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The influence of larynx position on vowel articulation is an important topic in understanding speech production, the present-day distribution of linguistic diversity and the evolution of speech and language in our lineage. We introduce here a realistic computer model of the vocal tract, constructed from actual human MRI data, which can learn, using machine learning techniques, to control the articulators in such a way as to produce speech sounds matching as closely as possible to a given set of target vowels. We systematically control the vertical position of the larynx and we quantify the differences between the target and produced vowels for each such position across multiple replications. We report that, indeed, larynx height does affect the accuracy of reproducing the target vowels and the distinctness of the produced vowel system, that there is a "sweet spot" of larynx positions that are optimal for vowel production, but that nevertheless, even extreme larynx positions do not result in a collapsed or heavily distorted vowel space that would make speech unintelligible. Together with other lines of evidence, our results support the view that the vowel space of human languages is influenced by our larynx position, but that other positions of the larynx may also be fully compatible with speech.

Introduction

The origin and evolution of language and speech are a heavily debated topic, a major division being between models proposing recent and sudden origin, restricted to modern humans only [START_REF] Berwick | Why only us: Recent questions and answers[END_REF][START_REF] Hauser | The mystery of language evolution[END_REF][START_REF] Klein | The Human Career: Human Biological and Cultural Origins[END_REF], versus deep origin, gradual evolution, and a wider distribution (also including archaic humans, such as the Neanderthals; [START_REF] Dediu | On the antiquity of language: the reinterpretation of Neandertal linguistic capacities and its consequences[END_REF][START_REF] Janssen | Let the agents do the talking: On the influence of vocal tract anatomy on speech during ontogeny and glossogeny[END_REF][START_REF] Lieberman | The evolution of language and thought[END_REF][START_REF] Johansson | Language abilities in Neanderthals[END_REF]. In particular, the speech capacities of archaic humans have been linked to the position of the larynx (itself linked to the position of the hyoid bone), and the corresponding ratio between the horizontal and the vertical parts of the vocal tract [START_REF] Lieberman | The evolution of language and thought[END_REF].

While it is currently unclear what this ratio might have been in Neanderthals and when its "modern" value evolved [START_REF] Lieberman | The evolution of language and thought[END_REF][START_REF] Gokhman | Extensive regulatory changes in genes affecting vocal and facial anatomy separate modern from archaic humans[END_REF][START_REF] Dediu | On the antiquity of language: the reinterpretation of Neandertal linguistic capacities and its consequences[END_REF], a more tractable question concerns its effects on speech and language [START_REF] Lieberman | The evolution of language and thought[END_REF][START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF][START_REF] De Boer | Computer models of vocal tract evolution: An overview and critique[END_REF]. More precisely, the seminal claim by [START_REF] Lieberman | On the speech of Neanderthal man[END_REF] that a high larynx (a position suggested by some for Neanderthals) reduces the vowels space, making impossible the production of the widely-used [a], [i], [u] and [O], has generated a lively debate centered on the use of computer models of the vocal tract to make such inferences [START_REF] De Boer | Computer models of vocal tract evolution: An overview and critique[END_REF][START_REF] Boë | The vocal tract of newborn humans and Neanderthals: Acoustic capabilities and consequences for the debate on the origin of language. A reply to Lieberman[END_REF][START_REF] Lieberman | Current views on Neanderthal speech capabilities: A reply to Boë et al[END_REF].

For example, starting from the suggestion [START_REF] Honda | An MRI study on the relationship between oral cavity shape and larynx position[END_REF] that larynx height may be deduced from the shape of the oral cavity, [START_REF] Boë | Modelling the growth of the vocal tract vowel spaces of newly-born infants and adults: consequences for ontogenesis and phylogenesis[END_REF] used the "variable linear articulatory model" (VLAM) [START_REF] Maeda | Compensatory Articulation During Speech: Evidence from the Analysis and Synthesis of Vocal-Tract Shapes Using an Articulatory Model[END_REF] coupled with factor analysis and a growth model to argue against [START_REF] Lieberman | On the speech of Neanderthal man[END_REF].

Building on this and work by [START_REF] Ménard | Exploring vowel production strategies from infant to adult by means of articulatory inversion of formant data[END_REF], [START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF] concluded that "the maximal vowel space of a given vocal tract does not depend on the larynx height index: gestures of the tongue body (and lips and jaw) allow compensation for differences in the ratio between the dimensions of the oral cavity and pharynx" (p. 481). [START_REF] Boë | The vocal tract of newborn humans and Neanderthals: Acoustic capabilities and consequences for the debate on the origin of language. A reply to Lieberman[END_REF] reiterated that VLAM shows a high larynx not leading to a less distinctive vowel space. However, [START_REF] De Boer | Computer models of vocal tract evolution: An overview and critique[END_REF] attributed circular reasoning to [START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF], as the growth scaling in [START_REF] Boë | Modelling the growth of the vocal tract vowel spaces of newly-born infants and adults: consequences for ontogenesis and phylogenesis[END_REF], [START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF] and [START_REF] Boë | The vocal tract of newborn humans and Neanderthals: Acoustic capabilities and consequences for the debate on the origin of language. A reply to Lieberman[END_REF] was applied after the articulatory factors have been extracted in the VLAM, meaning that any inferred anatomies (Neanderthals, infants) have the same degrees of articulatory freedom as modern female adults, but just with a different scaling (for example, this does not hold in the observational data from pre-babbling vocalizations of infants, which are (epilaryngeally) constricted, clearly with less degrees of articulatory freedom; [START_REF] Esling | Laryngeal articulatory function and speech origins[END_REF]. Furthermore, such global scaling preserves the layout of the different components of the model including the angle and ratio between the pharynx and the oral cavity, but a change in this layout is precisely what has been hypothesized to set modern humans apart.

Finally, [START_REF] De Boer | Computer models of vocal tract evolution: An overview and critique[END_REF] argued that the use of factor analysis in VLAM linearly extrapolates from observed to unobserved cases, likely overestimating the ability of the articulators to compensate for any effects of anatomy, and developed, in response, a model better adhering to the anatomical constraints of the vocal tract, showing that a larynx height similar to a human female would be ideal for maximally distinctive vowel inventory [START_REF] Lieberman | Vocal tract anatomy and the neural bases of talking[END_REF].

Here we introduce a novel computer model that has several advantages over its predecessors. First, it is based on a widely-used realistic 3D geometric model of the vocal tract (VocalTractLab 2.1) built on modern phonetic theory and calibrated with data (MRI and otherwise) from actual humans [START_REF] Birkholz | 3D-artikulatorische Sprachsynthese[END_REF][START_REF] Birkholz | Vocal tract model adaptation using magnetic resonance imaging[END_REF]Birkholz, 2013a). Second, this model allows the programmatic control of multiple meaningful articulatory parameters (such as the position of the tongue tip or the degree of lip rounding), and produces the corresponding acoustic output. Third, with the author's permission, we modified this model to allow (among others) the specification of hyoid position. Fourth, we implemented a complete agent that can control this vocal tract model using a generic machine learning algorithm, and which is capable of learning to produce a set of auditorily presented target vowels (here, [@], [A], [a], [ae], [e], [i], [o] and [u]) by controlling the free articulators of the model. This allows us to sys-tematically study the impact of larynx height on vowel production, to find the optimal height for the production of widely-used vowels, and the compensatory strategies that can mitigate the impact of extreme larynx positions.

While still far from perfect, we think that our model represents an important advance, allowing more refined answers to questions surrounding the impact of larynx height on vowel production, and providing a platform for further improvement and application to other aspects of inter-group and inter-individual variation in speech, both pathological and normal [START_REF] Dediu | Language is not isolated from its wider environment: vocal tract influences on the evolution of speech and language[END_REF]. Given that the work reported here is in many ways novel, one of our main aims was to start from as "generic" and "theory-free" assumptions as possible and to write our code as easily replaceable and upgradeable modules.

