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Abstract

Lattice Boltzmann Method (LBM) has been applied for the simulation of a mixed convection heat transfer
of two dimensional Newtonian fluid in a square cavity driven by a periodically oscillating lid. The top wall is
maintained at higher variable temperature. The developed LBM code in Matlab, is applied for the oscillating
lid to simulate the fluid flow and heat transfer in cavity, was validated using various Reynolds and Grashof
numbers. Nusselt number was calculated for various pertinent dimensionless groups. Fluid flow and heat
transfer characteristics were examined in the domain of Reynolds number, Grashof number, the dimensionless
lid oscillation frequency and different values of temperature. Such that: 102 ≤ Re ≤ 103 , 102 ≤ Gr ≤ 106 ,
0.1 ≤ ω ≤ 5, the Prandtl number was fixed as 0.71. The results show that the variation of the Reynolds
and Grashof numbers has an effect on energy transport process and drag force behavior depending on the
conduct of the velocity cycle. Moreover the variation of Rayleigh number and period of the heated portion has
an effect on the transfer rate on convective structures.

I. Introduction

Mixed convection heat transfer in a cavity due
to the interaction of the buoyancy force with
shear forces has received a lot of attention from
the researchers. This problem is often encoun-
tered in industrial processes such as glass pro-
duction, food processing and nuclear reactors.
A such phenomenon is also observed in our
body through the motion of joints. In nature,
it’s observed, as convective thermal cur- rents
that occur in lakes and rivers. This type of
problem has been addressed in the literature.
In fact, Iwatsu et al.[1] have performed a nu-
merical study of a two-dimensional flow in a
cavity driven by a unidirectional movement
and a vertical temperature gradient. They

produced models similar to mixed convec-
tion flows when incorporating small numerical
numbers of Richardson. It is widely used as a
reference for the evaluation of different numer-
ical schemes. Prasad et al.[2] reported exper-
imental results on the mixed-convection heat
transfer process in a lid cavity for a Richardson
number range between 0.1 and 1000. They con-
cluded that the heat transfer mechanism is a
weak Richardson’s number function in relation
to the number of Reynolds considered and to
the values of the physical aspect ratio. How-
ever, the effect of an oscillating lid on mixed
convection heat transfer has received less atten-
tion from researchers. Khanafer et al. [3] have
made a numerical study of unsteady laminar
convective heat transfer in a cavity driven by
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a sinusoidal lid using a finite element scheme
based on the Galerkin method of weighted
residuals. The obtained results reveal that the
Reynolds number and Grashof number would
either enhance or retard the energy transport
process and drag forces behavior depending on
the conduct of the velocity cycle. Recently, lat-
tice Boltzmann method (LBM) emerged as an
alternative powerful method for solving fluid
dynamics problems. The fundamental idea of
LBM is to describe a fluid as an ensemble of
many particles interacting locally at the nodes
of a regular lattice by collisions and then the
particles move only along the lattice and col-
lide again with other particles once they arrive
to the nodes [4] It can be programmed nat-
urally for parallel processing machines. It’s
important to situate its performance compared
to conventional numerical methods to simulate
and reproduce the isothermal or thermal fluid
flows. Among the published papers in the
field of mixed convection heat transfer using
LBM, we can cite Bennacer et al.[4] who have
applied a moment LB model different from the
Lattice of Bhatnagar, Gross and Krook (LBGK)
approximation to investigate a situation com-
bining natural and forced convection for lid
driven in a two-dimensional square cavity over
a much wider range of Rayleigh and Reynolds
numbers. Houat et al.[5] have presented a nu-
merical study of the laminar mixed convection
in a square cavity with two opening. They
proposed the LBM with a double population
model for resolving the thermal fluid flow in
cavity. The obtained results are compared with
the conventional method, especially Finite Vol-
ume Method results. These results confirm that
the thermal lattice Boltzmann method (TLBM)
model has the advantage of good numerical
stability and the ability to manage the overall
heat transfer by convection problems. In view
of previous studies, it is clear that no research
has been conducted in the field of mixed con-
vection heat transfer in cavities driven by peri-
odic wall movement using LBM. Recently, the
potential to use oscillatory flows to increase the
rate of heat transfer for example: Stirling ma-
chines, Cryocoolers and electronic components

has renewed interest in the field. Progress
in under-standing heat transfer in oscillatory
flows (alternative flow) is incomplete [6]. In
the present study, we applied TLBM to simu-
late a mixed convection heat transfer of flow
two-dimensional inside in a cavity driven by a
periodic oscillation using the Matlab program.
We first validated the Moment Lattice Boltz-
mann Model (MLBM) simulation for differ-
ent Reynolds and Grashof numbers compared
to reference [1],[3] solutions in the literature,
then we studied the phenomena observed for
different Reynolds and Grashof numbers and
oscillation frequencies.

