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Diophantine approximation and run-length function on

[-expansions

Lixuan Zheng

Department of Mathematics, South China University of Technology, Guangzhou 510640, P.R. China
& LAMA, Université Paris-Est Créteil, 61 av Général de Gaulle, 94010, Créteil, France

Abstract. For any 8 > 1, denoted by r,(z,3) the maximal length of consecutive
zeros amongst the first n digits of the S-expansion of z € [0,1). The limit superior
(respectively limit inferior) of w is linked to the classical Diophantine approxi-
mation (respectively uniform Diophantine approximation). We obtain the Hausdorff
dimension of the level set

Eap = {m € (0,1) : timint % B) _ o i gup @5 :b} 0<a<b<l1).
n

n—oo n n—oo

Furthermore, we show that the extremely divergent set Fo,1 which is of zero Hausdorff
dimension is, however, residual. The same problems in the parameter space are also

examined.

Key words and phrases beta-expansion; Diophantine approximation; run-length function; Hausdorft

dimension; residual

1 Introduction

Let S > 1 be a real number. The S-transformation on [0, 1) is defined by
Tp(x) = B — | Bz,

where |£]| means the integer part of £. It is well-known (see [17]) that, every real number = € [0, 1)
can be uniquely expanded as a series

e1(z, B) en(2, B)

r = —21= _|_ e _|_ _— 7

g g
where e, (z,8) = LBTg_l(z)J for all n > 1. We call e,(x,3) the n-th digit of x and e(z,B) =
(e1(x, B),...,en(z, B),...) the B-expansion of x.
For each z € [0,1) and n > 1, the run-length function r,(x,) is defined to be the maximal

TR (1.1)

length of consecutive zeros amongst the prefix (e1(z, 8),...,en(x, B)), i.e.,
ro(z,f) =max{l <j<n:eji(z,B) = =i (x, ) =0 for some 0 < i <n—j}

If such j does not exist, we set r,(z, 8) = 0. In 1970, Erdés and Rényi [5] showed that for Lebesgue

almost all z € [0,1), we have
n 72
fim @2 (1.2)

n—oo log,m
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The result of Erdés and Rényi [5] has been extended to the general case 8 > 1 by Tong, Yu and
Zhao [20]. Ma, Wen and Wen [13] showed that the exceptional set of points violating (1.2) is of
full Hausdorff dimension. Let £ denote the set of increasing functions ¢ : N — (0, +00) satisfying

lim ¢(n) = +o00 and limsup @ = 0. For every 0 < a < b < 0o and any function ¢ € &, define
n—oo n—o00

.. .oz, B) ) rn(z, B) }
E?, = E¥ =q2€]0,1): liminf ‘=2 =@, limsu L =b,.
fuim B = { € D) i ) = o i
The set E, has been proved to have full Hausdorff dimension by Li and Wu (see [10, 11]) for the
case = 2 and by Zheng, Wu and Li [22] for the general case 5 > 1.
Remark that the above £ does not contain the function ¢(n) = n. In fact, the asymptotic

f w is directly related to the Diophantine approximation of S-expansions. For all

behavior o
€ [0,1), Amou and Bugeaud [1] defined the exponent vg(z) to be the supremum of the real
numbers v for which the equation

Télx S B—TH)

has infinitely many positive solutions with integer n. Bugeaud and Liao [7] defined the exponent
0g(x) to be the supremum of the real numbers ¢ for which, for all N > 1, there is a solution with
1 <n < N, such that

Tz < N,

We will see (Lemmas 3.1 and 3.2) that forall 0 <a <1, 0 <b< 1,

erp(xB) R _a . (T, B) _ b
hnnllgf ——=a & Ug(z) = T—a and 117r1n_>501<1)p - =b & vg(z) = T
Forall0<a <b<1,let
Eop:=E.1(8) = {x €1[0,1) : lim infw = a, limsup (@, 8) = b} . (1.3)
n—00 n n— oo n

Denote the Hausdorff dimension by dimy. For more information about the Hausdorff dimension,
we refer to [6]. We establish the following theorem.

Theorem 1.1 The set Ey has full Lebesgue measure. If 1L+b <a<1l 0<b<1, then E,p =0.