Data and Methods

The fundamental idea is to study how learning a set of vowels is affected by controlled changes in a particular aspect of vocal tract anatomy, here, larynx height. Such experimental manipulations are extremely difficult to conduct with human participants, but computer simulations using realistic models of the human vocal tract may offer approximations that, while imperfect, may still be good enough for answering specific questions in an objective, repeatable and quantitative manner. For more details on the model, please see Janssen (2018).

The Vocal Tract model

We implemented a realistic 3D model of the vocal tract based on a modified version of Peter Birkholz's VocalTractLab version 2.1 [START_REF] Birkholz | 3D-artikulatorische Sprachsynthese[END_REF](Birkholz, , 2013b,a),a).

VocalTractLab 2.1 is a 3D geometric model of the vocal tract where a number of articulatory parameters (such as tongue tip position or lip rounding, among others) can be manipulated, and which, for a given set of parameter values, estimates the vocal tract's area function and produces the corresponding acoustic output, resulting in naturally-sounding and intelligible speech [START_REF] Birkholz | 3D-artikulatorische Sprachsynthese[END_REF](Birkholz, , 2013b,a),a). We obtained VocalTractLab 2.1's source code 1 and the permission to modify it from its author, Peter Birkholz (license agreement dated 21 st of March, 2014). For the work reported here, we added the functionality to adjust the larynx height and we implemented tighter constraints on the hyoid's range of motion in relation to larynx height.

In total, our model has one parameter that varies between conditions but is fixed within (LEN , controlling the vertical position of the glottis, is the length of the vertical part of the supralaryngeal vocal tract, and is used to compute the vertical position of the larynx as described below; we will refer to LEN in the following as "larynx height"), 11 parameters that are under the models' direct control (HX, HY , JA, LP , LD, T CX, T CY , T T X, T T Y , T BX, T BY ), 7

that have fixed values (V S, V O, W , T S1, T S2, T S3, T S4), and 2 that are automatically computed (T RX, T RY ); see Table 1 andFigure 1. The ratio between the lengths of the vertical and the horizontal parts of the vocal tract is fully determined, in our model, by the vertical position of the glottis relative to the hyoid (given that the horizontal part of the model is fixed to the VocalTractLab 2.1 default). This vertical position of the glottis represents the lower point from where we compute the length of the vertical part of the vocal tract (the upper part is also fixed to VocalTractLab 2.1 defaults) and which we denote as SV T v base length or LEN (see Figure 2; SV T is an abbreviation of the Supralarygngeal Vocal Tract, and the v and h subscripts denote its vertical and horizontal parts, respectively). In practice, we implemented changes in LEN by adjusting glottis height relative to the hyoid and scaling the epilaryngeal tube and laryngopharynx2 (Figure 3). HY is an actual 1 C++ using wxWidgets (https://www.wxwidgets.org/), which we re-engineered as a dynamically loaded library (DLL) compiled with Microsoft Visual C++ R 11 x64 on Microsoft Windows R 7 64 bits.

Table 1: The parameters of the vocal tract model. LEN (a parameter determining the vertical position of the larynx -larynx height) is the initial value given for a given condition (but it varies between conditions). The next 11 parameters are under the agent's direct control (for these, specifying a default value is not informative as they are changed during learning). The next 7 (there are 4 T S parameters, T S1 -T S4) are fixed (closed velum and no tongue side elevation; wall compliance currently has no effect and is fixed to the default value of 0.0). The last 2 parameters (controlling tongue root) are automatically computed from tongue body (T CX, T CY ) and hyoid (HX, HY ) parameters at run time by VocalTractLab 2.1 (thus, specifying a default value is also uninformative). The range of HY depends on LEN (see Table 2). For more details on the parameters please consult Birkholz (2013a), especially VocalTractLab 2.1 articulatory parameter that can be dynamically adjusted for a given LEN value, and which moves the entire larynx vertically.

For a given LEN , we compute the vertical position of the glottis, g, as

g = HY + g def -(LEN max -LEN ) + LEN max -LEN min 2 (1)
where g def is the default VocalTractLab 2.1 glottis vertical position (fixed at reality in humans and other primates. More precisely, with a short SV T v , the hyoid is not only positioned more cranially, but also has a shorter range of motion than with a longer SV T v [START_REF] Nishimura | Descent of the hyoid in chimpanzees: evolution of face flattening and speech[END_REF]. For the two extreme configurations with a very short and a very long SV T v , we constrained the range of vertical hyoid movement HY as follows. For the short extreme, HY varies within ±0.5 cm centered around 3.75 cm below the uvula (thus, between short min = -6.0 cm and short max = -5.0 cm), while for the long extreme, HY varies within ±1.0 cm centered around 5.5 cm below the uvula (thus, between long min = -4.0 cm and long max = -3.5 cm) respectively. For a given configuration, we linearly interpolate the lower and upper bounds of HY together, and the hyoid is able to move within a certain range within the larynx (depending on glottis height), changing the ratio of the parts of the tube below and above the hyoid. 

g def = -3.2),
and

HY max = (long max -short max ) LEN -max(LEN ) max(LEN ) -min(LEN ) + long max (3)
resulting, for the seven LEN values considered here, in the ranges in Table 2.

There are two main conventions in the literature for defining the ratio (R) between the vertical (SV T v ) and the horizontal (SV T h ) parts of the vocal tract. In one, R vh is defined as SV T v /SV T h , with R vh = 1.0 representing a modern human vocal tract, R vh 1.0 a very low larynx, and R vh 1.0 a very high larynx (as in modern human babies, non-human primates and some reconstructions of archaic humans such as the Neanderthals; [START_REF] Lieberman | On the speech of Neanderthal man[END_REF]. However, in the alternative convention, which we will be using here, R ht is defined as SV T h /(SV T v + SV T h ) (i.e., the ratio between the horizontal and total vocal tract length), with R ht = 0.5 representing a modern human vocal tract, R ht 0.5 a very low larynx, and R ht 0.5 a very high larynx; the hyoid (and upper body of the epiglottis, red structure), the glottis (solid magenta ellipse), and the vertical (SV T v ) and horizontal (SV T h ) parts of the supralaryngeal vocal tract. The length of the horizontal part, SV T h , (horizontal dotted magenta line) is measured linearly between the lingual incisial edge of the upper central incisors (SV T h max, fixed at coordinates (4.7, -0.6)) and the intersection between the posterior pharyngeal wall and the horizontal line emerging from SV T h max (SV T h min, fixed at coordinates (-2.6, -0.6)). The length of the vertical part, SV T v , (the oblique dotted dark green line) is measured linearly between the posterior nasal spine (SV T v max, fixed at coordinates (0, 1.09)) and the transverse centroid of glottis (SV T v min; gray label) which varies between conditions. The origin (0, 0) is at the intersection of the vertical through SV T v max and the horizontal through SV T h max (dotted black lines), and the scale on both axes is in centimeters (cm). The larynx can be moved up and down by adjusting the vertical position of the hyoid (the HY parameter); the length of the larynx itself can also be adjusted. The larynx height parameter LEN is the vertical position of the glottis relative to SV T v max, LEN = 1.09 -SV T v min; in this image, LEN is at its default value of -7.95 cm. Please note that the tongue and lips are not shown. the value corresponding to the "standard" VocalTractLab 2.1 LEN = -7.95 is R hl ≈ 0.44.

Learning to articulate target vowels

For any of the seven conditions .05, -6.45 }), there are 11 parameters (HX, HY , JA, LP , LD, T CX, T CY , T T X, T T Y , T BX and T BY ) that can be directly controlled by setting them to 11 real number values, prompting our modified vocal tract model to produce the corresponding vowel sound, or to fail to produce any sound at all if the configuration is impossible or results in a completely closed vocal tract.

Our goal here is to implement a learning mechanism that, given a target vowel sound, is able to discover, without human intervention, a set of 11 free parameter values that allow the model to produce the same (or a very similar) vowel sound.

Essentially, this models the real-world problems encountered by a child acquiring their native language(s) in the sense that, in principle we do not know a priori what the actual values of the 11 parameters that produced the target sound are, so that supervised learning methods cannot be applied, having to use instead reinforcement techniques.