II. Methods

i. Problem description

A square cavity is assumed, the upper wall
is maintained at a high temperature Thot and
the lower wall and the two lateral walls are
adiabatic Tcold . The side and bottom walls of
the cavity are stationary as shown in Figure
(1) . The velocity of the upper wall in the x
direction is given by [7]:

Ulid = Umaxcos(ωt) (1)

Umax : maximum speed of the upper wall. t :
time. ω : frequency of oscillation. It is assumed
that the fluid is Newtonian and the flow is lam-
inar. In addition, it is assumed that the isother-
mal, incompressible and 2D flow with constant
fluid properties. In this study, The Rayleigh
number defined as: Ra = gβ∆TN3/κν ,where
N is the space node number, g is acceleration
due to gravity and β is the thermal expansion
coefficient ,The Grashof number defined as:
Gr = Ra/Pr takes values between 102 and 106

, the Prandtl number is fixed by: Pr = ν/κ , is
equal to 0.71. The Reynolds number defined
as: Re = Umax H/ν , where: ν is the kinematic
viscosity of fluid and κ is thermal diffusion.
To find a suitable grid that leads to the au-
tonomous results from grid and in order to
determine the appropriate grid size, the aver-
age Nusselt number with various grid point
numbers of Re = 100 is presented in Table (1).
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Number of points Nu

60× 60 1.9348
80× 80 1.9423

100× 100 1.9469
120× 120 1.9508

Table 1: The average Nusselt number on the hot wall at
Re=100 and Gr=100

Figure 1: Schematic representation of cavity flow driven
by an oscillating lid

As can be seen, the discrepancy of the average
Nusselt number between the grid with 80× 80
points and the grid with 100× 100 points is
about 0.2%. So the grid with the 100 × 100
points is selected as the optimal grid. The Re
values considered For the simulations is: 100,
400 and 1000. The oscillation frequencies are:
0.1, 1 and 5 (dimensionless lid frequency) [3].

ii. LBM NUMERICAL METHOD

LBM is based on a microscopic model but is
used to simulate macroscopic fluid properties
such as density, velocity and temperature.
The fundamental idea of LBM is to describe
a fluid as an ensemble of many particles
interacting locally at the nodes of a regular
lattice by collisions, and then the particles
move only along the lattice and collide again
with other particles once they arrive at the
nodes. During the movement, the momentum
and the energy are transported. This discrete
microscopic model can be proved to recover

the conservation laws of continuum fluid
dynamics, and, thus, allows the computation
of the macroscopic variables such as density
and velocity. The researches mentioned above
were carried out with either macroscopic
method or mesoscopic method which usually
refers to LBM. In recent years this approach
has drawn more and more attention, since it’s
easy to study complex boundary condition
and it is suitable for parallel calculation. It
could be used to investigate phase separation
(e.g. Vladimirova et al.(1999) [8], Suppa et
al. (2002)[9], Xu et al. (2003) [10]), diffusion
(Shan et al. (1995) [11]), wetting (Raiskinmaki
et al. (2000) [12], Iwahara et al. (2003) [13]),
evaporation (Palmer et al. (2000) [14]), particle-
fluid suspensions (Ladd (1994) [15][16]), flow
in porous media (Succi et al. (1989) [17],
Heijs et al. (1995) [18]), heat transfer and
phase change (Alexander and al. (1993) [19],
He and al. (1998) [20], Tang and al. (2003)
[21], Semma and al (2007) [22]). There are
mainly three LBM models for heat transfer
simulation: multi-speed model (McNamara
et al. (1993) [23], Alexander et al. (1993) [19],
Chen et al. (1994) [24]), double-distribution
function model (He et al. (1998) [20]) and
Hybrid-finite-difference model (Raoyang
Zhang et al. (2003) [25], Mezrhab and al. (2004)
[26]). In the Hybrid-Finite-difference model,
the temperatures are obtained by solving
discrete macro energy equation with finite-
difference method, during which the velocity
is calculated by LBM. In multi-speed model,
the internal energy is involved in the density
distribution function, and the temperature can
be expressed with the distribution function
just as velocity. This model has a poor stability.
In contrary, in double-distribution function
model, besides the density distribution
function there is another distribution function
"energy distribution function", based on which
the internal energy equation evolution can be
developed. The form of the energy distribution
function is as same as that of the density
distribution except that it is scalar quality
while the latter is a vector.
The particles distribution Boltzmann equation

