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his pper ddresses the winner determintion prolem @hA for v trnsE porttion prourement utions under unertin shipment volumes nd unE ertin rriers9 pityF st extends n existing twoEstge roust formultion proposed for the h with unertin shipment volumesF he pper identiE (es nd theoretilly vlidtes numer of elerting strtegies to speed up the onvergene of si onstrint genertion lgorithm proposed in the litertureF ixperimentl results prove the high omputtionl performne of the proposed new lgorithm nd the relevne of onsidering unertinty on the rriers9 pity when solving the hF

twoEstge roust optimiztionD onstrint genertionF 1. Introduction gomintoril utions re inresingly used mrket mehnisms for the strtegi prourement of otl ruklod @vA trnsporttion serviesF rukE lod prourement mrkets generlly imply two min torsX @iA shippers who need to outsoure ll or prt of their trnsport opertionsD nd @iiA rriers who possess the required ssets to o'er trnsport servies @gplie nd he0D PHHTAF trtegi prourement implies tht the shipper seeks longEterm enE ggement with set of rriers @one to three yersAF sn n ution ontextD the shipper is the utioneerF st presents its trnsporttion requests to set of rriers tht re invited to prtiipte in the utionD possily fter preEseletion phseF he prtiipting rriers ompete y sumitting ids on the shipper requests @shipmentsAF sn omintoril utionD ids re permitted on pkge of shipmentsF oD either ll the shipments of the id re llotedD or nothing t llF gomintoril idding enles thus rriers to optimize their network y minimizing empty routes nd lning lodsD exploiting thus the eonomies of sle nd sope hrterizing v mrkets @vee et lFD PHHUY ong nd egnD PHHSAF his would result in ttrtive trnsporttion rtes for the shipperF huring the ution proessD three min deisionl prolems re ddressedX the id onstrution prolem @lso lled id genertion prolemAD the inE ner hetermintion rolem @hAD nd the priing prolem @erhe et lFD PHHUAF he id onstrution prolem is fed y the rrier nd onsists in determining the set of pro(tle nd promising ids it should sumit to the utionF he h nd the priing prolem must rther e solved y the shipper @or more generllyD the utioneerAF he h onsists in determinE ing the set of winning ids tht optimize the shipper ojetive@sAF he priing prolem determines the prie tht should e lloted to eh winning rE rierF yur pper ddresses the h in omintoril v trnsporttion P prourement utionF he mjority of pulished ppers deling with h in v trnsporttion servies prourement utions ssume deterministi environment where ll dt is ssumed known with ertintyF roweverD suh n ssumption seems unrelistiX the ution is run t the strtegi phse nd intends to uild longE term ontrts with the winning rriersF iven e0ient foresting systems nnot predit the ext volumes to e shipped etween di'erent lotions for the upoming one to three yersD nor the ext ville rriers9 pityF es will e pointed out y our literture reviewD the reserh on unertin h for the prourement of v trnsporttion servies is still emryoniF o the est of our knowledgeD ll the pulished ppers ddress unique unE ertin prmeter relted to the shipment volumes requested y shippersF sn the followingD this prolem is referred to s hEh @h with tohsti hemndAF woreoverD the solution pprohes proposed to dte for hEh still need to e improved to solve lrge instnes in resonle omputing timesF yur pper ims t (lling some of these gps yX @IA ddressing novel prolem with n dditionl unertin prmeterX the rriers9 pityD @PA proposing new lgorithm to speed up the onvergene of si onstrint genertion lgorithm proposed in the literture for the hEh nd e0E iently solve the new prolem ddressedD nd @QA nlyzing the relevne of onsidering unertinty on rriers9 pity on the ution outomesF o the est of our knowledgeD this is the (rst time tht unertinty on oth shipment volumes nd rriers9 pity is ddressed nd nlyzedF sn the followingD the prolem deling with unertinty on oth shipper deE mnd nd rriers9 pity is referred to s hEhg @h with tohsE ti hemnd nd gpityAF gonsidering unertinty on rriers9 pity is importntF sndeedD rriers generlly do not use very elorte pprohes when generting their pkge idsF isk seeking rriers im to win s mny ontrts s possile leving the tsk of mnging their pity to the opE ertionl levelF yther rriersD if less riskyD generlly hve some di0ulties Q to urtely predit their ville pity on dily or weekly sis given the omplexity of their trnsporttion network nd the existene of vriety of ommitments with other shippersF yur pper extends the twoEstge roust formultion proposed y emli nd ekik @PHIQA for hEhF e investigte numer of strtegies to elerte the onvergene of the ext solution lgorithm presented therein so tht the two unertin prmeters ould e simultneously ddressedF yur experimentl results lerly prove the e0ieny of the proposed strtegiesF pirstD when ompred to the si onstrint genertion lgorithm proposed in emli nd ekik @PHIQAD our new lgorithm requires less thn hlf of the time needed for 70% of the instnes solved in emli nd ekik @PHIQAF st lso solves the 15 instnes tht were not solved in emli nd ekik @PHIQAF eondD our lgorithm performs very well for the 180 new instnes we generte for hEhgF he verge omputtionl time is out 1.73 hours nd we were le to solve to optimlity instnes inluding up to 100 utioned ontrtsD 40 rriers nd 800 idsF yur experimentl study lso nlyzes the impt of onsidering unerE tinty on rriers9 pity on the ution outomesF his is done y omE pring trnsporttion ostsD winning ids nd winning rriers under two ontextsX ontext where only demnd on shipment volumes is unertin nd ontext where oth shipper9s demnd nd rriers9 pity re unerE tinF yur results prove tht dding this new unertin prmeter results in sustntil hnge in the (rst stge deisions @winning rriersD ontrts ssigned to idding rriersA nd in trnsporttion ostsF oD ddressing unE ertinty on rriers9 pity with roust optimiztionD lthough mking the prolem hrder to solveD results in (rstEstge deisions tht would hve een di'erent if only unertinty on demnd ws onsideredF e further investigte the ltter oservtion y onsidering the optiml (rstEstge soluE tions otined under the h @when only demnd is unertinA nd the hg @when oth demnd nd pity re unertinA ontexts nd omputing the R trnsporttion osts yielded y the orresponding reourse prolem for set of rndomly generted senriosF yur results prove tht the (rstEstge soluE tion under the hg ontext lwys yields monetry svings when ompred to the ost resulting from the (rstEstge solution under the h ontextF he reltive monetry sving exeeds 41% for some instnesF he reminder of the pper is s followsF etion P is literture reE view on reent reserh deling with unertinty in h for v servies prourementF etion Q desries the twoEstge roust formultion proposed for hEhgF st rie)y rells the deterministi nd the twoEstge roust formultions proposed y emli nd ekik @PHIQA for hEhF etion R identi(es nd theoretilly vlidtes numer of elerting strtegies for the ext lgorithm presented in emli nd ekik @PHIQAF etion S presents our omputtionl resultsF pinllyD etion T summrizes our (ndings nd opens future reserh venuesF 10 ids per rrierF por ll the instnesD the stohsti solution is generted y solving the equivlent deterministi model for 10 smples of size 10 using gvi IPFRF olution times rnge etween 94 nd 1761 seonds for the T lrgest instne @300 lnesD 25 rriers nd 10 ids per rrierAF emli nd ekik @PHIQA onsider lmost the sme prolem setting s in w et lF @PHIHA ut model it using roust optimiztion tehniquesF st is ssumed tht no proility distriution is ville on the unertin deE mndsF nertinties re rther represented using intervl numersF snspired y the work of fertsims nd im @PHHQD PHHRAD the uthors lso onsider the onept of udget of unertinty to hndle relisti ontexts nd void unommon worstEse senriosF he udget of unertinty is prmeter preEspei(ed y the shipper tht restrits the totl devition of demnds from their nominl vlues @qrel et lFD PHIRAF e onstrint genertion lgorithm is developed to solve the two stge roust formultionF et eh itertionD mster prolem nd reourse prolemD oth modelled s wssD re solved using gvi IPFRF he experimentl study onsiders instnes inluding up to 600 lnesD 120 rriers nd 10 ids per rrierF olution times vry eE tween 57 nd 25065 seonds @lmost U hoursAF 15 instnes remin unsolved within 10 hours @these instnes orrespond to prolem setting with 200 lnesD 80 rriers nd 20 ids per rrierAF hng et lF @PHISA proposed twoEstge roust formultion for the h under unertin shipment volumesF he prolem setting is lmost the sme s in emli nd ekik @PHIQA exept tht shortges in the volumes ssigned to rriers re permitted ut penlized @s in hng et lF @PHIRAA nd no onstrints on minimum nd mximum volumes ssigned to winning rriE ers re imposed y the shipperF hng et lF @PHISA prove tht their roust model remins vlid if lne n e ttriuted to more thn one rrierF he uthors pply entrl limit theorem sed pproh to onstrut the deE mnd unertinty set where only the men nd the vrine of the shipping demnds re to e knownF heir pproh hndles the ses where demnd on lnes re either independent or orreltedF wo solution pprohes re presented nd ompredX @IA onstrint genertion lgorithm following the sme priniple s tht proposed y emli nd ekik @PHIQA ut in whih U the reourse prolem is more omplex @it nnot e redued to ws s in emli nd ekik @PHIQA given the de(nition of the unertinty setAY nd he deterministi winner determintion prolem is thus formulted using model @A s followsX

IP (W)                                                                  min t∈T b∈Bt (1 + p t )c tb y tb + l∈L ce l e l s.t. t∈T b∈Bt a l tb y tb + e l ≥ d l , l ∈ L LV tb x tb ≤ y tb ≤ U V tb x tb , t ∈ T, b ∈ B t b∈Bt x tb ≤ 1, t ∈ T t∈T b∈Bt a l tb x tb ≤ 1, l ∈ L N min ≤ t∈T b∈Bt x tb ≤ N max q t b∈Bt x tb ≤ b∈Bt y tb ≤ Q t b∈Bt x tb , t ∈ T x tb ∈ {0, 1}, y tb ≥ 0, t ∈ T, b ∈ B t e l ≥ 0, l ∈ L (1) 
(2)