Formally, we will represent a target vowel sound by its first n Bark-transformed

formant frequencies b = b 1 , b 2 , . . . , b n ∈ R n .
While we will focus here on the first three formants (i.e., n = 3), F 1 , F 2 and F 3 , we also considered (detailed in the Supplementary Materials in Appendix) n = 5 (i.e., also including F 4 and F 5 ) as they may be relevant for phenomena involving the larynx [START_REF] Sundberg | Raised and lowered larynx -the effect on vowel formant frequencies[END_REF]; for example, in singing voice, very high spectrum peaks are often found around 3 kHz, F 4 and F 5 are largely dependent on the area function of the larynx [START_REF] Sundberg | The singer's formant revisited[END_REF][START_REF] Zhou | A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" american english /r[END_REF] show that F 4 and F 5 differ between the canonical variants of North American English /r/. are identical. Because Euclidean distance is very general, simple and does not impose particular assumptions on the structure of the formant space, we have decided to use it in these initial simulations, but other approaches that capture more domain-specific information 3 should be investigated in future simulations [START_REF] Bladon | Modeling the judgment of vowel quality differences[END_REF][START_REF] Schwartz | The dispersionfocalization theory of vowel systems[END_REF]. However, by applying the Bark transform to the formant values, we arguably do take into account properties of human perception; moreover, as our results show, such an "unbiased" choice does produce very good outcomes of the learning process.

With these, we define an agent as a self-contained computational entity endowed with a "perceptual system" that extracts the first n Bark-transformed formants b from a "heard" vowel sound, a "cognitive system" that learns to immitate such sounds by mapping b to a set of m articulatory parameter values p, and a "production system" that maps p to an actual sound (or nothing, due, for example, to the complete obstruction of the vocal tract). Here, the "production system" is represented by the vocal tract model discussed above, the "perceptual system" is based on VocalTractLab 2.1's extraction of formants from the produced acoustic output, and the "cognitive system" is implemented as a neutral network trained by a genetic algorithm.

The neural network

We use a fully connected feed-forward neural network consisting of three layers: one input layer, one hidden layer, and one output layer. The input layer has n + 1 input neurons, with the first n receiving as input the first n Barktransformed formants of the "perceived" sound b i scaled as 10 ) are, for i ∈ 1..5, {(2, 7), (4, 15), (14, 16), (15.5, 17.5), (16.5, 3 Such as the cepstral distance [START_REF] Tohkura | A weighted cepstral distance measure for speech recognition[END_REF], the dispersion-focalization distance [START_REF] Schwartz | The dispersionfocalization theory of vowel systems[END_REF] or the F 1 × F 2 weighted Euclidean distance in De Boer (2000).

19)} bark4 ); the n + 1 neuron is a bias neuron allowing the network to cope with saturated gradient input. The hidden layer consists of h + 1 neurons, with h = Round( n+m 2 ), where neuron h + 1 is a bias neuron, and each of the first h neurons receiving activation from all the n + 1 input neurons. The output layer consists of m neurons, each receiving activation from all h + 1 neurons in the hidden layer and controlling, in turn, one of the free articulatory parameters of the vocal tract model by feeding their output value x (normalized to the parameter's range [p min , p max ] using (p max -p min )x + p min ). The activation of the hidden and output neurons is computed using the commonly used sigmoid function σ(x) = 1 (1+e -x ) applied to the sum of all the inputs to a given neuron weighted by the strength of the connections (the "synapses") through which these inputs flow. Formally, for a neuron with k inputs u i and synaptic weights However, given that the mapping from the m free parameter values p and the first n Bark-transformed formants of the resulting sound b is extremely complex and completely opaque to the learning algorithm (just as the inner workings of the body are opaque to the child's brain), the agent must somehow discover a function f that approximates as well as possible the best function f which truly minimizes the distance d( b, b ) (just as the child's brain must find ways of controlling its body, including the vocal tract). More precisely, as we have an acoustic target but we must discover an "intermediate" articulatory solution that maps in very complex way to acoustics, we cannot perform supervised learning (such as standard back-propagation) and must rely instead on some form of reinforcement learning. While there are very interesting approaches to this problem, including recent developments in curiosity-driven learning [START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF][START_REF] Oudeyer | How evolution may work through curiosity-driven developmental process[END_REF], we decided to implement here an as-domain-general and standard method as possible, at the cost of reduced biological plausibility and computational inefficiency. Previous work [START_REF] Prom-On | Identifying underlying articulatory targets of Thai vowels from acoustic data based on an analysis-by-synthesis approach[END_REF] used VocalTractLab 2.1 and stochastic gradient descent to learn Thai vowels, and we are planning comparisons between various learning algorithms (including our current implementation described here, gradient descent and curiosity-driven search) in terms of their computational costs and accuracy.

w i , 1 ≤ i ≤ k, the activation is a = σ( k i=1 w i u i ).

Training the neural network

The approach we opted for here was to use an off-the-shelf genetic algorithm 5

where the "genome" encodes the neural network's synaptic weights, one weight per floating-point "gene". The population size is fixed to 100 genomes.

The first generation is initialized by randomly generating each of the 100 5 Genetic algorithms (see, for example, [START_REF] Eiben | Introduction to Evolutionary Computing[END_REF] or https://en.wikipedia. org/wiki/Genetic_algorithm) are inspired from biological evolution in the sense that they evaluate whole "populations" (sets) of solutions, and these solutions are allowed to "reproduce" in relation to their "fitness" (i.e., how "good" they relatively are at solving the problem at hand). A solution is represented by the particular values of the "genes" in a "genome", which really are the values of a set of parameters used to estimate the value of a function (the "fitness" function). New "genomes" are produced by "mutation" (e.g., randomly changing the value of a "gene" in a "genome") and "cross-over" (producing a combination of two parental "genomes"). Just as in biological evolution, after several generations the algorithm explores the (usually very complex and multi-dimensional) "fitness space" and finds one or more (usually local, but sometimes global) optima.

"genomes": more precisely, we draw random values for all the "genes" in a "genome", then use the corresponding neural network to control the vocal tract model in order to produce acoustic output and, if there is no acoustic output we restart by drawing a new set of random "genes", until all "genomes" in the population are able to produce some sort of sound.

The fitness function (i.e., the function that is optimized by the genetic algorithm) of a given "genome" is the distance d( b, b ) between the target sound b and the sound produced using the "genomes"'s "genes" as neural network weights, b , d( b, b ); the fitness of a "genome" that does not result in a sound is set to +∞ (the worst possible fitness given that we perform fitness minimization). In each generation, the potential parents are selected using stochastic universal sampling 6 [START_REF] Baker | Reducing bias and inefficiency in the selection algorithm[END_REF] with elitism 7 [START_REF] Eiben | Introduction to Evolutionary Computing[END_REF], and these selected parents produce the next generation of 100 offspring genomes. Mutation (i.e., the creation of new "genomes" with new values of the parameters) is handled using evolution strategies [START_REF] Beyer | Evolution strategies: A comprehensive introduction[END_REF] which first evolve a set of strategy parameters σ that control the step size of the mutation operator as applied to continuous "genes" (i.e., the standard deviation of a Gaussian distribution used to generate mutated values). In this approach, the rate with which the "genes" mutate can itself evolve as well, increasing the ability to escape local optima.

We ran the genetic algorithm for a maximum of 500 "generations", but with the possibility of an early stopping if the fitness of the best "genome" in the 6 Stochastic Universal Sampling (or SUS) is an alternative to Fitness Proportionate Selection (FPS or "roulette wheel selection") that ensures no bias and less spread, allowing genomes with worse fitness a fairer chance to reproduce. It works by mapping genomes to a line such that each genome's segment is equal to its fitness (as in FPS), but then places on this line n (= next generation's population size) equally spaced points starting at a random location (the genomes where the points fall are selected for reproduction).