3



Numerical simulation of mixed convection heat transfer using lattice Boltzmann method • — 2018
• Vol... XXI, No ..

Figure 2: The two-dimensional and nine velocity D2Q9
model

is expressed in D2Q9 momentum model as:

∂ f
∂t

+ c∇ f = (
∂ f
∂t

)scat (2)

Where, f (x, c, t) is the distribution function,
which is the function of particle velocity c at
location x and at time t. The right hand side in
Equation (2) represents the diffusion process
when the new equilibrium distribution is
rebuilt after the collision. In general, this term
is nonlinear and there are different methods to
address it. Based on D2Q9 model (as shown
in figure (2)), where the state of the fluid at
the location x and at the time t is defined
as F(x, t) = f1(x, t), f2(x, t), .., f8(x, t) with a
vector of particles populations fi(i = 0, 1, ..., 8).
The discrete distribution equation is as follows:

fi(x + ci∆t, t + ∆t)− fi(x, t) = (ΩF)i (3)

Where, the micro discrete velocities ci are re-
spectively equal to 0 for i = 0, 1 for (i =
1, 2, 3, 4), and sqrt(2) for (i = 5, 6, 7, 8), where i
refers to the discrete velocity direction as rep-
resented in figure (2). F is the space vector
based on the discrete velocity set. Ω is the colli-
sion operator, it can be represented in different
formula based on different approximation and
one of the method would be introduced later.

ii.1 LB moment model

one can interpret the dynamics of the model
as a succession of two steps: propagation of
particles from nodes to their neighbors and
collision or redistribution between the various
velocities ci at each lattice node. In this arti-
cle, The adapted D2Q9 model combines the
vector space and the moment space. That is,

as mentioned above, the state of the fluid at
location x and time t is defined with a vector
of 9 dimensions so that a 9N dimensional vec-
tor spaceF = R9N could be constructed based
on the discrete velocity set ci, where N is the
space node number. At the same time, a space
M = R9N could also be constructed based on
the moments of fi. Obviously, there are 9 in-
dependent moments for the discrete velocity
set at each lattice node. One should notice that
in real space F it is easy to handle the prop-
agation step of the evolution in Equation (2),
whereas Mezrhab et al.(2007) [26] pointed out
that it is preferably to treat the collision part
of the equation in M space. The relationship
between the two spaces is (d’Humieres (1992)
[27]):

m = M f (4)

Where the coefficients aij in the M matrix are
constructed from the velocities ci , and must
not be singular as the following (Mezrhab et al.
(2004) [28], Tekitek et al. (2006) [29]):

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
0 0 −2 0 2 1 1 −1 −1
4 −2 −2 −2 −2 1 1 1 1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
0 −2 0 2 0 1 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ
jx
jy
E
ε

Txx
Tyy
Φx
Φy

(5)
Where, the signals on the right line beside
the matrix are corresponding to the physical
modes calculated from every row based on
Equation (4). That is to say, the first row in
the matrix allows to compute the density ρ ;
the second and third rows are for the x and y
components of momentum (mass flux) jx and
jy . E is related to the kinetic energy, ε is re-
lated to the square of the energy. Txx and Tyy
correspond to the diagonal and off-diagonal
components of the stress tensor. Φx and Φy
are the x and y components of the energy flux.
Now it comes to define the collision operator
Ω. It is known that the collision step would
not modify the moments such as mass, energy
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and linear momentum if there is no body force.
Therefore, these conserved moments satisfy:

mac
0 = mbc

0 = ρ (6)

mac
1 = mbc

1 = jx (7)

mac
2 = mbc

2 = jy (8)

