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A comparison among widely used multivariate latent variable-based techniques for supervised process fault diagnosis was carried out. In order to assess their overall performance several diagnosis criteria were proposed (C 1 : most suspected fault assignment; C 2 : threshold-based fault assignment). Additionally, it was evaluated i) how the size of the training set used to build the latent variable models a↵ected the diagnosis ability of the methods under study, ii) how they behaved under new types of failures not included in the original list of fault candidates and iii) which of them were more suitable for either early or late diagnosis. To accomplish all these objectives, the approaches were tested in di↵erent scenarios. Two datasets were analysed: the first was generated by a Simulink-based model of a binary distillation column, while the second relates to a pasteurisation process performed in a laboratory-scale plant.

Introduction

In the last decades, the employment of techniques such as Principal Component Analysis (PCA) and Partial Least Squares regression (PLS) [START_REF] Kourti | Process analysis, monitoring and diagnosis, using multivariate projection methods[END_REF][START_REF] Kourti | Multivariate statistical process control and process control, using latent variables[END_REF][START_REF] Ferrer | Statistical control of measures and processes[END_REF] for the implementation of Latent Variablebased Multivariate Statistical Process Control (LV-MSPC) schemes, which can quickly, easily and e ciently recognise possible failures occurring during the manufacturing campaign, has become rather popular [START_REF] Ferrer | Multivariate Statistical Process Control based on Principal Component Analysis (MSPC-PCA): some reflections and a case study in an autobody assembly process[END_REF]. A fundamental step in LV-MSPC is to diagnose ongoing faults and identify the phenomena generating the respective out-of-control signals in order to minimise process downtime, increase safety of plant operations and reduce costs [START_REF] Van Den Kerkhof | Dynamic model-based fault diagnosis for (bio)chemical batch processes[END_REF][START_REF] Van Den Kerkhof | Analysis of smearing-out in contribution plot based fault isolation for Statistical Process Control[END_REF][START_REF] Bauer | A practical method for identifying the propagation path of plant-wide disturbances[END_REF][START_REF] Shu | Data-driven causal inference based on a modified transfer entropy[END_REF][START_REF] Rato | On-line process monitoring using local measures of association. Part II: design issues and fault diagnosis[END_REF][START_REF] Rato | Markovian and non-Markovian sensitivity enhancing transformations for process monitoring[END_REF]. Fault diagnosis can be carried out in two di↵erent ways:

• unsupervised approach: the variables characterised by an abnormal evolution with respect to an in-control situation are pointed out by tools like contribution plots [START_REF] Kourti | Multivariate SPC methods for process and product monitoring[END_REF][START_REF] Miller | Contribution plots: a missing link in multivariate quality control[END_REF]. Notice that unsupervised methods do not highlight the root causes of a failure which have to be determined by the process engineers afterwards;

• supervised approach: the characterisation of ongoing failures is addressed by comparing them with a database of previously observed ones. This strategy permits to directly focus on the reasons behind the deviations from Normal Operating Conditions -NOC -(provided they have historically been experienced), conceivably reducing the intervention time needed to fix them [START_REF] Alcala | Reconstruction-based contribution for process monitoring[END_REF].

Several methodologies resorting to the principles of fault reconstruction [START_REF] Alcala | Reconstruction-based contribution for process monitoring[END_REF][START_REF] Dunia | Subspace approach to multidimensional fault identification and reconstruction[END_REF][START_REF] Yue | Reconstruction-based fault identification using a combined index[END_REF] and fault signature extraction [START_REF] Yoon | Fault diagnosis with multivariate statistical models part I: using steady state fault signatures[END_REF] as well as classification techniques such as Partial Least Squares Discriminant Analysis (PLS-DA) [START_REF] Wold | Food research and data analysis[END_REF][START_REF] Barker | Partial Least Squares for discrimination[END_REF] or Soft Independent Modelling of Class Analogies (SIMCA) [START_REF] Wold | Pattern recognition by means of disjoint principal components models[END_REF][START_REF] Wold | SIMCA: a method for analyzing chemical data in terms of similarity and analogy[END_REF] have been successfully applied for latent variable-based supervised fault diagnosis [START_REF] Qin | Survey on data-driven industrial process monitoring and diagnosis[END_REF][START_REF] Russell | Data-driven methods for fault detection and diagnosis in chemical processes, 1st Edition[END_REF][START_REF] Macgregor | Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods[END_REF].