Otherwise, we have

b2(1 —
dimy Eqp =1— %

—a
Let 0<a<1and 0<b<1. We can further study the level sets

E,:=E,(8) = {x €[0,1): lim inf 25 _ a}

n—00 n
and
F, = F,(B) = {x €[0,1) : limsup rn(:, A) = b}. (1.4)

Using Theorem 1.1, we obtain the following results of the Hausdorff dimensions of F, and Fy.

Corollary 1.2 (1) When 0 < a < 1, we have

dimy E, = (1 — 2a)>.
Otherwise, E, = ().

(2) For all 0 < b <1, we have
dimH Fb =1-0.



We remak that the statement (2) of Theorem 1.2 was also been obtained in |9, Theorem 1.1]
(see [21] for the case 8 = 2).

A set R is called residual if its complement is meager (i.e., of the first category). In a complete
metric space, a set is residual if it contains a dense Gg set, i.e., a countable intersection of open
dense sets (see [14]). Similar to the results of [10, 11, 22], the set of extremely divergent points is
residual, and thus is large in the sense of topology.

Theorem 1.3 The set Ey is residual in [0,1].

It is worth noting that the set Ej; is negligible with respect to the Lebesgue measure and
Hausdorff dimension. However, the sets considered in [10, 11, 22| have Hausdorff dimension 1. Let
@ € &. Since the intersection of two residual sets is still residual, by combining Theorems 1.3 and
[22, Theorem 1.2], we deduce that the smaller set

E:=E(p,8) = {CE €[0,1) : liminf rn(,5) =0, limsup T"(Z’ 8) = 1}

is also residual in [0, 1].

The p-expansion of 1 completely characterizes all of the admissible words in the S-dynamical
system (see Theorem 2.1 in Section 2 for more details). We also study the run-length function
rn(B) of the S-expansion of 1 as 3 varies in the parameter space {5 € R: 8 > 1}, i.e,,

rn(B) =max{l <j<n:eg1(B) = =¢e;4;(B) =0 for some 0 <i < n—j}.

There are some results on 7,(8) which are similar to those of r,(z,3). In [8], Hu, Tong and Yu
proved that for Lebesgue almost all 1 < 8 < 2, we have

lim Ll(ﬂ)

=1 1.5
n—00 ]ogﬁn (1.5)

Cao and Chen [4] showed that for any ¢ € £ and for all 0 < a < b < 400, the set

{ﬁ € (1,2) : liminf rn(8) = a, limsup rn(8) = b}

n—oo o(n) n—oo  #(n)
is of full Hausdorff dimension. Remark that the results of [8] and [4] can be easily generalized to
the whole parameter space {8 € R: § > 1}. For simplicity, in this paper, we will also consider the
parameter space (1,2). For all 0 <a <b <1, let

Eib:{ﬁe(l,Z):liminan(ﬁ):a, limsuprniﬂ)zb}- (1.6)

n—oo n n—o00

We have the following theorem.

Theorem 1.4 The set E(I)D,o has full Lebesgue measure. If %&-b <a<1l 0<b<1, then Ef;b = 0.
Otherwise, we have
b*(1 —a)
b—a
Similarly, for every 0 < a <1 and 0 < b < 1, we consider the set

dimg EY, =1 -

EP = {ﬂ € (1,2) : hmmfM a},

n—00 n

and

FF = {ﬁ € (1,2): limsuprni(m :b}.

n—00 n



Corollary 1.5 (1) When 0 <a < %, we have
dimy EF = (1 - 2a)%.

Otherwise, B, = 0.
(2) For every 0 < b < 1, we have

dimyg B =1 —b.
In addition, similar to Theorem 1.3, we have the following theorem.

Theorem 1.6 The set Ef), is residual in [1,2].

We end this introduction by depicting the organization of our paper. In Section 2, we review
some standard facts on the f-expansions without proofs. Theorem 1.1 and corollary 1.2 are proved
in Section 3. We give the proof of Theorem 1.3 in Section 4. Section 5 contains a summary of some
classical results of f-expansion in the parameter space. The proofs of Theorems 1.4 and 1.6 are
given in Sections 6 and 7 respectively.