(3) (4) (5) (6) (7) (8) (9) 
he ojetive funtion @IA minimizes the shipper trnsporttion ostF gonstrints @PA ensure tht the volume requested y the shipper on eh lne is stis(ed either y the ids sumitted in the ution or through the spot mrketF gonstrints @QA trnslte the minimum nd mximum volume restritions on the volume lloted to rrier if the orresponding id winsF gonstrints @RA model the y iddingF gonstrints @SA ensure tht eh lne l is ssigned to one prtiipting rrier t mostF gonstrint @TA sets ounds on the numer of winning rriersF gonstrints @UA speify the minimum nd mximum volume tht eh rrier t ∈ T is llowed to ship if it winsF gonstrints @VA nd @WA re inryD respetivelyD nonEnegtiveD onstrints on x tb D respetivelyD y tb nd e l vrilesF 3.3. Robust model es in emli nd ekik @PHIQAD we propose to model the stohsti h s twoEstge roust formultion where vriles x tb representing the winE ning ids re the (rstEstge vriles nd vriles y tb D respetivelyD e l repE resenting the volumes of shipments lloted to winningD respetivelyD spot IQ rriers re the seondEstge vriles @lso lled reourse vrilesAF e onsider here unertinty on oth the demnd nd the rriers9 E pityF ell tht unertinty on these prmeters is modelled y intervl numersF xmelyD eh demnd d l on lne l ∈ L is known to elong to n intervl [d l -dl , d l + dl ]D where d l is the nominl demnd nd dl ≥ 0 is the mximum devitionF his is omined with the onept of udget of unertinty Γ d whih restrits the totl devition of the demnds from their nominl vlues to pre(xed vlue Γ d F emli nd ekik @PHIQA oserved tht when the udget of unertinty Γ d is integer Ewhih we ssume in the rest of the pperED it represents the numer of lnes for whih the demnd devites from its nominl vlue nd tkes the worst vlue @iFeFD the gretest oneA d l = d l + dl @we refer the reder to emli nd ekik @PHIQA for more detilsAF o ddress unertinty on the rriers9 pityD we de(ne n intervl

[U V tb -U V tb , U V tb + U V tb ]D for eh rrier t ∈ T nd eh id b ∈ B t D
where U V tb is the nominl pity nd U V tb ≥ 0 is the orresponding mximum devitionF por eh rrier tD udget of unertinty Γ t is onsidered to restrit the totl devition of the pities from their nominl vlues to Γ t F es for the demndD when the udget of unertinty Γ t is integer Ewhih we ssume in the rest of the pperE it represents the numer of ids sumitted y rrier t for whih the pity devites from its nominl vlue nd tkes the worst vlue @iFeFD the lowest oneA U V tb = U V tb -U V tb F reneD for given vlues of the vetor Γ = (Γ d , (Γ t ) t∈T )D the roust winner determintion prolemD denoted rob (Γ)D onsists in seleting the winning ids nd the ssoited volumes t the minimum ostD suh tht the worst demands Edelimited y Γ d E nd the worst pities Edelimited y Γ t , t ∈ T E re stis(edF st is formulted s followsX

IR rob (Γ)                          min opt(R(x, Γ)) sFtF b∈Bt x tb ≤ 1, t ∈ T t∈T b∈Bt a l tb x tb ≤ 1, l ∈ L x min ≤ t∈T b∈Bt x tb ≤ x max x tb ∈ {0, 1}, t ∈ T, b ∈ B t
where opt(R(x, Γ)) represents the optimum vlue of the reourse prolemX

R(x, Γ) max (d,U V )∈U (Γ) min (y,e)∈Y(x) t∈T b∈Bt (1 + p t )c tb y tb + l∈L ce l e l he unertinty set U(Γ) is de(ned yX U(Γ) = {d ∈ R |L| : d l = d l + z l dl , l ∈ L, z ∈ Z(Γ d ), U V tb ∈ R |T |×|Bt| : U V tb = U V tb -ζ tb U V tb , t ∈ T, b ∈ B t , ζ ∈ Z (Γ t ), t ∈ T }
where

Z(Γ d ) = {z ∈ R |L| : l∈L z l ≤ Γ d , 0 ≤ z l ≤ 1, l ∈ L} nd Z (Γ t ) = {ζ ∈ R |T |×|Bt| : b∈Bt ζ tb ≤ Γ t , t ∈ T, 0 ≤ ζ tb ≤ 1, t ∈ T, b ∈ B t } he fesile set Y(x) inludes ll vetors (y, e) stisfying the following onE IS strintsX t∈T b∈Bt a l tb y tb + e l ≥ d l , l ∈ L @IHA y tb ≥ v tb x tb , t ∈ T, b ∈ B t @IIA y tb ≤ U V tb x tb , t ∈ T, b ∈ B t @IPA b∈Bt y tb ≥ q t b∈Bt x tb , t ∈ T @IQA b∈Bt y tb ≤ t b∈Bt x tb , t ∈ T @IRA y tb ≥ 0, t ∈ T, b ∈ B t ; e l ≥ 0, l ∈ L
he prolem rob (Γ)D desried oveD is minEmxEmin prolem tht is di0ult to solve in its urrent formF pollowing the sme steps s in emli nd ekik @PHIQAD it n e reformulted using the following ws modelF hetils of the di'erent steps re given in the ppendixF

W rob (Γ)                                                            min A s.t. A ≥ l∈L d l u σ l + l∈L dl s σ l + t∈T b∈Bt
x tb q t g σ t -

t∈T b∈Bt

x tb Q t h σ t + t∈T b∈Bt LV tb x tb v σ tb - t∈T b∈Bt U V tb x tb w σ tb + t∈T b∈Bt U V tb x tb f σ tb , σ ∈ S b∈Bt x tb ≤ 1, t ∈ T t∈T b∈Bt a l tb x tb ≤ 1, l ∈ L N min ≤ t∈T b∈Bt x tb ≤ N max A ≥ 0, x tb ∈ {0, 1}, t ∈ T, b ∈ B t (15) (16) (17) ( 18 
)
where S is the set of the extreme points

(u σ , s σ , v σ , w σ , f σ , g σ , h σ ), σ = 1...|S| IT of the reourse prolem Q (x, Γ) formulted s X Q (x, Γ)                                                                  max l∈L d l u l + l∈L dl s l + t∈T b∈Bt v tb x tb v tb - t∈T b∈Bt U V tb x tb w tb + t∈T b∈Bt U V tb x tb f tb + t∈T b∈Bt
x tb q t g t -t∈T b∈Bt

x tb t h t sFtF l∈L a l tb u l + v tb -w tb + g t -h t ≤ (1 + p t )c tb , t ∈ T, b ∈ B t u l ≤ ce l , l ∈ L l∈L z l ≤ Γ d s l ≤ ce l z l , l ∈ L s l ≤ u l , l ∈ L b∈Bt ζ tb ≤ Γ t , t ∈ T f tb ≤ M ζ tb , b ∈ B t , t ∈ T f tb ≤ w tb , b ∈ B t , t ∈ T z l ∈ {0, 1}; s l , u l ≥ 0, l ∈ L v tb , w tb , f tb , g t , h t ≥ 0, ζ tb ∈ {0, 1} t ∈ T, b ∈ B t
he vriles u l , v tb , w tb , g t , h t re the dul vriles of the minimiztion prolem ssoited with onstrints @IHAE@IRAF yserve tht vriles s l , l ∈ L nd f tb , t ∈ T, b ∈ B t re introdued to linerize the reourse prolem whih is originlly iliner @s desried in the ppendixAF edding these vriles requires de(ning ig onstnt w to link f tb nd ζ tb vrilesF porD s l nd z l linking onstrintsD we use ce l s onstnt ig M s suggested in emli nd ekik @PHIQAF wore detils on the reourse prolem lineriztion re given in the ppendixF Step 0: Initialization Dene and solve the problem W 0 (Γ) containing no extreme point of the recourse problem (we suppose that

u 0 = v 0 = w 0 = g 0 = h 0 = z 0 = ζ 0 = 0). Set LB 0 ← -∞, UB 0 ← +∞, r ← 0. Go to Step 1.
Step 1: Solve the master problem

W r (Γ)                                                          min A s.t. A ≥ l∈L d l u i l + l∈L dl u i l z i l + t∈T b∈Bt
x tb q t g i t -

t∈T b∈Bt

x tb Q t h i t + t∈T b∈Bt LV tb x tb v i tb - t∈T b∈Bt U V tb x tb w i tb + t∈T b∈Bt U V tb x tb w i tb ζ i tb , i = 0 . . . r b∈Bt x tb ≤ 1, t ∈ T t∈T b∈Bt a l tb x tb ≤ 1, l ∈ L N min ≤ t∈T b∈Bt x tb ≤ N max A ≥ 0, x tb ∈ {0, 1}, t ∈ T, b ∈ B t
and denote (x r , A r ) its optimal solution. Update LB r ← A r , and go to Step 2.