7 A technique ensuring that the best genomes in a generation are not lost to random fluctuations in the selection process by copying a predefined number of the fittest genomes into the next generation.

population seems to stabilize, apparently reaching an optimum value (this early stopping was implemented due to the relatively high computational costs of the genetic algorithm). We decided to stop when the improvement ∆t i = t i+w -t i becomes 0.0, where t i is the best fitness value of in generation i and w is the sliding window size (set here to w = 100 generations). Therefore, we decided here to implement a separate neural network for each target sound b i , individually trained to find the best mapping f i : R n → R m that optimizes the production of this particular target, i.e., that minimizes the distance d( b i , b i ). In this way, we allow each target sound to be learned indepen- dently of the other targets, while not having to impose artificial mechanisms for keeping them distinct; metaphorically, we provide a way for the agent's brain to "label" these internal representations as distinct (e.g., as different phonemes), without explicitly modeling the acquisition of this labeling mechanism. Given our specific research question here, focusing on the influence of variation in vocal tract anatomy on the articulation of vowels while trying to minimize the effects of other levels, we would argue that these design decisions are appropriate. Nevertheless, our use of generic (even if not biologically plausible) learning techniques and our keeping of the vowels separate, can be easily changed, and the effects of these changes can be tested8 .

The target vowels

We predefined eight target vowels, namely [@], [A], [a], [ae], [e], [i], [o] and [u].

These vowels were recorded three times by SRM, each vowel being produced for approximately 2 seconds. The vowel spectra were obtained from 1 second windows positioned during the most stable portion of each vowel. Vowel formants were calculated using PRAAT [START_REF] Boersma | Praat: doing phonetics by computer[END_REF] over comparable ∼1

second windows and we computed their averages (some manual measurement of F 3 and especially F 4 was necessary as well). The vowels were then recreated using the default configuration of VocalTractLab 2.1 by manually adjusting its free parameters. The recreated vowels thus represent reasonable approximations based (primarily) on acoustic criteria. Table 3 gives the formant values and the VocalTractLab 2.1 (in its default configuration) parameter settings for each vowel.

Please note that while usually [i], [a], and [u] are considered to be the "extreme" vowels [START_REF] Maddieson | Patterns of sounds[END_REF], we also included [@] as a neutral (or control) vowel9 . We decided to also include [A] and [ae] besides [a] primarily because we aim at an increased coverage and resolution of the low vowel space, but also due to the ambiguity of the [a] notation, probably usually meant as a rather more broad interpretation of the "low" vowel (see, for example, [START_REF] Honda | Organization of tongue articulation for vowels[END_REF][START_REF] Ladefoged | A Course in Phonetics[END_REF][START_REF] Barry | Do we need a symbol for a central open vowel[END_REF]. We are focusing on these eight vowels because they are widely distributed cross-linguistically [START_REF] Moran | PHOIBLE online[END_REF], represent different combinations of tongue height and fronting, are relatively extreme in terms of the modern human vowel space (see also Figure 5), and the lively debate concerning the evolution of speech and language makes reference to at least some of them (e.g., [START_REF] Lieberman | On the speech of Neanderthal man[END_REF][START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF][START_REF] Boë | Anatomy and control of the developing human vocal tract: A response to Lieberman[END_REF].

Implementation and availability

In total, we ran 7 conditions (larynx height LEN values) × 8 target vowels 

Results

The analyses and plots reported here used R 3.4.4 (R Core Team, 2017).

The full analysis (including aspects and details, including considering n = 5 formants, not reported here due to space constraints) can be found in the Supplementary Materials in Appendix. The patterns obtained considering n = 3

and n = 5 formants are roughly similar, so that we will be focusing here on the first.

We will describe first the tight relationship between the dynamically-adjusted continuous vocal tract ratio R ht (defined as the ratio between the horizontal and the total supralaryngeal vocal tract lengths:

R ht = SV T h /(SV T v + SV T h ))
and the predefined discrete values of larynx height LEN , turning then to the acoustic properties of the produced vowels function of larynx height (i.e., how similar the individual vowels and the whole vowel system is to the predefined targets), ending with the compensation of non-optimal larynx heights by other articulators.

Vocal tract ratio versus larynx height condition

While the 7 larynx height position conditions (the values of LEN ) are predefined and fixed for any given run, our model can adjust the various components thus the vocal tract ratio R ht to be dynamically adjusted by the learning mechanism. Thus, while LEN is fixed, R ht is actively changed by the agent (within constraints), in a manner that is well approximated by a linear relationship: the linear regression of R ht on LEN , the vowels, and their interactions results in an adjusted R 2 = 97.5%, β LEN = 0.042, p < 2 • 10 -16 .

The acoustics of produced vowels

We compared the acoustics of the target and of the produced vowels as a function of LEN (or R ht ), either for each vowel separately or for the whole system composed of all vowels simultaneously.

The Top panel of Figure 5 shows the actual formant values produced for each vowel against the corresponding target (the bottom panels give a different representation of the same data): the best approximation of the target vowels is obtained around the "standard" LEN , with deviations from this region affecting mostly F 3 (see Table 4 for quadratic regressions; as a note, deviating from the "standard" LEN does not result in a simple collapsing of the system towards

[@]).

For each vowel, we computed the Euclidean distance between the target and the production (i.e., the "acoustic error"; the mid panel of Figure 5), and we found a non-linear relationship with R ht that varies between vowels (quadratic regression on R ht , vowels and their interactions results in an adjusted R 2 = 82.1%). Overall, the error is high for R ht ≈ 0.40 but rapidly drops towards 0.0 as R ht approaches 0.44 and remains low for most vowels except [i] and [u],

where it increases again with increasing R ht . This suggests that reproduction is best around 0.42 R ht 0.45 for all vowels, the worst for R ht 0.40 for all vowels except [u] (where the worst seems to be at R ht ≈ 0.41), while for R ht 0.46 there is either a plateau or a slight worsening.

Ordinary Procrustes analysis [START_REF] Zelditch | Geometric Morphometrics for Biologists: A Primer[END_REF] is a widely used technique that matches two configurations of corresponding points using translation, rotation and scaling (by minimizing the squared distances, SSD, between these corresponding points), separating thus shape from size. The √ SSD (the Procrustes distance) is thus an estimate of how well the two configurations match as a whole. We considered the system of the target vowels as a configuration and the system of the corresponding productions as another, and we computed the Procrustes distance between them as a measure of how well they match as systems. These Procrustes distances show a "U"-shaped pattern (image shown in the Supplementary Materials in Appendix; the quadratic regression on R ht produces an adjusted R 2 = 81.8%) of high values for low R ht , reaching a minimum (close to 0.0) in the neighborhood of R ht = 0.45, increasing again for larger R ht (but well below the values for low R ht ; the same pattern obtains for n = 5). This suggests that, as a whole, the produced vowel system is most similar (almost identical) to the target one for R ht ≈ 0.44-0.46, being far worse for lower than for higher R ht values.

For each pair of vowels, we computed the Euclidean distance between their productions (see the Supplementary Materials in Appendix; thus, how different acoustically the produced vowels are from each other). These confirm that R ht in the neighborhood of 0.45 results in pairwise distances close to the distances between the target vowels, that, in general, lower R ht values have larger effects than higher values, and that the effects of the vowels are more complex than a simple collapse of the system towards [@]. The resulting vowels, even those with the highest distance from the intended target for the most extreme values of LEN , are auditorily very similar to the intended targets 10 (the worst and best productions for each condition and target vowel can be found in the Supplementary Materials in Appendix).

The articulatory parameter values

The various articulators in our model respond differently to changes in LEN depending on the target vowel. It can be seen in Figure 6 that:

• for most vowels and articulatory parameters, the parameters' values change function of the ratio R ht (please note that HY 's almost linear dependency on R ht is unsurprising given the setup of our model);

• these changes range from the very dramatic (e.g. LP for [e], JA for [e],

or T CX for [i]) to the extremely small or the arguably non-existent (e.g.,

T CX for [A], T BY for [e] and [i], or LD for [u]);

• in some cases there is very little variance between runs for the same R ht value (e.g., T CX for most vowels), but in others this variance is exceedingly large (e.g., LP , T T X and T T Y for most vowels);

• the shape of the dependency varies from almost linear (e.g., LP for [a] or T CY for [A]) to monotonic + plateau (e.g., LP for [@] or T BX for [e]) to more complex shapes that show inflections (e.g., LP for [e], T T Y for [@] and [e] or HX for [o] and [u]);

• while some articulators seem to behave in relatively similar ways across vowels (e.g., LP ) other change dramatically (e.g., HX, T CX or T CY ).