2 Fundamental results of S-expansion

Throughout this section, we set up some notations and terminologies on §-expansions. Meanwhile,
we give some basic results on [-expansion directly. For more properties on S-expansions, we refer
the readers to [3, 7, 15, 17].

Let A={0,1,---,[8]—1} where [£] stands for the smallest integer larger than £. The definition
of f-expansion gives the fact that every digit &, (x, 5) lies in the set A. A word (e1,...,&,) € A" is
called admissible with respect to § if there exists an € [0, 1) such that the S-expansion of = begins
with (e1,...,&p,). Similarly, an infinite sequence (e1,...,epn,...) is called admissible with respect
to S if there exists an = € [0,1) whose S-expansion is (e1,...,&y,...). Denote by Y7 the set of all
B-admissible words of length n, i.e.,

Y5 ={(e1,.-yen) €A" : F2 €[0,1), st g5(x, B) =¢5, V1< j<n}

oo
Denote by X% the set of all S-admissible words of finite length, ie., ¥j = U ¥%. The set of
n=0

B-admissible sequences is denoted by X3 , i.e.,
Y = {(e1,62,...) € AN: Tz €0,1), s.t. e(x, ) = (e1,€9,...)}.

The S-expansion of the unit 1 plays an important role in the research of admissible words and
admissible sequences. By extending the definition of Ts(x) = Sz — |Bz]| to = 1, the S-expansion

f1isgi b
v aLB) ., eallf)
g o

where €,(1,8) = LﬂTg‘llj. We call g a simple Parry number if the S-expansion of 1 is finite.

1=

4o

That is, there exists an integer m > 1 such that €, # 0 and €,(8) = 0 for every k > m. In this
case, we let

e"(B) := (e1(8),&3(B), - .) = (€1(B), €2(B), - - -, em(B) = T,

where w™ is the infinite periodic sequence (w,w,...). If the S-expansion of 1 is not finite, let



e*(8) =¢(1, ). In both cases, we can check that

CHB) a0
L=t =

The sequence £*(3) is therefore called the infinite 5-expansion of 1.

4+

We endow the space AN with the lezicographical order <jex:
(W1, w2, -+ 2) <lex (W), wh,...)

if wy < w) or there exists an integer j > 1, such that, for all 1 <k < j, wy = wj, but w; < w}. The
symbol <jox means = or <jex. Moreover, for all n,m > 1, (w1,...,wn) <ijex (W],...,w,,) stands for
(W1 e vy W, 0°°) <pex (W, ..o Wiy, 0%°).

The following theorem due to Parry [15] yields that the S-dynamical system is totally determined
by the infinite S-expansion of 1. Let w = (wi,...,w,) € A™ for all n > 1. Let o be the shift
transformation such that ow = (wa,...,wn).

Theorem 2.1 (Parry [15]) Let 5> 1.
(1) For everyn > 1, w = (w1,...,wy,) € Xf if and only if 0lw <jex (€1,... sEn—j) for all 0 <
7 <n.
(2) For all k > 1, o*e(1, B) <1ex (1, B).
(8) For each 1 < 81 < B2, it holds that €*(B1) <iex €*(B2). Consequently, for every n > 1, we
have
Zgl g Egz and 2[31 Q 262'

The estimation of the cardinality of the set Y% was given by Rényi [17]. We will use the symbol
f to denote the cardinality of a finite set in the remainder of this paper.

Theorem 2.2 (Rényi [17]) For alln > 1,

ﬁn+1

B-1

Br < <
For an admissible word w = (wy,...,wy), the associated cylinder of order n is defined by
I (w) == I(w,B) ={z €[0,1) : gj(x, f) = wj, forall 1 <j <n}.

The cylinder I,,(w) is a left-closed and right-open interval (see |7, Lemma 2.3]). Denote by |I,,(w)]
the length of I,,(w). We immediately get |I,,(w)| < f~". We write I,,(z, 3) as the cylinder of order
n containing the point = € [0,1) and write |I,,(z, 8)| as its length. For simplicity, I,,(x) means
I,(z, ) in the rest of this paper without otherwise specified. A cylinder of order n is called full if
|7, (w)| = B~™ and the corresponding word of the full cylinder is said to be full.