Step 2: For the xed assignments x r , solve the recourse problem Q (x r , Γ) and denote (u r+1 , v r+1 , w r+1 , g r+1 , h r+1 , z r+1 , ζ r+1 ) its optimal solution. Set

UB r ← min{UB r-1 , l∈L d l u r+1 l + l∈L dl u r+1 l z r+1 l + t∈T b∈Bt x r tb q t g r+1 t - t∈T b∈Bt x r tb Q t h r+1 t + t∈T b∈Bt LV tb x r tb v r+1 tb - t∈T b∈Bt U V tb x r tb w r+1 tb + t∈T b∈Bt U V tb x r tb w r+1 tb ζ r+1 tb }
if UB r = LB r then return (x r , A r ) as an optimal solution to the problem W rob (Γ); else r ← r + 1. Go to Step 1. end if IW he ide of elgorithm I is to strt solving relxtion of rob (Γ) inE luding none of onstrints @ISAF gonstrints @ISA re then dded itertively @the itertor ounter is denoted rAD one t timeD until n optiml solution is foundF qenerting onstrint @ISA t n itertion r implies (nding n extreme point in SF his is done y solving the reourse prolem Q (x r , Γ) to optimlityD where x r is n optiml solution of relxtion of the mster prolem rob (Γ) t itertion rD denoted r (Γ)F et eh itertionD lower ound LB nd n upper ound U B for the originl prolem rob (Γ) re updted nd ompredF he lgorithm termintes when LB = U BD whih proves the optimlity of the otined solutionF et eh itertion rD the lower ound LB is updted nd tkes the vlueD denoted A r D of the optiml ojetive funtion of r (Γ)F yviouslyD A r is vlid lower ound sine r (Γ) is relxtion of rob (Γ) @it inludes less onE strintsAF fesidesD the optiml solution x r of r (Γ) is fesile (rstEstge solution @it stis(es onstrints @ITAE@IVAAF st n thus e used to solve the reE ourse prolem Q (x r , Γ) nd otin fesile dul seondEstge solutionD deE noted (u r+1 , v r+1 , w r+1 , g r+1 , h r+1 , z r+1 , ζ r+1 )F ell tht it is ssumed tht the reourse prolem is lwys fesileF reneD t itertion rD one n derive the vlue of the ojetive funtion of rob (Γ) in fesile solutionD whih is given y X l∈L

d l u r+1 l + l∈L dl u r+1 l z r+1 l + t∈T b∈Bt x r tb q t g r+1 t - t∈T b∈Bt x r tb t h r+1 t + t∈T b∈Bt v tb x r tb v r+1 tb - t∈T b∈Bt U V tb x r tb w r+1 tb + t∈T b∈Bt U V tb x r tb w r+1 tb ζ r+1
tb F his onstitutes n upper ound for the originl minimiztion prolem rob (Γ) F 4.2. Accelerating the basic constraint generation algorithm yur min oservtion with regrd to elgorithm I is tht models r+1 (Γ) nd r (Γ) solved t itertions r nd r + 1D respetivelyD di'er only y unique onstrint of type @ISAF his onstrint is generted through solving the reourse prolem Q (x r , Γ) ssoited with the optiml solution x r of r (Γ)F yur min improvement strtegy onsists in generting multiple vlid inequlities for r (Γ) within the sme itertionF his would help improve PH the qulity of the lower ounds @LB r A nd derese the totl numer of itertions of the lgorithmF yne n lso notie tht model 0 (Γ) solved t the (rst itertion @r = 0A inludes no uts of type @ISAF e propose thus to dd vlid ut when inititing the lgorithmF pinllyD we propose to ound the ojetive vlue of model r (Γ) t eh itertion r y pproprite vluesF e roughly present herefter the new onstrint genertion lgorithm we propose @elgorithm PAF wore detils on eh step re given in the following susetionsF PI Algorithm 2 smproved onstrint genertion lgorithm

Step 0: Initialization Set LB -1 ← -∞, UB -1 ← +∞, LB 0 ← -∞, and UB 0 ← +∞. Set r ← 0, D 0 = ∅, X 0,LS = ∅.

Step 1: Generate an initial cut as described in Algorithm 3 (see Section 4.2.2). Go to Step 2.

Step 2: Solve the master problem

W r (Γ)                                                                    min A s.t. A ≥ l∈L d l u i k l + l∈L dl u i k l z i k l + t∈T b∈Bt x tb q t g i k t - t∈T b∈Bt x tb Q t h i k t + t∈T b∈Bt LV tb x tb v i k tb - t∈T b∈Bt U V tb x tb w i k tb + t∈T b∈Bt U V tb x tb w i k tb ζ i k tb , i = 0 . . . r; k = 0 . . . K i b∈Bt x tb ≤ 1, t ∈ T t∈T b∈Bt a l tb x tb ≤ 1, l ∈ L N min ≤ t∈T b∈Bt x tb ≤ N max LB r-1 ≤ A ≤ U B r-1 A ≥ 0, x tb ∈ {0, 1}, t ∈ T, b ∈ B t (19) (20) 
where K r = |D r-1 | + |X r-1,LS | -1 if r = 0, and K 0 = 0. Denote (x r , A r ) its optimal solution. D r = ∅. In set D r , store all the intermediary feasible solutions encountered while solving W r rob (Γ) . Solutions are placed in a descending order with respect to the corresponding objective value (see Section 4.2.3). Update LB r ← A r , and go to Step 3.

Step 3:

For the xed assignments x r , solve the recourse problem Q(x r , Γ). Denote (u (r+1) 0 , v (r+1) 0 , w (r+1) 0 , g (r+1) 0 , h (r+1) 0 , z (r+1) 0 , ζ (r+1) 0 ) its optimal solution and Θ r the corresponding optimal objective function value. Set UB r ← min{UB r-1 , Θ r }. if UB r = LB r then return (x r , A r ) as an optimal solution to problem W rob (Γ) else go to Step 4.

end if

Step 4: Generate Local Search (LS) solutions as described in Algorithm 4 (see Section 4.2.4). X r,LS = ∅. Store LS solutions in set X r,LS . Go to step 5.

Step 5: x tb q t gr+1 t -t∈T b∈Bt

for x r k ∈ D r \ {x r } ∪ X r,LS (k = 1 . . . |D r | -1 + |X r,LS |) do Solve the recourse problem Q(x r k , Γ) and denote (u (r+1) k , v (r+1) k , w (r+1) k , g (r+1) k , h (r+1) k , z (r+1) k , ζ (r+1) k ) its optimal solution.
x tb Q t hr+1 t + t∈T b∈Bt LV tb x tb ṽr+1 tb - t∈T b∈Bt U V tb x tb wr+1 tb + t∈T b∈Bt U V tb x r tb wr+1 tb ζr+1 tb
where (ũ r+1 , ṽr+1 , wr+1 , gr+1 , hr+1 , zr+1 , ζr+1 ) is an optimal solution of the recourse problem Q (x r , Γ).

Proof. vet xr e fesile solution of the restrited mster prolem r (Γ) t itertion rF glerlyD xr is fesile (rstEstge solution of the originl @nonE restritedA prolem rob (Γ) F es one n oserveD the fesile set ssoited with the reourse prolem Q (x r , Γ) is independent of xr @x r ppers only in the ojetive funtionAF reneD solving the reourse prolem Q (x r , Γ) yields n extreme point s = (ũ r+1 , ṽr+1 , wr+1 , gr+1 , hr+1 , zr+1 , ζr+1 ) of S nd thus n inequlity of type @ISA tht is vlid for rob (Γ) F fsed on heorem ID we propose to dd n initil ut to initite the lgorithm @tep I of elgorithm PA s well s numer of vlid uts t eh itertion of the lgorithmF his is done y onsidering intermedite feE sile solutions t eh itertion r tht re either strightforwrdly derived from the B&B proedure used for solving the restrited mster prolemD or onstruted using lol serh tehniquesF 4.2.2. Initial cut ell tht elgorithm I is used to solve rob (Γ) for preE(xed vlue of the udget of unertinty Γ = (Γ d , (Γ t ) t∈T )F sn our seD Γ d represents the numer of lnes l for whih the demnd devites from its nominl vlue nd tkes the gretest vlue d l = d l + dl F imilrlyD Γ t , t ∈ T represents the PQ numer of ids b ∈ B t sumitted y rrier t for whih the pity devites from its nominl vlue nd tkes the lowest vlue U V tb = U V tb -U V tb F he ojetive of rob (Γ) onsists in seleting the winning ids nd the ssoited volumes t the minimum ostD suh tht the worst demands E delimited y Γ d E nd the worst pities Edelimited y Γ t , t ∈ T E re stis(edF sn elgorithm ID the initiliztion step @step HA strts with no fesile (rstE stge solution x nd onsequently with no uts of type @ISAF e propose here to initite the proess with (rst ut generted using elgorithm QF PR Algorithm 3 qenerting n initil ut

Step 1 : Generate a scenario ωd = ( dl ) l∈L of demands as follows:

1. Place the lanes l ∈ L in a descending order with respect to their worst demand d l + dl , 2. Dene L as the set of the Γ d rst lanes in the ordered set L,

3. ∀l ∈ L, set dl = d l + dl , 4. ∀l ∈ L \ L, set dl = d l .
Step 2 : For each carrier t ∈ T , generate a scenario ωt = ( Ũ V tb ) b∈Bt of capacities as follows:

1. Place the bids b ∈ B t in an ascending order with respect to their worst capacity U V tb -U V tb , 2. Dene Bt as the set of the Γ t rst bids in the ordered set B t ,

3. ∀b ∈ Bt , set Ũ V tb = U V tb -U V tb , 4. ∀b ∈ B t \ Bt , set Ũ V tb = U V tb .
Step 3 : Solve the deterministic WDP with demand scenario ωd and capacity scenarios ωt , t ∈ T . Let x 0 its optimal solution.

