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First-order transitions in glasses and melts induced by solid superclusters nucleated and melted by homogeneous nucleation instead of surface melting

Supercooled liquids give rise, by homogeneous nucleation, to solid superclusters acting as building blocks of glass, ultrastable glass, and glacial glass phases before being crystallized. Liquid-to-liquid phase transitions begin to be observed above the melting temperature Tm as well as critical undercooling depending on critical overheating T/Tm. Solid nuclei exist above Tm and melt by homogeneous nucleation of liquid instead of surface melting. The Gibbs free energy change predicted by the classical nucleation equation is completed by an additional enthalpy which stabilize these solid entities during undercooling. A two-liquid model, using this renewed equation, predicts the new homogeneous nucleation temperatures inducing first-order transitions, and the enthalpy and entropy of new liquid and glass phases. These calculations are successfully applied to ethylbenzene, triphenyl phosphite, d-mannitol, n-butanol, Zr41.2Ti13.8Cu12.5Ni10Be22.5, Ti34Zr11Cu47Ni8, and Co81.5B18.5. A critical supercooling and overheating rate T/Tm = 0.198 of liquid elements is predicted in agreement with experiments on Sn droplets.

1-Introduction

.

Icosahedral gold nanoclusters do not pre-melt below their bulk melting temperature [8]. The maximum undercooling rate of liquid elements is calculated with an additional enthalpy lsHm (Hm being the crystal melting enthalpy) to the Gibbs free energy change predicted by the classical nucleation equation [9] which describes the formation of nuclei under Laplace pressure (called tiny crystals in [10]), and the melting of residual tiny crystals at a second melting temperature above Tm equal to 1.196Tm [10]. This complementary enthalpy coefficient ls being a linear function of  2 = (T-Tm) 2 /Tm 2 is at a maximum at Tm and equal to ls0 = 0.217. This description works, as noted, because the critical size nuclei are melted by liquid homogeneous nucleation instead of surface melting. Other residual superclusters having smaller radii containing magic atom numbers govern the undercooling rate of liquid elements [11]. These last entities melt at much higher temperatures up to 1.3Tm. The value ls0 = 0.217 of ls at Tm predicts Lindemann's constant of liquid elements equal to 0.103 at Tm [12].

The glass transition at Tg was expected, in the past, to occur at the Vogel-Fulcher-Tammann temperature TVFT, which is very often close to the Kauzmann temperature TK1 of the undercooled liquid phase. Its value being extrapolated from viscosity measurements above Tg is not very precise because Tg is in fact much larger than TK1. The viscosity seems to become infinite toward TVFT in the absence of glass transition. Theoretical works show that the infinite viscosity does not occur in real systems [13,14]. The viscosity is described by configuron model of broken bonds where the working parameter is the volume of configurons rather than the free volume [15,16].

An underlying first-order transition without latent heat can occur in the supercooled liquid at TK1 in the absence of glass transition above TK1 and entropy available below TK1. An objective of this paper is to determine whether such underlying first-order transition without latent heat occurs at a temperature TK2 ≥ TK1 and is also hidden by the glass state as inferred by theoretical works [1720]. In addition, the discovery of ultrastable glass phases obtained by slow vapor deposition at temperatures lower than Tg [START_REF] Kearns | [END_REF][22][23] raises the problem of the concomitant existence of a first-order glass-to-glass transition with latent heat at TK2 compatible with the undercooled liquid entropy, that is smaller than or equal after transition to -Sm, the crystal entropy.

Two liquid states exist in supercooled water which are separated under pressure and characterized by two values of Tg [2426]. The glass transition of many melts observed far above TK1 also suggests the presence of Liquid 1 and Liquid 2 having different homogeneous nucleation temperatures with two characteristic complementary enthalpy coefficients called ls and gs and two VFT temperatures T0m and T0g (gs0 < ls0 and T0g < T0m) [27,28]. An ordered liquid state viewed as a glass state without enthalpy freezing is expected to occur at the homogeneous nucleation temperature of any fragile liquid. The glass transition at Tg of fragile Liquid 2 is characterized by a phase transition mixing the ordered phases of Liquids 1 and 2 accompanied by an enthalpy change. The two homogeneous nucleation temperatures of strong liquids 1 and 2, being equal, still lead to the mixing of glass phases at Tg. The heat capacity jump at Tg calculated using the enthalpy change is in good agreement with the measurements of many samples [28].

The glass transition is now recognized as being a phase transition instead of a liquid freezing. There are other models describing it as a true phase transformation and experimental evidence in favor of this interpretation. The glass transition is seen as a manifestation of critical slowing down near a second-order phase transition with the possible existence of several classes of universality [29]. A model predicting the specific heat jump is based on a percolation-type phase transition with the formation of dynamical fractal structures near the percolation threshold [3034]. Macroscopic percolating clusters formed at the glass transition have been visualized [35]. High precision measurements of third-and fifthorder non-linear dielectric susceptibilities lead to a fractal dimension dF = 3 for the growing transient domains [36]. An observation of the structural characteristics of medium-range order with neutrons and Xrays leads to dF = 2.31 [37].

The enthalpy difference between Liquid 1 and Liquid 2 depending on  2 creates an undercooled phase, that I call Phase 3, which is transformed in glass below Tg and in ordered liquid phase above Tg. Phase 3 has two homogeneous nucleation temperatures Tn+ for melting above Tm and formation below Tm [38]. Its presence has been recognized in supercooled water below Tm and in superheated water under pressure [25,39]. The underlying first-order transition accompanied by an enthalpy decrease at a temperature TK2 could induce the hidden ordering of Phase 3 during heating.

The other objectives of this paper are to extend the application of this renewed equation to glacial phase formation [40][41][42], glass-to-glass phase transitions such as the expected underlying firstorder transitions [18][19][20], ultra-stable glass formation [START_REF] Kearns | [END_REF]23], and to the presence of Phase 3 in other melts such as Ti34Zr11Cu47Ni8 [43], Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) [44,45], and CoB eutectic alloys [46]. The recent observation of a critical undercooling for crystallization of Sn droplets reveals the critical temperature of solid supercluster formation viewed as growth nuclei when they are crystallized in liquid elements [47]. Superclusters, acting as building blocks in Phase 3, contribute to the ordered liquid formation in glass-forming melts instead of crystallization.

2-Predicting glass-to-glass and liquid-to-liquid transitions

Nucleation temperatures of glass Phase 1 and glass Phase 2 in Liquid 1 and Liquid 2

The completed classical nucleation equation for each liquid glass formation [10,11,28].

phase is given by (1): 𝛥𝐺 = 4𝜋𝑅 3 3 𝛥𝐻 𝑚 /𝑉 𝑚 × (𝜃 -𝜀) + 4𝜋𝑅 2 

(1 + 𝜀)𝜎 1 , ( 1 
)
where G is the Gibbs free energy change per volume unit, (associated with the formation of a spherical supercluster of radius R),  is a fraction of the melting enthalpy Hm per mole (equal to ls for a supercluster in Liquid 1, gs for a supercluster in Liquid 2, and lg = (ls -gs) for a nucleus of Phase 3), Vm is the molar volume, and = (T-Tm)/Tm is the reduced temperature. The melting heat Hm and the melting temperature Tm are assumed to be the same for all superclusters and not dependent on R, whatever the radius R is. These nuclei are not submitted to surface melting in agreement with earlier findings showing that they are melted by homogeneous nucleation and some of them survive above Tm [10,11]. The critical nuclei give rise to ordered Liquid 1 and ordered Liquid 2 transformed in glass Phase 3 below g, or to various liquid-liquid phase transitions (LLPT), according to the thermal variations of . The new surface energy is (1+) ×1 instead of 1. The classical equation is obtained for =0 [9]. The homogeneous nucleation temperatures nand n+ of these phases are given by (2-3) [28,38]:

𝜃 𝑛-= (𝜀 -2)/3, (2) 
 𝜃 𝑛+ = 𝜖.     
The thermally-activated critical barrier in ( 4) is infinite at the homogeneous nucleation temperature obtained for n =  instead of = 0 for the classical nucleation equation of crystals [10,28]:

∆𝐺 * (𝑘 𝐵 𝑇) ⁄ = 12(1 + 𝜀) 3 𝐿𝑛(𝐾. 𝑣. 𝑡 [81(𝜃 -𝜀) 2 ⁄ (1 + 𝜃)], (4) 
where ln(K)  90, v is the sample volume and t the nucleation time A catastrophe of nucleation is predicted at the superheating temperature n =  for crystals protected against surface melting [48]. An ordered liquid phase occurs at  = nin each liquid and disappears by superheating at  = n+.

The coefficients ls and gs in (5,6) represent values of (), and lead to the nucleus formation having the critical radius in Liquids 1 and 2: 

𝜀 𝑙𝑠 (𝜃) = 𝜀 𝑙𝑠0 (1 -𝜃 2 × 𝜃 0𝑚 -2 ), (5) 
𝜀 𝑔𝑠 (𝜃) = 𝜀 𝑔𝑠0 (1 -𝜃 2 × 𝜃 0𝑔 -2 ) + , (6) 
where  = lsgs is equal to the enthalpy excess coefficient of a quenched liquid before its transition to the glass phase below Tg or the latent heat coefficient of a first-order transition occurring below Tg as observed for ultrastable glasses or above Tg for glacial phases. The dependence of on  2 is deduced from the maximum supercooling rate of 30 pure liquid elements [10]. The enthalpy coefficient ls0 = gs0 = 0.217 of these liquid elements leads to the theoretical value 0.103 of Lindemann's constant [12]. The coefficients ls and gs are equal to zero at the reduced temperatures 0m and 0g and in many experiments on strong liquids, they are close to the Vogel-Fulcher-Tammann temperatures named TVFT = T0m of Liquid 1 and T0g of Liquid 2. The viscosity  and relaxation time diverge with the decreasing temperature T toward TVFT as shown in (7) [49][50]:

 =  0 𝑒 𝐵 (𝑇-𝑇 𝑉𝐹𝑇 ) . (7) 
At the temperature T0m, it would be impossible to delocalize any atom [51]. The relaxation time, in the glass state, also obeys (7) with TVFT of the order of T0g [52 and references therein]. Despite the absence of theoretical justifications, the VFT temperatures are close to the calculated values of T0m and T0g. Equations (5)(6) are applicable at the homogeneous nucleation temperatures ngiven by (2) for glass Phase 1 and glass Phase 2 respectively. The two forms of (8), combining quadratic equations ( 2) and ( 6), determine nfor Phase 2:

ε gs0 θ 0g -2 𝜃 𝑛- 2 + 3θ n-+ 2 -ε gs0 - = 0, (8) 
ε gs0 = 3θ n-+2- 1- θ n- 2 θ 0g 2 . ( 8 
)
The solutions for nare given by ( 9):

