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Introduction

The study of the thermal behavior of materials subjected to friction present a great interest in many industrial sectors. For example, shaping of material, power transmission, braking systems depends on the thermal problem. Studying the behavior of these systems subjected to the friction required to control the heat problem because of the impact of temperature on the mechanical and the physicochemical behaviors of systems during the friction period. Many studies have proposed a method of the temperature calculation in the case a moving surface heat source on a solid [START_REF] Aderghal | Analytical and numerical calculation of surface temperature and thermal constriction resistance in transient dynamic strip contact[END_REF]-[4]. Aderghal et al. [START_REF] Aderghal | Analytical and numerical calculation of surface temperature and thermal constriction resistance in transient dynamic strip contact[END_REF] studied analytically and numerically the transient heat transfer in sliding contact. Hamraoui [START_REF] Hamraoui | Thermal behaviour of rollers during the rolling process[END_REF] developed a numerical study to determine the twodimensional temperature distribution in the rollers of a rolling mill. Tseng [START_REF] Tseng | Thermal Modeling of Roll and Strip Interface in Rolling Processes: Part 1-Review[END_REF], [4] reviewed the modeling approaches and correlations used to study the interface heat transfer phenomena of the rollstrip contact region in rolling processes. The geometric configurations often use semi infinite and isolated settings that are far from real geometric configurations. Thermal coupling at the interface of two solids in perfect contact has been studied in references [START_REF] Kounas | The distribution of friction heat between a stationary pin and a rotating cylinder[END_REF]- [START_REF] Komanduri | Analysis of heat partition and temperature distribution in sliding systems[END_REF]. Kounas et al. [START_REF] Kounas | The distribution of friction heat between a stationary pin and a rotating cylinder[END_REF] developed an analytical model for the calculation of the coefficient for the friction heat distribution between a rotating cylinder and a stationary pin. Laraqi et al [START_REF] Laraqi | Temperature and thermal resistance in frictional devices[END_REF] proposed an exact analytical solutions are developed to calculate the three-dimensional temperature distribution and the thermal constriction resistance due to moving heat sources on semi-infinite bodies. Analytical solutions [START_REF] Komanduri | Analysis of heat partition and temperature distribution in sliding systems[END_REF] were developed for the temperature rise distribution for the classical case of a tribological sliding system due to frictional heat source at the interface.