Step 4 : Solve the recourse problem Q(x 0 , Γ) and let (u 0 0 , v 0 0 , w 0 0 , g 0 0 , h 0 0 , z 0 0 , ζ 0 0 ) its optimal solution. The initial cut is the one given by:

A ≥ l∈L d l u 0 0 l + l∈L dl u 0 0 l z 0 0 l + t∈T b∈Bt
x tb q t g 0 0 t -t∈T b∈Bt

x tb Q t h 0 0 t + t∈T b∈Bt LV tb x tb v 0 0 tb - t∈T b∈Bt U V tb x tb w 0 0 tb + t∈T b∈Bt U V tb x tb w 0 0 tb ζ0 0
tb elgorithm Q (rst de(nes senrio of demnds ωd nd rriers pities ωt , t ∈ T tht re likely to e onsidered when solving the reourse prolem @the highest Γ d demnds nd the lowest Γ t , t ∈ T pitiesAF he determinE isti h with these senrios is then solved nd the orresponding optiml (rst stge solution x 0 is retinedF es stted in heorem ID ny (rstEstge PS fesile solution @nd so x 0 A n e used to solve the reourse prolem nd generte vlid ut for rob (Γ) F Step

2: Local search Let α r a β-vector such that ∀t ∈ T, b ∈ Bt, α r tb = x∈D r,mem x tb . Set φ r = t∈T b∈B t x r tb 2 . i ← 0 while i < N B LS do N (x r ) = ∅.
Let x r be a β-vector.

Randomly select a subset of bids Br of size φ r such that

Br = {(t, b), t ∈ T, b ∈ Bt : x r tb = 1} for (t, b) ∈ Br do ξ ← random[0, 1]. if ξ < α r tb N B mem then x r tb = 1 else x r tb = 0 end if end for N (x r ) = {x : ∀(t, b) ∈ Br , x tb = x r tb }
Solve W r rob (Γ) on the restricted set N (x r ) and let x r * its optimal solution.

X LS = X LS ∪ {x r * }. i ← i + 1.

end while

Step 3: Update D r,mem if |X LS | < N B mem then Replace the rst |X LS | solutions of D r,mem with all the LS solutions of X LS else Replace the solutions of D r,mem with N B mem solutions randomly selected in X LS .

end if elgorithm R (rst de(nes n ordered set D r,mem inluding the est N B mem fesile solutions otined until the end of itertion rF sf the numer of gs solutions otined fter solving W r (Γ) @iFeFD |D r |A is lrger thn N B mem D D r,mem will inlude the est gs solutions in D r F roweverD if |D r | < N B mem D only the (rst N B mem solutions of D r,mem @the worst onesA re repled with PU the newest solutions of D r F fsed on set D r,mem D we onstrut β -vector α r suh thtX ∀t ∈

T, b ∈ B t , α r b = x∈D r,mem x tb F etor α r identi(es the numer of times id b ∈ B t , t ∈ T is winning id for the est N B mem (rstEstge solutions enountered until itertion rF o de(ne neighourhood N (x r ) of x r D we fore φ r ids tht were winning t itertion r @suh tht x r tb = 1A to e either winning or losing idsD depending on set D r,mem F φ r is prmeter set to t∈T b∈B t

x r tb 2 F reneD neighour x r ∈ N (x r ) of x r will hve 50% of its omponents with vlue deriving from the urrent optiml solution x r nd from the est solutions in D r,mem F pormllyD let Br e rndomly seleted suset of φ r pirs (t, b) suh tht

x r tb = 1F yserve tht Br n lwys e de(ned given our de(nition of prmE eter φ r F por eh pir (t, b) in Br D neighour x will hve its omponent x r tb (xed to either 0 or 1 depending on the proility of ourrenes of 1 in the solutions of D r,mem F wore preiselyD for eh (t, b) ∈ Br D rndom numer ξ is uniformly generted within the intervl [0, 1]F sf ξ < α r tb N B mem D then x r tb = 1F ytherwiseD x r tb = 0F fy this wyD winning id b ∈ B t , t ∈ T in the urrent optiml solution x r is more likely to remin winning in the neighour x r if it won in the mjority of the est fesile solutions of D r,mem F por exmpleD ssume tht id b ∈ B t , t ∈ T is winning id in x r nd in ll the fesile solutions of D r,mem F henD α r tb = |D r,mem | = N B mem F oD ny rndomly generted numer ξ in [0, 1] will respet the ondition ξ < α r tb N B mem = 1 nd x r tb = 1F pinllyD the restrited mster prolem r (Γ) is solved in the neighourhood N (x r ) of x r F sts optiml solution is n v solutionF he proess is iterted until the numer of desired v solutions @referred to s N B LS A is rehedF qenerting n v solution t n itertion r requires the resolution of omplex ws ut on set of restrited vriles @the vriles within N (x r )AF pixing numer of vriles x b simpli(es indeed the model resolutionF por exmpleD given the y restritionD eh rrier n win t most one idF PV reneD if id b sumitted y rrier t wins @x b = 1A then ll the vriE les x tb ssoited with ll the other ids b sumitted y t will tke null vlueF woreoverD it is not rre tht the sme fesile solution ppers severl times in D r,mem whih retes redundny in the uts generted in the mster prolemF e tried to void suh redundny y implementing preproessing proedure tht tests the presene of solution in D r,mem efore dding the orresponding ut to the mster prolemF roweverD we oserved tht gvi presolve lredy elimintes these redundnt uts in shorter timeD ompred to our preproessing proedureF xote however tht one should keep redundnt solutions in D r,mem when generting v solutions to e onsistent with the neighourhood de(nitionF 4.2.5. Bounding constraints es depited in elgorithm PD we propose to dd new ut @onstrint @PHAA to ound the vlue of the ojetive funtion A t eh itertionF Proposition 2. The following inequality is valid for the master problem W r (Γ) at iteration r: LB r-1 ≤ A ≤ UB r-1 .

Proof. yserve tht LB r-1 aA r-1 where A r-1 is the optiml ojetive funE tion of the restrited mster prolem t the previous itertion (r -1)F roE lem (r-1) (Γ) is relxtion of r (Γ) @it inludes less onstrintsAF reneD A r-1 = LB r-1 is vlid lower ound for r (Γ)F fesidesD f r-1 = min{f r-2 , Θ r-1 } where Θ r-1 is the optiml ojetive funtion of the reourse prolem Q(x r-1 , Γ) solved for the optiml solution x r-1 of (r-1) (Γ)F st follows tht f r-1 orresponds to the est ojetive funtion vlue otined for the unrestrited prolem rob (Γ) up to itertion (r -1)F he optimum vlue will thus hve vlue lower thn or equl to itF st is worth mentioning tht in ddition to the improvement strtegies presented oveD we tried numer of other heuristi nd elerting methE ods tht hve proven their e0ieny for other prolems s reported in the PW litertureF por instneD we otin no onlusive results when seleting dominnt ut in the reourse prolem @pishetti et lFD PHIHA or when using the elxed sndued xeighourhood erh @hnn et lFD PHHSAF 5. Experimental study he ojetive of this setion is threefoldF pirstD we evlute the impt of the improvement strtegies we propose on the si onstrint genertion lgorithm performneF his is done y ompring the performne of our new lgorithm to tht proposed y emli nd ekik @PHIQA for the instnes of hEh tested thereinF eondD we nlyze the omputtionl perforE mne of the new lgorithm for hEhgF hirdD we study the relevne of dding unertinty on the rriers9 pityD on ution outomes nd trnsporttion ostsF 5.1. Computational performance of Algorithm 2 for WDP-SD sn this setionD we onsider the sme instnes reported in emli nd ekik @PHIQA for hEhF ell tht in emli nd ekik @PHIQAD 360 inE stnes were genertedF hese instnes re grouped in eight instne sets |L| -|T | -BD where |L| represents the numer of lnes sumitted y the shipper to the utionD |T | is the numer of prtiipting rriersD nd B is the numer of ids o'ered y eh rrier @it is ssumed tht ll rriers sumit the sme numer B of idsAF por eh instne set |L| -|T | -B @45 instnes in totlAD nine di'erent vlues of the udget of unertinty Γ d re onsideredF hese vlues rnge from 10% to 90% with step of 10%F pinllyD for eh vlue of Γ d D (ve instnes re rndomly generted within the orresponding instne setF es in emli nd ekik @PHIQAD ll the ws nd v models re solved with gvi IPFR @with its defult prmetersA on QFHH qrz sntel gore P huo g with RFHH qo ewF le I gives for eh vlue of the udget of unertinty Γ d D the verE ge numer of itertions @#iter.A nd the verge running time in seonds QH @imeA required y eh lgorithmF hese verges re omputed on the (ve generted instnes of eh instne setF e dsh ( -) in ell indites tht no optiml solution ws identi(ed within time limit of 10 hoursF he lst two olumns of le I report the svings in the numer of itertions nd omputing times yielded y elgorithm P dpted to hEh to elgorithm I @s proposed in emli nd ekik @PHIQAAF hese svings re presented s rtiosF por exmpleD for the instne set 50 -20 -10 nd udget of unerE tinty Γ d = 10%D the verge numer of itertions required y elgorithm I is 3.59 times greter thn tht required y elgorithm PF imilrlyD the omE puting time needed y elgorithm I is 1.46 times lrger thn tht required y elgorithm PF yserve tht the results reported for elgorithm P orrespond to the se where the prmeter N B mem is set to 20 nd N B LS to 2F hese vlues were set fter series of experimentsF he results of le I lerly show tht elgorithm P lrgely outperforms elgorithm I ssessing thus the e0ieny of the improvement strtegies proE posed in this pperF pirstD oserve tht elgorithm P lwys requires less time thn elgorithm IF es depited in the olumn RatioD the time needed y elgorithm I is divided y more thn 2 for 245 instnes over the 345 @71%A tht re solved y oth lgorithmsF he omputing time is divided y more thn 4 @≥ 3.93A for 80 of these instnesF eondD when exmining the 345 instnes tht re solved y oth lgoE rithmsD the verge omputing time required y elgorithm P is 1857 seonds @lmost 0.5 hourA with mximum of 5438 seonds @1.5 hoursA for the lrgest instneF roweverD 6443 seonds @1.8 hoursA re required on verge y elE gorithm I nd the lrgest instnes tkes lmost seven hours on vergeF pinllyD elgorithm P solves ll the 15 instnesD tht were not solved y elgorithm ID within lmost 2.2 hoursD on vergeF he time required y elgorithm P to solve ll the 360 instnes verges 2109 seonds @lmost 0.6 hoursAF he results of le I on(rm the oservtions mde in etion RFP with regrd to the sensitivity of elgorithm I omputing times to the numer of itertionsF sndeedD our min improvement strtegies onsist in dding multitude of vlid inequlities to the mster prolem t eh itertion so tht the lower ound inreses more rpidly nd the totl numer of itertions deresesF he results of le I lerly prove tht these uts do the work QQ we wnt them to doF his n e oserved through the vlues reported in the olumn Ratio @under #iterAF o highlight the relevne of the proposed utsD we ompre the performne of elgorithm P under di'erent vrintsX vrint where the initil ut is onsidered versus vrint with no initil utsY nd vrint where the v uts re inluded versus vrint where suh uts re not onsideredF hetiled results re reported in le gFU in the ppendixF yur results