θ n-= (-3±[9- 4(2-ε gs0 -)ε gs0 θ 0g 2 ] 1 2 )θ 0g 2 2ε gs0 , (9) 
where nin Liquid 2 for the sign + is viewed as the reduced first-order transition temperature, is the latent heat coefficient of this first-order transition, and nfor the signis the reduced homogeneous nucleation temperature at which the enthalpy excess Hm starts to be recovered after liquid hyper-quenching at a temperature lower than that of the first-order transition. In the case of a first-order transition due to glacial phase or to ultrastable glass formations, the new glass transition g occurring at (n-) given by ( 9) depends on the latent heat coefficient

The two forms of (10) determine the homogeneous nucleation temperature nfor Phase 1, combining (5) at this temperature with :

𝜃 𝑛- 2 𝜀 𝑙𝑠0 𝜃 0𝑚 -2 + 3𝜃 𝑛-+ 2 -𝜀 𝑙𝑠0 = 0, (10) 
ε ls0 = 3θ n-+2 1- θ n- 2 θ 0m 2 . ( 10 
)
The reduced homogeneous nucleation temperature nof Phase 1 in ( 11) is deduced from (10):

𝜃 𝑛-= (-3±[9- 4(2-𝜀 𝑙𝑠0 )𝜀 𝑙𝑠0 𝜃 0𝑚 2 ] 1 2 )𝜃 0𝑚 2 2𝜀 𝑙𝑠0 , (11) 
wheren-inEq. is called 1 for the sign +. Liquid 1 is ordered by cooling at 1 in the no man's land without enthalpy freezing despite a nucleation rate equal to 1. A microscopic structure of elementary superclusters is probably formed below their percolation threshold [34]. The most important glass phase occurs at zero pressure at the homogeneous nucleation temperature g = 2 of Phase 2 in Liquid 2. This transition is accompanied at g by an enthalpy change from ordered Liquid 1 to glass Phase 3 governed by the difference of enthalpy coefficients lg = (ls -gs) between those of Liquid 1 and Liquid 2. Any strong Liquid 1 has a VFT temperature smaller than or equal to Tm/3 while that of any fragile Liquid 1 is higher than Tm/3. This new boundary T0m = Tm/3 separating strong and fragile liquids completes previous conclusions of Angell [53] The two families have different thermodynamic properties below g. A liquid is fragile when Eq. (8,10) have a unique solution [52].

Enthalpy coefficients and specific heat of strong liquids and glasses

The coefficients (gs0) in ( 8) and (ls0) in (10) of strong liquids, calculated for = 0, are determined from the knowledge of VFT temperatures 0g, 0m and of the reduced glass transition temperature g respecting ls = gs [28,52]. In the great majority of strong liquids, (0g) is equal to -1 because the relaxation time follows an Arrhenius law. The nucleation temperatures T1 and T2 of strong Liquids 1 and 2 are equal to g.

The specific heat change of strong supercooled liquids is the derivative d(ls-gs)/dTHm given by (12):

∆𝐶 𝑝 = 2𝜃( 𝜀 𝑙𝑠0 𝜃 0𝑚 2 - 𝜀 𝑔𝑠0 𝜃 0𝑔 2 ) ∆𝐻 𝑚 𝑇 𝑚 (12) 

Enthalpy coefficients of fragile liquids and glasses

The two solutions of (8,10) are unique for fragile liquids. Values of ls0 are given in (13) knowing that 1 > g:

𝜀 𝑙𝑠 (𝜃 = 0) = 𝜀 𝑙𝑠0 = 1.5𝜃 1 + 2 = 𝑎𝜃 𝑔 + 2, (13) 
where a = 1 leads to a well-known specific heat excess (Cp (Tg)) of the supercooled melt at Tg equal to (1.5×Hm/Tm) [27,28,52,54]. This value a = 1 is deduced from the scaling law followed by the VFT temperature of many polymers [55]. For a ≤ 1, Cp (Tg) is given in (14):

∆𝐶 𝑝 = 2 𝜃 𝜃 𝑔 ∆𝐻 𝑚 𝑇 𝑚 ( 2.25 𝑎 -1.5) (14) 
The unique solution for (10) is obtained when the reduced temperature (0m) is given by (15):

𝜃 0𝑚 2 = 8 9 𝜀 𝑙𝑠0 - 4 9 𝜀 𝑙𝑠0 2 (15) 
New parameters (gs0) and (0g) are fixed in Eq. (16,17) and lead to a unique solution for (8); (gs0) is maximized in ( 16) and ( 17) [27,28]:

𝜀 𝑔𝑠 (𝜃 = 0) = 𝜀 𝑔𝑠0 = 1.5𝜃 2 + 2 = 1.5𝜃 𝑔 + 2, ( 16 
)
𝜃 0𝑔 2 = 8 9 𝜀 𝑔𝑠0 - 4 9 𝜀 𝑔𝑠0 2 . ( 17 
)
The glass transition reduced temperature occurs at g = 2 and is smaller than that for which ls = gs. The reduced temperature  where lg = 0 is equal 0.8165g for a = 1.

Enthalpy coefficient of glass phase and underlying first-order transition without latent heat

The enthalpy difference coefficient (lg) between Liquid 1 and Liquid 2 in (18) gives rise to the new glass Phase 3 below g instead of glass Phase 2 and to a new liquid Phase 3 above g when  = 0 [25]:

∆𝜀 𝑙𝑔 (𝜃) = 𝜀 𝑙𝑠 -𝜀 𝑔𝑠 = 𝜀 𝑙𝑠0 -𝜀 𝑔𝑠0 + ∆𝜀 -𝜃 2 (𝜀 𝑙𝑠0 𝜃 0𝑚 2 ⁄ -𝜀 𝑔𝑠0 𝜃 0𝑔 2 ⁄ ) (18) 
where ( is the coefficient of enthalpy excess below Tg being frozen after quenching at the reduced temperature without undergoing a transition to the glass phase and (ls0 -gs0 = lg0) the melting enthalpy coefficient of Phase 3. The excess) is equal to lg (T) given by (18) below g without . The temperatures TBr-and TBr+ where lg() with  = 0 is equal to zero are called the branching temperatures of the enthalpy.

It is considered that Phase 3 enthalpy lg() in (18) becomes constant for  = 0 below the reduced temperature K2 where lg() = -lg0 = -(ls0 -gs0). The underlying first-order transition is expected to occur at K2. The enthalpy coefficient excess after hyperquenching cannot be larger than the enthalpy coefficient lg0 at Tm. This assumption is based on the existence of the enthalpy excess of Phase 3 at Tm which reveals the presence at lower temperature of an underlying first-order transition without latent heat. The absence of latent heat having for consequence to leave an uncompensated enthalpy at Tm.

Glass Phase 3, when heated above the glass transition (g), is transformed in liquid Phase 3. This "ordered" liquid can be superheated above Tg and Tm and melted above Tm at the reduced temperature (n+) given by (3). Equation ( 18) is used to calculate n+ = lg in agreement with (3).

A new homogeneous nucleation temperature of ordered liquid Phase 3 at a supercooling temperature n+ < 0 still occurs below Tm for n+ = lg < 0. The nucleation of ordered liquid Phase 3 by cooling after overheating and melting has for consequence to replace the nucleation temperature 1 of Liquid 1 by n+ = lg < 0.

Liquid Phase 3 can be cooled by hyperquenching without glass transition down to the temperature TK2 (or K2) where lg attains its minimum value (-lg0 = -(ls0-gs0)) defined by its enthalpy coefficient lg0 at Tm. This transition is underlying when Phase 3 enters the glass state and defines an upper limit lg0Hm for the enthalpy frozen after quenching the melt below TK2 as expected from theoretical considerations [1720].

First-order transformation temperature (Tsg) of hyper-quenched Phase 3 in more-stable glasses

The enthalpy excess  in ( 18) is obtained after quenching the sample at a reduced temperature without transition at g and is equal to lg () given by (18) for  = 0. The initial enthalpy after quenching below Tg is equal to that of Liquid 1. Consequently, the enthalpy coefficient lg of Phase 3 before transformation is always equal to zero at all quenching temperatures. The thermally-activated critical barrier G/kT for Phase 3 formation, given in (19), is infinite for lg = 0 [28]:

∆𝐺 * (𝑘 𝐵 𝑇) ⁄ = 12(1 + ∆𝜀 𝑙𝑔 ) 3 𝐿𝑛 (𝐾.𝑣.𝑡) 81(1+θ)(∆𝜀 𝑙𝑔 ) 2 . (19) 
A sharp enthalpy difference leading to ultrastable glass Phase 3 through a first-order transition is expected at each temperature of quenching below Tg for which lg is equal to zero in (18). This phenomenon leads to the formation of more-stable glasses [START_REF] Kearns | [END_REF][22][23]56,57]. The transformation temperature (Tsg) for a stable glass formation given in (20) is 

𝜃 𝑠𝑔 = -[ 𝜀 𝑙𝑠0 -𝜀 𝑔𝑠0 +𝛥𝜀 𝜀 𝑙𝑠0 𝜃 0𝑚 -2 -𝜀 𝑔𝑠0 𝜃 0𝑔 -2 ] 1 2 . ( 20 
)
The temperature Tsg depends on the value of lg after quenching or is the substrate temperature used for vapor deposition. The latent heat associated with this first-order transformation lg(sg)Hm is recovered at a new g. The maximum of enthalpy difference between Phase 3 and the ultrastable glass phase is obtained at sg = K2 and is defined by the melting enthalpy of Phase 3 equal to ls0Hm. The enthalpy recovery of this ultrastable Phase 3 occurs at a temperature ngiven by (9) with  = lg0 which is expected to be higher than Tg.

The glass transition at very low heating rates is known as being time-dependent and higher than Tg in ultrastable glasses [56,57].

Determination of the Kauzmann temperature from Phase 3 entropy

The entropy S(T) of Phase 3 is calculated from the specific heat d(lg)/dTHm and is given by [START_REF] Kearns | [END_REF]:

∆𝑆(𝑇) = -2 ( 𝜀 𝑙𝑠0 𝜃 0𝑚 2 - 𝜀 𝑔𝑠0 𝜃 0𝑔 2 ) ∆𝑆 𝑚 (𝑇 𝑚 -𝑇) 𝑇 𝑚 + 2∆𝑆 𝑚 𝐿𝑛( 𝑇 𝑚 𝑇 )( 𝜀 𝑙𝑠0 𝜃 0𝑚 2 - 𝜀 𝑔𝑠0 𝜃 0𝑔 2 ) (21) 
The Phase 3 Kauzmann temperature TK is the temperature where S(TK) = -Hm/Tm = -Sm [58].