2 Some work introduce an imperfect contact in order to calculate the temperature field [START_REF] Laraqi | Contact temperature and flux partition coefficient of heat generated by dry friction between two solids. New approach to flux generation[END_REF]- [START_REF] Bauzin | Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[END_REF]. Laraqi [START_REF] Laraqi | Contact temperature and flux partition coefficient of heat generated by dry friction between two solids. New approach to flux generation[END_REF] uses a probabilistic distribution of the heat flux generation to calculate the contact temperature and flux partition coefficient of heat generated by dry friction between two solids. Bardon [9] proposed an model in order to characterize the heat transfer in an imperfect contact. The thermal constriction phenomenon is studied in references [START_REF] Laraqi | Thermal constriction phenomenon in sliding contacts[END_REF], [START_REF] Laraqi | Velocity and Relative Contact Size Effects on the Thermal Constriction Resistance in Sliding Solids[END_REF]. In addition, a three-dimensional numerical model using the finite volume method was developed [START_REF] Salti | 3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance[END_REF] to calculate the steady-state temperatures and the thermal contact resistance between two sliding bodies. Moussa et al. [START_REF] Moussa | Heat transfer at the grinding interface between glass plate and sintered diamond wheel[END_REF], Bauzin et al [START_REF] Bauzin | Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[END_REF] performed experimental studies to identify the heat flux generated by friction between two sliding bodies in imperfect contact. Recently, a study on the thermal boundary conditions in sliding contact problem [START_REF] Lee | Thermal considerations during transient asperity contact[END_REF] was proposed in order to provide a macroscopic heat transfer condition to implement into the numerical simulations. In the same way, the impact of the temperature on brake systems is often studied, especially in references [START_REF] Wahlström | A comparison of measured and simulated friction, wear, and particle emission of disc brakes[END_REF]- [START_REF] Adamowicz | Analysis of disc brake temperature distribution during single braking under non-axisymmetric load[END_REF]. More accurately, the article [START_REF] Laraqi | Temperature and division of heat in a pin-on-disc frictional device-Exact analytical solution[END_REF] develops an analytical solution to calculate the temperature field in the case of a spot-on-disc device. This expression is valid whatever the Peclet number. In this paper, we generalize this model to the case of several heat sources located with different sizes and eccentricities. This configuration corresponds to multiple spots on disc brake system (found in the railway brake systems). Experimental and numerical studies of disc brake systems for different configurations and applications have been carried out [START_REF] Panier | An experimental investigation of hot spots in railway disc brakes[END_REF]- [START_REF] Bauzin | Identification of the heat flux generated by friction in an aircraft braking system[END_REF]. An experimental study of hot spots occurrence in railway disc brakes is reported in reference [START_REF] Panier | An experimental investigation of hot spots in railway disc brakes[END_REF]. Belhocine et al. [START_REF] Belhocine | Thermal analysis of a solid brake disc[END_REF] present a numerical modeling in three dimensions to analyze the thermal behavior of the full and ventilated disc brake . In this study, the thermal calculation based on the finite element method is carried out using code ANSYS 11. Ghadimi et al. [START_REF] Ghadimi | Thermal analysis of locomotive wheel-mounted brake disc[END_REF] investigated the thermal analysis of a wheel-mounted brake disc. The brake disc and the fluid zone are simulated as a 3D model (FLUENT) with a thermal coupling boundary condition. Singh et al. [START_REF] Singh | 3D investigation into the thermal behavior of the wet multi-disk axle brake of an off-highway machinery[END_REF] propose a framework for the application of CFD to predict the time-dependent thermo-fluid state of a wet axle-brake system under repetitive braking with varying loads. The thermal model includes full consideration of the heat transfer in the friction pairs, air-oil mixture. In this paper, an analytical model is developed to determine the 3D temperature in a brake disc of a high-speed train. For this study, the stationary regime is considerated. This configuration corresponds to constant speed braking (when descending a slope) or to a succession of unsteady regimes (for which the physical parameters are changed at each time). Then, the pad of the braking system is provided with several spots which are in sliding contact with the disc brake. This approach may also be representative for a non uniform contact between the pad and the disc brake or for any discrete and irregular contact in car braking systems (pad/disc) or in plane braking systems (disc/disc).

Description of the thermal problem

A railway brake system is composed of several discs in friction with several spots. For one disc, the Figure 1 represents the mechanical system. The brake pad is composed from multiple spots. We can note that the spots are from either side of the disc. The physical system is symmetrical about the median plane of the disc.

Figure 1: Spots on a brake disc

To introduce the geometric configuration, we consider one disc (radius b), and several spots ( radius j a ) (Figure 2). Each spot generates a heat flux j q on its circular surface j Σ . This generated heat flux enters the disc through the contact surfaces. The assumption is that this surface is the section of the spot j Σ . The contact area of one spot which is positioned by a certain eccentricity j e and an angle j θ . The spots are fixed. The disc is rotating around its axis at a constant velocity ω. This configuration presents a speed-maintaining brake. We will study the thermal effect on the disc of the heat flux generated by friction under the spots. The thermal effect into the spot is not developed here. Contacts are assumed regular over the contact area j Σ in order to generate a uniform heat flux noted j q but they could be different for each spot. We assume that the thermal behavior is symmetrical with respect to the median plane of the disc. Then an adiabatic boundary condition is imposed on the middle plan of the disc. The thickness of the entire disc is 2d . The disc is cooled by convection and radiation on its axial surface (constant global coefficient h). Besides, the thermal losses on its lateral sides are neglected. Heat transfer is three-dimensional in the disc. The geometry and the boundary conditions are detailed in Figure 2. We are in steady state and the reference temperature is zero. . The positions of the spots (angles and radius of the centers) are given in the Table 1 and the Table 2 
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Analytical model of the brake system

The governing equation of heat conduction in the disc using the assumption presented can be written under the following form (with the notation used in Figure 2):

2 2 2 2 2 1 1 T T T T r r r r r z ω θ α θ ∂ ∂ ∂ ∂ ∂   + + =   ∂ ∂ ∂ ∂ ∂   (1) 
• The boundary conditions: 0 : on , in the contact areas : elsewhere

j j z q T z hT λ =  ∂  - =  ∂   ∑ , 0 z d T z λ = ∂ - = ∂ (2) • The continuity equations 0 0 r T r = ∂ = ∂ , 0 r b T r = ∂ = ∂ (3) T T θ π θ π =- = = , T T θ π θ π λ λ θ θ =- = ∂ ∂ - = - ∂ ∂ (4)
Because we assume a constant surrounding temperature, the temperature function

( )

, , T T r z θ = is defined as the temperature rise relatively to the ambient temperature. The right-hand term of equation 1 represents the solid convection term related to the rotational speed of the disc. We find in this term the rotating speed ω of the disc and the thermal diffusivity of the discα . In Eq. (2) j q represents the heat flux entering into the disc through each contact area j ∑ , and hT the heat cooling on the disc.