Now we give some characterizations and properties of full cylinders.

Theorem 2.3 (Fan and Wang [7]) For any integer n > 1, let w = (w1, ...,wy) be an admissible

word.
1)The cylinder I, (w) s full if and only if T (I,(w)) = [0,1), if and only if for any m > 1 and
B
w'= (Wi, wp,) € B, the concatenation w * W' = (w1, ..., Wn, WY, ..., wy,) is still admissible.
(2) If (w1, . . . ywn—1,w),) withw!, > 0 is admissible, then the cylinder I,(w1,...,wn—1,wy) is full

for every 0 < w,, < wl,.
(8) If I,(w) is full, then for any (wi,...,w),) € X%, we have

[T Wiy« ooy, why ey ) = BT I (W, - -y why)]-



In order to construct full words, we introduce a variable I',, which is defined as follows. Recall
that the infinite S-expansion of 1 is (e5(8),e5(5),...). For every integer n > 1, define

ty = tn(B) :=max{k > 1:¢ () =--- =¢€,,4(8) = 0}.

If such k does not exist, let ¢, = 0. Now let

T = T(8) i= max t(9) (2.7)
Then we can check that I',, is a finite integer for all n > 1. Theorem 2.3 implies the following results
which are important for construction of full words.

Proposition 2.4 (Fan and Wang [7]) (1) If both admissible words (w1, .. .,wy) and (wi, ... ,wh,)
are full, then the concatenation word (w1, ..., wWn,w},...,wh,) is still full.
(2)For all £ > 1, the word 0° := (0,...,0) is full. For any full word (wi,...,w,), the word
——

¢
(Wi, ... ,wn,0°) is also full.

(3) For any admissible word (wy, ... ,wy), the word (w1, . ..,wn, 0" 2 T1) is full.

Furthermore, Bugeaud and Wang [3] provided the following modified mass distribution principle
which is of great importance in estimating the lower bound of the Hausdorff dimension of E, .

Theorem 2.5 (Bugeaud and Wang [3]) Let pu be a Borel measure and E be a Borel measurable
set with w(E) > 0. Assume that there exist a constant ¢ > 0 and an integer N > 1 such that for all
n > N and each cylinder I,, the inequality p(I,) < c|I,|® is valid. Then, dimg E > s.

Now we will introduce some results on Diophantine approximation. We fist give the following
exponents of approximation.

Shen and Wang [19] obtained the following theorem which gives the dimensional results of the
set of points with classical Diophantine property.

Theorem 2.6 (Shen and Wang [19]) Let 5 > 1. Let 0 < v < +00. Then

dimp{z € [0,1) : vs(x) > v} = —

Bugeaud and Liao [2] studied the set of points with uniform Diophantine properties and estab-
lished the theorem as follows.

Theorem 2.7 (Bugeaud and Liao [2]) Let 8 > 1. Let 0 < © < 1 andv > 0. If v < 125, then
the set
Up(0,v) :={x €[0,1) : 9g(x) = 0, vg(z) = v}

is empty. Otherwise, we have

v—(14+v)d

dimyg Ug(0,v) = IRk

Moreover,

dimg{z € [0,1) : ig(z) = 9} = G;Z)Q



3  Proofs of Theorem 1.1 and Corollary 1.2

Notice that for all 5 > 1, we have

{xe 0,1) : lim (2, )

= 1} C Ep,o-
n—oo logﬂn ’

In [20], Tong, Yu and Zhao showed that the set {x €10,1): lim Ta(@f) 1} is of full Lebesgue

—oo loggn
measure. As a result, the set Ey ¢ has full Lebesgue measure. Hence, we only need to study the case

that 0 < a <1, 0 < b < 1. Before we give the proof of Theorem 1.1, we uncover the relationship
between run-length function and Diophantine approximation.

3.1 Run-length function and Diophantine approximation

Lemma 3.1 Let § > 1. For all x € [0,1), for any 0 < a < 1, we have liminf% = q if and
n—oo

only if vp(x) = 2.