To understand how the articulators accommodate varying larynx height conditions, we performed Principal Component Analysis (PCA) on LEN , R ht , the 10 Except for a few, such as [a](in condition F 1 -F 5 ; for LEN=-6.45) which sounds more like tends to be negative for very low R ht , positive for larger R ht , and reach a plateau for R ht >≈ 0.47, but there is quite a spread of its values for each R ht .

three formants, and the 11 free articulatory parameters (Figure 7). The first three Principal Components (PCs) explain together 61.2% of the variance and capture familiar aspects of vowel articulation such as the inverse relationship between F 1 and the vertical location of tongue constriction (T CY , T BY and less so T T Y ; thus high F 1 characterizing low vowels, and low F 1 high vowels)

captured by PC1 (and less strongly by PC3), the positive relationship between F 2 and the anterior location of the tongue constriction (T CX, T BX and T T X;

thus high F 2 characterizing front vowels, and low F 2 back vowels) captured by PC2; while obvious, finding these familiar relationships is a sanity check for our approach.

As expected, LEN , R ht and HY behave in very similar ways, and may be considered for practical purposes as a single "unit" related to larynx height. This combined "larynx height" unit has positive and strong contributions (around 10 -15%) to both PC1 and PC3 (thus, acoustically, on F 1 and F 3 ), and a negligible negative one (below 5%) to PC2 (see also Moisik, 2013, p. 300).

The jaw (JA) and lips (LP and LD) seem to also form a unit and contribute to F 2 (PC2; negative for jaw angle and lip protrusion and positive for lip distance) and less so to F 1 and F 3 (PC1).

However, this PCA does not differentiate between the target vowels except through their particular combinations of formant values, probably explaining the structure of PC1 and PC3 with respect to F 1 (the first capturing a negative effect of "larynx height" while the second a positive one).

Another limitation of such approaches is that it cannot capture the causal asymmetry between variables, here the fact that LEN is manipulated by the experimenter and that the other articulators react to this manipulation, "attempting" to compensate for its effects on the acoustics of the produced vowels.

We will use here an approach that draws on advances in the study of causality using Directed Acyclic Graphs (DAGs) and the inference of such DAGs from observed data [START_REF] Pearl | Causality: Models, Reasoning, and Inference[END_REF][START_REF] Pearl | The Book of Why: The New Science of Cause and Effect[END_REF]. The fundamental idea is to model the relationships between measured variables as connections (or edges)

between the nodes representing the variables in a directed network (or graph), such that a directed edge between two variables, V1 → V2, represents the dependency of V2 on V1; with certain assumptions, these can be conceptualized as causal links, with V1 causing V2 [START_REF] Pearl | Causality: Models, Reasoning, and Inference[END_REF][START_REF] Pearl | The Book of Why: The New Science of Cause and Effect[END_REF].

Importantly, such directed graphs cannot contain cycles (such as V1 → V2 → V3 → V1), making them acyclic directed graphs (or DAGs).

We considered as input variables LEN and the target formants In summary, we modeled a uni-directional flow from the predefined input to the realized acoustic ouput strictly mediated by the articulatory parameters. While such a model is missing potentially important variables and fails to properly capture the complex feedback loops between articulators during learning, it does represent a testable hypothesis that arguably approximates reality to an acceptable degree for our purposes here [START_REF] Pearl | The Book of Why: The New Science of Cause and Effect[END_REF].

We then searched automatically for the DAGs that meet these constraints and fit our z -scored data using two methods implemented by the bnlearn R package [START_REF] Scutari | Learning bayesian networks with the bnlearn R package[END_REF]: the constraints-based Incremental Association Markov 8 shows a representative sample of such DAGs, while Tables 5 and 6 summarize the β's of the direct effects of LEN on the articulatory parameters and of these on the formants F 1 -F 3 .

These results suggest that LEN , R ht and HY are strongly coupled, behaving as a unit describing larynx height, as do (to a lesser extent) LP , LD and JA. The articulators (except for HY ) behave differently (and non-linearly)

for different vowels and larynx heights, suggesting that compensatory strategies differ between extreme larynx positions and target vowels. The condition LEN affects directly hyoid position (mostly through HY ), but also the jaw (JA), the tongue body (T CX and T CY ) and the lips (LP and LD), suggesting that these articulators may assume the most important roles in compensating for In what concerns the acoustics, the produced formants F 1 -F 2 are directly affected mostly by larynx position, the tongue and the lips, but these effects vary among vowels and for different formants. Thus, these results suggest that (a) multiple articulators interact, forming "units" that may be responsible for certain aspects of the acoustics, (b) these units might be complex and (c) not unique (i.e., there might be more than one way of achieving the specific output formant frequencies), and (d) compensating for LEN might involve several such (possibly equivalent) units.

Discussion and conclusions

We focused here on the systematic variation of larynx height and on its effects on vowel acoustics and on the articulatory mechanisms engaged in compensating for it. Our computational agents, using a generic machine-learning mechanism that controls a realistic geometric model of the vocal tract, did learn to a very high degree of accuracy eight target vowels (

[@], [A], [a], [ae], [e], [i], [o] and
[u]) widely attested cross-linguistically and covering the modern human vowel space. However, this is a complex task that can be captured by local optima:

while potentially a problem for finding the globally optimal solution(s), this can be seen as a realistic counterpart to actual human acquisition strategies, which can likewise settle for local optima (for example, articulatory idiosyncrasies that might even require speech therapy).

The attained accuracy is best around values of the vertical to total supralaryngeal vocal tract lengths ratio R ht of approximately 0.45, degrading with deviations from this optimal region (especially strong for extremely low R ht ) in different manners for different vowels. Likewise, the maximal distinctiveness between vowels is reached for similar R ht values, with reduced distinctiveness for extreme ratios. The first formant F 1 is little affected by R ht , while F 3 shows strong effects (especially for low R ht ), and while the vowel system as a whole is affected however, there is no simple collapse towards [@].

Interestingly, the strongest effects on acoustics are for very low R ht values (close to 0.40) and much less marked for very high values (close to 0.60), except for [u] (and, to a lesser degree, [i]). While this could be caused by us failing to model even more extremely high R ht values (due to constraints inherent in the VocalTractLab 2.1 that remain to be addressed by future work), we think that is at best only part of the explanation (our larynx height conditions, LEN , are a sample of an equal number of positions equally displaced below and above the "standard" VocalTractLab 2.1 position). We suggest instead that higher larynx positions are more effectively compensated by other articulators, especially the tongue and the lips, than lower positions. Our findings of the active (and mostly effective) compensation for larynx height by other articulators fit previous reports such as speaking without a tongue [START_REF] Gerdeman | Speaking without a tongue[END_REF] or after partial resection of the larynx [START_REF] Crevier-Buchman | Analogy between laryngeal gesture in Mongolian Long Song and supracricoid partial laryngectomy[END_REF], with an artificial hard palate [START_REF] Brunner | Temporal development of compensation strategies for perturbed palate shape in German/sch/-production[END_REF][START_REF] Mcfarland | Speech compensation to structural modifications of the oral cavity[END_REF] or with a bite-block [START_REF] Fowler | Immediate compensation in bite-block speech[END_REF]. However, also considering the fourth and the fifths formants (F 4 and F 5 ) uncovers effects of both very low and very high larynx positions R ht on them (especially clear for [u]).

Nevertheless, while reinforcing the widespread capacity for compensation of even pathological variation in vocal tract anatomy, our results also show that compensation is not total. This adds support to our proposal that widespread inter-individual and inter-group normal variation in vocal tract anatomy can result in audible effects that may bias sound change, ultimately playing a role in explaining the observed linguistic diversity [START_REF] Dediu | Language is not isolated from its wider environment: vocal tract influences on the evolution of speech and language[END_REF]Moisik & Dediu, 2017;Dediu & Moisik, accepted).

