranged from 3.9% to 6.3% (excluding PEG-OH). Overall recovery ranged from 

84.4% to 97.3% (excluding PEG-OH). Using the overall concentrations (n=9), total lipid content 

was assessed and the manufacturing yield (theoretical vs experimental concentrations) was 

determined to be 82.5%. For lipid analysis, repeatability < 5% and intermediate precision 

< 10% are generally expected [22,41,54,85]. As part of the quantification process, repeatability 

and intermediate precision of the freeze-dried process were 0.37% and 0.52%, respectively. 

3.4 Functional aspect of analytical methods 

3.4.1 Following-up of manufacturing process 

The use of analytical methods as quality control tools to enable monitoring of nanoparticle 

preparation was one of our main goals. Using our validated analytical methods, the lipid 

components of 50 nm lipid nanoparticles were quantified after each step of the nanoparticle 

preparation process and used to calculate the percentage of each component compared to 

their initial quantities measured before sonication (Fig. 5 and Table S8). After sonication, the 

amount of all lipids, apart from PE, remained stable, demonstrating that most lipids are not 

degradaded during sonication. After filtration through a 5-µm filter, around 25% of lipids were 

lost, presumably due to elimination of non-formulated lipids that could be visually observed on 

vial walls. While the content of most lipids was not affected by dialysis (~ 6-12% loss), PEG-

OH was completely eliminated during this step, presumably due to its high water-solubility. 

Indeed, PEG-OH does not display fatty acid chains, which limits its role as a surfactant in the 

O/W nanoemulsion and promotes its escape from the nanoparticle shell. PE was also removed 

by dialysis (12% loss), albeit to a lesser extent, probably due to the increased water solubility 

conferred by its free amine. Unsurprisingly, the final step (sterilization by filtration 0.22-µm) did 

not affect the amount of lipids.  

3.4.2 Stability of lipid excipients during long-term storage and accelerated 
thermal conditions of suspensions 

Previous studies have demonstrated that our lipid nanoparticles are highly stable (colloidal 

stability) at 4°C for more than 18 months [13]. Storing the nanoparticles at 4°C prevents 

degradation of encapsulated thermal-sensitive drugs/dyes and efficiently prevents Ostwald 

ripening. Herein, the above-developed analytical method was used to evaluate the stability of 

the lipid excipients (once formulated) under recommended cold stored conditions (4°C for 

2 months) and under accelerated thermal conditions (60°C for 1 month). Excipient recovery 

(% lipid content at t = 0 h) from 50 nm lipid nanoparticles is presented in Fig. 6. Under cold 

storage conditions, the proportion of each lipid remained constant over 60 days, while under 
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accelerated conditions, a significant time-dependent decrease in lipid recovery was observed 

for PE, PC and SB. Similar results were observed for 80 nm (F80) and 120 nm (F120) 

nanoparticles (Fig. S10). Degradation thus occurred only on phospholipids and unsaturated 

TAGs (SB). In a similar timeframe, colloidal stability was rapidly lost under accelerated thermal 

conditions (results not shown). As previously reported for liposomes, the hydrolysis of 

phospholipids by hydrolytic cleavage of the ester functionalities in presence of water generates 

lysophospholipids and free fatty acids that prevent them from acting as surfactants and strongly 

affects the physical stability of the O/W nanoemulsion by promoting fusion of the nanoparticles, 

mainly by Ostwald ripening [20,21,86]. Hydrolysis of PE, PC and SB was assessed by plotting 

lipid excipient concentration against storage time on a semi-logarithmic scale. As previously 

observed for phosphatidylcholine, it followed pseudo-first order kinetics [87,88]. For F80, first-

order constants of 2.49 x 10-3, 1.42 x 10-3 and 2.09 x 10-3 h-1 were calculated for PE, PC and 

SB, respectively, suggesting that the degradation rate of PE is slightly faster than that of SB 

and PC. A similar trend was found for F50 and F120. Although a quantitative decrease of peak 

areas for PE and PC was observed during degradation, no peak corresponding to 

lysophospholipids was detected and only free fatty acids were observed at the column void 

volume (Fig. S11). Similarly, no additional peak was observed for SB (Fig. S12).   

4. Conclusion  

In this study, we have developed and validated a set of analytical methods for the quantification 

and identification of PEGylated surfactants, glycerides and phospholipids in lipid-based 

nanoformulations, thereby enabling the contents of individual lipid excipients to be monitored 

during nanoparticle formulation. The ability of this analytical method to study the degradation 

of lipids within these nanoformulations provided additional qualitative information in addition to 

the colloidal features of the nanoparticles. With minor modifications, this method may be 

applied to other similar lipids and employed in quality control of commercial manufacture of 

lipid-based nanomedicines. The reproducibility and accuracy of this method highlights its 

potential utility in quality control processes and represents an important step towards the 

implementation of “stability tests” required by regulatory agencies, which includes the 