Proof. It suffices to show the following two cases. The details are left to the readers.
a

On the one hand, suppose that ig(x) < 1%, then we have vy = ey T ﬁﬁzu) > 0g(z). By the

definition of ¥g(x), there is a sequence {ny}72, such that, for all 1 < n < n,

Tﬂnl‘ > gvon > 6_(LUO"J+1).

So it holds that
Tt [vons | (m,ﬁ) < L’U()nkJ + 1.

This implies that

n+von ) . 1 3 1— _
hminfw < lim ”‘HO—M < lim Lvon] + _ % _2a ‘*‘}’ﬁ(@( a) —a <a,
n—o0 n k—oco  my + |vong | k—oo ng + vonk]  1+vy 2+ 0s(x)(1—a)—a
where the last inequality follows from
a-® <97 forall0 <a<b, x>0.
b—x b
On the other hand, suppose that 95(x) > 27, then vg = 5% + %2(%) < vg(z). The definition
of 9g(x) implies that for all N > 1, there exists 1 <n < N, such that
Tgx < BN,
Then for all k = N + [voN ]| + 1> 1, we have
ri(z, 8) = [voN].
This implies that
G > lim Lvo V] _ Y _2a +AU[3(~’L’)(1 —a)—a > a,
k—o00 k Nooco N+ [vgN]+1 1+4+vy 2+0x)(1—a)—a
where the last inequality follows from
at+x _a
>—forall0<a<b, z>0. (3.8)
b+x b



a
l—a-

This contradicts with lim inf % = a. Consequently, 95(z) <
n—oo

Thus, we conclude that lim inf m(@B) _ g 0O
n— 00 n

Lemma 3.2 Let § > 1. For all x € [0,1), for each 0 < b < 1, we have 1imsup% = b if and
n— oo

only if vg(z) = ﬁ.

Proof. It can be deduced by the same arguments as the proof of Lemma 3.1. O

Now we can give part of the proof of Theorem 1.1.

We will first show when a > %H), 0<b<1, E.p=0. In fact, if limsup % = b, then for all
—

n—oo
0 > 0, there exits a sequence {ny}72, such that r,, (z,8) < [(b+ §)ng] and e, (z,5) > 0. Thus,
when we consider the prefix at the position ny, + [bny], there are at most | (b + d)ny| consecutive
0’s. Immediately, 7y, +|bn, | (2, 8) < [(b+ d)ng]. Hence,

n ni+Lbn ) . b+9 b+
a:hminfwg hmrkﬂb—’MS lim (b + o)ny, _ ot )
n—00 n k—oo  np + |bng| k—oo g + | bng ] 1+0b
Letting § — 0, we have
b
< — 3.9
“S T (3.9)
Therefore, E, p is empty when a > %_H), 0<b< 1.
When 0 < a < #ib, 0 < b <1, Lemmas 3.1 and 3.2 give the fact that the sets we consider here

are essentially the same as the sets studied in Bugeaud and Liao [2], that is

. a b a b
Fan={r €00 5000 = 2 wao) = 25} = Us (125125 )

Consequently, we can apply Theorem 2.7 to obtain

a b b2(1 —a)
dimyg B, p =dimgUg( ——, —— | =1 — ———~.
HH Ba.b = QHIH ﬁ<1—a 1—b> b—a
However, Theorem 2.7 cannot be applied for the cases a =0, 0 <b<land 0 < a < %, b=1.
Remark that E,; C F; where F is defined by (1.4) and dimy Fy = 0 by [9, Theorem 1.1]. So
dimg E,1 =0 (0<a< %) and there is nothing to prove. For the other case, we have

Fop C {a: €[0,1) : vp(a) > ib}

Then we can use Theorem 2.6 to obtain the upper bound of dimg Ey , whichis 1—bforall 0 < b < 1.
Hence it remains to give the lower bound of dimyg Ey; for all 0 < b < 1.

3.2 Lower bound of dimyg Ey; (0 <b < 1)

Now we give the lower bound of dimg Ey; for the case 0 < b < 1. In fact, we can also include the
proof of the lower bound of dimyg E,  for the case 0 < a < %-Hﬂ 0 < b < 1, though the later case
has already been given in the end of Section 3.1.