3-Underlying first-order transition below Tg at zero pressure

Ethylbenzene

The melting temperature Tm, the glass transition temperature Tg, its reduced value g = (Tg-Tm)/Tm, the specific heat jump Cp(Tg) of ethylbenzene and the melting enthalpy Hm are equal to 178.1 K, 114.5 K, -0.3571, 76 JK -1 mol -1 and 9170 Jmol -1 respectively [59]. The enthalpy coefficients ls of Liquid 1, gs of Liquid 2 and lg of Phase 3 in (22,23,24) and the square of reduced VFT temperatures 0g 2 = 0.34861 and 0m 2 = 0.26075 are calculated using (13,1517) with a = 1 because Cp(Tg) is equal to 1.5Hm/Tm=1.5Sm, Sm being the melting entropy:

𝜀 𝑙𝑠 = 1.6429(1 -𝜃 2 /0.26075), (22) 
𝜀 𝑙𝑠 = 1.46435(1 -𝜃 2 /0.34861),

𝜀 𝑙𝑠 = 0.17855 -2.1002𝜃 2 .

(

) 24 
At the melting temperature Tm, lg is maximum and equal to lg0 = 0.17855. The coefficient lg of the supercooled Phase 3 is represented in Figure 1 as a function of the temperature T. lg is frozen and equal to (-0.08927) below Tg = 114.5 K after slow cooling. The characteristic temperatures are: TK1 = 81.7 K calculated with (21); T0m = 87.15 K with (15); TK2 = 104.7 K for lg =-lg0 = -0.17835 in (18); Tg = 114.5 K; TBr-= 126.2 K for lg = 0 in (18); Tn+ = 153.5 K for lg = n+ with (18); Tm =178.1 K; Tn+ = 202.7 K for lg =n+ with (18); TBr+ =230 K for lg =0 with (18). The liquid-liquid transitions predicted at Tn+ and TBr+ have not been observed up to now.

Liquid Phase 3 can be rapidly quenched down to the temperature TK2 = 104.66 K without undergoing glass transition. After quenching at TK2 and spontaneous transformation in ultrastable glass phase, (lg) initially equal to zero, becomes equal to (-2lg0 = -0.3571) on the green line due to a first-order latent heat coefficient  equal to lg0 in (7). The underlying Phase 3 is represented by black dashed lines below Tg. Other first-order transitions with latent heat are expected to start from lg = 0 at any temperature between TK2 and Tg because the relaxation time is small and probably of the order of 100 s at any glass transition temperature. The underlying first-order transition without latent heat occurs at TK2 with an enthalpy coefficient change of (-lg0). This glass enthalpy coefficient lg remains constant below TK2. The glass enthalpy coefficient is composed of a frozen part below Tg, obtained by slow cooling, equal to (on the black lineinstead of (-lg0 = -0.17855) on the dashed black line for supercooled Phase 3 below TK2. The irreversible part due the latent heat associated with Phase 3 first-order transition at the reduced temperature  gives rise to a time-dependent isothermal latent heat recovered at g which is smaller or equal to (lg()Hm). This relaxation enthalpy is recovered at g. The enthalpy coefficient of the fully-relaxed glass on the blue line in Figure 1 is (1.5lg0Hm = -0.2678).

The enthalpy variation of ultrastable Phase 3 obtained after quenching or vapor deposition at the first-order transition temperature  is equal to (2lg0Hm) on the green line in Figure 1 and recovered at the maximum temperature 126.2 K compatible with the available entropy at this temperature [57]. The glass transition temperature calculated with (9) and = 0.17855 is 151.2 K (g = -0.15093). The entropy difference of this fragile glass and the liquid calculated with (20), ls and gs with (13)(14)(15)(16)(17), and (g = -0.15093) is equal to the entropy associated with the first-order transition entropy (0.17855Hm/TK2) at 126.2 K. The temperature Tg = 126.2 K is the upper limit for the recovery temperature of the enthalpy by isothermal relaxation. A smaller enthalpy variation of (1.5lgHm) is obtained when the enthalpy is recovered at Tg = 114.5 K due to the frozen enthalpy (of this fragile glass [23,57]. The ultrastable glass Phase 3 induced at TK2 has a lower enthalpy than the fully-relaxed glass at the same temperature. This analysis is confirmed by vapor deposition on substrates cooled at various temperatures [23]. The film volume change is reduced with the increase of the deposition temperature above 104.7 K. The maximum change in Figure 2 is obtained for a deposition temperature T = TK2 = 104.7 K as predicted in Figure 1 [57].

Figure 2:

Volume of ethylbenzene at several deposition temperatures. Lines 2 and 3 have been added and are parallel to one another. Line 2 represents the molar volume of the liquid below 121 K after slow cooling. The change in slope between Lines 1 and 2 corresponds to a mean specific heat of 88 J/K/mole. The maximum volume difference is for a deposition temperature of 104.7 K and correspond to a change of enthalpy coefficient of 1.5lg0. Reprinted from [23,57] with permission of Elsevier.

Enthalpy excess lg0Hm associated with underlying first-order transitions and firstorder transition of ultrastable glass

An underlying first-order transition creates a maximum value lg0Hm of enthalpy excess which can be frozen by rapid quenching. There are two homogeneous nucleation temperatures defined by (11) in Liquid 2. The highest is Tn-= Tg; the lowest Tn-is the temperature where this enthalpy excess begins to be recovered using a slow heating rate. The enthalpy excesses and the recovery temperatures are examined in 7 glasses. The experimental specific heat jumps at Tg and the recovery temperatures Tn-are used to determine ls, gs, lg(T), Cp(Tg), lg0Hm, Hm and Tm (when they are unknown) in (CaO)55(SiO2)45 [60], Cu46Zr46Al8 [61,62], Zr65Cu27.5Al7.5 [63,64], basalt SiO2)40(CaO)18(Al2O3)21(MgO)8(FeO)7(Na2O)2(TiO2)2(K2O)1 [65], e-glass (SiO2)55(CaO)17(Al2O3)15(MgO)5(B2O3)8 [58]; propylene glycol C3H8O2 [65,66], GeO2 [60]. The glass transition temperature of GeO2 depending on the sample purity [67], (Tg) is chosen equal to 830 K for the studied sample [60]. The melting temperature (Tm) is known for (CaO)55(SiO2)45, propylene glycol and GeO2. The enthalpy recovery temperature in GeO2 is determined using (20) because the lowest value of ngiven by ( 11) is negative in strong liquids. All the thermodynamic parameters of these glasses are given in Table 1.

Table 1: Tm the melting temperature; Tg the glass transition temperature; g = (Tg-Tm)/Tm; gs0 with ( 16) for fragile liquids and with (8) for GeO2); 0g 2 with (17) for fragile liquids and 0g 2 = 1 for GeO2; a with (13); ls0 with (13) for fragile liquids and (10) for GeO2); 0m 2 with (15) for fragile liquids and 0m 2 = 0.73381 corresponding to T0m = 200 K for GeO2; Cp exp (Tg), experimental value; Cp calc (Tg), calculated value; Hexc exp= , experimental enthalpy excess; Hexc calc , calculated enthalpy excess; lg0 = (ls0 -gs0),; Tn-with (9); Tn-/Tg. The recovery after quenching of the enthalpy excess of propylene glycol is presented in Figure 3 as an example [59]. The recovery starts at Tn-= 126 K. The specific heat Cp(Tg) is calculated with a = 0.875, Tm and Hm being measured values [65]. The measured enthalpy excess is a little larger than the calculated one. In all other examples, (perhaps except for GeO2), the calculated and measured enthalpy excesses are equal. The enthalpy excess has a maximum value equal to lg0Hm. An underlying first-order transition without latent heat exists and limits the enthalpy excess obtained by quenching. 14) with Hm = 25090 Jmol -1 and Tm =297 K. The enthalpy differences in Figure 4 between the glass and glacial phases and the glacial and crystalline phases are 7084 and 5744 Jmol -1 respectively at 180 K [69]. The glacial phase disappears between 227 and 242 K with a mean TX1  234.5 K due to crystallization. These measurements are made using time interval of about 20 min between each specific heat measurement. An extended study of the first-order transition of the glacial phase has recently been published [71]. The heat flow is measured using heating and cooling rates of 1000 Ks -1 and reproduced in Figure 5 as a function of temperature before annealing and after an annealing time of 600 min at Ta = 216 K. This work shows the reversibility of the first-order transition induced by isothermal annealing and determines the latent heat of the transition using ultrahigh speed differential scanning calorimetry (DSC). The reverse LLT being hidden behind crystallization is observed in very short times of heating, cooling and reheating cycles as indicated in the inset of Figure 5.

The glass transition temperature Tg increases from 204 to 220 K when varying the heating rate from 5 Kmin -1 to 1000 Ks -1 . The crystallization occurs at TX2 for a heating rate of 5 Kmin -1 . The specific heat at 223 K already shows a bump without applying annealing which corresponds to an endothermic latent heat of about 450 Jmol -1 ( 0.018 Jg -1 ), which is progressively reduced when the annealing time increases. The melting temperature of the glacial phase is characterized by a peak around TO1 = 251 K and a latent heat of about 8690 Jmol -1 (28 Jg -1 ) followed by a reverse latent heat of about the same amplitude obtained as indicated in the inset of Figure 5. Crystals are not formed during fast heating after this annealing of 600 min at Ta = 216 K. Higher latent heats are measured when the annealing time and temperature increase, while the reverse latent heat remains equal to 3133 Jg -1 , when the first-order latent heat is obtained after an annealing for 600 min from Ta = 218 up to Ta = 227 K (supplementary Figure 2 in [71]). This observation is an evidence of the existence of a critical entropy and enthalpy at TO1. 

Model predictions for triphenyl phosphite

The model developed here is used to predict all these phenomena. For that purpose, the enthalpy coefficients of fragile Liquid 1, fragile Liquid 2 and Phase 3 are given in (25-27) using (g = -0.31313), Tm = 297 K, a = 0.8895 and (13-17):

𝜀 𝑙𝑠 = 1.7215(1 -𝜃 2 /0.21310), (25) 
𝜀 𝑙𝑠 = 1.5303(1 -𝜃 2 /0.31946), (26) 
𝜀 𝑙𝑠 = 0.19117 -3.2878𝜃 2 .

(

) 27 
The predicted characteristic temperatures in Figure 6 The enthalpy coefficient of the glacial phase below TK2 is chosen as equal to (-0.50947) which is the minimum value of lg at T0m as shown in Figure 6. This assumption has been already applied to supercooled water to explain the critical enthalpy difference between the two liquid states which are separated under pressure [25]. Values of lg smaller than (-0.50947) bring the glacial phase closer to the crystal enthalpy. In addition, this glacial phase could be stable. The latent heat of the first-order transition at TO1 is equal to (-0.3183) instead of (-0.50947) because it is reduced by the enthalpy change (-lg0 = -0.19117) due to the underlying first-order transition of Phase 3 at TK2. The latent heat of the first-order transition is predicted to be equal to 0.3183Hm= 25.74 Jg -1 for an experimental value 27.5 Jg -1 of the reverse latent heat associated with an annealing for 600 min at 217 K (supplementary Figure 2 in [71]).