On the first hand, each heat flux j q is assumed to be uniform on j ∑ . On the other hand j q could be different for each contact area j ∑ . For the cooling term, the exchange coefficient considers the convective and the radiative heat flux. To obtain an explicit analytical solution, the radiative heat flux is linearized. The radiative coefficient is added to the convective coefficient:

conv rad h h h = + (5) 
The convective exchange coefficient hconv is determined from the correlations given by the reference [START_REF] Latour | Convective Heat Transfer on a Rotating Disk With Transverse Air Crossflow[END_REF] for a transverse-flow rotating disc. For the calculation of the radiative exchange coefficient, the surfaces are considered to be black bodies. Then we can write that Taken into account the periodicity of the temperature and heat flux on the θdirection (formulated in equation 4), an FFT should be used such as:

( )

1 2 im F T T T e d π θ π θ π - - = = ⋅ ∫ % with ( ) 0,1,2... m = ∞ (6) 
The disk being a cylindrical geometry with a finite radial dimension, the finite Hankel transform is used.

( )

( ) 0 b m n H T T rJ r T dr β = = ∫ % % % (7) 
In equation ( 6) i is the imaginary unit ( 21 i = -). In equation ( 7 given by [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]: ( ) ( ) ( )

1 m m m J x m J x x J x + ′ = ⋅ - .
The ten first root of this transcendental equation are presented in the Table 3. 

n
' 0 m n J β =
The transformed equations are reduced to a simple second order differential equation of the form:

2 2 2 0 d T T dz γ - = % % with 2 n im γ β ω α = + (8) 
And the boundary conditions :

0 z d dT dz λ = - = % , 1 0 0 N j j z z dT q hT dz λ = = = - = - ∑ % % % (9)
Indeed, in a first approach, the term ( )

2 j im m n h rTe J r d dr θ β θ π - Σ ∫∫
is neglected. This is true if the size of the contact area ( )

1 j N j j = = Σ
∑ is small compared to the surface of the disc and its heat exchange coefficient is not very high. We will then correct this hypothesis in order to take into account the fact that the area of the spots is not negligible in the case of several spots rubbing on a brake disc. The integral transforms ( 6) and ( 7) of the boundary conditions of heat flux j q in 0 z = are difficult to calculate because the limits of integration are interdependent of the contact zone contour. To overcome this difficulty, it is proceeded to a change of reference [START_REF] Kasem | An emissivity-corrected method for the accurate radiometric measurement of transient surface temperatures during braking[END_REF], [34]. The initial coordinate ( ) , r θ is transformed into ( ) , ρ ϕ as illustrated in the Figure 3. Integration into the new coordinate system is easier. Indeed, in the case the limits of integration are independent. . Then the formula given in reference [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] is used as follows:

( ) ( ) ( ) ( ) ( ) j j im im im ik m n m n k n k m n j k J r e J r e e J J r e θ ξ θ θ ϕ β β β ρ β ∞ - + - - - + =-∞ = = ∑ (10) 
The integral transforms ( 6) and ( 7), applied to j q , give:

( ) ( ) 2 0 0 2 j j a im ik j j k n m n j k e q q e d J J r d θ π ϕ ϕ ϕ ρ β ρ β ρ π - ∞ - =-∞ = = ∑ ∫ ∫ % (11) 
In equation [START_REF] Laraqi | Velocity and Relative Contact Size Effects on the Thermal Constriction Resistance in Sliding Solids[END_REF], the integral following d ϕ is zero, except for the particular case 0 k = , when it is equal to 2π . Consequently, equation ( 11) is simplified as:

( ) ( ) 0 j j a im j j k n k m n j q q e J J r d θ ρ β ρ β ρ - + = ∫ % ( 12 
)
that can be written in the final form:

( ) ( ) 