The main aim of this article is to assess the potential of the most representative of these strategies:

1. SPE-based fault reconstruction (SPE-FR) [START_REF] Dunia | Subspace approach to multidimensional fault identification and reconstruction[END_REF] 2. Combined index-based fault reconstruction (CI-FR) [START_REF] Yue | Reconstruction-based fault identification using a combined index[END_REF] 3. Fault signature (FS) [START_REF] Yoon | Fault diagnosis with multivariate statistical models part I: using steady state fault signatures[END_REF] 4. Partial Least Squares Discriminant Analysis (PLS-DA) [START_REF] Wold | Food research and data analysis[END_REF][START_REF] Barker | Partial Least Squares for discrimination[END_REF] Their overall performance will be tested and compared through the analysis of two datasets: the first was generated by a Simulink-based model of a distillation tower, while the second relates to a pasteurisation process performed in a laboratory-scale plant. Additionally, it will be evaluated i) how the size of the training set used to build the latent variable models a↵ects the diagnosis ability of the methods under study, ii) how they behave when new types of failures, not included in the original list of fault candidates, have to be identified and iii) which of them are more suitable for either early or late diagnosis.

Materials and methods

Latent variable-based fault detection

Fault detection in LV-MSPC is carried out by checking whether current measurement data are consistent with past NOC ones. Two are the indices exploited to identify deviations from in-control conditions: Squared Prediction Error (SPE) and Hotelling's T 2 A . They are defined as:

SPE = kx T (I PP T )k 2 = kxk 2 = K X k=1 x2 k (1) 
T

2 A = A X a=1 t 2 a s 2 a (2)
where x T (1 ⇥ K) is an observation vector containing the value of the K variables registered at a specific time point, I (K ⇥ K) denotes the identity matrix, P (K ⇥ A) contains the loadings of the latent variable model built on a group of NOC recordings, x (K ⇥ 1) corresponds to the residual vector associated to x T whose k-th element is connoted by xk , A equals the number of computed latent variables, t a represents the a th latent variable score of x T calculated by projecting it onto the subspace defined by P, and s 2 a is the variance of the a th latent variable. Equation 1 applies to PCA. For PLS, it should read:

SPE = kx T (I W(P T W) 1 P T )k 2 = kx T (I W ⇤ P T )k 2 (3) 
where W and P are the PLS weighting and loadings matrices, respectively. SPE measures the squared perpendicular distance of x T to the NOC model hyperplane while T 2 A reflects the distance from the origin of the NOC model hyperplane to the projection of x T onto it. Thus, process variations which severely break the correlation structure of the original in-control data [START_REF] Rato | Non-causal data-driven monitoring of the process correlation structure: a comparison study with new methods[END_REF] would lead to abnormally large values of SPE. On the other hand, variations that preserve such a correlation structure (e.g. changes in the operating conditions of the process) would lead to anomalously high values of T 2 A . Specifically, out-of-control signals are generated when SPE and/or T 2

A are/is found to be beyond their/its individual control limit/limits, derived as in [25-27] Yue and Qin [START_REF] Yue | Reconstruction-based fault identification using a combined index[END_REF] have proposed a single combined index to be resorted to for simplifying failure detection:

' = SPE SPE limit + T 2 A T 2 limit ( 4 
)
where SPE limit and T 2 limit symbolise the estimated confidence thresholds of the SPE and Hotelling's T 2

A statistics, respectively. The distribution of the combined index ' can be approximated as a g 2 h distribution where g and h are derived according to [START_REF] Yue | Reconstruction-based fault identification using a combined index[END_REF].

Supervised latent variable-based fault diagnosis

In supervised latent variable-based fault diagnosis the identification of a fault is addressed by comparing the current out-of-control behaviour of the process (possibly detected by means of PCA-or PLS-based SPE and T 2

A indices) with an existing database of reference patterns, each typical of one of say J known failures. The way this comparison is performed depends on the fault diagnosis method as detailed in the following subsections.