prove tht onsidering the initil ut redues the numer of itertions nd g times for 94% of the instnesF he rtio etween the totl numer of itertions required y the vrint without the initil ut nd tht required y the vrint with the initil ut vries etween 0.98 nd 1.58 with n verge vlue of 1.14F he orresponding rtio of omputing times vries etween 0.95 nd 2.81 with n verge vlue of 1.27F his is in line with the oservtions mde ove on the impt of dding vlid inequlity uts on the numer of itertions nd thus on omputing timesF gonsidering the LS uts lso improves the omputtionl performne of elgorithm P for the mjority of the instnes @290 instnes over the 360 onsideredAF por the 70 instnes where the lgorithm performs etter without the v utsD the improvement in solution times is less signi(nt @the rtio of time verges 0.89A ompred to tht otined for the 290 instnes where the lgorithm with the v uts performs etter @the rtio verges 1.59 nd the time is divided y more thn two for 60 instnesAF smproving the lgorithm performne y dding uts to the mster proE lem ws lso motivted y the results reported in emli nd ekik @PHIQA regrding the perentge of time tht ws lloted to the mster prolem with respet to the reourse prolemF sndeedD etween 75% nd 99% of the totl time required y elgorithm I ws dedited to solve the mster proE lemF por elgorithm PD the perentge of totl time lloted to the mster prolem slightly dereses ut remins reltively lrge @etween 74.1% nd 98.8%AF his ws not totlly expetle sine with elgorithm PD more reE QR ourse prolems re solved t eh itertion @one prolem for eh generted utAF his result however on(rms tht the reourse prolem is muh more esier to solve thn the mster prolemF le fFT in the ppendix detils ll the results otined for oth lgorithms @omputing timesD numer of itertionsD the perentge of time used to solve the mster prolems nd the perentge of time used to solve the reourse prolemsAF por eh instneD nine di'erent vlues of the udget of unertinty of demnd Γ d re onsideredF hese vlues re otined y vrying Γ d from 10% to 90% with step of 10%F he udget of unertinty Γ t of rrier t is (xed to unique vlue derived from the performne ftor p t F ell tht the performne ftor p t tkes vlue within [-1, 1] nd models the rrier t servie qulity s evluted y the shipperF he higher is this vlueD QS the less relile is the rrierD nd the lrger the vlue of Γ t isF pormllyD Γ t = 0.5(1 + p t )B, ∀t ∈ T F reneD when p t = -1D the rrier t is relile nd the vlue of Γ t = 0 mening tht ll the pity sumitted y the rrier in ll its B ids tke their nominl vlues s initilly proposed y the rrierF sn the oppositeD vlue of p t equl to 1 @the rrier is totlly unrelileA results in Γ t = B mening tht for ll the B idsD the pity will tke its worst vlue @the smllest oneAF le P gives for eh vlue of the udget of unertinty Γ d D the verge numer of itertions @#iter.A nd the verge running time in seonds @imeA required y elgorithm P to solve the new instnes generted for hEhgF hese verges re omputed on the (ve generted instnes of eh instne setF st lso reports the verge perentge of time required y the mster nd the slve prolemsD respetivelyF le Q displys for eh instne setD eh vlue of Γ d D nd eh ontextD the verge ojetive funtion vlue @olumn Obj.AD the verge perentge of winning rriers @olumn W CAD nd the verge perentge of lnes lloted to the spot mrketF hese verges re omputed over the (ve instnes of eh instne setF ell tht eh rrier is llowed to win t most one id @given the y onstrintsAF o the numer of winning rriers represents lso the numer of winning idsF he lst four olumns of le Q report more expliit omprtive results etween the h nd the hg ontextsF por eh instneD we (rst ompute the reltive di'erene @in perentgeA etween the totl ost inurred under the hg nd the h ontexts @ Obj SDC -Obj SD Obj SD AF QV golumn = Obj in le Q displys the verge reltive di'erene over the (ve instnes of eh instne setF he lst three olumns highlight the hnges in the (rstEstge solutions etween the two ontextsF he olumn = W C reports the di'ereneD in perentgeD with regrd to the winning rriers9 identitiesF e vlue of 52.13% in the (rst lineD for exmpleD implies tht when onsidering the winning rriers under the h nd the hg ontextsD 52.13% of them re di'erentF he olumn = W B reports the dissimilrities in terms of winning idsF hen ompred to = W CD = W B dditionlly ounts for the ses where the winning rrier is the sme Eunder oth ontextsE ut its winning ids re di'erentF pinllyD the olumn = Spot reports similr results with regrd to the identity of the lnes lloted to the spot mrketF 

|L| -|T | -B Γ d @7A 5 iterF ime @
Context SD Context SDC SDC vs SD |L| -|T | -B Γ d (%) Obj. W C Spot Obj. W C Spot = Obj. = W C = W B =
d, d + d]D nd [U V t -U V t , U V t + U V t ], t ∈ T F
= 15Y U V tb = 50D L t1 = {9, 10}D L t2 = {3, 4, 7}D L t3 = {2, 5, 6, 9}D L t4 = {3, 4, 6}F sn 
the si seD rrier t = 1 is the most relile with Γ 1 = 0 nd the other rriers hve reliility Γ t = 1; t = 2, . . . , 5F ell tht the lrger is the vlue of the reliility prmeter Γ t D the less relile is rrier tF e (rst vry the reliility prmeter Γ t for some rriers tD keep ll other prmeters t their si vlues nd see the impt of these vritions on winning rriersGidsF RP yserve tht the performne ftors p t , t = 1, . . . , 5 is (xed independently of Γ t so tht only the impt of rriers reliility is studied in ixmple IF e do the sme nlysis y vrying the id sk prie c tb for ll the ids of rrier t = 1 nd keeping ll other prmeters t their vlues in the si seF le S displys the winning ids @under olumn 9f9A nd the orresponding winning rriers in eh seF he results of le S show tht when ll rriers hve the sme reliilE ity nd sumit identil idsD winning ids nd winning rriers my hnge depending on the vlue of the reliility prmeterF e hnge in winning ids nd rriers is lso oserved when the reliility of single rrier @t = 1A is hnged from 0 to 1F sndeedD rrier t = 1 is still hosen ut is lloted di'erent winning idF purthermoreD when the id sk pries of the most reE lile rrier @t = 1A is inresed from 15 to 23D rrier t = 1 is still winning ut with di'erent idF roweverD when this ost inreses to 48D rrier le gFU reports for eh instne set |L|E|T |EBD the svingsGlosses in the numer of itertions nd in omputing times resulting from onsidering the initil utD respetively the v utsD in elgorithm PF he svingsGlosses re presented s rtiosF wore spei(llyD the rtio orresponding to the numer of itertions @respetivelyD solution timesA omputes the rtio etween the numer of itertions @reeptivelyD the timeA required y elgorithm P when the initil ut is not onsidered nd the numer of itertions @respetivelyD the timeA needed when the initil ut is ddedF gonsequentlyD when this rtio tkes vlue smller thn oneD the lgorithm with no initil ut requires less itertions @respetivelyD less timeAF eported rtios with regrd to the LS uts re omputed following the sme prinipleF 

Γ 1 = 0, Basic case C tb = 15 Γ t = 1, ∀t = 1, . . . , 4. Carrier Γ t C tb WB Γ t WB Γ t WB C tb WB C tb WB t=1 0 15 3 1 1 0 3 23 1 48 - t=2 1 

  goD gplie nd he0 @PHHTA pointed out the unerE tinty hrterizing trnsporttion servies nd lled for improved roustE ness in the hF hile there hs een growing trend the lst yers to tret yGw prolems in unertin ontextsD reserh in the (eld of trnsE port prourement utions nd more prtiulrly h prolems remins limitedF w et lF @PHIHA were the (rst to propose twoEstge stohsti integer progrmming model with reourse for the h with unertin shipment demndsF he (rstEstge deision vriles de(ne the lnes won y eh prtiipting rrier @this deision is tken in n unertin environmentD eE fore the tul volumes re knownAF he seondEstge deision vriles @or reourse vrilesA ssign shipment volumes to eh rrier on eh lne won @volumes re omputed one the demnds re reveledAF w et lF @PHIHA hnE dle unertinty y onsidering (nite numer of senriosF ih senrio is S ssumed to our with proility ording to disrete distriutionF he proposed stohsti progrm determines winning rriers so tht the totl expeted ost is minimizedF en equivlent deterministi mixed integer proE grmming @wsA model is proposed in whih reourse vriles nd demnd onstrints re replited to tke into ount ll the generted senriosF his model is solved with the ommeril solver gviF he experimentl study onsiders instnes inluding up to 600 lnesD 50 idders nd 10 ids per idderF he numer of senrios vry etween 3 nd 40 depending on the prolem sizeF he uthors oserved tht n inrese in the numer of senrE ios yields onsiderle inrese in omputing timesF olution times rnge from 7 seonds to 19 hours for the lrgest instne @150 lnesD 30 iddersD 5 ids per lne nd 10 senriosAF hng et lF @PHIRA extend the twoEstge stohsti model of w et lF @PHIHA nd propose wht they ll re(ned formultionF heir model ddiE tionlly onsiders ontinuous deision vrile to enle situtions where the rrier is ssigned shipment volume lower thn its minimum volume requirementF he proposed solution pproh is sed on wonte grlo proE edure omined with the mple everge epproximtion @eeA tehniqueD s is ommon for twoEstge stohsti models inluding huge numer of senriosF he wonte grlo pproh @wgeA is employed to generte repE resenttive smplesF he ee tehnique onsists in repling the set of ll plusile senrios in the stohsti model y smple of senrios nd solving the equivlent deterministi wsF hpiro @PHHVA oserved tht the qulity of the pproximtion improves with the size of the smpleF e trdeE o' should thus e mnged etween the model solvility nd the solution qulityF fsed on thisD hng et lF @PHIRA test their solution pproh on set of modertely sized instnes inluding up to 300 lnesD 25 rriers nd