1 j j n j im j j m n j n a J a q q e J r θ β β β - = % (13) 
( ) 2 0, 0 2 j j j a q m n q = = = % (14)
The general form of the solution of equation ( 8) is ( )

( ) T A ch z B sh z γ γ = ⋅ + ⋅ %
. The application of the boundary's conditions led to the expression:

( ) ( ) 2 1 1 1 ( ) ( ) ( ) 2 ( ) j N j j j N j n j im j j m n j j n q a a J a ch z th d sh z T q e J r h th d h θ β γ γ γ β β λγ γ = - = = - ⋅ = + ⋅ + ∑ ∑ % for 0 m ≠ (15)
The inverse transforms of expressions ( 6) and ( 7) are given by [START_REF] Özisik | Heat conduction[END_REF]:

( ) ( ) ( ) ( ) 2 1 2 2 2 0 2 n m n n n m n J r T H T T b m J b β β β β ∞ - = = =   -   ∑ % % % (16) 
( )

1 0 im m m T F T e Te θ ε ∞ - =   = = ℜ     ∑ % %
with ( )

0 0 1, 2 m ε ε ≠ = = (17) 
By applying the inverse transforms, we obtain the expression of the temperature in the disc:

( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 2 2 2 0 1 1 ( ) ( ) ( ) 2 ( ) j N im j j j N j m n m n e j j n j m n j m j n n m n q a e J r ch z th d sh z T q a J a J r hb th d h b m J b θ θ ε β β γ γ γ β β λγ γ β β - = ∞ ∞ = = = =   - ⋅   = + ℜ   ⋅ +     -     ∑ ∑ ∑ ∑ (18 
) And the final expression of the temperature is given by equation [START_REF] Laraqi | Temperature and division of heat in a pin-on-disc frictional device-Exact analytical solution[END_REF].

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 2 2 2 1 0 1 ( ) ( ) ( ) , , 2 ( ) j 
N j j j N im j n m n j j n j m n j e m j m n n m n q a J r ch z th d sh z T r z q a J a J r e hb th d h b m J b θ θ β β γ γ γ θ β β ε λγ γ β β = ∞ ∞ - = = = =   - ⋅ = + ℜ   ⋅ +   -     ∑ ∑ ∑ ∑ (19) 
The first term on the right-hand side of the equations ( 18) or [START_REF] Laraqi | Temperature and division of heat in a pin-on-disc frictional device-Exact analytical solution[END_REF] represents the average temperature avd T of the disc which is the particular case: 0 m = and 0 n = . The second term represents the fluctuating part of the disc temperature.

Validation of the analytical solution

Analytical results

In order to present the numerical results of the analytical solution, the evolution of dimensionless 19) can be written as follows :

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 2 2 1 1 0 ( ) ( ) ( ) , , 2 ( ) j 
N im j j N m n m n j d e j n j m n j m j n n m n a e J r ch z th d sh z T r z a J a J r Bi th d Bi m J θ θ ε β β γ γ γ θ β β γ γ β β - = ∞ ∞ = = = =   - ⋅   = + ℜ   ⋅ +   -         ∑ ∑ ∑ ∑ (20) With 2 n i m Pe γ β = +
Then, the Biot number is set at the value of 0.64 Bi = for all the presented results. Besides, all the generated heat flux j q are identical in the brake system. All the numerical values of parameters are listed in Table 4.

Parameter

Value

1 1 W m K λ - -   ⋅   50 1 1 . . p J kg C K - -     420 2 1 m s α -     5 1, 49 10 - ⋅ Pe 100-70000 Bi 0.64 2 j q W m -   ⋅   5 7 10 ⋅

Table 4: Physical parameters

The evolution of the surface temperature of the disc on a radius as a function of the angle, calculated from equation ( 20) is shown in the figure 4. The experimental measurement of this temperature has been performed for a stop braking experiment [START_REF] Kasem | An emissivity-corrected method for the accurate radiometric measurement of transient surface temperatures during braking[END_REF] on a spot-on-disc tribometer. This temperature is taken at the dimensionless radius 0 0.7625 r =

. Several Peclet numbers are considered. 

Numerical simulation

The numerical solution is obtained using COMSOL multiphysics software. The number of elements of the mesh is detailed in the Table 5. The mesh has been refined in the contact areas as it can be seen in Figure 6 (a). The corresponding thermal map is giving by Figure 6 (b). These results obtained by numerical calculation will serve as a reference to compare those obtained by the analytical solution. In order to precisely compare the results, the temperature profiles for 0 r r = will be extracted from this solution to compare them to the temperatures calculated by the analytical model.