Where mac
j and mbc

j are respectively the mo-
ments after collision and before collision. For
the non-conserved moments, the collision and
relaxation process can be expressed as:

mac
j = mbc

j + sj(m
eq
j −mbc

j ) (9)

Where sj is a relaxation rate. For stability rea-
sons, it is necessary to take the relaxation rates
between 0 and 2, and meq

j is the value of the
moment j when the system reaches equilib-
rium. Though the local energy conservation is
destroyed by collision, the total energy is con-
served. The values of moments when the sys-
tem is at equilibrium are (Shankar et al. (2000)
[30]):

meq
3 = 6(C2

s − 4)ρ +
j2x + j2y

ρ
(10)

meq
4 =

j2x − j2y
ρ

(11)

meq
5 =

jx×y

ρ
(12)

meq
6 = −jx (13)

meq
7 = −jy (14)

meq
3 = ρ−

j2x + j2y
ρ

(15)

This model was applied to study a viscous fluid
with speed of sound cs = 1/sqrt(3) and kine-
matics shear viscosity ν = 1/3(1/s4 − 1/2). It
is found that too large mean velocity of the
model could induce numerical instabilities. In
practical the velocity should not exceed 0.2 in
the whole fluid domain. If this is satisfied, the
velocity dependent corrections to the contin-
uous Navier-Stokes equations are quite small.
Numerous tests prove that this LB moment
model provides a satisfactory second order sim-
ulation technique.

ii.2 LB for temperature field

The double distribution functions are adapted
to simulate the temperature. A same moment
model is applied except that the first moment
described the last session to calculate density
turns to calculate temperature, the collision.
The relaxation step becomes related to node
velocity obtained by last session. Therefore,
the interaction of velocity and temperature is
realized in a computational way. To save the
calculation time, a D2Q5 model is used for
energy equation instead of the D2Q9 model.
The simulation results expressed later would
show that this simplifying method is effective.
Because of temperature difference between the
two vertical walls, the buoyancy f = aT(x, t) is
produced in the direction of y direction. Where
a is equal to gβ and it plays the role of gβ in
a real fluid, g being the acceleration due to
gravity and β being the thermal expansion co-
efficient. The buoyancy is acting as a body
force and modifies the linear momentum con-
servation in the collisions. Thus the formulas
(7) and (8) turn to:

mac
1 = mbc

1 + fx (16)

mac
2 = mbc

2 + fy (17)

where fx and fy are respectively the x and y
components of the body force. Obviously, in
view of simulation method, temperature and
velocity are associated. We define the average
Nusselt number as (R. Bennacer [4]):

Nu =
1

k2∆TN ∑ vyrijT(rij)− 1 (18)

Note that the value of ∆T may be taken as 1.
The Strouhal number is often given as:

St =
f H

Umax
(19)

where f is the frequency of vortex shedding, H
is the characteristic length and Um is the flow
velocity.

ii.3 Algorithm validation

Figure (3) shows the vx and vy velocities along
the mid-sections in the x and y directions for
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Figure 3: vx and vy velocity components on the vertical
and horizontal mid-planes for Re = 102 and
103 at Gr = 102

Re = 102, and 103 at Gr = 102 when there is a
lid driven cavity flow. The results closely agree
with the Navier-Stokes results of Iwatsu et al
[1].

The verification of the current algorithm is
carried out in two folds. First, the present nu-
merical solution is verified against two docu-
mented numerical studies. Namely, the numer-
ical solutions reported by Iwatsu et al. [1] and
Khanafer et al.[3], which is based on a finite vol-
ume scheme. The findings of the comparisons
are documented in Tables (2) and (3) for the
bounds on the magnitudes of the velocity com-
ponents and the average Nusselt number pre-
dictions, respectively. Both comparisons illus-
trate close proximity in the predictions made
between the various solutions. The second fold
is a comparison between the predicted stream
function contours under steady state condition
of the present work to that of Khanafer et al.
[3]. As displayed in figure (4), the comparison
strikes an excellent agreement between both
studies. Further validation case studies are
documented in [1] and [3]. These validation
cases boost the confidence in the numerical
outcome of the present work.