  3.2. Deterministic modeles in emli nd ekik @PHIQAD we propose to model the deterministi h using the following three sets of deision vrilesXx tb = 1 if bid b oered by carrier t wins; 0, otherwise. y tb = the volume assigned to carrier t on each lane covered by winning bid b. e l = the volume assigned to spot carriers on lane l.

  end for r ← r + 1 and go to Step 2.

1 .

 1 Any feasible solution xr of the restricted master problem W r (Γ) at an iteration r generates a valid cut for problem W rob (Γ) , of the form:

  nd the reourse prolems re solved using the rnhE ndEound proedure of the ommeril solver gviF fy tuning some pE rmeters in gviD one n simply ollet the pool of ll integer fesile solutions enountered during the B&B proedureF hese solutions re reE ferred to in the following s gplex sntermedite or gs solutionsF es depited in tep P of elgorithm PD t eh itertion rD when solving the restrited mster prolem r (Γ)D ll the fesile solutions enountered durE ing the B&B proedure re stored in set D r F hese solutions re pled in desending order with respet to the ssoited ojetive funtion vlueF he lst element of D r orresponds to the optiml solution x r F fsed on heorem ID eh fesile solution in D r is used to generte vlid inequlity tht will e dded to the restrited mster prolem t the next itertion (r + 1)F yserve tht in elgorithm PD the optiml solution x r ∈ D r is omitted t tep SF his is done to void solving the reourse prolemQ(x r , Γ) twie @rolem Q(xr , Γ) ws lredy solved t tep Q to test the solution optimlityAF 4.2.4. Local search based cuts e more elorted wy to derive dditionl fesile (rstEstge solutions onsists in using lol serh tehniquesF hese re referred to in the following s vol erh sntermediteD or vD solutionsF essume tht we re t itertion r nd t tep R of elgorithm PF he optiml solution x r of r (Γ) is lredy known s well s the set D r of ll gs solutionsF e im to generte dditionl fesile (rstEstge solutions thtX @iA re within neighourhood N (x r ) of the urrent optiml solution x r D nd @iiA hve similrities with the est N B mem (rstEstge solutions generted with the lgorithmF N B mem is prmeter to e (xedF elgorithm R desries the PT min steps used to generte v solutions t n itertion r of elgorithm IF o llevite the lgorithm desriptionD let β denote the totl numer of ids sumitted in the utionF ht isD β = t∈T |B t |F Algorithm 4 qenerting v solutions t itertion r Step 0: Initialization D r,mem = D r-1,mem Step 1: Update D r,mem if |D r | < N B mem then Replace the rst |D r | solutions of D r,mem with all the CI solutions of D r else Replace the solutions of D r,mem with all the last N B mem solutions of D r end if

5. 2 .

 2 Computational performance of Algorithm 2 for WDP-SDC sn this setionD we generte 180 new instnes tkle the hEhgF e use the sme terminology s in etion SFI to represent n instne setF pour instne sets |L| -|T | -B re generted y vrying the numer of onE trts |L| @SH nd IHHAD the numer of rriers |T | @PH nd RHA nd the numer of ids per rrier B @IH nd PHAF por ll the instnesD the id prie c tb is uniformly generted within the intervl [10, 40] nd the spot prie ce l within [50, 100]F winimum nd mximum volumes q t nd Q t re uniformly generE ted within the intervls [10, 15] nd [60, 75]D reeptivelyF he generted ids over on verge etween 20% nd 30% of the lnesF egrding the unertin prmetersD the nominl demnd d l is uniformly generted within the intervl [10, 50] nd the nominl pity U V tb within [40, 75]F he mximum deviE tion dl D respetivelyD Û V tb D is set s dl = α×d l D respetivelyD U V tb = α×U V tb D where α is rndomly generted within [0.1, 0.5]F he minimum volume LV tb is uniformly generted within the intervl [10, 20]F por the new instnesD we impose no limit on the mximum numer of winning rriersF pive instnes re generted in eh set |L| -|T | -BF he new instnes re ville on https://drive.google.com/le/d/1I8mMjrsAhuQq_jxfn5bGYLkCeyVIWCLN/view?usp=sharing.

  he results of le Q prove tht dding unertinty on the rriers9 pity results in sustntil hnge in the (rst stge solution when omE pred to the se where only unertinty on demnd is ddressedF his n e dedued from the hnges in the identity of winning rriersD winning ids nd the identity of the ontrts lloted to the spot mrketF woreoverD one should mention tht the totl ost resulting from onsidering unertinty on oth demnd nd pity is lwys lrger thn tht otined with unertin demnd onlyF es depited in le QD the reltive devition in perentge of this totl ost is on verge equl to 21% nd rehes 38% for some inE stnesF reneD determining the winning rriers t the strtegi level while ignoring the possile vrition of their pity would result in onsiderle underestimtion of the expeted trnsporttion ostF o go more in deep with the ltter oservtionD the rest of the setion investigtes the impt of onsidering unertinty on rriers9 pity on the trnsporttion osts under rndomly generted senriosF o this endD we onsider for eh instneD the optiml (rstEstge solutions @winning idsA otined under the h ontextD x SD D respetively the hg ontextD x SDC D with vlue of Γ d = 50% @n intermedite vlueAF henD we rndomly generte for eh instne set |L| -|T | -BD 30 plusile senrios ω ∈ Ω RH of demnd nd rriers9 pity within the orresponding intervls [d -