SPE-based fault reconstruction (SPE-FR)

In the presence of the j-th fault, x T can be represented as the sum of two contributions, related to its in-control (x T NOC ) and out-of-control (f T j ⌅ T j ) variation (see Figure 1 for a graphical sketch):

x T = x T NOC + f T j ⌅ T j ( 5 
)
where kf T j k corresponds to the magnitude of the j-th failure (f j has dimensions A fault ⇥1) and ⌅ j (K⇥ A fault ) is an orthonormal matrix spanning its A fault -dimensional subspace, both empirically derived Figure 1 -Graphical representation of x T as the sum of two contributions, related to its in-control (x T NOC ) and out-ofcontrol (f T j ⌅ T j ) variation. Notice ⌅ T j = ⌅T j + ⌅T j where ˆand ˜denote a matrix projection on the NOC latent variable model subspace and on the residuals subspace, respectively from available data recorded during its occurrence [START_REF] Yue | Reconstruction-based fault identification using a combined index[END_REF][START_REF] Valle-Cervantes | Extracting fault subspaces for fault identification of a polyester film process[END_REF]. The objective of fault reconstruction is to re-estimate x T NOC by iteratively eliminating the e↵ect of each one of the J known failures (according to Figure 1 this means bringing x T back to x T NOC along the direction determined by ⌅ j ). Thus, that one, whose influence removal yields the best reconstruction of x T NOC , is identified as the most analogous to the currently observed out-of-control situation. The quality of the reconstruction can be evaluated by the so-called reconstructed SPE. For the j-th fault, it is defined as:

SPE j = kx j k 2 (6) being xT j = xT f T j ⌅T j (7) 
f T j = arg min kx T f T j ⌅T j k 2 = xT ⌅ j ( ⌅T j ⌅j ) 1 (8) 
with ˜indicating a vector/matrix projection on the subspace of the residuals of the NOC model. Specifically, the lower SPE j , the higher the similarity of the j-th failure to the ongoing one.

Combined index-based fault reconstruction (CI-FR)

The fault reconstruction approach, described in the previous subsection, has been extended by Yue and Qin [START_REF] Yue | Reconstruction-based fault identification using a combined index[END_REF] so that both SPE and Hotelling's T 2

A are taken into account when diagnosing a failure. Here the combined index ' j substitutes SPE j for the fault identification:

' j = SPE j SPE limit + T 2 A,j T 2 limit ( 9 
)
where

T 2 A,j = k(x T f T j ⌅ T j )PS 1 2
k 2 and S is the scores covariance matrix resulting from the NOC latent variable model. Similarly to SPE-FR, the lower ' j , the higher the similarity of the j-th failure to the currently observed deviation from NOC.

Fault signature (FS)

A fault signature consists of the direction vectors describing how the process moves in both the latent variable model and residual subspace immediately after the fault detection [START_REF] Yoon | Fault diagnosis with multivariate statistical models part I: using steady state fault signatures[END_REF]. Fault diagnosis is then enabled by comparing such vectors calculated based on the outlying observations with those yielded by known failures. Mathematically, rewriting Equation (5), the sample vector x T , in the presence of the j-th fault, can be expressed as:

x T = x ⇤T + z T j ( 10 
)
where x ⇤T symbolises the in-control observation immediately preceding it in time. z T j can be further decomposed using the NOC latent variable model into two contributions, one lying on the model space (ẑ T j ) and the other on the residual space (z T j ):

z T j = ẑT j + zT j = z T j PP T + z T j (I PP T ) (11) 
ẑT j and zT j are then normalised to be insensitive to their magnitudes as:

ẑT j,norm = ẑT j kẑ T j k (12) 
zT j,norm = zT j kz T j k (13) 
ẑT j,norm and zT j,norm denote the signatures of the j-th fault and the whole sets of ẑT j,norm and zT j,norm vectors for j = 1, . . . , J constitute the reference fault signature libraries:

Ẑ = {ẑ T 1,norm , ẑT 2,norm , . . . , ẑT J,norm } Z = {z T 1,norm , zT 2,norm , . . . , zT J,norm } (14) 
Ẑ and Z contain all the available information (in both the model and the residual subspaces) about the J known faults. New fault signatures can be included in Ẑ and Z after a new type of fault has been detected.