Figure 4: Comparison of the Driven-cavity stream func-
tion between Iwatsu et al (a) and the present
work (b) for Re = 103, Gr = 102

III. Results and discussion

As stated earlier, the overall objective of the
current investigation is to explore time depen-
dent laminar mixed convection heat transfer in
a lid-driven cavity. The implications of varying
the Reynolds number, Grashof number and
the lid oscillation frequency will be empha-
sized. The results are presented in terms of
the temporal variation of the velocity and tem-
perature profiles, streamline and isotherm pat-
terns. The Reynolds number was varied be-
tween 102 and 103. In addition, the domain of
Grashof number and dimensionless lid oscil-
lation frequency were varied in the range of
102 ≤ Gr ≤ 106, 0.1 ≤ ω ≤ 5 according to
Khanafer et al [3], respectively. The study of
the effect of the Reynolds number performed
for values of Gr = 100 and ω = 0.5. The
usual dimensional speed components (vx, vy)
and temperature T are plotted in the respective
median sections of the cavity. The temporal
variation of velocity and temperature profiles
is presented for Re = 102 as shown in Figure
(5). For positive lid velocity values 0 ≤ t ≤ π,
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Re = 102 Re = 103

(vx/Um)min (vy/Um)min (vy/Um)max (vx/Um)min (vy/Um)min (vy/Um)max

Iwatsu et al. −0.2037 −0.2448 0.1699 −0.3781 −0.5178 0.4159
Khanafer et al. −0.2093 −0.2482 0.1720 −0.3718 −0.5038 0.3588
present results −0.2005 −0.2437 0.1637 −0.3598 −0.4810 0.3498

Table 2: Comparison of the limits of velocity components between the present solution and other solutions at Gr = 102

Gr = 102 Gr = 104 Gr = 106

Iwatsu results Iwatsu Results Iwatsu Results

Re = 102 1.94 1.97 1.34 1.61 1.02 1.02
Re = 4.102 3.84 3.84 3.62 3.60 1.22 1.21
Re = 103 6.33 6.30 6.29 6.30 1.77 1.80

Table 3: Comparison of the average Nusselt number at the top wall between the present and Iwatsu solutions

the mechanically induced shear force increases
the force of the horizontal velocity. On the
other hand, the speed of the cover modifies its
sign once it enters the second half of the cycle
π ≤ t ≤ 2π. As a result, the horizontal veloc-
ity component reverses the direction, therefore,
loses much of its intensity in the vicinity of
the lid region when confronted with the force-
supported feedback action (buoyancy). The
profile of the vertical speed component indi-
cates a preferred increase in the first half of the
speed cycle. The increase of Reynolds number
to 1000, as shown in figure (6), brings about
appreciated increase in the offered shear force
and, subsequently, higher flow activities. Con-
sequently, both velocity components register
larger magnitudes in the bulk of the cavity. As
a result, a greater flow penetration depth is
achieved and the temperature profile is shown
to depict significant convection heat transfer
contribution to the overall energy transport
process while conduction heat. the streamline
and isotherm patterns due to the variation in
Grashof number is presented for Re = 102 and
ω = 1. Figure (7) shows a primary vortex oc-
cupying a large part of the cavity for all the
periods considered. This implies that the fluid
is well mixed. We also note that the negative
values of the cover speed cause the center of
the vortex to move from right to left when the
sliding cover changes direction. Furthermore,

the intensity level of the line is weakened at
this stage due to the apparent opposing forces
of shear and buoyancy that hinder the pene-
tration of the downward current. As a result,
the isothermal patterns become laminated ex-
cept in the vicinity of the sliding cover when
Re = 1000 as shown in Figure (8), the flow
is enhanced which facilitates the increase of
the heat transfer process. This manifests that
convective heat transfer has become the main
energy vector in this case. In addition, the
shear force provides a counter-reaction to the
sustained buoyancy effect for the negative ve-
locity of the lid, as previously indicated. Due to
the overwhelming effect of the existing shear-
ing force, the two secondary vortices’s are ob-
served to be displayed on the upper sides of
the cavity. The isotherms are therefore grouped
near the bottom wall, indicating the existence
of high temperature gradients in the vertical
direction.