The homogeneous nucleation temperatures Tn-of superclusters in fragile Liquid 2 are given by (9). There are two nucleation temperatures represented in Figure 7 for a single value of the enthalpy excess ; one below Tg, another above Tg. Values < lg0 correspond to enthalpy excesses obtained when the cooling rates applied to ribbons are too weak [55]. A coefficient  larger than lg0 cannot lead to a second nucleation temperature Tn-below Tg due to the existence of the underlying first-order transition at TK2. A coefficient would have to lead to Tn-= Tgg = 280.6 K in (9). The entropy of this new fragile liquid with Tgg = 280.6 K is calculated using the new coefficients gs0 = 1.91697, 0g 2 = 0.07074, and compared with that of the initial liquid in [START_REF] Kearns | [END_REF]. The transition at TO1 = 253.1 K transforms this new glass phase in the initial liquid when the entropy change at TO1 becomes equal to 0.3183Hm/TO1. The enthalpy remains constant below TO1 as shown by the systematic reverse enthalpy measurements [71]. (lg) is represented in Figure 6, as being constant and equal to (-0.19886) and also varying, after annealing at Ta, instead of being constant below TO1. Homogeneous nucleation temperature Tn-with (9) viewed as a glass transition temperature of Liquid 2 versus . For Tn-< Tg, ( is an enthalpy excess. For T > Tg, ( is a latent heat coefficient associated with a first-order transition. The coefficient (can also be seen, in the absence of annealing, as a time-dependent endothermic latent heat acting between Tg = 204 and TBr-= 225.4 K because lg is still negative in this temperature interval (see Figure 6).

The entropy of glass and glacial phases are calculated using [START_REF] Kearns | [END_REF] with ls0, gs0, og 2 , and om 2 given in (22)(23)(24), substracting the entropy changes at the first-order transition temperature TO1 and using the other calculated characteristic temperatures as represented in Figure 8. The crystallization temperatures TX1 and TX2 occur when the frozen entropy below TX1 and TX2 become equal to S = (-70.22) and (-73.79 JK -1 mol -1 ) respectively. These two crystallization temperatures are in perfect agreement with the experimental observations at low heating rates [69,71]. The calculated entropy predicts TX1 and TX2. The measured latent heat is about 20 % higher than the theoretical one. Consequently, the corresponding frozen entropy would be equal to 81.6 JK -1 mol -1 instead of 73.79 JK -1 mol -1 . The crystallization would be expected around T = 276 K instead of 242.5 K. The experimental reverse latent heat seems too high to be able to predict TX2.

The enthalpy coefficient and entropy of the glacial phase equal to (-0.50947) and (-73.79 JK - 1 mol -1 ) respectively are obtained by slowly cooling the liquid from the annealing temperature Ta down to TK2 = 195.7 K. The liquid phase becomes vitreous with constant enthalpy and entropy up to TX2. This description shows that denser glass phases can be obtained using the same process in many other glasses. This analysis is now applied to d-mannitol below the underlying first-order transition at TK2 =195.7 K. S = (-70.22 JK -1 mol -1 ) below TX1 = 234.6 K corresponding to the sample annealed for 120 min at Ta = 217 K slowly cooled with  = 0.2823 [69] instead of 0.3183. S = (-73.79 JK -1 mol -1 ) below TX2 =242.5 K. S = (-84.48 JK - 1 mol -1 ) for the entropy of crystal.

D-mannitol

Specific heat measurements of d-mannitol and DSC results

The glass transition of d-mannitol occurs at Tg = 284 K and the melting temperature at Tm = 439 K. The specific heat jump at Tg is equal to  1.27 Jg -1 K -1 . The Vogel-Fulcher-Tammann temperature is 222 K [72] and the Kauzmann temperature 229 K. As shown in Figure 9, a spontaneous exothermic heat of 64 Jg -1 is produced around 298 K, when heating a sample at 10 Kmin -1 , initially quenched from the liquid state down to 273 K [42]. This new glacial phase is called Phase X. The crystallization temperature is 331 K and the latent heat of crystallization at this temperature is 107 Jg -1

. The fusion heat of crystals is equal to 293 Jg -1 . A fast heating rate of 300 Ks -1 reveals an endothermic latent heat of 60 Jg -1 at T = 343 K associated with the disappearance of Phase X without crystallization. The glass phase with Tg =284 K could have a higher density at 278 K than the glacial phase at the same temperature. Consequently, these two phases are compared with the HDA and LDA phases of water [73]. 

Model predictions for d-mannitol

Liquid 1 is fragile because its VFT temperature equal to 222 K is much larger than Tm/3 = 146.3 K. Equations (1317) are applied with g = (-0.35308) (Tg = 284 K) and a = 0.93 to obtain a specific heat jump of 1.27 JK -1 g -1 at Tg. They lead to (ls) of Liquid 1, (gs) of Liquid 2, and (lg) of Phase 3 given by (28-30)): The enthalpy variation of ultrastable Phase 3 obtained after quenching or vapor deposition at the first-order transition temperature  is equal to (2lg0Hm) in Figure 10 on the green line 5 and recovered at the maximum temperature 338 K compatible with the available entropy at this temperature. The glass transition temperature calculated with ( 9) and = 0.20126 is 379.5 K (g = -0.13544). The entropy difference of this fragile glass and the liquid calculated with ( 21), ls and gs with (13)(14)(15)(16)(17), and (g = -0.13144) is equal to the entropy associated with the first-order transition entropy (0.20126Hm/TK2) at 338 K. The temperature Tg = 338 K is the upper limit for the recovery temperature of the enthalpy by relaxation. An enthalpy variation of (1.5lgHm) is expected when the enthalpy is recovered at Tg = 284 K due to the frozen enthalpy (of this fragile glass [57]. The ultrastable glass Phase 3 induced at TK2 has a lower enthalpy than the fully-relaxed glass at the same temperature represented by the blue line 4.

𝜀 𝑙𝑠 = 1.67164 × (1 -𝜃 2 /0.24396), (28) 
𝜀 𝑔𝑠 = 1.47039 × (1 -𝜃 2 /0.34610), (29) 
𝜀 𝑙𝑠 = 0.20125 -2.6036𝜃 2 , (30) 
The homogeneous nucleation temperatures Tn-of superclusters in Liquid 2 are given by (9). A coefficient  larger than lg0 cannot lead to a second nucleation temperature Tn-below Tg due to the existence of the underlying first-order transition at TK2. A coefficient would have to lead to Tn-= Tgg = 382.7 K in (7) for the glacial phase. The entropy of this new fragile liquid with Tgg = 382.7 K is calculated using the new coefficients gs0 = 1.80756, 0g 2 = 0.1546, and compared with that of the initial liquid in [START_REF] Kearns | [END_REF]. The transition at TO1 = 342.7 K transforms this new glass phase in the initial liquid when the entropy change at TO1 becomes equal to (0.23872Hm/TO1 = 0.2041 JK -1 g -1 ). The enthalpy remains constant below TO1 during the heating at 300 Ks -1 [42]. The coefficient (lg) is represented in Figure 10, as being constant and equal to (-0.23872). It also varies with the heating rate, instead of being the same below TO1.

The enthalpy coefficient of the glacial phase (Phase X) below TK2 is chosen equal to (-0.43398) which is the minimum value of lg at T0m as shown in Figure 10. This assumption has already been applied to supercooled water and triphenyl phosphite. The latent heat coefficient of the glacial phase at TO1 is added to the enthalpy coefficient of underlying first-order transition of Phase 3 at TK2 equal to (-0.20125). The sum of the two enthalpy coefficients is equal to (-0.43398). That of the first-order transition at TO1 is then (-0.23872). The latent heat of the firstorder transition is predicted to be equal to 0.23872 = 69.9 Jg -1 in agreement with the experimental values of the formation latent heat 64 JK -1 mol -1 and the melting latent heat 60 JK - 1 mol -1 [42].

Phase X relaxation at Ta = 298.4 K seems to be spontaneous at a heating rate of 10 Kmin -1 . This phenomenon corresponds to the fact that the liquid entropy up to Ta becomes equal to Sm when the entropy of the glacial first-order transition at TO1 is added to it. The temperature where the relaxation enthalpy of Phase X becomes available to transform the liquid into a glacial phase is Ta.

The entropy of glass and glacial phases are calculated using ( 21) with ls0, gs0, og 2 , and om 2 given in (2830), substracting the entropy changes at the first-order transition temperature TO1 for the glacial phase and at TK2 for the ultrastable glass phase, using the other calculated characteristic temperatures and represented in Figure 11. The crystallization temperature occurs at TX = 331 K when the frozen entropy below TX becomes equal to S = (-0.5694 JK -1 g -1 ). This crystallization temperature is in perfect agreement with the experimental observation in Figure 10. The calculated entropy is correct because it predicts the experimental value of TX. The entropy (-0.50784 JK -1 g -1 ) of fully-relaxed glass phase is recovered at Tg = 284 K as shown in Figure 11 and is composed of the glass entropy (-0.2865 JK -1 g -1) and of the relaxation entropy (-lg0Hm/TK2 = -0.22134).

The entropy of ultrastable glass phase formed at TK2 = 266.4 K from lg = 0 is recovered at Tg = 338 K as shown in Figure 11. The first-order transition at TK2 is accompanied by an underlying entropy change (-lg0 = -0.36961) and by a first-order entropy change of (-lg0Hm/TK2 = -0.22134) leading to a configurational entropy (-0.59095 JK -1 g -1 ).

The enthalpy coefficient and entropy of the glacial phase equal to (-0.43398) and (-0.56939 JK -1 g -1 ) respectively are obtained by a slow cooling of the liquid from Ta = 298.4 K down to TK2 = 266.4 K and using a heating of 10 Ks -1 up to TX = 331 K. The liquid phase becomes vitreous with constant enthalpy and entropy up to TX. This description still shows that denser glass phases of bulk samples can be obtained using the same process in many other glasses. This analysis is now applied to n-butanol.