As a new observation, x T new , is detected as an outlier, its signature is compared with those in the fault library. To this end, x T new is first subjected to the same decomposition as in Equations ( 10) and ( 11):

x

T new = x ⇤T new + z T new ( 15 
)
z T new = ẑT new + zT new = z T new PP T + z T new (I PP T ) (16) 
ẑT new,norm and zT new,norm are then normalised:

ẑT new,norm = ẑT new kẑ T new k (17) 
zT new,norm = zT new kz T new k (18)
and the cosines of the angles between ẑT new,norm and zT new,norm and the known fault signatures (namely ↵ ẑT new,norm and ↵ zT new,norm ) are then computed: the closer these values to one, the higher the similarity between the two compared signatures (see Figure 2 for a schematic illustration of the fault signatures associated to the same type of fault occurred in two di↵erent process operating regions). Notice that SPE-FR and FS are strictly related, but the way fault directions/subspaces are estimated in these two methodologies is clearly distinct and this will obviously have an impact on the diagnosis outcomes. 

Partial Least Squares Discriminant Analysis (PLS-DA)

Supervised fault diagnosis can be thought of as a discrimination problem. In fact, since historical data associated to e.g. J di↵erent classes (di↵erent kinds of fault) are available, one can build a classification model to be used in order to predict the belonging category of new out-of-control observations. PLS-DA is one of the simplest way of doing that: the process data coming from the failure database, X (N ⇥ K), are regressed via Partial Least Squares (PLS [START_REF] Geladi | Partial Least Squares regression: a tutorial[END_REF][START_REF] Martens | Multivariate Calibration[END_REF]) on a dummy binary-coded response matrix, Y (N ⇥ J), made up by a set of row vectors, constructed so that, if their corresponding measurement records are members of the j-th class, they have a 1-value in their j-th entry and 0-values in all the other ones. The PLS-DA solution has been found to be equivalent to that resulting from Linear Discriminant Analysis (LDA [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF]), but, due to its latent variable-based nature, it permits to overcome the aforementioned drawbacks which classical statistical tools typically su↵er from [START_REF] Wold | Food research and data analysis[END_REF]. Whenever new faulty observations are registered, their y T (1 ⇥ J) vectors can be predicted and the final assignment accordingly addressed.

Datasets

To evaluate and compare the performance of the four supervised fault diagnosis methods under study, two di↵erent datasets were analysed: the first was generated by a Simulink-based model of a binary distillation column, while the second relates to a pasteurisation process performed in a laboratory-scale plant.

Dataset #1 -Distillation process

A Simulink-based model of a binary distillation column [START_REF] Skogestad | Understanding the dynamic behavior of distillation columns[END_REF][START_REF] Villalba | A graphical user interface for PCA-based MSPC: a benchmark software for multivariate statistical process control in MATLAB[END_REF] was exploited to simulate data resulting from a continuous process of fractionation of a methanol/ethanol mixture. A total number of 48 variables contaminated by homoscedastic measurement noise was generated (see Table 1). As detailed in Table 2, five data blocks (F 1 , F 2 , F 3 , F 4 and F 5 ), related to disturbances 

F 1 Fault #1 -Disturbance in z F 3984 ⇥ 48 F 2 Fault #2 -Disturbance in T F 3984 ⇥ 48 F 3 Fault #3 -Disturbance in F V 3984 ⇥ 48 F 4 Fault #4 -PI

Dataset #2 -Pasteurisation process

Pasteurisation data were collected by an Armfield PCT23 MKII process plant trainer, which permits to monitor the 12 variables listed in Table 3. The instrumentation is equipped with an 

Comparative study

Both the original datasets were split into training and test sets so that entire replicates of all the faults under study were included in both of them. The former were employed as reference failure database, while the latter permitted to assess the performance of the single considered diagnostic strategies. Notice that every test set does not contain exact replicates of the faults of the corresponding training set, but replicates of di↵erent magnitude and/or with di↵erent noise contributions of the various concerned failures. In other words, in all the replicates of a single fault the evolution of the measured variables over time is a↵ected by the failure in approximately the same way and what varies is just the severity of the breakage of NOC and/or the fluctuations of such a time evolution due to e.g. instrumental response variability. This represents a rather realistic scenario for the application of supervised fault diagnosis methodologies. Moreover, in order to avoid biased results, the fault replicates of the highest and lowest magnitude were always added to the respective training set.