The optimal ratio found here, ≈ 0.45, is lower than that reported by previous modeling studies12 (see Table 7), but this may be partly due to the simpler models used there. For example, the model in de Boer (2010a) lacks lips, which are argued by [START_REF] Badin | Keep the lips to free the larynx: Comments on de Boer's articulatory model[END_REF] to reduce its capacity to compensate larynx height (compensation that is clearly happening in our model). However, the bulk of the differences in vocal tract ratios are probably due to the different definitions and measurements of the vertical and horizontal parts of the vocal tract: for example, [START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF] use the arytenoid apex as the lower limit of the vertical part, which is above the vocal folds used by [START_REF] Nishimura | Descent of the hyoid in chimpanzees: evolution of face flattening and speech[END_REF], resulting in shorter estimated vertical lengths and an inflated vocal tract ratio. Nevertheless, despite these discrepancies in the actual values, our results agree with the previous findings that, while there seems to be a "sweet spot" of larynx heights, "suboptimal" values do not preclude vowel production.

While statistically significant different from their targets (on the scale of under a bark for F 1 and F 2 and up to a few barks for the higher formants), the vowels produced with extreme vocal tract ratios are acoustically very similar to their targets (see Supplementary Materials in Appendix).

While our model does not directly test very high (supposedly "Neanderthal"like) vocal tract ratios (as per [START_REF] Lieberman | On the speech of Neanderthal man[END_REF]), it supports a more nuanced view, in line with suggestions by [START_REF] Fitch | The evolution of speech: a comparative review[END_REF], where even extreme positions of the larynx may be actively compensated by other articulators and probably do not preclude vowel production. Currently available data shows that the Neanderthal hyoid bone was anatomically and biomechanically very similar to that of modern humans [START_REF] D'anastasio | Micro-biomechanics of the Kebara 2 hyoid and its implications for speech in Neanderthals[END_REF][START_REF] Martínez | Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain)[END_REF] and that their hearing, despite some differences in the anatomy of the ear and the ear ossicles, was essentially modern [START_REF] Stoessel | Morphology and function of Neandertal and modern human ear ossicles[END_REF][START_REF] Martínez | Communicative capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain[END_REF] 
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 1 Figure 1: The geometric transformations of the vocal tract model due to articulatory parameter adjustments. Some parameters (shown in gray) are fixed (velum shape, V S, and opening, V O) or automatically adjusted by VocalTractLab 2.1's internal logic (tongue root position, T RX and T RY ). The tongue side elevation parameters (T S1-T S4) are not shown. The figure is modified with permission from Birkholz (2013a).

Figure 2 :

 2 Figure 2: Wireframe lateral view of the 3D supralaryngeal vocal tract (SVT) model (thin solid lines) in the default VocalTractLab 2.1 configuration, showing the larynx (blue structure),

Figure 3 :

 3 Figure 3: Two extreme larynx height (LEN ) conditions illustrating the scaling of the vertical part of the vocal tract and the range of the hyoid vertical position (HY ). The larynx (and laryngopharynx, in blue) can be moved vertically by adjusting the hyoid (and the upper body of the epiglottis, in red); its length can also be adjusted. Please compare with Figure 2. Top: LEN = -6.45, with HY = -3.5 (panel a1, left) and HY = -4.0 (panel a2, right). Bottom: LEN = -9.45, with HY = -5.0 (panel b1, left) and HY = -6.0 (panel b2, right). We show the VocalTractLab 2.1 configuration for producing [@].

  Given the target formants b, we must find the best set of m = 11 articulatory parameter values p = p 1 , p 2 , . . . , p m ∈ R m (i.e, the solution) that allow the vocal tract model to produce the closest acoustic reproduction b = b 1 , b 2 , . . . , b n ∈ R n of b. Here we use the Euclidean distance between b and b , d( b, b ) = n i=1 (b i -b i ) 2 , as the measure of closeness, with smaller values representing better approximations and d( b, b ) = 0 if and only if b and b

  The neural network's architecture, activation function and synaptic weights can be conceptualized as implementing a function f : R n → R m mapping the n Bark-transformed first formants of the "perceived" sound b = b 1 , b 2 , . . . , b n to the m free parameters of vocal tract p = p 1 , p 2 , . . . , p m . We are interested in finding such a function f that, given a sound described by b, produces a vector of parameters values p = f ( b) such that the sound produced by the vocal tract model using these parameter values is as close as possible to the original sound. If we denote the n first Bark-transformed formants of this produced sound as b = b 1 , b 2 , . . . , b n , then the distance d( b, b ) is the minimum across all possible produced sounds b .

2. 3 .

 3 Putting everything together: the agent learns to speak Thus, we implemented a computational agent which, when exposed to a given target sound extracts its first n Bark-transformed formants b, maps them to the m free parameters p using a neural network, and feeds these m values to the vocal tract model to produce an acoustic output characterized again by n Bark-transformed formants b . The agent autonomously learns to control its vocal tract and to produce an output sound b (that matches as well as possible the target sound b) using a generic learning mechanism, in this implementation a genetic algorithm with evolution strategies (due to our modular design, this is easily replaceable by other optimization techniques). Figure4gives a visual overview of the agent. However, just like human children, our agent should be able to learn a whole set of target sounds, T = { b 1 , b 1 , . . . , b k }, with k > 1. The obvious way to implement this would be to feed the whole set of targets T into the same neural network, searching for a single mapping function f : R n → R m that optimizes simultaneously the production of all k targets, i.e., that minimizes simultaneously all distances d( b i , b i ), i ∈ {1, 2, . . . , k}. Unfortunately, this simultaneous training results in interference between the different targets, suboptimal performance and convergence issues, due to the lack of a mechanism for keeping the internal representations of the k targets (and their productions) separate within the neural network.

Figure 4 :

 4 Figure 4: Overview of the agent model. A target vowel (top right) represented here only by its first three formants F 1 -F 3 , is fed into a input layer of the neural network (top left) where each input neuron is mapped onto a given formant. The information is then propagated through the network's hidden layer to the output layer (as modulated by the network's synaptic weights), where each output neuron maps uniquely onto a single articulatory parameter of the vocal tract model (bottom left). The area function of the model (magenta lines perpendicular to the centerline of the vocal tract airway) is then computed depending on the actual positions of the articulators as described by the current parameter values, possibly producing, in turn,an acoustic output (bottom right). The agent then estimates the error (d) between target and produced sounds, which represents the inverse of the fitness to be maximized by the genetic algorithm (not shown). This cycle is repeated multiple times, until a plateau of small errors is reached. Please note that while, for clarity, we represented here only the three first formants, this model is generalizable to any number of formants n.

(

  [@], [A], [a], [ae], [e], [i], [o] and [u]) × 2 sets of formants (first three, n = 3 versus first five, n = 5) × 100 independent replications each = 11200 runs. One replication was run as a single thread occupying one (real or virtual) core; the whole simulation took about 1.5 months wall-clock time on a dedicated server with two Intel Xeon E5 2620 CPUs (2.0 GHz, up to 2.5 GHz Turbo Boost, 6 physical cores with HyperThreading) and 64Gb RAM running Windows 7 64 bits. The actual implementation (a) uses a version of the Vocal Tract Lab 2.1 Birkholz (2013a) modified by us to allow the specification of the vertical position of the larynx, and refactored as a Windows 64 bit Dynamically Linked Library (DLL) encapsulating the relationship between a set of articulatory parameter values and the output acoustics in terms of formant values (C++ compiled with Microsoft Visual C++ 11 64 bits on Windows 7); (b) the agent

Figure 5 :

 5 Figure 5: The acoustics of the produced vowels as a function of larynx height LEN and the vertical to total supralaryngeal vocal tract lengths ratio R ht . Top panel: the first three formants as a function of R ht (x axis) per vowel with loess regression (black curves); vertical dotted dark green lines represent R ht = 0.452 which is the average of target R ht values in the standard configuration; horizontal dark blue solid lines are the target values. Mid panel:the Euclidean distances between the produced and target vowels individually function of R ht (x axis) with loess regression (black curves); please note that the vowel legend applies to the bottom panels as well. Bottom panels: the produced vowels (colored dots) in the F 1 × F 2 (left) and F 2 × F 3 (right) spaces for the highest (LEN = -9.45), standard (LEN = -7.95) and lowest (LEN = -6.45) larynx positions (it also shows the target vowels as black IPA symbols with constant positions across conditions). Please see the Supplementary Materials in Appendix for the Procrustes distances and for n = 5 formants (where the effects of higher LEN and R ht are more important).
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 5 ; [e](F 1 -F 3 ; -9.45) and [e](F 1 -F 5 ; -9.45) ∼ [ø], and [i](F 1 -F 3 ; -9.45) and [i](F 1 -F 5 ; -9.45) ∼ [y] (rounding); and [u](F 1 -F 3 ; -6.45 --7.65) and [u](F 1 -F 5 ; -6.45 --7.65) ∼ [o].