t = 1

 1 lthough the most relile is no longer hosen nd rriers o'ering lower osts re preferredF st lerly ppers from this simple exmple tht one nnot drw onise RQ rriers9 seletion poliy under demnd nd pity unertintiesF ghnges in (rstEstge solutions depend on multitude of prmeters nd re not only ditted y rriers reliility nd id sk priesF fids omplementrityD the lnes they overD rriers9 pitiesD their worst vlues @in the worst seAD the demnd for the lnes overed y the orresponding idsD osts in the spot mrketD etF nd their di'erent omintions lso ply n importnt role in the seletion proessF his proves the relevne of our proposed pE proh nd the need to onsider roust optimiztion to hndle suh omplex omintoril optimiztion prolemsF 6. Conclusion sn this pperD we propose numer of improvement strtegies to elE erte the onvergene of the si onstrint genertion lgorithm proposed y emli nd ekik @PHIQA to solve twoEstge roust winner determintion prolem with unertin shipment volumesF yur experimentl study lerly proves the e0ieny of the proposed strtegiesF o the est of our knowledgeD the proposed new lgorithm shows the est omputtionl performne to dte in terms of omputing times nd instnes sizeF yur pper is lso the (rst to onsider two unertin prmeters when solving the hD nmely shipment volumes nd rriers9 pityF e proE pose twoEstge roust formultion extending tht proposed y emli nd ekik @PHIQAF yur experimentl results prove tht our improved onstrintE genertion lgorithm sueeds in solving smll nd medium sized instnes of this new prolem in resonle timeF e lso investigte the relevne of dding this seond prmeter of unertintyF yur results re onlusiveF gonsidering unertinty on rriers9 pity when solving the hD lE though mking the prolem more omplexD indues hnges in the (rst stge deisionsD voids underestimting osts t the strtegi levelD nd results in sustntil svings t the opertionl level when ompred to the se where only unertinty on shipment volumes is onsideredF RR yf ourseD numer of interesting reserh venues remins to e investiE gted in omintoril ution design for the prourement of trnsporttion servies under unertintyF e (rst extension of this pper would e to study the impt of numer of usiness onstrints nd ution rules on the ution outomes suh s the y onstrintsD the mximum numer of winning rriersD etF nertinty should lso e onsidered when solving the id onstrution prolemD deisionl prolem tht is fed y eh prE tiipting rrier to help it deide on the lnes to sumit in id nd the orresponding sk prieF erheD tFD griniD F qFD qendreuD wFD ekikD wFD PHHUF gomintoril utionsF ennls of ypertions eserh ISQ @IAD IQI!ITRF fertsimsD hFD hunningD sFD vuinD wFD PHITF eformultion versus uttingE plnes for roust optimiztionF gomputtionl wngement iene IQ @PAD IWS!PIUF fertsimsD hFD imD wFD PHHQF oust disrete optimiztion nd network )owsF wthemtil rogrmmingD eries f WVD RW!UIF fertsimsD hFD imD wFD PHHRF he prie of roustnessF ypertions eserh SP @IAD QS!SQF gplieD gFD he0D FD PHHTF gomintoril utions for truklod trnsE porttionF snX F grmtonD F hohmD F F @idFAD gomintoril euE tionsF ws ressD ghF PID ppF SQW!SUIF RS hnnD iFD othergD iFD vepeD gFD PHHSF ixploring relxtion indued neighorhoods to improve ws solutionsF wthemtil rogrmming IHP @IAD UI!WHF pishettiD wFD woniD wFD PHIPF gutting plne versus ompt formultions for unertin @integerA liner progrmsF wthemtil rogrmming gomE puttion R @QAD PQW!PUQF pishettiD wFD lvgninD hFD netteD eFD PHIHF e note on the seletion of fenders9 utsF wthemtil rogrmming IPRD IUS!IVPF qrelD FD vroixD wFD wurtD gFD emliD xFD PHIRF oust lotion trnsE porttion prolems under unertin demndsF hisrete epplied wtheE mtis ITR @IAD IHH!IIIF veeD gFEqFD uwonD F rFD wD FD PHHUF e rrier9s optiml id genertion prolem in omintoril utions for trnsporttion prourementF rnsE porttion eserh rt iX vogistis nd rnsporttion eview RQ @PAD IUQ ! IWIF wD FD uwonD F rFD veeD gFEqFD PHIHF e stohsti progrmming winE ner determintion model for truklod prourement under shipment unE ertintyF rnsporttion eserh rt iX vogistis nd rnsporttion eview RT @IAD RW ! THF xisnD xFD PHHTF fidding lnguges for omintoril utionsF snX F grmE tonD F hohmD F F @idFAD gomintoril eutionsF ws ressD ghF WD ppF PIS!PQPF emliD xFD ekikD wFD PHIQF e roust winner determintion prolem for omintoril trnsporttion utions under unertin shipment volumesF rnsporttion eserh rt gX imerging ehnologies QSD PHR ! PIUF hpiroD eFD PHHVF tohsti progrmming pproh to optimiztion under unertintyF wthemtil rogrmming eries e IIP @IAD IVQ!PPHF RT ongD tFD egnD eFD PHHSF epproximtion lgorithms for the id onstruE tion prolem in omintoril utions for the prourement of freight trnsporttion ontrtsF rnsporttion eserh rt fX wethodologE il QW @IHAD WIR ! WQQF engD fFD hoD vFD PHIQF olving twoEstge roust optimiztion prolems using olumnEndEonstrint genertion methodF ypertions eserh vetters RI @SAD RSU!RTIF hngD fFD hingD rFD viD rFD ngD FD oD FD PHIRF e smplingEsed stohsti winner determintion model for truklod servie prourementF xetworks nd ptil ionomis IR @PAD ISW!IVIF hngD fFD oD FD prieszD FD unD FD PHISF e trtle twoEstge roust winner determintion model for truklod servie prourement vi omE intoril utionsF rnsporttion eserh rt fX wethodologil UVD IT!QIF RU AppendixA. Linearization of the recourse problem and reformulation of the master problemhis setion gives detils on how the (nl formultions of the mster nd the reourse prolems presented in etion QFQ were otinedF es lredy mentionedD this is sed on the pper y emli nd ekik @PHIQAF sn etion QFQD the roust winner determintion prolem rob (Γ) opt(R(x, Γ))sFtF b∈Bt x tb ≤ 1, t ∈ T t∈T b∈Bt a l tb x tb ≤ 1, l ∈ L x min ≤ t∈T b∈Bt x tb ≤ x max x tb ∈ {0, 1}, t ∈ T, b ∈ B twhere opt(R(x, Γ)) represents the optimum vlue of the reourse prolemX p t )c tb y tb + l∈L ce l e l he unertinty set U(Γ) is de(ned yXU(Γ) = {d ∈ R |L| : d l = d l + z l dl , l ∈ L, z ∈ Z(Γ d ), U V tb ∈ R |T |×|Bt| : U V tb = U V tb -ζ tb U V tb , t ∈ T, b ∈ B t , ζ ∈ Z (Γ t ), t ∈ T } where Z(Γ d ) = {z ∈ R |L| : l∈L z l ≤ Γ d , 0 ≤ z l ≤ 1, l ∈ L} RV nd Z (Γ t ) = {ζ ∈ R |T |×|Bt| : b∈Bt ζ tb ≤ Γ t , t ∈ T, 0 ≤ ζ tb ≤ 1, t ∈ T, b ∈ B t }es depited in etion QFQD the fesile set Y(x) inludes ll vetors (y, e) stisfying the onstrints @IHAE@IRA s followsX t∈T b∈Bt a l tb y tb + e l ≥ d l , l ∈ L y tb ≥ v tb x tb , t ∈ T, b ∈ B t y tb ≤ U V tb x tb , t ∈ T, b ∈ B t b∈Bt y tb ≥ q t b∈Bt x tb , t ∈ T b∈Bt y tb ≤ t b∈Bt x tb , t ∈ T y tb ≥ 0, t ∈ T, b ∈ B t ; e l ≥ 0, l ∈ L he optiml solution of the reourse prolem n e otined y onE sidering its dul @using the strong dulity theoremAF he dul of the inner RW AppendixC. Impact of the initial cut and the local search based cuts on Algorithm 2 computational performance

  @PA the B&B proedure of gvi IPFR pplied to n equivlent ws reforE multion of the twoEstge roust modelF he experimentl study onsiders (ve prolem tests nd the lrgest instne inludes 180 lnesD 20 rriers nd 10 ids per rrierF he reported results prove tht the ws reformultion sed pproh lrgely outperforms the onstrint genertion pprohF st requires 12.38 seonds to solve the lrgest instneF eng nd ho @PHIQA present generl olumnEndEonstrint generE if l ∈ L tb ; a l tb = 0, otherwise LV tb minimum volume guaranteed to carrier t if bid b wins UV tb capacity of carrier t in bid b U V tb nominal value of the capacity of carrier t in bid b U V tb maximum deviation on the capacity of carrier t in bid b c tb price asked by carrier t in bid b for transporting one unit volume on each lane l ∈ L tb maximum volume to allocate to carrier t if it wins N min minimum number of winning carriers N max maximum number of winning carriers
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	miztion prolemD while itertive uttingEplne methods solve relxed form mke o'ers in forms of omintoril idsF ih id gthers the set of es in w et lF @PHIHA nd emli nd ekik @PHIQAD we onsider y d l demand on lane l ∈ L
	of the roust optimiztion prolem with (nite suset of the onstrints nd lnes the rrier o'ers to serveD the prie sked for shipping one volume ids @xisnD PHHTAF ht isD eh rrier n sumit ny numer of ids d l nominal value of d l
	grdully dds violted onstrints @eFgFD the olumnEndEonstrint method unit on eh lneD nd ounds on the minimum nd mximum volumes to it wnts utD in the (nl llotionD it n e wrded t most one idF dl maximum deviation of d l
	eng nd ho @PHIQAAF e previous study y pishetti nd woni @PHIPA sttes tht the uttingEplne method is superior for liner prolems nd tht reformultions re superior for mixedEinteger prolems when the unerE tinty set is polyhedrlF roweverD experimenting with di'erent vrints of the uttingEplne methodD fertsims et lF @PHITA rgue tht neither method domintes the other for polyhedrl unertinty setsF iven though there seems to e slight edge to uttingEplnesD the di'erene is too smll to on(dently delre s signi(ntF he ontditory results of fertsims et lF @PHITA nd pishetti nd woni @PHIPA ould e ttriuted to di'erent ftors suh s the test setD the improvement of utting plnesD or the mesurement metri trnsportF he minimum volume restrition gurntees the winning rrier to e lloted minimum volume t the proposed prieF he mximum volume restrition trnsltes the rriers9 pityF nertinty is thus dded on this prmeterF pollowing the sme priniple s for the demndD we represent this unertinty y intervl numersF he rriers9 pity is ssumed to lie within n intervl nd the totl devition of the unertin pity from its nominl vlue is restrited to preEspei(ed vlueX the udget of unertintyF yserve tht udgets of unertinty re onstnt prmeters preE(xed y the shipperF hey re di'erent depending on the nture of the unertin prmeterF he udget of unertinty on the shipment volumes is losely Γ budget of uncertainty y idding enles the rrier well exploiting nd mnging its ville B t set of bids of carrier t ∈ T pity when generting idsF sndeedD if y idding were to e permittedD L tb set of lanes that carrier t oers to serve in bid b the rrier should tke into ount the ft tht two or more y ids my win foring it to divide its ville pity etween themF es in w et lF @PHIHA nd emli nd ekik @PHIQAD we lso ssume tht eh lne is restrited to e served y t most one winning rrierF uh onstrint fores the shipper to engge with single strtegi rrier on eh lneF elxing suh onstrint would prolyD in some sesD result in lower trnsporttion osts @y omining ids from di'erent rriersAF roweverD in prtieD deling with single ontrt server is more esily mngele for a l tb a constant parameter: a l tb = 1 ce l cost of shipping one unit volume on lane l by a spot carrier
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tion lgorithm to solve twoEstge roust optimiztion prolems with n pplition to lotionEtrnsporttion prolemF sn twoEstge roust optiE miztion prolemsD the seondEstge prolem models deision mking fter the (rstEstge deisions re mde nd the unertinty is reveledF nlike fendersElike lgorithms where the vlue funtion of the (rstEstge deisions is grdully onstruted using dul solutions of the seondEstge deision prolemsD the olumnEndEonstrint genertion lgorithm dynmilly genE ertes onstrints long with reourse deision vriles in the priml speF he method onsiders relxtion of the originl prolem using formulE tion de(ned over prtil enumertion of the unertinty setF he ltter is expnded y solving suprolem to identify signi(nt senrios nd their orresponding reourse vriles whih re dded in forms of onstrints to the mster prolemF stertivelyD the method strengthens the lower nd upE per ounds nd onverges to the optiml solutionF he uthors (nd tht