N-Butanol

Heat capacity measurements of n-butanol and DSC results

Bolshakov and Dzhonson report in 2005 on the discovery of a new solid phase [74], obtained by isothermal annealing around 140 K, of amorphous n-butanol that melts at 170 K followed by crystallization. The melting temperature of crystals is Tm = 184 K and the melting heat Hm = 9280 Jmol -1 , far above the first glass transition temperature Tg  118 K [75]. This phenomenon is analogous to the glacial phase formation of triphenyl phosphite [76]. The glass transition at T  170 K is associated with a solid amorphous state of n-butanol. Kurita and Tanaka also follow the isothermal transformation of the liquid at a lower temperature 128 K [41]. They observe the formation of many droplets of glacial phase growing in the liquid with time. After 3 hours, the liquid is fully transformed into homogeneous glass having a glass transition Tg  140 K as shown in Figure 12. This sample crystallizes at 165 K and melts around 184 K. Hedoux et al. confirm the formation of the glass phase and the progressive appearance of crystallization for annealing times greater than 3 hours at T = 120 K [77]. They evaluate the VFT temperature as being about 45 K, far below Tm/3. Consequently, n-butanol is a strong glass. Other calorimetric measurements show that the specific heat jump at Tg is about 48 JK -1 mol -1 , followed by an exothermic peak in the range 125-145 K [78]. The specific heat transition extends from 111 to 118 K. The temperature 116 K at the middle of the transition is chosen to predict the thermodynamic properties with Hm = 9280 Jmol -1 . 

Model predictions for n-butanol

The enthalpy coefficients deduced from (8,10) with g = (-0.36957) (Tg = 116 K) and 0m 2 = 0.51546 (T0m = 51.9 K), 0g 2 = 1 are given in (2830):

𝜀 𝑙𝑠 = 1.2126 × (1 - 𝜃 2 0.51546 ), (31) 
𝜀 𝑔𝑠 = 1.03229 × (1 -𝜃 2 ), (32) 
∆𝜀 𝑙𝑔 = 0.18030 -1.3202𝜃 2 , ( 33 
)
where lg0 = (ls0-gs0) = 0.18030. The value 0m 2 = 0.51546 in (12) leads to Cp (Tg) = 47.9 JK -1 mol -1 in agreement with specific heat measurements [71] and with the VFT temperature [70].

The predicted characteristic temperatures in Figure 13 are in agreement with the experimental observations [41,7578]; TK1 = 65.5 K calculated with ( 21); T0m = 51.9 K; TK2 = 87.8 K with lg =lg0 = (-0.18030) in (18); Tg = TBr-= 116 K for lg = 0 in (18); the crystallization temperature Tx = 165 K determined from entropy consideration; TO1 = 140.8 K the calculated first-order transition temperature using (9) with= 0.31988, gs0 =1.03229 and 0g 2 = 1; Tn+ = 156.3 for lg = n+ in ( 18); TO2 = 165 K, the first-order transition temperature of the second glacial phase using (9) with= 0.66911, gs0 = 1.03229 and 0g 2 = 1; Tm = 184 K, the melting temperature. The following temperatures are not indicated in Figure 13: the second Tn+ = 211.7 K for lg = n+; TBr+ = 561 K for lg = 0 in (18). The liquid-to-liquid transitions predicted at Tn+ and TBr+ have not been observed up to now.

Equation ( 30 The enthalpy coefficient on the green line 4 in Figure 13 corresponds to the ultrastable glass phase which is formed by the first-order transition of undercooled Phase 3 occurring at TK2. The latent heat lg0Hm is recovered below the upper limit Tg = 130.3 K in the absence of any complementary entropy constraint.

The red Lines 3 and 5 describes the first glacial phase. The enthalpy coefficient of the glacial phase on Line 5 is chosen as equal to the minimum value (-0.50018) of lg at T0m. This assumption has already been applied to supercooled water, triphenyl phosphite, and d-mannitol.

The latent heat coefficient of glacial phase at TO1 is reduced because there is an underlying firstorder transition already at TK2 with a coefficient decrease of 0.18030. The sum of the two enthalpy coefficients is assumed to be equal to (-0.50018). That of the first-order transition at TO1 is then equal to (-0.31988). The latent heat of the first-order transition is predicted to be equal to (0.31988Hm = 2968 Jmol -1 ) with Hm = 9280 Jmol -1 . The temperature TO1 = 140.8 K calculated using ( 8) or ( 9) with  = 0.31988 is in perfect agreement with the observation of this transition in Figure 13. The coefficient lg is expected to be equal to (-0.21244) along Line 3 up to 140.8 K when the heating rate is high while it is equal to (-0.50018) up to 140.8 K along Line 5 at a heating of 3 Kmin -1 .

Lines 5, 6 and 7 in Figure 13 characterize the second glacial phase. The glass transition and crystallization occur at TO2 = 165 K. This transition is predicted using ( 9) with = 0.66911 and is observed with a heating of 3 Kmin -1 . The enthalpy coefficient (-0.66911) is represented on Line 6. The melting of this glass phase occurs along Line 6 at TO2 followed by spontaneous crystallization. A much higher heating rate is expected to melt the glass phase at TO2 with an enthalpy coefficient equal to (-0.50287) along Line 5 without spontaneous crystallization as observed for triphenyl phosphite [71] and d-mannitol [42]. Line 7 is not attained. The supercooled Phase 3 cannot undergo an underlying first-order transition without crystallization because its frozen entropy would be larger than Sm = 9280/184 = 50.434 JK -1 mol -1 . This glass phase only exists between Tg and TO2. ), the glass phase; 2-Red Line: S = (-25.349 JK -1 mol -1 ), the first glacial phase below TO1 = 140.8 K for high heating rates; 3-Black Line: S = (-28.124 JK -1 mol -1 ), the underlying and undercooled Phase 3 below TK2 = 87.8 K; 4-Blue Line: S = (-30.954 JK -1 mol -1 ), the fully-relaxed glass up to Tg = 284 K; 5-Brown Line: S = (-38.372 JK -1 mol -1 ), the second glacial phase for high heating rates; 6-Green Line: S = (-47.174 JK -1 mol -1 ), the ultrastable glass phase up to Tg =130.3 K; 7-Red Line: S = (-49.212 JK -1 mol -1 ), the first glacial glass up to TO1 = 140.8 K at low heating rate; 8-Brown Line 8: S = (-49.534 JK -1 mol -1 ) for the second glacial phase during rapid cooling and heating rates up to TO2 = 165 K; 9-Brown line: S = (-65.754 JK -1 mol -1 ), the second glacial phase crystallizes below 116 K at low cooling and heating rates. S = (-50.434 JK -1 mol -1 ), the crystallization entropy.

The entropies of various phases represented in Figure 14 are calculated using [START_REF] Kearns | [END_REF] with ls0, gs0, og 2 , and om 2 given in (3133), substracting the entropy changes at the first-order transition temperatures TO1 and TO2 for the two glacial phases and at TK2 for the ultrastable glass phase, using the calculated characteristic temperatures represented in Figure 13. The crystallization temperature occurs at TX = Tn-= Tg = 165 K because the glass relaxes toward the crystal entropy instead of being melted. The glass transition occurs when the glass frozen entropy along Line 8 becomes equal to the entropy S = (-49.53 JK -1 g -1 ) of the second glacial phase. The crystallization temperature is in perfect agreement with the experimental observation in Figure 11. The calculated entropy is correct because it predicts the experimental value of TX.

The entropy S = (-30.954 JK -1 mol -1 ) of fully-relaxed glass phase is recovered at Tg = 116 K as shown in Figure 14 and is composed of the glass entropy (-11.904 JK -1 mol -1 ) and of the relaxation entropy (-lg0Hm/TK2 = -19.050 JK -1 mol -1 ).

The entropy of ultrastable glass phase formed at TK2 = 87.8 K from lg = 0 is recovered at Tg = 130.3 K as shown in Figure 14. The first-order transition of undercooled Phase 3 at TK2 is accompanied by an enthalpy coefficient change (-lg0 = -0.1803) and by an entropy change S of (-lg0Hm/TK2 = -19.050 JK -1 mol -1 ) leading to a configurational entropy (-47.174 JK -1 g -1 ).

The enthalpy coefficient and entropy of the glacial phase equal to (-0.66911) and (-49.534 JK - 1 mol -1 ) respectively are obtained by a slow cooling from an annealing temperature of  140 K down to TK2 = 116 K and using a heating of 3 Kmin -1 up to TX = 165 K. The liquid phase becomes vitreous with constant enthalpy and entropy up to TX. This description still shows that denser glass phases of bulk samples can be obtained using the same process of annealing above Tg in many other glasses. This analysis is now applied to Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1).

5 Liquid-liquid first-order transitions 5.1 Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1)

Heat capacity, viscosity measurements, and liquid-liquid transitions of Vit1

Vit1 has a glass transition temperature Tg = 625 K [45]. Its heat capacity jump at Tg is Cp (Tg)  21.6 JK -1 g-atom -1 [79] and its melting heat Hm = 8680 Jg-atom -1 . The shear rate and temperature dependence of the viscosity in Vit1 have been measured in the liquid and undercooled liquid states between 907 and 1300 K [44]. After quenching the alloy into a glassy state, the reheated material displays very high viscosity values above the liquidus temperature of 1026 K. With increasing temperature, a transition above 1225 K is observed with a drastic drop in viscosity that is associated with the disappearance of shear thinning. The increased viscosity is only recovered when the liquid is deeply undercooled. The shear thinning and the transition at 1225 K are attributed to the destruction of medium-and-short-range order in the liquid [44]. These phenomena have recently been restudied using calorimetric measurements and synchrotron X-ray scattering [45]. A heat capacity peak of superheated liquid after supercooling is observed during heating around T = 1116 K accompanied by an endothermic latent heat of about 1100 Jmol -1 . Structural changes corresponding to these anomalies are observed with in-situ synchrotron X-rayscattering experiments in a contactless environment using an electrostatic levitator (ESL) as reproduced in Figure 15. This transformation is viewed as a crossover of dynamics from the strong to fragile liquid and is consistent with the observations in viscosity. There is an endothermic liquidliquid transition during heating reinforced by the symmetrical observation of an exothermic latent heat regarding Tm = 965 K and an exothermic structural change around 816 K by supercooling. 

Model predictions for Vit1

The liquid is fragile because the specific heat jump at Tg is much larger than 1.5Hm/Tm = 13.5 JK -1 g-atom -1 and the VFT temperature larger than Tm/3. Applying (14) with a = 0.833 leads to the experimental value Cp(Tg)  21.6 JK -1 g.atom -1 . Equations (1317) are applied with g = (-0.35308), Tm = 965 K and a = 0.833 to obtain (ls) of Liquid 1, (gs) of Liquid 2, and (lg) of Phase 3 given by (3133)):

𝜀 𝑙𝑠 = 1.70651 × (1 -𝜃 2 /0.2226), (34) 
𝜀 𝑔𝑠 = 1.4715 × (1 -𝜃 2 /0.34564), (35) 
∆𝜀 𝑙𝑔 = 0.23501 -3.409𝜃 2 , (36) 
where lg0 = (ls0-gs0) = 0.23501 in (36). The temperatures T0m = 509.7 K and TK1 = 532 K are deduced from (13)(14)(15)(16)(17)[START_REF] Kearns | [END_REF]. The enthalpy coefficient of Vit1 Phase 3 at 0m is lg(0m) = (-0.52382) and in (7) is expected to be (0.52382-lg0) = 0.28882 for the first-order transition to the glacial phase.