The streamline and isothermal profiles due
to the variation of the Grashof number are
shown in figures (9) and (10) for Re = 102,
ω = 1 and 0 ≤ t ≤ 2π. As the number of
Grashof increases, the intensity of convection
intensifies in the cavity due to the increase in
buoyancy effect. This is evident from the sub-
stantial flow increase in the cavity at different
times. The buoyancy effect facilitates flow in
the positive velocity cycle while counteracting
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the shear effect in the negative velocity cycle.
This is demonstrated by figure (9) from the
existence of a secondary vortex near the top
wall for the negative oscillation conditions of
the lid. The secondary vortex is clearly visible
at the negative oscillation rate for a relatively
small Reynolds number value. In addition, the
calculated isotherms are qualitatively similar to
the steady state solution of mixed convection
induced cavity flows under positive oscillation
velocity conditions.The swing lid counteracts
the effect of natural convection, which hinders
heat transfer activities and primarily forces to
conduction. As the Grashof number increases
to 106, the primary swirl cell splits into smaller
swirls due to a high buoyancy effect that ex-
ceeds the effect of oscillation velocity, as shown
in figure (10). In addition, the isothermal plot-
ted for the oscillation rates indicate a signifi-
cant decrease in the contribution of convective
heat transfer to the overall rate of heat transfer
over Gr = 102. Figure (11) shows that for
small values of Grashof number Gr = 102 the
main vortex moves towards the cavity center
when the Reynolds number increases, because
the effect of forced convection is dominant.
However,when the Grashof number becomes
more important, the vortex that appears does
not penetrate into the cavity. It remains near
the upper wall, because of the buoyancy effect
becomes stronger. Heat transfer as shown in
figure (12) is important for low Grashof num-
ber values and high Reynolds number values,
on the contrary when the Grashof number in-
creases the rate of heat transfer decreases.

Figure (13) shows the variation of the oscil-
lation frequency for Re = 102, 103 at Gr = 102.
This presents the streamlines for ω, and implies
that the incorporation of a relatively low value
ω (ω = 0.1) facilitates the predominance of
shear on the effect of buoyancy. This will there-
fore allow additional penetration of the flow
associated with the cover down into the cav-
ity at the expense of the movement generated
by the buoyancy. Such a scenario is reversed
when larger (ω = 5). The buoyancy effect be-
comes more pronounced (the appearance of
secondary vortices’s) because it seems to limit

the effectiveness of the shear force at a close
distance from the sliding cover. Apparently,
increasing ω reduces the downward effect of
lid movement on the fluid. It is interesting
to note that when the normalized frequency
is relatively small, the increase in convective
heat transfer is apparent under this condition
shown in figure (14) . As the frequency value
increases, the excitation of fluid movement pro-
vided by the sliding cover is limited to a low
fluid depth. This causes the fluid to become
substantially immobile in most of the inner
region. As a result, the heat transfer process
decreases in this situation. The results for the
variation of oscillation frequency for Gr = 102

and 106 at Re = 102 is shown in Figures (15).

This implies that the incorporation of a value
ω (ω = 0.1) relatively weak facilitates the pre-
dominance of shear on the effect of buoyancy.
As ω and Gr become larger, the buoyancy effect
becomes larger. Increasing ω and Gr clearly re-
duces the downward effect of lid movement on
the fluid. Figure (16) shows that when the fre-
quency value and Gr increase, we do observe
the same phenomenon as in Fig.(14). The num-
ber of local Nusselt with the hot upper wall
decreases as a function of time, unlike the cold
bottom wall it increases slightly until it reaches
a fixed value (stability) for different values of
Re as it is shown on figures (17).

The Reynolds number effect on the Nusselt
number is shown in the figure (18), the results
showing that when the increase in Re the Nu
increases also for the upper and lower walls,
this is due to the high effect of the shear force,
we also see that the Nu along the upper wall
decreases as a function of time. It is the oppo-
site for the lower wall the increased Nu, these
results can be explained by the fluid mixture,
which results in the convective heat transfer be-
tween the two walls. As shown in Figure (18),
the Nusselt number of upper wall increases
as a function of Reynolds number, which in-
dicates increased heat transfer with Reynolds
number. Flow through a moving wall is as-
sumed to be compared to laminar flow on a
flat plate. The Blasius equation giving the or-
ders of magnitude of the dimensional thermal
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boundary layer (δ) at a distance y is given by:

δ = Re−1/2.y (20)

Where (δ) is the displacement thickness. The
curve seems to be a linear curve for Reynolds
values (Re ≥ 500), the variation of the heat
transfers represented by the Nusselt number
(Nu ≈ 1/δ):