Figure 6 :

 6 Figure 6: The 11 articulators function of larynx height LEN (dot color), vertical to total supralaryngeal vocal tract lengths ratio R ht (x axis) and vowel, with loess regression (dark red curves) and standard VocalTractLab 2.1 R ht (vertical dashed lines). The 8 vowels are represented by the columns, while the 11 articulators by the rows, each panel representing that distribution across runs of the values of a given articulatory parameter for a given vowel function of the ratio R ht . For example, the top-left panel shows that for [@], LP (lip protrusion)

Figure 7 :

 7 Figure 7: Combined Principal Components Analysis (PCA) of the larynx height condition (LEN ), the vertical to total supralaryngeal vocal tract lengths ratio (R ht denoted as V T R in the plots), the acoustics (the 3 formants, F 1 -F 3 ) and the articulator parameter values (HX, HY , JA, LP , LD, T CX, T CY , T T X, T T Y , T BX and T BY ) for the produced vowels across all eight vowels. Top-left planel: the scree plot showing the % explained variance by PC and highlighting the first 3 PCs. The following three panels show the contributions of each variable to the first three PCs; light red = positive contribution, light blue = negative contribution (please note that the signs themselves are arbitrary but the differences in signs are meaningful); horizontal dashed line = reference line of expected contribution if all contributions were equal; variables are sorted by absolute value of contribution.

F

  1t -F 3t , as mediators the 11 articulatory parameters JA, LP , LD, T CX, T CY , T T X, T T Y , T BX, T BY , HX and HY , and as output variables the produced formants F 1 -F 3 . We defined the following constraints on acceptable DAGs (reflecting our prior beliefs about the causal processes) as forbidden edges: a) between the input variables (i.e., LEN and the target formants do not influence each other), b) between the output variables (i.e., the produced formants do not directly influence each other), c) directly from the input to the output variables (i.e., the influences must pass through the articulatory parameters), d) no back influences from the output variables to the articulatory parameters (i.e., the acoustics does not directly affect articulation) and the input variables (as these are predefined), and e) no back influences from the articulatory parameters to the input variables (again, as these are predefined).

Figure 8 :

 8 Figure 8: A few examples of Directed Acyclic Graphs (DAGs) capturing the effects of larynx height LEN on the articulators and of these on the produced formants F 1 -F 3 . From top-left to bottom right: for all vowels together, for [a], [i] and [u], respectively. We show here the results when searching for DAGs using the iamb (Incremental Association Markov Blanket)algorithm. The target formants F 1t -F 3t are meaningful only for all vowels together (as they are constant for a given vowel). Nodes: color represents the variable type (yellow = LEN , varying between conditions; orange = target formants F 1t -F 3t , varying between vowels; white = articulatory parameters; green = produced formants F 1 -F 3 ). Edges: numbers are the partial regression coefficients β, width represents the absolute value of the coefficients, color represents the sign of these coefficients (blue = negative, red = positive). All DAGs can be found in the Supplementary Materials in Appendix.

  , much less is known about the position of the larynx in the throat by discovering compensatory strategies involving multiple articulators despite perturbations in the position of the larynx. In comparison with previous work, our model must control more articulatory parameters (11) than either that of de Boer (2010b) (5 parameters) orBoë et al. (2002) (7 parameters). This precludes the use of uniform or random sampling and, coupled with the a priori non-linear nature of the mapping between articulatory parameters and acoustics, requires better search strategies. However, this induces issues of its own, such as the low probability of finding the true global optima (but arguably not unlike how humans learn to control their motor system). It may be the case that given a sufficiently human-like vocal tract and a generic learning mechanism capable of controlling body movement, learning to reach articulatory vowel targets is feasible given sufficiently fine motor control over the articulators. Further work should test this hypothesis by introducing larger distortions to our vocal tract model, using other domain-general learning mechanisms, and by degrading the degree of fine motor control over various articulatory parameters in the model.
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Table 2

 2 

	: The HY extreme values while articulating the mid central vowel [@] for each of the
	considered LEN conditions. LEN is a proxy for larynx height that we control directly and
	that varies between conditions but is fixed within, while HY is a parameter of the VocalTract-
	Lab 2.1 that defines the actual vertical position of the hyoid and can be dynamically adjusted
	by the model during learning within constraints imposed by LEN .
	LEN	Min HY Max HY
	-9.45 (lowest)	-6.00	-5.00
	-8.85	-5.60	-4.70
	-8.25	-5.20	-4.40
	-7.95 (default)	-5.00	-4.25
	-7.65	-4.80	-4.10
	-7.05	-4.40	-3.80
	-6.45 (highest)	-4.00	-3.50
	as		
	HY min = (long min -short min )	LEN -max(LEN ) max(LEN ) -min(LEN )	+ long min

Table 3 :

 3 The target vowels. The first five Bark-transformed formants (F 1 -F 5 ), followed by values of the free articulatory parameters in the standard VocalTractLab 2.1 configuration that produce these formants, and the corresponding SV T v and R ht = SV T h /(SV T h + SV T v ); please note that SV T h = 7.32 throughout. The formant values used here come from

	formant measurements taken in PRAAT (Boersma & Weenink, 2018) (using the automated
	method but with each formant value checked manually using spectral slices) of the careful
	phonetic productions by author SRM; we checked that VocalTractLab 2.1 can reproduce
	these accurately.								
	Parameter	[@]	[A]	[a]	[ae]	[e]	[i]	[o]	[u]
	F 1	5.13	6.59	6.94	6.69	4.29	2.29	3.99	2.72
	F 2	9.50	8.34 10.31 12.01 13.12 14.05	6.10	5.07
	F 3	14.55 15.11 14.45 14.72 14.76 15.63 15.15 15.14
	F 4	16.08 15.91 15.95 16.33 16.28 16.52 15.70 15.79
	F 5	18.0 18.03 18.01 18.20 18.05 17.88 17.73 16.96
	HX	0.99	0.13	0.52	0.34	0.90	1.00	0.48	1.00
	HY	-4.14 -4.75 -4.31 -3.55 -3.79 -4.68 -4.80 -5.70
	JA	-1.93 -6.73 -6.02 -7.00 -2.89 -0.98 -3.44 -4.57
	LP	0.24	0.22 -0.56	0.46 -0.55 -0.55	0.88	1.00
	LD	1.66	2.48	1.12	2.54	0.50	0.28	0.30	0.14
	T CX	0.24 -0.77	0.08	1.06	1.50	2.20 -0.76 -0.50
	T CY	-1.33 -2.53 -2.44 -2.06 -0.88 -0.71 -1.67 -1.32
	T T X	2.61	2.17	3.22	3.82	3.38	4.42	1.90	1.87
	T T Y	-1.70 -2.16 -3.00 -1.75 -1.11 -1.17 -1.48 -0.41
	T BX	2.00	1.01	1.41	2.83	3.43	3.77	0.62	1.40
	T BY	-0.48 -1.28	0.27 -0.83	0.05	0.27	0.31	0.46
	SV T v	8.56	9.17	8.73	8.00	8.20	9.10	9.22 10.14
	R ht	0.46	0.44	0.46	0.46	0.47	0.45	0.44	0.42

which also contains pre-compiled binaries for Microsoft Windows with installation instructions, the configuration files needed to reproduce the results reported here, and the R and Rmarkdown scripts used to analyze and plot them.