The predicted characteristic temperatures in Figure 16 are, for part of them, in agreement with the experimental observations [44,45,79]: TK1 = 532 K calculated with (21); T0m = 509.7 K with (15); TK2 = 606.7 K with (lg =-lg0 = -0.23501) in (18); Tg = 625 K; TO1 = 834 K, the firstorder transition temperature associated with glacial phase formation using [START_REF] Kearns | [END_REF] and entropy considerations; TBr-= 712 K and TBr+ = 1218 K for lg = 0 in (18); Tgg = 876 K the virtual glass transition temperature predicted with  = 0.28882 in (9); Tn+ = 816 and 1116 K for lg = n+ in (3). The following temperatures are not indicated in Figure 16; TX = 695 K calculated with (21) using entropy considerations, Tgg = 876 K, and Tm = 965 K. The liquid-liquid transitions predicted at Tn+, TBr+ and TX are in perfect agreement with the experimental values [45,80].

Vit1 liquid Phase 3 has two nucleation temperatures Tn+. The liquid order disappears at Tn+ = 1116 K and reappears by Phase 3 nucleation at Tn+ = 816 K. Phase 3 being the supercooling phase, the order is only observable, as shown in 2007 [44] in the viscosity by supercooling the liquid below Tn+ = 816 K. The model developed here predicts lg = n+ = 0.15407 and the latent heat of the transition 1337 Jmol -1 can be compared with the experimental value 1100 Jmol -1 . The very-high-density amorphous phase of water under pressure [39] also occurs at a temperature Tn+ above the ice melting temperature Tm under pressure [24].

The enthalpy coefficient of the fully-relaxed glass phase (-0.42318) is composed of the glass enthalpy coefficient (-0.18817) and the maximum relaxation enthalpy coefficient equal to the latent heat coefficient (-0.23501) at TK2.

The homogeneous nucleation temperatures Tn-of superclusters in Liquid 2 are given in (9). A coefficient  equal to lg0 = 0.23501 leads to a first-order transition at TK2 below Tg given by (9). A coefficient  leads above Tg to Tn-= Tgg = 876 K with (9). The entropy of this new fragile liquid with Tgg = 876 K is calculated using [START_REF] Kearns | [END_REF] with the new coefficients gs0 = 1.86219, 0g 2 = 0.11405, and compared with that of the initial liquid with [START_REF] Kearns | [END_REF]. The transition at TO1 = 834 K transforms this new glacial Phase 3 in the initial Phase 3 because the associated entropy change at TO1 between these two phases becomes equal to (0.28882Hm/TO1 = 3.0058 JK -1 g-atom -1 ). The enthalpy is expected to remain constant below TO1 during a very high heating rate. The coefficient (lg) is represented in Figure 16 as being constant and equal to (-0.52383).

It is also expected to vary during the decrease of heating rates, instead of being the same below TO1. At very low heating rate, the enthalpy coefficient of the glacial phase would have to become constant below TK2 = 606.7 K. This glacial phase is not observed, up to now, and is only a prediction. The crystallization temperature Tx is calculated to be equal to 695 K where the entropy calculated using [START_REF] Kearns | [END_REF] is still available to accommodate the entropy 3.0058 JK -1 g-atom -1 of the first-order transition at TO1. This temperature is exactly equal to the experimental temperature TX1 [80]. The ultrastable glass phase has the lowest enthalpy coefficient (-0.47 = -2lg0) below TK2 after a first-order transition which can be obtained after liquid hyper-quenching or by slow vapor deposition at TK2. This phase is not represented because its entropy would lead to crystallization. This is not the case for the glacial phase.

The enthalpy coefficient of Vit1 glacial phase below TK2 is equal to (-0.52382) which is the minimum value of lg at T0m as shown in Figure 16. The latent heat coefficient of Vit1 glacial phase at TO1 is constant below the underlying first-order transition at TK2. The sum of the two enthalpy coefficients (-0.28882) at TO1 and (-0.23501) at TK2 are equal to (-0.52382). This assumption has been successfully applied to triphenyl phosphite, d-mannitol, and n-butanol. There has been no observation, up to now, of a glacial phase in Vit 1. Glacial phases would have to exist in all glass-forming melts.

The entropies S in JK -1 g-atom -1 of underlying glass Phase 3, fully-relaxed glass phase and glacial Phase 3 are represented in Figure 17 as a function of temperature. The frozen entropy (-5.0315 JK -1 g-atom -1 ) of the glass phase is not represented. The entropy S = (-8.3939 JK -1 gatom -1 ) of fully-relaxed glass phase is recovered at Tg = 625 K and is composed of the glass entropy (-5.0315 JK -1 g-atom -1 ) and of the relaxation entropy (-lg0Hm/TK2 = -3.3624 JK -1 gatom -1 ). The ultrastable phase has an entropy lower than that of crystals and cannot be obtained without crystallization. The glacial phase withS () = (-8.6975) is more stable than the ultrastable glass phase. 

CoB eutectic liquid and Sn droplets

Critical supercooling and superheating in eutectic CoB alloys and tin droplets

Cyclic superheating and cooling are carried out for the undercooled hypereutectic Co80B20, eutectic Co81.5B18.5, and hypoeutectic Co83B17 alloys [46]. For each alloy, there is a critical superheating temperature Tc for which there is a sharp increase of the mean undercooling. DSC measurements above Tm show that there is a corresponding small endothermic peak during heating at a temperature, nearly equal to Tc. An example of this work is reproduced in Figure 18.

The undercooling, calculated from Tm = 1406 K, is equal to 220 K for eutectic Co81.5B18.5. The endothermic heat is observed at 1656 K with Tc =1653 K. The solidification of a pure Sn single micro-sized droplet is studied by differential fast scanning calorimetry with cooling rates in the range 500 to 10 000 Ks -1 [47]. The sample has a spherical shape covered by an oxide layer. A critical undercooling 99 ± 2 K is observed as reproduced in 

Model predictions for the critical temperatures of liquid and crystal nucleation

Homogeneous nucleation for melting in superheated crystals is used to derive a stability limit for the crystal lattice above its equilibrium melting point. It is known that at a critical temperature which is about 1.2Tm for various elemental metals, a massive homogeneous nucleation of melting occurs in the superheated crystal protected against surface melting [48]. The temperature where n+ = lg is equal to Tm for all liquid elements [12]. The second melting phenomenon due to superclusters (called "tiny crystals" in [10]) is predicted in all pure liquid elements at  = 0.198 with (3) and ls =  leading to    =, (0m = -2/3) [10]. An undercooling limit of 99 ±2 K is observed for micro-sized droplets of Sn using overheating up to 91 K and cooling rates up to 10 4 Ks -1 . The undercooling limit is predicted with (3) as occurring at  = (-0.198) (102.9 K) with Tm = 520 K and corresponds to the value observed with the highest cooling rate.

For CoB eutectic alloys, the authors [46] use this theoretical limit to explain the melting of growth nuclei at Tc. The temperature n+ is in fact equal above Tm to c = +0.1756. This limit n+ = c for Co81.5B18.5 is obtained by considering the melting temperature of ordered Phase 3 and calculating the glass transition temperature of a strong liquid with (3739) for ls, gs and lg with 0m -2 = 1.667 (T0m = 317 K, approximating a quasi-Arrhenius law for the high temperature viscosity):

𝜀 𝑙𝑠 = 0.79926 × (1 -𝜃 2 1.667),

𝜀 𝑔𝑠 = 0.60103 × (1 -𝜃 2 ),

∆𝜀 𝑙𝑔 = 0.19823 -0.73134𝜃 2 .

(

) 39 
The characteristic temperatures represented in Figure 20 are: Tg = 674 K, g = -0.52063, TBr+ = 2138 K, Br+ = 0.52063, Tn+ = 1653 K = Tc, n+ = 0.1756, Tm = 1406 K, m = 0, Tn+ =1159 K, n+ = (-0.1756), TK2 =371 K, K2 = (-0.73628), TK1 = 330 K, K1 = (-0.76515), T0m =317 K, 0m = (-0.7745). The calculated glass transition temperature Tg = 674 K can be compared with those of Fe84B16 (675 K) [81] and Fe73Co12B15 (685 K) [82] which are equal to the crystallization temperature TX1 measured with a heating rate of 20 and 40 Ks -1 . 

Bulk metallic glass Ti34Zr11Cu47Ni8

Heat capacity, undercooling versus overheating and recalescence

This bulk metallic glass has the following properties: the glass transition temperature Tg = 671 K, the melting temperature Tm = 1150 K, the melting heat, Hm =11300 JK -1 g-atom -1 , the heat capacity jump at Tg, Cp (Tg) = 1.5Hm/Tm =14.7 JK -1 g-atom -1 [83,84]. Using electrostatic levitation, undercoolings of 226.3 K are observed after specimen overheats of 300 K [43]. After undercooling, crystallization and recalescence, the temperature increases up to  1150 K except for the undercooling resulting from overheats of 300 K where the temperature is 43 K lower as reproduced in Figure 21. A fusion enthalpy of 1850 Jg-atm -1 is missing which is calculated with the mean heat capacity of the specimen [84] of 43 JK -1 g-atom -1 at these temperatures. This phenomenon is considered by the authors as the formation of a metastable phase before crystallization during cooling which is still supported by a consistent deviation in the cooling curve at 961 K. This temperature is 199 K below Tliq = 1160 K. 

Model predictions for critical temperatures and latent heats of ordered liquid Phase 3

The liquid is fragile because the specific heat jump at Tg is equal to 1.5Hm/Tm = 14.7 JK -1 gatom -1 . Equations (1115) are used with g = -0.41652, Tm = 1150 K, a = 1 to obtain (ls) of Liquid 1, (gs) of Liquid 2, and (lg) of Phase 3 given in (40-42)):

𝜀 𝑙𝑠 = 1.58348 × (1 -𝜃 2 /0.29313), (40) 
𝜀 𝑔𝑠 = 1.37522 × (1 -𝜃 2 /0.38187), (41) 
∆𝜀 𝑙𝑔 = 0.20826 -1.8007𝜃 2 . (42)

The predicted characteristic temperatures are: T0m = 527 K with (15); TK2 = 597 K with lg =-lg0 = -0.20826) in (18); Tg = 671 K; TBr-= 759 K and TBr+ = 1541 K for lg = 0 in (18); Tn+ = 964 and 1336 K for lg = n+ = (± 0.16137) in (3,18).

The calculated temperature Tn+ = 964 K is in good agreement with the experimental observations of a residual transition at 961 K [43]. The crystallization starts below 961 K and produces recalescence removing the latent heat of Phase 3 which is ordered up to Tn+ =1336 K. The predicted latent heat of Phase 3 is 0.16137Hm = 1823 Jg-atom -1 , in agreement with the missing fusion heat of 1850 Jg-atom -1 . This missing fusion enthalpy still shows the existence of a firstorder transition at the nucleation temperature 964 K of the ordered liquid Phase which is recovered at its melting temperature Tn+ =1336 K. Then, the total melting enthalpy remains equal to Hm.