development of suitable methods for the detection and quantification of degradation products. 
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Figure 1: (a) Structure and composition of the lipid excipients incorporated in the preparation of lipid nanoparticles, and (b) Fatty acid 

composition (average) of SB, SC and S75 according to the manufacturer.  
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Figure 2: RP-UPLC-ELSD chromatograms using QMC18 of (a) SB at 190 µg/mL, (b) 
SC at 500 µg/mL, (c) S40 at 569 µg/mL, as crude excipients and (d) a nanoparticle 
suspension after sample preparation (1100 µg/mL: theoretical concentration of total 
lipid excipients). Samples were prepared in a mixture of CHCl3 and MeOH (2:1, v/v). 
The first peak labelled with a star (*) symbol was identified as PBS. For SB and SC, 
each peak was labelled with the ECN. Peak overlap between SC and SB was identified 
by uncolored peaks labelled with retention times in green. Peaks of each component 
used to determine the area under the curve have been highlighted in green, yellow 
and brown for PEG components, SC and SB, respectively.  
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Figure 3: HILIC-UPLC-ELSD chromatograms using QMHILIC for (a) standards of Soy 
PC and Soy PE at 152 and 22 µg/mL, respectively, (b) Lipoid S75 as crude excipient 
at 217 µg/mL and (c) a nanoparticle suspension after sample preparation including 
SPE separation. Peak labelled with a star (*) symbol was identified as PBS. 
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Figure 4: Sample preparation process.
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Figure 5: Evolution of lipids content along the formulation process. Each bar 

represents the remaining quantity of component after each step, compared to the 

quantity initially introduced in the formulation process (before sonication).  
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Figure 6: Evolution of lipid contents extracted from 50 nm nanoparticle suspensions 

stored at (a) 4°C or (b) 60°C.  
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Table 1: Gradient elution program used for the analysis of lipids belonging to Soybean (SB) oil, Suppocire (SC) and Myrj S40 (S40) 

using 100% water (A), 100% methanol (B) and a mixture of isopropanol and acetonitrile in a volume ratio of 75:25 (v/v) (C). This 

method is referred as “QMC18” in the manuscript.  

  

Time 

(min) 

Flow rate 

(mL/min) 
A (%) B (%) C (%) Analyte 

0.0 0.25 30 70 0 

S40 3.0 0.30 10 90 0 

7.0 0.30 0 100 0 

7.0 0.30 0 100 0 

SC/SB 22.0 0.30 0 35 65 

25.0 0.30 0 35 65 

25.1 0.25 30 70 0 
Equilibration 

30.0 0.25 30 70 0 
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Table 2: Analytical parameters corresponding to QMC18 and QMHILIC methods. 

Method QMC18 QMHILIC 

HPLC setup 

• Column: CORTECS UPLC C18 

(1.6 μm ; 150 x 2.1 mm, 90 Å) 

• Guard: CORTECS UPLC C18 

(1.6 μm ; 5 x 2.1 mm, 90 Å) 

• Temperature: 40°C 

• Mobile phases: MQ, MeOH, 

IPA/ACN  

• Flow rate: 0.25-0.3 mL/min 

• Elution mode: Gradient 

• Injection volume: 5 µL 

• Run duration: 30 min 

• Column: CORTECS UPLC HILIC 

(1.6 μm ; 150 x 2.1 mm, 90 Å) 

• Guard: CORTECS UPLC HILIC 

(1.6 μm ; 5 x 2.1 mm, 90 Å) 

• Temperature: 40°C 

• Mobile phases: ACN, 10 mM 

ammonium formate (pH=3) 

• Flow rate: 0.5 mL/min 

• Elution mode: Gradient 

• Injection volume: 5 µL 

• Run duration: 17 min 

ELSD setup 

• N2 flow: 2.0 L/min 

• Drift tube: 45°C 

• Gain: 4 

• N2 flow: 2.5 L/min 

• Drift tube: 60°C 

• Gain: 2 

Compound 

• SB: 15 TAGs 

• SC: 15 TAGs and DAGs 

• S40: PEG-OH, PEG-C16 and PEG-

C18 

• S75: PC and PE 

Total lipid 

concentration 

(analysis)  

• 1 mg/mL • 2.5 mg/mL 

Analysis 

concentration 

• SB: 113.3 µg/mL 

• SC: 340 µg/mL 

• S40: 460 µg/mL 

• S75: 216.7 µg/mL 

Diluent • CHCl3:MeOH (2:1, v/v) 
• SPE elution with MeOH and 

CHCl3:MeOH:MQ (3:5:2, v/v/v) 
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Table 3: Second order polynomial equation for calibration, limit of detection (LOD) and quantification (LOQ) for the components. 

Five concentrations of each compound were analyzed in triplicate. The data were fitted with a quadratic equation Y = a0X2 + a1X + 

a2, where X represents the concentration in µg/mL, a0, a1, and a2 are constants for the equations and Y is the peak area. Calibration 

curves for PLs were determined after adding the other crude excipients (SB, SC and S40) and applying the SPE process.  