Table 4 :

 4 Summary of regressing the errors per formant (i.e., (F produced -Ftarget) 2 ) on vowel, R ht (the ratio between the vertical and the total lengths of the supralryngeal vocal tract) and its squared value R 2 ht , and their interactions. We show here the β's for R ht and R 2 ht only, and adjusted R 2 ; all p-values ≤ 2 • 10 -16 . Full details are in the Supplementary Materials in

	Appendix.			
	Predictor	F 1	F 2	F 3
	R ht	-5.7 -18.6 -95.3
	R 2 ht	6.1	19.5	99.7
	adjusted R 2 16.6% 71.4% 78.2%

of the vocal tract (as discussed later), including the hyoid vertical position HY , which changes, in turn, the vertical length of the vocal tract, SV T h , allowing

Table 5 :

 5 The direct effects of LEN on the articulatory parameters across all vowels together and for each vowel separately, as estimated by iamb (Incremental Association Markov Blanket) search (empty cells are dropped edges).

	V	HX	HY	JA	T CX	T CY	T BX	T BY	T T X	T T Y	LP	LD
	all		0.92	0.29		0.44					0.30	-0.24
	[@]		0.93	0.33		0.80	-0.23				0.45	
	[A]	0.79				0.87						-0.45
	[a]		0.91	0.70							0.48	-0.38
	[ae]		0.82	0.71	-0.68						0.61	
	[e]		0.93	0.38		-0.30		0.11		0.31	0.55	-0.37
	[i]	-0.47	0.94	0.38							0.49	-0.40
	[o]		0.94		0.82	0.81						
	[u]		0.93		0.31	0.72						

Blanket algorithm (denoted in the following as iamb) and the score-based Tabu Search (denoted tabu; we focus here on iamb, as it tends to produce sparser networks, but the full details are available in the Supplementary Materials in Appendix). As all variables are continuous and z -scored 11 , the edge coefficients are the partial regression coefficients β that can be meaningfully compared across DAGs; Figure

Table 6 :

 6 The direct effects of the articulatory parameters on the formants across all vowels together and for each vowel separately, as estimated by iamb search (empty cells are dropped edges; rows with only empty cells are not shown to avoid clutter).

	V	HX	HY	JA	T CX	T CY	T BX	T BY	T T X	T T Y	LP	LD	F
	all	-0.56											F1
	[@]									0.21			F1
	[A]		0.71										F1
	[i]				-0.49		-0.19						F1
	[o]	-0.09											F1
	[u]		0.52								-0.36	0.31	F1
	all				0.71							0.36	F2
	[@]	-0.42					0.13	0.16					F2
	[e]	-0.30											F2
	[i]		0.80			0.27							F2
	all	0.50											F3
	[@]	0.25	0.53			0.06					0.09		F3
	[a]		0.55		-0.37				-0.14				F3
	[ae]	0.51		0.44			0.02						F3
	[i]							-0.11					F3
	[o]		0.75										F3
	[u]	0.17	0.16										F3

Please note that while quite realistic, VocalTractLab 2.1 is not equivalent to the actual human anatomy and our manipulations are constrained by its limits. Thus, while the epilarngeal tube is technically not present in the model, we are changing it indirectly by modifying other parameters: the glottis can be moved up and down, scaling the entire larynx and pharynx

This scaling ensures that the range of each of the n formants considered maps produces an activation between approximately 0 and 1; for details please seeSections 4.3.4.2 and 4.5.3 and in Janssen, 2018. 

As a note, because we learn here individual vowels using separate neural networks, it could be possible to disregard entirely the neural network and use instead the Genetic Algorithm to discover directly the 11 articulatory parameters themselves. While this would greatly increase the efficiency of the search, it would probably not alter the results, but we decided to design our code as "future proof" as possible by allowing the simultaneous learning of sets of vowels.

We consider [@] as a "control" in the sense that we wanted to have a "reference point" relatively unaffected by the anatomical manipulations we study here to which we can compare the other vowels.

Here, we z -scored the variables to minimize the potential influence of their different measurement scales on the results and to allow the comparability of the edge coefficients across models.

This is also very close to values obtained from actual human data (e.g.,[START_REF] Nishimura | Descent of the hyoid in chimpanzees: evolution of face flattening and speech[END_REF][START_REF] Lieberman | Ontogeny of postnatal hyoid and larynx descent in humans[END_REF] Xue & Hao, 2006 and our own -not yet published -MRI data) and to the "default" VocalTractLab 2.1 R ht (which is not surprising given that it is based on MRI scans).
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 [START_REF] Lieberman | On the speech of Neanderthal man[END_REF]) suggested a very high larynx in Neanderthals, precluding the articulation of vowels such as [a], [i] and [u] (c.f., [START_REF] Lieberman | On the speech of Neanderthal man[END_REF] 177; however, note that these authors highlight that there's more to speech and language than these vowels and suggest that Neanderthals might have been linguistic humans) and despite criticisms and further work (see Dediu &[START_REF] Dediu | On the antiquity of language: the reinterpretation of Neandertal linguistic capacities and its consequences[END_REF]Dediu &[START_REF] Dediu | Neanderthal language revisited: not only us[END_REF], there is recent data coming from the reconstruction of archaic epigenomes [START_REF] Gokhman | Extensive regulatory changes in genes affecting vocal and facial anatomy separate modern from archaic humans[END_REF] suggesting that the modern human vocal tract might differ in certain respects from that of archaic humans. Even assuming that the Neanderthal larynx was higher than in modern humans, previous modeling work questions the inference that they were not capable of producing the whole human vowel space [START_REF] Boë | The potential Neandertal vowel space was as large as that of modern humans[END_REF][START_REF] Boë | The vocal tract of newborn humans and Neanderthals: Acoustic capabilities and consequences for the debate on the origin of language. A reply to Lieberman[END_REF]) (but such work has been, in turn, criticized for using anti-conservative assumptions;

de [START_REF] De Boer | Computer models of vocal tract evolution: An overview and critique[END_REF][START_REF] Lieberman | Current views on Neanderthal speech capabilities: A reply to Boë et al[END_REF]. However, recent work [START_REF] Fitch | Monkey vocal tracts are speech-ready[END_REF] suggests that even a macaque vocal tract may be capable of producing a wide range of speech sounds, being, in this sense, "speech-ready".

Our model shows that a generic learning mechanism is able to control a realistic vocal tract to reproduce with high accuracy a set of target vowels

Appendix

The Supplementary Materials included here are composed of the following items (see also the GitHub repository https://github.com/ddediu/ larynx-height).

• simulation.7z: a 7zip-compressed archive with the following directory structure:

-agent: contains the pre-compiled code and configuration files needed • anatomy.csv: definitions of various anatomical configurations (referred to from config.csv); here, the only relevant column is "SVTV length";

• targets.csv: definitions of the target sounds (referred to from config.csv)in terms of the articulator values needed to produce them in the "standard" VocalTractLab 2.1 configuration.

-data: contains the Python script summarize.py and the speaker definition file JD2.speaker needed to summarize the simulation results for further analyses;

-Kits: contains a list of installation kits needed to run the simulations (but not the kits themselves due to their size and licenses);

-results: contains the summary results (here the XZ-compressed TAB-separated files results F1 F3.csv.xz and results F1 F5.csv.xz)

as well as an R script preprocess-results.R that further prepares these results for the final statistical analysis and produces the files (included here for convenience): results F1 F3.rds, results F1 F5.rds, euclid dist vowels F1 F3.rds, euclid dist vowels F1 F5.rds, procrustes dist target elite and procrustes dist target elite F1 F5.rds;

• analysis.7z: a 7zip-compressed archive containing the R Markdown script

Rscript.Rmd and the resulting full analysis report as a HTML document ious directories, cached files and images will be also created);

• sounds.7z: a 7zip-compressed archive containing the Praat script used to 940 produce the actual acoustic output corresponding to a set of three or five formant values (PraatFormants2Wav) and the WAV files corresponding to the target formants and to the best and worst productions for each vowel in each condition.