Conclusions:

The classical nucleation equation completed with an additional enthalpy lsHm equal to ls0Hm at Tm depending on  2 = (T-Tm) 2 /Tm 2 predicts the formation and the melting of critical superclusters in Liquid 1 at three homogeneous nucleation temperatures with two below Tm and one above Tm. These critical superclusters are so numerous at these temperatures that they occupy all the liquid volume because their nucleation rate is equal to one. An ordered liquid is built after quenching the initial homogeneous Liquid 1 without residual supercluster at the lowest nucleation temperature T1 in the absence of crystallization. The second nucleation temperature Tn+ > Tm corresponds to the "melting" of this "ordered" liquid phase and the third one is the growth around nonmelted superclusters of new solid entities by cooling the liquid below the third homogeneous nucleation temperature Tn+ below Tm. These temperatures are even observed in pure liquid elements by using fast undercooling following fast overheating. Critical overheating and undercooling are associated with these two temperatures Tn+. A first-order transition of crystal melting at Tn+ is known for a crystal protected against surface melting by a solid cover.

Liquid 2 has an additional enthalpy coefficient gs (equal to gs0 at Tm). The new glass phase is formed at a homogeneous nucleation temperature of Liquid 2 by mixing the ordered states of Liquid 1 and Liquid 2 and yielding a frozen microstructure of touching and interpenetrating superclusters as shown by numerical simulations. The temperature T0g governing the relaxation time is smaller than that of Liquid 1 equal to T0m and leads to an enthalpy coefficient difference equal to (ls-gs) below Tg and a heat capacity jump at Tg. A new undercooled liquid phase, that I call Phase 3, is formed with this enthalpy difference between Liquid 1 and Liquid 2 equal to lg Hm= (ls0-gs0)Hm and with three new nucleation reduced temperatures: g and n+ = lg (being positive or negative). Phase 3 is ordered up to its melting temperature Tn+ above Tm and reappears by cooling below Tn+ < Tm. It has a melting heat coefficient equal to lg0 = (ls0-gs0).

The enthalpy difference between Liquid 1 and Liquid 2 cannot be larger than lg0Hm. An underlying first-order transition without latent heat occurs at the temperature TK2 where lg(K2) of Phase 3 is equal to the limit (-lg0) despite the fact that Phase 3 is supplanted by the glass phase below Tg.

Hyper-quenching the melt below TK2 freezes an enthalpy excess which cannot be higher than lg0Hm. A study of seven measurements of the enthalpy recovery after quenching published by several authors confirms the existence of this limit and then, of the underlying first-order transition. The temperature where the enthalpy excess begins to be recovered is predicted in agreement with experiments by using the new nucleation temperature modified by the presence of the enthalpy excess equal to lg0Hm.

The enthalpy excess is obtained without undergoing any glass transition during a very short time at the hyper-quenching temperature. A first-order transition leading to the ultra-stable Phase 3 is predicted at the temperature TK2 where the total enthalpy coefficient is initially equal to zero and the relaxation time is expected to be small. This sharp transition producing latent heat equal to 2lg0Hm and inducing recalescence is difficult to realize without a very-efficient thermal exchange at TK2. The ultrastable glass transition temperature is larger than that of the glass phase for the same heating rate.

The glacial phases are driven by the enthalpy and mainly by the entropy of Phase 3. The enthalpy coefficient ls being equal to zero at the VFT temperature T0m of Liquid 1, lg has a lower limit equal to the coefficient (-gs) at this temperature. The enthalpy coefficient of the glacial phase is well-defined and equal to lg(0m) leading to a true glass phase. The first-order transition of the glacial phase is associated with a latent heat equal to (lg(0m)-lg0). The total enthalpy change of the two first-order transitions of underlying Phase 3 and glacial phases is equal in all examples to lg(0m). Larger values of the latent heat coefficient are obtained using longer annealing times. They could correspond to mixtures of crystalline and glacial phases because their entropies are too close to those of crystals.

Known glass and glacial phases are analyzed within this model. The major thermodynamic properties and transition temperatures of triphenyl phosphite, D-mannitol, and n-butanol are predicted in very good agreement with observations. The characteristic temperatures of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1), Ti34Zr11Cu47Ni8, and Co81.5B18.5 are determined. The calculated first-order transition temperatures of nucleation and melting of their ordered liquid Phase 3 below and above Tm are equal to the experimental values. The critical undercooling of Sn droplets equal to T/Tm = 0.19 corresponds to the theoretical value 0.198 predicted for all liquid elements by this model.

All these surprising results of modeling, predicting new glass phases and LLPT, are obtained with a classical nucleation equation completed with an additional enthalpy associated with solid supercluster formation submitted to Laplace pressure in melts. It was shown, many years ago, that all liquids contain intrinsic solid nuclei above Tm that control solidification and magnetic texturing during cooling. Glass and liquid-liquid transitions are evidently not crystalline transitions and are governed by critical supercluster nuclei acting as building blocks of solid amorphous and liquids that are not subjected to surface melting. These stable entities are tied to the physics and chemistry of superclusters viewed as super-atoms. "The term super-atom is attributed to nanoscale collections of atoms that behave as a single unit or a quantized building block by exhibiting unique shell filling, electronic or combining behavior that is reminiscent of individual atoms" [85,86].

Figure 1 :

 1 Figure 1: Enthalpy coefficients of Ethylbenzene Phase 3. Continuous black line: enthalpy coefficient of for glass phase frozen below Tg; black dashed line: enthalpy coefficient -lg0 = -0.17855 of Phase 3 in the absence of glass transition and its underlying first-order transition at TK2 without latent heat; blue line: enthalpy coefficient -1.5lg0 = -0.2678 of fullyrelaxed glass; green line: ultrastable glass phase formation due to the first-order transition at TK2 = 104.7 K and its latent heat coefficient  = lg0. Endothermic enthalpy coefficient -2lg0 = -0.3571 when recovered at Tg = 126.2 K. Characteristic temperatures of Phase 3: TK1 = 81.7 K; T0m = 87.15 K; TK2 = 104.7 K; Tg = 114.5 K; TBr-= 126.2 K; Tn+ = 153.5 K; Tm = 178.1 K; Tn+ = 202.7 K; TBr+ = 230 K.

Figure 3 :

 3 Figure 3: The specific heat in JK -1 g -1 of quenched and slowly-cooled propylene glycol versus T(K) from. The nucleation temperature of 126 K is calculated with (11),  = 0.1797, and sign minus. Reproduced from [65] [L.-M. Wang, S. Borick, C.A. Angell. J. Non-Cryst. Sol. 353 (2007) 3829-3837] with the permission of Elsevier.

Figure 4 :

 4 Figure 4: Enthalpy values for the different phases. The relative enthalpies have been shifted to overlap at 305 K. Reprinted with permission from [69] [K.V. Miltenburg and K. Blok, J. Phys. Chem. 100 (1996) 16457-16459]. Copyright (1996) Americal Chemical Society Figure 4 also shows that the glacial phase is vitreous because its enthalpy is frozen up to a temperature of about 227 K where the crystallization begins. Nevertheless, the specific heat increases from 204 K up to 227 K indicating a weak endothermic recovery. The crystallization mainly starts from the glass state. The enthalpy difference between the glass and glacial phases equal to 7084 Jmol -1 (22.8 Jg -1 ) results from an isothermal annealing for only 120 min at 217 K and corresponds to an enthalpy coefficient difference equal to 7084/25090 =0.2823.

Figure 5 :

 5 Figure 5: Comparison of DSC heat flow curves of triphenyl phosphite. The results of flash DSC measurements. The black curve is obtained for a sample without annealing (liquid 1) and the blue curve is for a sample after annealing (the glacial phase, or glass 2). The yellow dashed curve is taken after re-cooled from a point Trc in the endothermic peak. The glass transition signal of liquid 1 is observed in the yellow dashed curve around 220 K, indicating that the glacial phase (glass 2) has already returned to liquid 1 during the endothermic process before reaching Trc. The grey curve is for a sample fully crystallized. Reprinted from [71] [M. Kobayashi, & H. Tanaka, Nature Comm. 7 (2016) 13438] with the author courtesy.

  are in agreement with the experimental observations [69,71] T0m = 159.9 K with (15); TK1 = 161.8 K calculated with (21); TK2 = 195.7 K with lg =lg0 = (-0.19117) in (18); Tg = 204 K; TBr-= 225.4 K for lg = 0 in (18); the crystallization temperatures Tx1 = 234.6 K and Tx2 = 242.5 K determined from entropy considerations; TO1 = 253.1 K the calculated first-order transition temperature using entropy considerations with (21); Tgg = 280.6 K the virtual glass transition temperature predicted with  = 0.3183 in (9); Tn+ = 257.5 K and 336.5 K for lg = n+ in (18); Tm = 297 K; TBr+ = 368.6 K for lg =0 in(18). The liquid-to-liquid transitions predicted at Tn+ and TBr+ have not been observed up to now.