Elements

Comparison of analytical and numerical models

In order to improve the solution, we compare on the Figure 7 the variation of temperature on the radius 0 r for 700 Pe = calculated with the analytical solution given by equation ( 20) and the variation calculated with a numerical solution (finite element calculation with the same boundary conditions as those described in section 1 and in Figure 2). We consider a convective heat flux h T ⋅ under each spot in addition of the generated heat flux j q in the numerical simulation in order to have the same boundary conditions as the analytical model. But the comparison between the real solution without the convective term (numerically calculated) and the approximate one given by equation [START_REF] Panier | An experimental investigation of hot spots in railway disc brakes[END_REF] denote that in the case of this braking system, the convection on each spot can't be neglected. The difference of temperature between the real numerical solution and the analytical solution taken into account the assumption of heat convection under the spots is important (Figure 8). 

. Addition of a convective term

Thus, it will be possible to add to the heat generated heat flux for each source the average convective heat flux calculated on each surface to consider non-convection under the friction surfaces. This solution does not make it possible to explain the expression of the temperature and the resolution requires an additional integral calculation of the analytical solution presented under each spot. The resolution of the equations with the heat flux generated under the spots and the convection condition elsewhere leads to a very complicated Fredholm integral equation to solve in the case of this study. We propose a solution to take into account the term hT -% of the Eq. ( 9). In fact, we will increase the heat flux for each spot with the term add pin q h T = ⋅ with the average of temperature on the ( )

, c j j pin j q q h T = + ⋅ ( 21) 
But, the calculation of pin j T is complex (integral of the expression of the temperature under each spot).

It is possible to consider an iterative correction of the proposed analytical solution by calculating the average value of the temperature under each spot but using this solution, it's impossible to make explicit the expression of the temperature. Besides, the resolution requires an additional integral Numerical solution without convection on spots Analytical solution with convection on spots calculation of the analytical solution under each spot. We suggest in order estimating this average temperature to take the expression of the temperature calculated at the center of each spot:

( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 2 2 0 1 1 2 2 1 1 2 ( ) j k N k k k N im n m n j k pin j k k n k m n k e m N m k n n m n k k q a J e T q a J a J r e th d h b m J b h b a θ θ β β β β ε λγ γ β β ∞ = ∞ - = = = = =   = + ℜ   ⋅ +     -   -       ∑ ∑ ∑ ∑ ∑ (22)
The expression of the dimensionless corrected temperature in the disc , q is given by equation ( 23).

( )

( ) ( ) ( ) ( ) ( ) ( ) 2 1 , 1 2 2 2 1 1 0 ( ) ( ) ( ) , , 2 ( ) j 
N im j j N m n m n j d c e j n j m n j m j n n m n a e J r ch z th d sh z T r z a J a J r Bi th d Bi m J θ θ ε β β γ γ γ θ β β γ γ β β - = ∞ ∞ = = = =   - ⋅   = + ℜ   ⋅ +   -         ∑ ∑ ∑ ∑ (23) 

Validation of the compensated analytical model

The difference between the dimensionless temperature on the radius 0 r calculated numerically without the convection on the spots and the corrected analytical one This result (Figure 9.b) shows that the compensation proposed on the analytical model generates an accurate solution for the temperature in the disc. The analytical solution could be used to determine the thermal map of the disc for different values of the Peclet number (Figure 10). The thermal drag is clearly visible on these maps. It is even longer as the number Peclet increases. On the other hand the temperature gradients will be even lower with the increase in the number of Peclet. 

Conclusion

An analytical model is developed in this paper to calculate the temperatures for a multiple spot-on-disc applied to a high-speed train. This model is validated by comparing the results with those of a numerical one (finite element). To take into account the fact that there is no convection on the surfaces under the spots, an original correction method of heat flux is performed. This analytical model is valid regardless of the values of the rotational velocity and the heat convection coefficient. It allows to calculate accuratly the 3D temperature in the disc in a very short computational time comparatively to numerical methods. So, we can determine the thermal cartography for any brake disc. 