Nu ≈ Re1/2 (21)

The adjusted Nusselt number is given by:

Nu = 0.25× Re0.462 (22)

Figure (19) shows the mean number of Nu
Nusselt as a function of the buoyancy forces
(Gr) and the movement driven by the cover
(Re).The curve clearly indicates that heat trans-
fers decrease significantly with forced convec-
tion when Gr2 < Re. After that there is a small
increase in transfer rate with natural convec-
tion when Gr2 > Re. The effect of frequency
variation on the Nusselt number is shown in
Figure (20). There is a decrease in Nusselt
number depending on the frequency. The ad-
justed Nusselt number is given by:

Nu = 1.8×ω−0.2 (23)

Evolution The number of Nusselt is given as:

Nu ≈ ω−1/5 (24)

It is noted that the decrease of Nu is very
strong for small values of the frequency, but
for values of greater frequency the number of
Nusselt varies slightly, due to the increase of
the effect of the buoyancy force, so the fluid is
well mixed.

IV. Conclusion

The LBM moment model was applied to sim-
ulate mixed flow in a square cavity. External
excitation was imposed on the movement of
the lid. The study was conducted for a number
of relevant dimensionless groups, namely the
Reynolds number (Re = 100, 400 and 1000),
the Grashof number (Gr = 102, 104 and 106)
and the dimensionless oscillation frequency of

the sliding cover (ω = 0.1, 1 and 5). The ob-
tained results present stable periodic solutions.
Such results show that the Reynolds number
and the Grashof number have a profound ef-
fect on the structure of the fluid flow and the
heat transfer of the fields. In fact, their effects
are associated with the direction of the sliding
lid. In addition, the results indicate that the
shear force imposed on the sliding cover in-
creases with increasing Reynolds number and
lid frequency and it decreases as the Grashof
number increases. The number of local Nusselt
at the top wall heats starts with a high value
especially for high values of Reynolds num-
ber and then decreases rapidly. thus for cold
bottom wall The number of Nusselt shows an
increase. When the Grashof number is large
relative to a constant Reynolds number, the
flow rate changes from forced convection to
natural convection. However, the number of
Nusselt decreases according to Grashof num-
ber. On the contrary, when the Grashof number
is constant, the Reynolds number has a large
effect on the Nusselt number. So, the forced
convection dominates the flow. In the con-
text of the Reynolds, Grashof numbers and fre-
quencies studied in this article, two trends are
obtained to evaluate the evolution of Nusselt
numbers. Induced heat transfer depends on
Gr−1/12, Re1/2 or ω−1/5, respectively dominat-
ing natural convection and forced convection.
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Figure 5: Variation of the velocity and vertical temperature profiles at the respective mid sections for Re = 102,
Gr = 102 and ω = 1
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Figure 6: Variation of the velocity and vertical temperature profiles at the respective mid sections
for Re = 1000, Gr = 102 and ω = 1
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Figure 7: Variation of the streamline contours for Re = 100 and 1000 at deferents periods
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Figure 8: Variation of the isotherm contours for Re = 100 and 1000 at deferents periods
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Figure 9: Variation of the streamline contours for Gr = 102 and 106 at deferents periods
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Figure 10: Variation of the isotherm contours for Gr = 102 and 106 at deferents periods
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Figure 11: Variation of the streamlines for different values Re and Gr at ω = 1
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Figure 12: variation of the isotherms contours for different values Re and Gr at ω = 1
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Figure 13: Variation of the streamlines contours for different frequency and Reynolds number Re = 102 and 103
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Figure 14: Variation of the isotherms contours for different frequency and Reynolds number Re = 102 and 103
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Figure 15: Variation of the streamlines contours for different frequency and Grashof number Gr = 102 and Gr = 106
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Figure 16: Variation of the isotherms contours for different frequency and Grashof number Gr = 102 and 106
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Figure 17: Nusselt number at upper and bottom wall for Re = 100 (a) and Re = 1000 (b)
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Figure 18: Nusselt number at different Reynolds numbers at Gr = 100 and ω = 0.5

Figure 19: Number of Nusselt at different Grashof number at Re = 100 and ω = 0.5
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Figure 20: Nusselt number at upper wall for different frequency at Re = 100 and Gr = 100
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