Figure 6 :

 6 Figure 6: Characteristic temperatures and enthalpy coefficients lg of glass and glacial phases of triphenyl phosphite. Black line: Enthalpy coefficient lg of Phase 3 with Tg = 204 K. Red lines: enthalpy coefficients of glacial phases equal to lg of the liquid phase minus  = 0.3183 and  = 0.2823; TK2, the underlying first-order transition temperature of Phase 3; TO1, the first-order transformation temperatures of glacial phases. Red horizontal lines, the enthalpy coefficients of vitreous glacial phases: (-0.19886) at very high cooling and heating rates; (-0.41354) the enthalpy coefficient of the glacial phase represented in Figure 4 disappearing at TX1 (in fact weakly relaxing from 204 to TX1 [69]); (-0.50947) the glacial phase enthalpy coefficient at low cooling rates; at TX1 and TX2, the glass phases crystallize; Tgg with (8), the virtual homogeneous

Figure 7 :

 7 Figure 7: Homogeneous nucleation temperatures of Triphenyl phosphite. Liquid 2:Homogeneous nucleation temperature Tn-with (9) viewed as a glass transition temperature of Liquid 2 versus . For Tn-< Tg, ( is an enthalpy excess. For T > Tg, ( is a latent heat coefficient associated with a first-order transition. The coefficient (can also be seen, in the absence of annealing, as a time-dependent endothermic latent heat acting between Tg = 204 and TBr-= 225.4 K because lg is still negative in this temperature interval (see Figure6).
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 8 Figure 8: Entropy S of triphenyl phosphite Phase 3. Phase 3 entropy in the glass and glacial states. S = (-34.71 JK -1 mol -1 ) in the glass state. S = (-38.3 JK -1 mol -1 ) in the glacial phase during high rates of cooling and heating corresponding to = 0.3183, S = (-42.24 JK -1 mol -1 )

Figure 9 :

 9 Figure 9: DSC traces of the as-prepared glass of d-mannitol, Phase X, and the glass of d-sorbitol. All heating at 10 K/min. Dashed lines indicate baselines for integration. Reproduced from [42] [M. Zhu, J-Q Wang, J.H. Perepezko, and L. Yu, J. Chem. Phys. 142 (2015) 244504] with the permission of AIP Publishing.

  where lg0 = (ls0-gs0) = 0.20125.The predicted characteristic temperatures in Figure10are in agreement with the experimental observations[42,72,73]: TK1 = 220 K calculated with[START_REF] Kearns | [END_REF]; TVFT = T0m = 222.2 K with (15); TK2 = 266.4 K with lg =lg0 = (-0.20115) in (18); Tg = 284 K; Ta = 298.4 K, the spontaneous relaxation temperature of the glacial phase deduced from entropy considerations; TBr-= 317 K for lg = 0 in(18); the crystallization temperature Tx = 331 K also determined from entropy considerations; TO1 = 342.7 K the calculated first-order transition temperature still using entropy considerations with[START_REF] Kearns | [END_REF]; Tgg = 382.7 K the virtual glacial transition temperature predicted with  = 0.23872 in (9); Tn+ = 375 K for lg = n+ in(18); the following temperatures are not indicated in Figure10: Tgg = 382.7 K; Tn+ = 375 and 503 K for lg = n+; Tm = 439 K; TBr+ = 561 K for lg = 0 in(18).

Figure 10 :

 10 Figure 10: D-mannitol enthalpy coefficients and characteristic temperatures: TK1 = 220 K, the Kauzmann temperature; T0m = 222.2 K, the VFT temperature; TK2 = 266.4 K, the underlying first-order transition temperature; Tg = 284 K, the glass transition temperature; Ta = 298.4 K, the formation temperature of the glacial phase; TBr-= 317 K, the temperature where lg = 0; TX = 331 K, the crystallization temperature of the glacial phase; Tg = 338 K, the glass transition

Figure 11 :

 11 Figure 11: D-mannitol: entropy of glass, fully-relaxed glass, ultrastable and glacial Phases 3. 1-Black line: S = (-0.2865 JK -1 g -1 ), glass phase below Tg = 284 K. 2-Red points: S = (-0.30123 JK -1 g -1 ), glacial vitreous phase during heating at 300 Ks -1 up to TO1 = 341 K. 3-Black points: S = (-0.36961 JK -1 g -1 ), supercooled Phase 3. 4-Blue line: S = (-0.50784), fully-relaxed glass up to Tg =284 K. 5-Red line: S = (-0.56938), glacial vitreous phase during slow heating up to the crystallization temperature TX = 331 K. 6-Green line: S = (-0.59095 JK -1 g -1 ), ultrastable Phase 3 formed at TK2 = 266.4 K up to its glass transition at Tg = 338 K. 7-Black points: Sm = (-0.6674 JK -1 g -1 ), crystal.

Figure 12 :

 12 Figure12: "Heat flux upon heating across Tg for liquid II of n-butanol. The sample is quenched to 128 K and annealed for 7 h to completely transform liquid I to liquid II. Then we heated it with AC DSC, where the average heating rate is 3 K min-1 , the modulation period is 20 s, and the modulation amplitude is 0.16 K. We measured both the reversible part (solid line) and the nonreversible part (dashed line) of the heat flux upon the heating process. The onset of the broad steplike change of the reversible part was observed around 140 K, which is typical of the glass transition. (Tg L ) which is the lower edge temperature of the steplike change of the reversible part, was determined to be 140 K. The non-reversible part starts to increase around 140 K. This means that crystallization starts to occur just after the glass transition". Reprinted from[41] [R. Kurita, and H. Tanaka, J. Phys.: Condens. Matter. 17 (2005) L293-L302] with the permission of IOP Publishing.

  ) is represented by the black Line 1 as a function of temperature in Figure13. The enthalpy coefficient of Phase 3 is equal to zero up to Tg = 116 K due the enthalpy freezing below Tg and increases from Tg to Tm where lg is equal to lg0 = 0.18030. The fully-relaxed glass is represented by the blue line 2. The supercooled Phase 3 without glass transition and underlying first-order transition is represented by a black line of points from 50 K to Tg. The underlying first-order transition occurs at TK2 = 87.8 K where lg is equal to (-lg0) and remains constant below TK2 along Line 2.

Figure 13 :

 13 Figure13: N-butanol: enthalpy coefficients lg of glass, relaxed glass, ultrastable glass Phases 3 and two glacial Phases 3 versus temperature T(K). 1-lg = 0, the glass; 2-lg = (-0.1803), The fully-relaxed glass; 3-lg = (-0.21244), the first glacial phase at high heating rate and its firstorder transition at TO1 = 140.8 K; 4-lg = (-0.3606), the ultrastable glass phase and its glass transition at Tg =130.3 K; 5-lg = (-0.50018), the first glacial phase at low heating rate, its firstorder transition at TO2 = 140.8 K and lg = (-0.50018) at T0m = 51.9 K; 6-lg = (-0.66911), the second glacial phase from 116 K up to TO2 = 165 K also crystallizes at TX = 165 K; 7-lg = (-0.84991), the second glacial phase crystallizes below 116 K at low cooling rate (from entropy considerations).

Figure 14 :

 14 Figure 14: Configurational entropy of glass, ultrastable and glacial Phases 3. 1-Black line: S = (-11.904 JK -1 mol -1), the glass phase; 2-Red Line: S = (-25.349 JK -1 mol -1 ), the first glacial phase below TO1 = 140.8 K for high heating rates; 3-Black Line: S = (-28.124 JK -1 mol -1 ), the underlying and undercooled Phase 3 below TK2 = 87.8 K; 4-Blue Line: S = (-30.954 JK -1 mol -1 ), the fully-relaxed glass up to Tg = 284 K; 5-Brown Line: S = (-38.372 JK -1 mol -1 ), the second glacial phase for high heating rates; 6-Green Line: S = (-47.174 JK -1 mol -1 ), the ultrastable glass phase up to Tg =130.3 K; 7-Red Line: S = (-49.212 JK -1 mol -1 ), the first glacial glass up to TO1 = 140.8 K at low heating rate; 8-Brown Line 8: S = (-49.534 JK -1 mol -1 ) for the second glacial phase during rapid cooling and heating rates up to TO2 = 165 K; 9-Brown line: S = (-65.754 JK -1 mol -1 ), the second glacial phase crystallizes below 116 K at low cooling and heating rates. S = (-50.434 JK -1 mol -1 ), the crystallization entropy.

Figure 15 :

 15 Figure 15: "The FWHM of the 1st peak of S(Q) (see inset) versus temperature during thermal cycles. The arrows point out the clear slope changes in the temperature range 760-830 K during cooling and 1,100-1,200 K upon reheating. The dashed line is the assumed heating data trace if crystallization can be avoided on reheating". The calculated temperatures Tn+ predicted by the model using (3) and Tm = 965 K are added. Reprinted from [45] [S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer & R. Busch, Nature Commun. 4 (2013), 2083].

Figure 16 :

 16 Figure 16: Enthalpy coefficients of Vit1 Phases 3 versus the square of the reduced temperature  2 = (T-Tm) 2 /Tm 2 . Below TK2, for underlying Phase 3, lg() = (-0.23501); for ultrastable glass lg() = (-0.47) (not represented); for glacial Phase 3, lg() = (-0.52382); for freezing of the glass, lg() = (-0.18817) below g; for fully-relaxed glass, lg() = -0.42318. The characteristic temperatures: Tgg =876 K, TO1 = 834 K, Tn+ = 816 and 1114 K, TBr-= 712 K, TBr+ =1218 K, Tg =625 K, TK2 = 606.7 K, TK1 = 532 K, T0m = 509.7 K.

Figure 17 :

 17 Figure 17: Entropy coefficients of Vit1 Phases 3 versus 1-S() = (-5.0315 JK -1 g-atom -1 ), frozen entropy of the glass, below g. 2-S() = (-5.6917 JK -1 g-atom -1 ), below TK2 = 606.7 K, for underlying Phase 3. 3-S = (-8.3939 JK -1 g-atom -1 ), the fully-relaxed entropy of the glass phase. 4-S() = (-8.6975 JK -1 g-atom -1 ) for the glacial Phase 3. Entropy of crystals equal to (-8.995 JK -1 g-atom -1 ). The ultrastable glass phase crystallizes. The characteristic temperatures: Tgg = 876 K (glacial), TO1 = 834 K, Tn+ = 816 and 1114 K, TBr-= 712 K, TBr+ = 1218 K, Tg = 625 K, TK2 = 606.7 K, TK1 = 532 K, T0m = 509.7 K.

Figure 18 :

 18 Figure 18: Mean undercooling of eutectic Co81.5B18.5 with different overheating temperatures. Critical overheating temperature Tc equal to 1653 K above Tm = 1406 K. Reprinted from [46] [Y. He, J. Li. J. Wang, H. Kou, E. Beaugnon, Applied Physics A. 123 (2017) 391] with the permission of Springer Nature.

Figure 19

 19 and corresponds to  = (T-Tm)/Tm = 0.194 with Tm = 520 K. In these two examples, the existence of critical superheating and supercooling related to liquid and solid nucleation critical temperatures is shown.

Figure 19 :

 19 Figure19: "Undercooling dependence on cooling rate and overheating: solid curvesurface nucleation and dashed curve-linear fit. The inset shows a close-up of the undercooling plateau (99 ± 2 K). Each point is the average of 10 identical measurements and the error bars are the standard error of 10 identical measurements for each temperature course". Reprinted from[47] 

Figure 20 :

 20 Figure 20: Enthalpy coefficients of amorphous Co81.5B18.5 alloy undergoing a liquid-liquid transition at n+ = ± 0.1756. Characteristic temperatures: T0m =317 K, TK1 = 330 K, TK2 = 371 K, Tg = 674 K, Tn+ = 1159 and 1653 K (n+ = ± 0.1756), Tm = 1406 K ( = 0), TBr+ =2138 K (Br+ = 0.5206).

Figure 21 :

 21 Figure 21: "The recalescence temperature Trec is plotted as a function of undercooling T. The recalescence temperatures at high overheating rates do not reach the line of the maximum recalescence temperatures of  1150 K. The data shows a dramatic decrease in the recalescence temperature applying an overheat of 300 K leading to undercoolings of 220 K". Reprinted from [43] [C.C. Hays, W.L. Johnson, J. Non-Cryst. Sol. 250-252 (1999) 596-600] with the permission of Elsevier.
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