Nomenclatures

Figure 2 :

 2 Figure 2: Simplified scheme of the brake system All dimensions are dimensioned to the maximum radius of the disc noted b in the figure 2. Then, the thickness of the disc is 0.07 d = . Eighteen spots constitute the brake lining. All their radii are the

T

  is the average temperature of the disc and p T the temperature of the walls exchanging by radiation with the disc. This temperature is taken equal to the ambient temperature.

  ) m J is the Bessel function of the first kind of order m. Applying the boundary condition given by equation 3 for r b = , we obtain the transcendental equation n β are the roots of this equation. m J ′ is the derivative of m J

Figure 3 :

 3 Figure 3 : Change of referential

Σ

  In order to solve the equation (8), the particular cases ( 0 m = , 0 n = ) have to be separated because 0 0 β = . Then, equation(13) becomes:

  [START_REF] Laraqi | Temperature and division of heat in a pin-on-disc frictional device-Exact analytical solution[END_REF]) and the other equations can be written under dimensionless form. By considering the following dimensionless quantities: r r / b = , z z / b = ,

Figure 4 :Figure 5 :

 45 Figure 4: Temperature of the disc for different values of Peclet

Figure 6 :

 6 Mesh of the disc (a) and dimensionless thermal map Td of the disc (b)

Figure 7 :

 7 Figure 7: Comparison of analytical and numerical solution of the temperature.

r

  If the same assumptions are done, the results are similar. The term the analytical and in the numerical solution.

Figure 8 :

 8 Figure 8: Temperature calculated analytically with the term of convection and numerically without the term of convection 4. Compensated analytical solution 4.1. Addition of a convective term

  each spot. We consider pin j T the average of temperature o the surface of j ∑ . Then we obtain the corrected heat flux:

Figure 9 :

 9 Comparison of the analytical corrected temperature with the numerical solution without convection on the spots (a: Pe=700, b: different Pe).

Figure 10 :

 10 Dimensionless thermal map of the disc determined analytically for different Peclet numbers.

Table 1 : angle of the spots in radians

 1 .

	Spot 1	Spot 2	Spot 3	Spot 4	Spot 5	Spot 6
	0.1371	0.1664	0.0959	0.3462	0.3401	0.5913
	Spot 7	Spot 8	Spot 9	Spot 10	Spot 11	Spot 12
	0.5236	0.7771	0.6895	-0.1371	-0.1664	-0.0959
	Spot 13	Spot 14	Spot 15	Spot 16	Spot 17	Spot 18
	-0.3462	-0.3401	-0.5913	-0.5236	-0.7771	-0.6895

Table 2 : Dimensionless radius j r of the center of the spots

 2 

		Spot 2	Spot 3	Spot 4	Spot 5	Spot 6
	0.567	0.745	0.883	0.665	0.824	0.626
	Spot 7	Spot 8	Spot 9	Spot 10	Spot 11	Spot 12
	0.804	0.729	0.870	0.567	0.745	0.883
	Spot 13	Spot 14	Spot 15	Spot 16	Spot 17	Spot 18
	0.665	0.824	0.626	0.804	0.729	0.870

Table 3 : Ten first roots of

 3 

		1	2	3	4	5	6	7	8	9	10
	m									
	0	3.83 7.02 10.17 13.32 16.47 19.62 22.76 25.90 29.05 32.19
	1	1.84 5.33 8.54 11.71 14.86 18.02 21.16 24.31 27.46 30.60
	2	3.05 6.71 9.97 13.17 16.35 19.51 22.67 25.83 28.98 32.13
	3	4.20 8.02 11.35 14.59 17.79 20.97 24.14 27.31 30.47 33.63
	4	5.32 9.28 12.68 15.96 19.20 22.40 25.59 28.77 31.94 35.10
	5	6.42 10.52 13.99 17.31 20.58 23.80 27.01 30.20 33.39 36.56
	6	7.50 11.73 15.27 18.64 21.93 25.18 28.41 31.62 34.81 38.00
	7	8.58 12.93 16.53 19.94 23.27 26.55 29.79 33.02 36.22 39.42
	8	9.65 14.12 17.77 21.23 24.59 27.89 31.16 34.40 37.62 40.83
	9	10.71 15.29 19.00 22.50 25.89 29.22 32.51 35.76 39.00 42.22
	10	11.77 16.45 20.22 23.76 27.18 30.53 33.84 37.12 40.37 43.61

( ) 

Table 5 : Statistics of the mesh

 5 

	Values