Diagnosis performance indices

The accuracy degree of the diagnosis of the j-th failure can be estimated by the sensitivity and specificity indices, defined as:

sensitivity j = TP j TP j + FN j ⇥ 100 (19) 
specificity j = TN j FP j + TN j ⇥ 100 ( 20 
)
where TP j , FN j , TN j and FP j stand for True Positives (the number of observations correctly identified as a↵ected by the j-th fault), False Negatives (the number of observations mistakenly identified as not a↵ected by the j-th fault), True Negatives (the number of observations correctly identified as not a↵ected by the j-th fault) and False Positives (the number of observations mistakenly identified as a↵ected by the j-th fault), respectively. The sensitivity index measures the proportion of observations a↵ected by the j-th fault which were correctly pointed out as such by the diagnosis method. The specificity index reflects the proportion of observations not a↵ected by the j-th fault which were correctly pointed out as such by the diagnosis method.

For a fair and more general comparison of the investigated approaches, the average sensitivity and the average specificity over all the considered types of faults were calculated: 

Fault diagnosis criteria

An important point to stress regards how to decide whether a particular observation is a↵ected by a specific type of fault and subsequently determine TP j , FN j , TN j and FP j . Here two criteria were applied:

• C 1 : an observation is signalled as a↵ected by the most suspected fault. C 1 might be useful when short intervention time and fast troubleshooting are needed as process engineers will have to focus only on a single type of deviation from NOC;

• C 2 : an observation is signalled as a↵ected by all the types of faults for which a certain condition is found to be fulfilled. C 2 might be beneficial when intervention time is not critical and process engineers may want to investigate all the possible reasons behind a particular out-of-control signal. Notice that this criterion is particularly interesting when new types of faults have to be identified.

For the various techniques dealt with: a) SPE-FR:

• C 1 : an observation is identified as a↵ected by the fault yielding the lowest reconstructed SPE;

• C 2 : an observation is identified as a↵ected by the faults yielding reconstructed SPE values below an empirical significance threshold.

b) CI-FR:

• C 1 : an observation is identified as a↵ected by the fault yielding the lowest ' value;

• C 2 : an observation is identified as a↵ected by the faults yielding ' values below an empirical significance threshold. c) FS: values beyond an empirical significance threshold.

• C 1 :

d) PLS-DA:

• C 1 : an observation is assigned to the class for which it showed its highest y-predicted value;

• C 2 : an observation is assigned to the classes for which it showed y-predicted values higher than an empirical significance threshold [START_REF] Pérez | Calculation of the reliability of classification in discriminant Partial Least-Squares classification[END_REF].

Diagnosis and model windows

To evaluate the e↵ect of the size of the training set on the performance of the diagnosis techniques, 1, 30 and 120 observations per fault replicate for the distillation process, and 1, 6 and 12 observations per fault replicate for the pasteurisation process, respectively, were used to build the supervised latent variable models. The selection of the dimension of such a model window W m rested on the diverse dynamics of the two processes, on data availability and on the nature of the simulated induced failures. Similarly, to study the temporal evolution of the diagnosis performance from the first time instant at which each fault is detected and determine whether a specific approach was more suitable for either early or late diagnosis, 1 to 120 observations per failure for the distillation process and 1 to 12 observations per failure for the pasteurisation process were included in the test set, respectively. This way, a range of various diagnosis windows W d was taken into account.

Pre-adjustment of the empirical significance thresholds for C 2

For enabling a fair comparison based on C 2 , the aforementioned empirical thresholds were estimated in order to achieve a similar average specificity rate (for the training set and, thus, at least for W d = W m ) for all the diagnosis strategies. This guarantees that the average sensitivity values resulting from the application of the di↵erent approaches are commensurable. On the contrary, when the assignation criterion is C 1 there is no need of such a pre-calibration: in this case the average sensitivity and the average specificity are strictly inter-correlated and only diverge for a scaling factor.

Results

Average sensitivity and specificity

Figures 3456show the trend of the average sensitivity and average specificity yielded by each methodology under study as the size of W d increases and for every considered W m size Figure 3 displays the outcomes of the analysis of the distillation process dataset based on the C 1 assignation criterion; Figure 4 displays the outcomes of the analysis of the distillation process dataset based on the C 2 assignation criterion; Figure 5 displays the outcomes of the analysis of the pasteurisation process dataset based on the C 1 assignation criterion; Figure 6 displays the outcomes of the analysis of the pasteurisation process dataset based on the C 2 assignation criterion. From them it follows: a) SPE-FR: for the distillation process dataset SPE-FR exhibited the best performance when the model window was not too small (W m = 30 or W m = 120). In particular, it led to satisfactorily good results for small diagnosis windows (early diagnosis) when the assignation criterion was C 1 (see Figures 3c,3d, 3e and 3f). Concerning C 2 , SPE-FR also accomplished a rather correct early fault diagnosis being only outperformed by CI-FR (see Figures 4c, 4d, 4e and4f). However, as the diagnosis window size increased (late diagnosis), its performance worsened.