 

Coumpound  
Targeta conc. 

(µg/mL) 

Calibration range 

(µg/mL) 
Equation R2 

LOD 

(µg/mL) 

LOQ 

(µg/mL) 

SB 133.3 45.4 - 136.1 Y = 40.105X2 + 1146X - 26191  0.9991 6.2 20.8 

SC 340.0 135.8 - 407.9 Y = 26.187X2 – 1888X + 292559  0.9993 8.2 27.4 

PEG-OH 100.0 62.0 - 186.1 Y = 46.325X2 + 2729.7X - 63935  0.9999 0.8 2.3 

PEG-C16 115.0 62.0 - 186.1 Y = 46.645X2 + 3849.9X -139327  0.9991 ND ND 

PEG-C18 115.0 62.0 - 186.1 Y = 46.278X2 + 4219.2X -143828  0.9999 ND ND 

Soy PE   21.7 8.7 - 26.0 Y = 10.552X2 + 439.9X - 12 0.9977 2.9 8.7 

Soy PC 151.6 60.6 - 182.0 Y = 10.530X2 + 3099.2X - 80715  0.9991 4.8 16.0 
 

aConcentration at 100% of the components (expected concentration for a nanoparticle suspension following the sample preparation process).  
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Table 4: Accuracy and precision at three levels (60, 100 and 120%) to bracket the 

concentrations used in the nanoparticle formulations. 

Lipid Targeta 

conc. (%) 

Spiked 

conc. 

(µg/mL) 

Measured 

conc. 

(µg/mL) 

RSD (%) RE (%) 

SB 60% 68.0 69.2 2.5% 101.8% 

100% 113.3 127.1 1.6% 112.2% 

120% 136.0 144.8 5.3% 106.5% 
      

SC 60% 203.8 205.0 4.9% 100.5% 

100% 339.9 366.4 1.1% 107.8% 

120% 407.9 404.6 4.0% 99.2% 
      

PEG-OH 60% 60.0 57.4 1.8% 97.6% 

100% 100.0 94.1 1.9% 96.0% 

120% 119.9 115.8 1.2% 98.5% 
      

PEG-C16 60% 69.0 61.7 1.2% 89.5% 

100% 115.0 104.9 1.5% 91.2% 

120% 137.8 129.5 0.9% 93.8% 
      

PEG-C18 60% 68.9 57.6 2.1% 83.5% 

100% 115.0 104.3 1.1% 90.7% 

120% 137.8 128.0 1.1% 92.7% 

      

Soy PE 60% 13.0 11.2 3.4% 86.4% 

100% 21.7 21.1 1.4% 97.5% 

120% 26.0 23.8 1.0% 91.7% 

Soy PC 60% 91.0 83.6 2.5% 91.8% 

100% 151.6 146.2 0.9% 96.4% 

120% 182.0 180.4 1.3% 99.1% 
a100%: Theoretical concentration for nanoparticle suspensions after sample preparation (analysis 

concentration). 
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Table 5: System repeatability, intra-day and inter-day precision performed using nanoparticle suspensions. Concentrations are 

expressed in milligrams per mL of a suspension at 100 mg/mL of lipids. Experimental concentrations were calculated by weighing the 

sample after the freeze-drying process (1 mL of suspension at 100 mg/mL of lipids per sample). The percent recovery (%) was 

calculated based on theoretical and experimental concentrations.  

 

 

    
System 

repeatability 
(n=6) 

Day 1 (n=3) Day 2 (n=3) Day 3 (n=3) Overall (n=9) 
Overall 

Recovery 

Lipid 
Theo. 
conc. 

Exp. 
conc. 

RSD 

(%) 
Exp. 

conc. 
RSD 

(%) 
Exp. 

conc. 
RSD 

(%) 
Exp. 

conc. 
RSD 

(%) 
Exp. 

conc. 
RSD 

(%) (%) RSD 

(%) 

SB 11.33 7.99 2.6% 10.86 2.8% 11.57 5.6% 9.77 2.3% 10.62 5.9% 93.7 8.5% 
SC 34.00 29.19 1.5% 32.57 3.8% 33.51 3.6% 32.48 7.1% 33.10 5.9% 97.3 1.7% 
PEG-OH 9.88 0.30 5.9% 0.40 5.0% 0.31 4.7% 0.31 7.1% 0.35 14.3% 3.5 15.9% 
PEG-C16 11.34 9.93 1.0% 9.18 2.5% 10.03 3.7% 10.43 3.6% 9.92 6.2% 87.5 6.4% 
PEG-C18 11.57 9.68 1.3% 9.11 2.9% 9.84 3.9% 10.22 3.9% 9.76 5.9% 84.4 5.8% 
PE 0.87 0.72 1.0% 0.81 6.0% 0.79 4.2% 0.73 2.5% 0.78 6.3% 89.9 5.5% 
PC 6.07 5.22 1.0% 5.75 3.6% 5.58 1.5% 5.59 5.3% 5.64 3.9% 92.9 1.7% 
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