Table 1 :

 1 Results of Algorithm 2 vs Algorithm 1

			Algorithm 1	Algorithm 2	Ratio:Alg.1/Alg.2
								s)
		10	130.6	57	36.4	39	3.59	1.46
		20	126.0	58	36.4	39	3.46	1.49
		30	114.8	63	33.2	33	3.46	1.91
		40	101.4	51	30.2	28	3.36	1.82
	50-20-10	50	88.2	41	26.8	26	3.29	1.58
		60	82.6	36	26.4	24	3.13	1.50
		70	83.0	35	25.0	21	3.32	1.67
		80	81.2	33	25.6	22	3.17	1.50
		90	81.6	32	24.8	20	3.29	1.60
		10	285.8	572	75.8	355	3.77	1.61
		20	251	494	68.2	290	3.68	1.70
		30	226.4	448	64.2	259	3.53	1.73
		40	199.4	381	56.8	209	3.51	1.82
	50-20-20	50	178.2	319	51.0	161	3.49	1.98
		60	175	307	49.2	156	3.56	1.97
		70	172.4	293	50.8	157	3.39	1.87
		80	173	308	49.0	156	3.53	1.97
		90	172.6	298	50.4	166	3.42	1.80
		10	303.6	556	68.4	205	4.44	2.71
		20	285	570	66.0	194	4.32	2.94
		30	259.8	594	57.6	151	4.51	3.93
		40	245	599	54.2	141	4.52	4.25
	100-40-10	50	225.8	553	50.6	121	4.46	4.57
				QI				

|L| -|T | -B

Γ d (%) # iter. Time (s) # iter. Time (s) # iter. Time (

Table 3 :

 3 Impact of adding uncertainty on the carriers' capacity on the auction outcomes

	Spot

Table 4 :

 4 por eh senrio ω ∈ ΩD we determine the trnsporttion osts yielded y x SD D denoted y C SD D nd tht yielded y x SDC D denoted y C SDC F hese osts re otined y solving the deterministi model (W )D (xing x vriles to either x SD or x SDC vlues nd onsidering the demnds nd the pities of senrio ωF le R reports for eh instne the verge devition @evFA perentge of C SDC with respet C SD D omputed s C SDC -C SD Cost savings resulting from considering an SDC context versus an SD context es one n see from le RD onsidering unertinty on rriers9 pity yields importnt svings in trnsporttion osts t the opertionl level when ompred to the se where only unertinty on demnd is tken into ount t the (rstEstge strtegi levelF everge svings exeed 10% for 20 instnes over the 24 onsideredF e sving of 41% is otined for instne 4 of 50 -= 50%F o simplify the nlysisD we onsider si se where the four ids sumitted y ll the rriers re identilD then we vry the vlues of the reliility prmeter nd ids sk prieF wore spei(llyD the si se ssumes tht ∀t = 1, . . . , 5; b = 1, . . . , 4; c tb

	C SD	nd the orresponding stndrd devition
	@tdAF hese verges nd stndrd devitions re omputed over the 30
	senrios onsidered for eh instne setF	
	|L| -|T | -B Instance Av. (%)	Std
		1	-21.64% 6.15%
		2	-6.87% 8.91%
	50-20-10	3	-31.14% 3.93%
		4	-2.39% 7.02%
		5	-34.56% 3.65%
		1	-3.32% 4.04%
		2	-9.56% 6.77%
	50-20-20	3	-30.37% 5.56%
		4	-41.22% 6.74%
		5	-8.14% 6.20%
		1	-19.17% 6.37%
		2	-28.35% 2.30%
	100-40-10	3	-25.97% 2.60%
		4	-21.78% 3.25%
		5	-12.76% 2.47%
		1	-6.75% 6.21%
		2	-10.68% 4.54%
	100-40-20	3	-15.01% 2.68%
		4	-13.03% 6.73%
		RI	

Table 5 :

 5 Impact of varying carriers' reliability and bid ask prices on winning bids/carriers in Example 1

		15	-1	4 0	-15	-15	1
	t=3	1 15	2 1	-0	2 15	2 15	4
	t=4	1 15	-1	-0	-15	-15	-
	t=5	1 15	-1	-0	-15	-15	-

  Table C.7: Complete results of Algorithm 2 with and without LSI cuts SU

			Initial Cuts Ratio Initial Cuts Ratio	LS cuts Ratio LS cuts Ratio
	|L| -|T | -B |L| -|T | -B	Γ d (%) # iter. Time (s) Γ d (%) # iter. Time (s)	# iter. Time (s) # iter. Time (s)
	100-40-10	50 40	1.02 0.99	0.97 1.00	1.36 1.34	1.69 1.48
	600-120-10	60 50	1.09 1.00	1.77 1.00	1.33 1.40	1.71 1.46
		70 60	1.08 0.98	1.04 1.00	1.30 1.39	1.83 1.69
		80 70	1.17 1.01	1.5 0.98	1.35 1.40	1.60 1.63
		90 80	1.12 1.00	1.45 0.98	1.32 1.32	1.26 1.45
		10 90	1.1 1.02	1.14 0.95	0.98 1.32	2.03 1.50
		20	1.02	1.05	1.06	2.07
		30	1.11	1.14	1.10	2.20
		40	1.1	1.15	1.14	2.24
	100-40-20	50	1.25	1.41	1.18	2.43
		60	1.11	1.15	1.22	2.37
		70	1.19	1.24	1.19	2.33
		80	1.14	1.14	1.16	2.00
		90	1.23	1.27	1.00	1.43
		10	1.16	1.28	0.81	0.76
		20	1.17	1.34	0.93	0.79
		30	1.04	1.16	0.98	0.82
		40	1.09	1.23	1.07	0.85
	200-80-10	50	1.13	1.05 1.17 0.95	
		60	1.1	1.09	1.26	1.00
	|L| -|T | -B 50-20-10 200-80-20 50-20-20 50 500-100-10	Initial Cuts Ratio 1.11 1.1 Γ d (%) # iter. Time (s) 70 80 1.23 1.37 10 1.26 1.56 90 1.17 1.18 20 1.15 1.17 10 1.08 1.32 30 1.21 1.27 20 1.08 1.11 40 1.12 1.39 30 1.18 1.27 50 1.28 1.93 40 1.22 1.37 60 1.32 2.49 50 1.21 1.34 0.66 1.74 1.22 LS cuts Ratio 0.98 1.17 0.92 # iter. Time (s) 1.40 1.21 0.95 1.21 1.34 0.46 2.91 1.14 1.42 0.52 2.30 1.17 1.44 0.55 2.07 1.44 1.44 0.59 1.96 1.20 1.40 1.05 70 1.28 0.91 1.34 60 1.13 1.26 0.72 1.58 1.07 80 1.34 1.87 1.37 70 1.14 1.32 0.79 1.22 1.01 90 1.11 1.4 1.46 80 1.15 1.44 0.84 0.96 1.08 10 1.15 1.2 1.02 90 1.09 1.25 0.76 0.81 1.39 20 1.26 1.52 1.15 10 1.11 1.21 0.86 0.86 1.71 30 1.25 1.05 1.21 20 1.04 1.15 1.08 0.98 1.73 40 1.4 1.33 1.23 30 1.06 1.19 1.07 0.95 1.77 1.25 1.07 1.32 40 1.02 1.11 1.04 1.03 2.01 60 1.25 1.13 1.28 50 1.02 1.16 1.00 1.04 1.77 70 1.23 1.18 1.26 60 1.01 1.19 0.95 1.08 1.84 80 1.41 1.37 1.32 70 1.03 1.19 0.89 1.07 1.90 90 1.58 2.81 1.35 80 1.04 1.16 0.91 1.07 1.78 10 1.07 1.45 1.25 90 1.03 1.18 0.94 1.04 1.52 20 1.1 1.15 1.22 10 0.98 1.05 0.85 1.04 1.26 30 1.14 1.14 1.31 20 0.98 1.06 1.22 1.33 1.55 40 1.13 1.32 1.32 1.56 30 1.04 1.04 1.29 1.34
			SS ST			

Acknowledgements

his projet ws funded y the gndin xturl iene nd ingineerE ing gounil @xigA under grnt PHITEHRRVPF his support is gretly E knowledgedF References

where the vriles u l , v tb , w tb , g t , h t re the dul vriles of the miniE miztion prolem ssoited with onstrints @IHAE@IRAF rolem Q(x, Γ) is ilinerF his prolem n however e linerized given the ssumption tht Γ d nd Γ t , t ∈ T tke integer vlues nd tht the reourse prolem is fesile nd ounded @qrel et lFD PHIRAF sndeedD qrel et lF @PHIRA prove tht under the ltter ssumptionsD there is n optiml solution for the reourse prolem suh tht z l nd ζ tb vriles re in {0, 1}F reneD the produt u l z l n e repled y new vrile s l nd onstrints must e dded to enfore s l to e equl to u l if z l = 1 nd HD otherwiseF imilrlyD the produt w tb ζ tb n e repled y new vrile f tb nd onstrints must e dded to enfore f tb to e equl to w tb if ζ tb = 1 nd HD otherwiseF his SH results in the liner formultion Q (x, Γ) presented in etion QFQX

x tb q t g t -t∈T b∈Bt

he optiml solution of the reourse prolem Q (x, Γ) is rehed t n extreme point of its fesile set @the prolem is fesile nd oundedAF oD SI the roust prolem rob (Γ) n e rewritten sX W rob (Γ)

x tb q t g σ t -

t∈T b∈Bt

where S is the set of the extreme points (u σ , s σ , v σ , w σ , f σ , g σ , h σ ), σ = 1...|S| of the reourse prolem Q (x, Γ) SP