For the pasteurisation process dataset SPE-FR exhibited satisfactory results for small W d regardless of the assignation criterion (see Figures 5 and6); For the distillation process dataset it clearly outperformed the other techniques in terms of sensitivity in early diagnosis for W m = 30 and W m = 120 when C 2 was chosen as assignation criterion (see Figures 4c,4e). Nevertheless, such a high sensitivity is counterbalanced by low specificity values, which represents a clear symptom of fault identification issues (see Figures 4d,4f). As the size of the diagnosis window increased, also its performance generally worsened but more gradually than for SPE-FR, highlighting CI-FR may guarantee a better late diagnosis than SPE-FR.

Regarding the pasteurisation process dataset CI-FR exhibited satisfactory late diagnosis results for the C 2 assignation criterion when W m = 6 and W m = 12 (see Figures 6c,6d, 6e and 6f); c) FS: FS clearly outmatched the others considered approaches when very small model windows were concerned (W m = 1, see Figures 3a and3b, 4a and 4b, 5a and 5b, 6a and 6b). However, this does not mean that the best early fault diagnosis was achieved by this method. In fact, the other strategies guaranteed on average better early diagnosis results when wider model windows were resorted to. Anyway, it should be taken into account that FS was originally developed for cases in which W m = 1 while here, for properly addressing the comparative study, it was adapted for dealing also with larger model windows.

For the pasteurisation process dataset, FS exhibited the best results among all the compared diagnosis strategies for the C 2 assignation criterion regardless of W m (see Figure 6). This is a consequence of the smaller W m values set in this specific circumstance which make the model window size influencing less the diagnosis performance. d) PLS-DA: PLS-DA generally showed one of the best late diagnosis performance among the compared approaches. It was found to provide a highly correct fault identification (especially for the distillation process dataset) when large model and diagnosis windows were dealt with (see e.g Figures 3e and3f, 4c and 4d, 4e and 4f). Nevertheless, PLS-DA proved to su↵er from severe limitations when handling small model windows (Building a classification/discrimination model with very few members per category is, in fact, not a reliable practice) (see Figures 3a and3b, 4a and 4b, 5a and 5b, 6a and 6b).

Diagnosis of new types of faults

Another important aspect of supervised diagnosis techniques is their ability of identifying types of faults not included in the original reference library. For its evaluation, each data block associated to a specific fault was iteratively left out of the calibration set and the nature of the corresponding test observations subsequently assessed by applying the C 2 assignation criterion (C 1 , which forces the test observations to be identified as a↵ected by a unique reference fault, is not appropriate for this assessment). For each one of such observations the diagnosis was assumed to be successful if a) none of the reference failures led to a reconstructed SPE value below the respective significance threshold (for SPE-FR), b) none of the reference failures led to a combined index value below the respective significance threshold (for CI-FR), c) none of the reference failures led to cosine values of ↵ xT new,norm and ↵ xT new,norm beyond the respective significance threshold (for FS) or d) its SPE value was found to be beyond the 99% confidence limit of this statistic (for PLS-DA). Also here, to get an idea of the e↵ect of the model window size and of the early and late fault diagnosis performance of the compared methodologies the study was conducted on the distillation process 7a), while, regarding the pasteurisation process dataset, SPE-FR, CI-FR and FS clearly performed better than PLS-DA probably due to the lower number of considered training observations per fault (see Figure 8a). Large model windows enabled the best fault diagnosis in the former case-study (see Figure 7b), while for the latter small model windows returned the best outcomes (see Figure 8b). Large diagnosis windows were found to be optimal in both the explored scenarios (see Figure 7c and8c). Here in addition, it is interesting to notice how the model window size a↵ected the ability of the compared approaches of correctly identifying new types of faults (see Figures 7d and8d). SPE-FR and CI-FR were found to behave rather similarly, being their early and late diagnosis performance higher when small model windows were concerned. As expected, for the pasteurisation process dataset, FS returned the best results when W m = 1. This is not the case for the distillation process dataset, probably due to the di↵erent dynamics of the simulated failures (they reach their steady state after several time instants). Again for the distillation process dataset, PLS-DA yielded its best correct fault diagnosis rate when the largest model window (W m = 120) was dealt with. On the other hand, less notable changes in the PLS-DA performance were observed for the pasteurisation process dataset as W m varied, probably owing to the smaller di↵erences in the size of the various model windows.

W m = 1 W m = 30 W m = 120 W m = 1 W m = 30 W m =
W d = 6 (early diagnosis) W d = 12 (late diagnosis) W m = 1 W m = 6 W m = 12 W m = 1 W m = 6 W m =

Conclusions

SPE-FR, CI-FR, FS and PLS-DA showed substantially di↵erent performance depending on the size of the model window and on whether they were applied for early or late fault diagnosis. Notice that class-modelling approaches like SIMCA were a priori excluded from the comparison because their use is not recommended in purely discrimination scenarios (i.e. when the C 1 assignation criterion is exploited) [START_REF] Rodionova | Rigorous and compliant approaches to one-class classification[END_REF]. FS generally yielded better results when W m was small. SPE-FR, CI-FR and PLS-DA required instead larger sets of training observations to enable a correct fault diagnosis. However, as pointed out in Section 4.1, the use of small/large model windows not necessarily guarantees a better early/late diagnosis performance. All these outcomes suggest that a hybrid strategy based on the employment of a method more suitable for early diagnosis combined with another more suitable for late diagnosis can represent a feasible option in complex casestudies. An interesting aspect is that process dynamics seems to be correlated to W m . In fact, the highest fault diagnosis sensitivity and specificity rate were on average achieved for low W m when the pasteurisation dataset was handled and for large W m in the distillation case-study. And this is not surprising if it is considered that the dynamics of the pasteurisation process is much faster than the dynamics of the distillation one, i.e. the fault steady-state is reached in a shorter time for the first system than for the second. In other words, it can be said that process dynamics can be taken into account in an indirect way by properly tuning the W m value according to the specific scenario at hand. Regarding the ability of the four techniques of diagnosing new types of failures not included in the original reference library, SPE-FR, CI-FR and FS led to better diagnosis results for relatively small model windows. Conversely, PLS-DA exhibited its best performance when W m was large (at least for the distillation process dataset). The intrinsic nature of the di↵erent types of faults was also found to have a considerable e↵ect on the diagnosis power of the compared approaches, even though reporting average trends constitutes an easy and direct way to give a global idea of how such approaches may behave under various conditions. The presented study additionally highlighted sensitivity and specificity may constitute e cient indices to assess the potential of fault diagnosis methodologies when lots of distinct failures need to be discriminated.
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 2 Figure 2 -Schematic representation of the fault signatures associated to the same type of fault occurred at two di↵erent process operating regions. LV stands for Latent Variable

Figure 3 -Figure 4 -Figure 5 - 12 Figure 6 -

 345126 Figure 3 -Distillation process dataset: C 1 assignation criterion. a) Average sensitivity trend for W m = 1 ; b) Average specificity trend for W m = 1; c) Average sensitivity trend for W m = 30; d) Average specificity trend for W m = 30; e) Average sensitivity trend for W m = 120; f) Average specificity trend for W m = 120. To ease visualisation, symbols are represented only for a subset of equidistant time points

  dataset for W m = 1, W m = 30 and W m = 120 and for W d = 30 (early diagnosis) and W d = 120 (late diagnosis) as well as on the pasteurisation process dataset for W m = 1, W m = 6 and W m = 12 and for W d = 6 (early diagnosis) and W d = 12 (late diagnosis).
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 78 Figure 7 -Distillation process dataset: ANOVA 95% Least Significant Di↵erence (LSD) intervals for mean correct fault diagnosis rate a) fault diagnosis method, b) model window, c) diagnosis window, and d) interaction fault diagnosis method/model window. In d), the theoretical LSD intervals are cut at a value of correct fault diagnosis rate equal to 100%

  

  

  

Table 1 -

 1 Distillation process dataset: list of the 48 measured variables

	Variable ID	Variable description
	T F	Feed temperature
	z F	Feed composition
	F V	Feed volumetric flow rate
	D	Top volumetric flow rate
	V	Boil-up volumetric flow rate
	B	Bottom volumetric flow rate
	L	Reflux volumetric flow rate
	T 1 41	1-41 column tray temperature

of specific nature, were obtained together with data simulated under NOC. F 1 , F 2 and F 3 are

Table 2 -

 2 Distillation process dataset: features of the 5 simulated data blocks

	Block ID	Status of the process	Block dimensions

Table 3 -

 3 Pasteurisation process dataset: list of the 12 measured variables

	Variable ID	Variable description
	Level T	Feed tank level
	T 1	Liquid temperature in the pasteurisation tube
	T 2	Heating water temperature
	T 3	Final product temperature
	T 4	Liquid temperature when preheating fresh feed
	T 5	Fresh feed temperature after preheating
	F	Liquid flow rate
	P 1	Water heating power measure 1
	P 2	Water heating power measure 2
	P 3	Water heating power measure 3
	Pump 1	Feed liquid peristaltic pump opening percentage
	Pump	

[START_REF] Kourti | Multivariate statistical process control and process control, using latent variables[END_REF] 

Heating water peristaltic pump opening percentage electrical console for fault simulation. Here, as indicated in Table

4

, 11 di↵erent data blocks were generated together with data recorded under NOC. They are all constituted by sub-matrices of

Table 4 -

 4 Pasteurisation process dataset: features of the 11 data blocks

	Block ID	Status of the process	Block dimensions
	F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11	Fault #1 -T 1 set-point change Fault #2 -Heating water peristaltic pump failure Fault #3 -Liquid flow rate sensor failure Fault #4 -T 1 sensor failure (overestimation of T 1 ) Fault #5 -T 1 sensor failure (underestimation of T 1 ) Fault #6 -T 4 sensor failure (overestimation of T 4 ) Fault #7 -T 5 sensor failure (underestimation of T 5 ) Fault #8 -T 5 sensor failure (overestimation of T 5 ) Fault #9 -Pasteurisation tube outlet valve failure Fault #10 -Liquid flow rate set-point negative change Fault #11 -Liquid flow rate set-point positive change	75 ⇥ 12 75 ⇥ 12 75 ⇥ 12 75 ⇥ 12 75 ⇥ 12 60 ⇥ 12 75 ⇥ 12 75 ⇥ 12 60 ⇥ 12 75 ⇥ 12 75 ⇥ 12
	dimension 15 ⇥ 12, yielded by repeated inductions of the same type of disturbance.

  an observation is identified as a↵ected by the fault yielding the ↵ xT new,norm and ↵ xT

	new,norm
	values closest to 1;
	• C 2 : an observation is identified as a↵ected by the faults yielding ↵ xT new,norm and ↵ xT new,norm

Table 6 -

 6 Distillation process dataset: diagnosis of new types of faults. Average correct fault diagnosis rates for

Table 7 -

 7 Pasteurisation process dataset: diagnosis of new types of faults. Average correct fault diagnosis rates for W

d = 6, 12 and W m = 1, 6, 12

  The statistical significance of the observed di↵erences among them was assessed by an ANalysis Of VAriance (ANOVA) carried out by taking into account three factors (i.e. fault diagnosis method, model window and diagnosis window) and all their possible interactions. Figures7 and 8display the 95% Least Significant Di↵erence (LSD) intervals for all of these factors and interactions whose e↵ect was actually detected as statistically significant (p value ⌧ 0.05). They mainly corroborate all the conclusions drawn in Section 4.1. Overall, concerning the distillation process dataset, SPE-FR, CI-FR and PLS-DA outmatched FS (see Figure

							12
	SPE-FR 80.3%	62.5%	55.6%	84.3%	67.2%	61.2%
	CI-FR	84.6%	69.5%	60.4%	88.0%	75.9%	64.0%
	FS-FR	87.9%	75.5%	64.9%	87.4%	75.1%	66.4%
	PLS-DA 53.5%	44.9%	44.9%	54.0%	45.4%	46.0%
	Tables 6 and 7 list the average correct fault diagnosis rates accomplished by SPE-FR, CI-FR, FS
	and PLS-DA, respectively.