Let § > 1. Recall that the infinite S-expansion of 1 is *(8) = (¢5(8),e5(B),...). We will apply
the approximation of 8 to construct the Cantor subset as follows. For all N with e}, > 0, let Sy > 1

be the unique solution of the equation:




Then
e*(Bn) = (e1(B), ..., en(B) — 1)>.

Hence 1 < By < B and [y is increasing to S as N goes to infinity. The number Sy is called an
approzimation of . Moreover, by Theorem 2.1(3), X5 ~C X7 for all n > 1 and X5, C Xg. We
therefore have the following facts.

Proposition 3.3 (Shen and Wang [19]) For every w € Y5, » when regarding w as an element
of X%, we have
BN <L (w, B) < B (3.10)

Moreover, every w € X (n > N) end with OV is full when regarding w as an element of 5.

For all k > 1 and N > 1 with €}3,(8) > 0, choose two sequences {n;}3>, and {m;}72; which
satisfy ng < my < ng4q1 with ng > 2NV, and my —ny > my_1 —ngk—1 with my —n; > 2N. Moreover,
{ni}32, and {my}72, can be chosen to satisfy

my — Nk

lim — "k g (3.11)
k—oo Ngt1 + Mg — Ng

and
lim [Ty, (3.12)
k—o0 my

In fact, such sequences do exist by the following arguments.
(HIf0o<a< %, 0<b<1,let

15
b(1—a)\" 1 (b1—a)\"
! — N\ 7 d ! — - N .
"k Kaa—b)) T =T a1 - b)
Note that a < b, so Z((ll:‘zg > 1. Then both sequences {n;}3>, and {m}}3>, are increasing to

infinity as k tends to infinity. A small adjustment can attain the required sequences.
(2)Ifa=0,0<b<1,let

1
nh =k* and m,=|—FkF].
k Fo 11—
We can adjust these sequences to make sure that my — ng > mg_1 — ng_1 with my; —ny > 2N.

Now let us construct a Cantor subset of E, ;.
For all d > 2N, let

Mg ={w=(1,0""wi,... ,wa—an, 0V) i (wi, ..., wa-n) € BF 2N (3.13)
Remark that (1,01 wy, ... w4 n,0N) € E%N ends with 0. Thus, by Proposition 3.3, every

word belonging to M, is full when regarding it as an element of Zg. Now let G; = {w : w € M, }.
Next, for all &k > 1, let ngy1 = (mg — ng)tr + mg + pr where 0 < pr < my — ng. Define

Grir = {ugyr = (1, 0m L {0 (00 Dy 0D e A, forall 1< <t}
where
(trt1) 0P, when p, < 2N;
u =
y w e M,p,, when pg >2N.

It follows from Propositions 3.3 and 2.4(2) that every ug € Gy is full. Hence, we can define the
set Dy, as:
D ={(uy,...,ug) 1 u; € Gy, forall 1 <i<k}. (3.14)



Notice that the length of u; € Gy satisfies |ug| = ng — ng—1. For each u = (uq,...,ux) € Dy,
we have
|u\ = \u1|+|uQ\+---+|u;€| =n1+(n2—n1)+--~+(nk—nk_1) = Ng.

Define

Ex=() U In.(w)

k=1u€Dy

The following lemma shows that Ey is a subset of E, .
Lemma 3.4 We have En C Eq for every 0 < a < I%T-b and 0 < b < 1.

Proof. For every integer n > 1, there exists a k£ > 1 such that ny < n < ngyi. We distinguish
three cases.

(D) Ing <n <ng+mg_1—ng_1+2N, wehave mp_1 —np_1—1 < ry(x,8) < mg_1—ng_1+2N
by the construction of E. It follows that

Mg—1 — Ng—1 — 1 . (z, B) < Mk—1 — M1 + 2N
ng +mep—1 —np—1 +2N — n - Nk ’

(2) If ng + mg—1 — ng—1 + 2N < n < my, the construction of En gives r,(x,8) = n — ng. By
(3.8), we have
Mg—1 — Ng—1 + 2N < (7, B) <

mg — Nk
ng +me_1—np_1+ 2N — n - myp

(3) If my < n < ngyq, we deduce from the construction of Ey that my —np — 1 < (2, 8) <
my — ng + 2IN. Consequently,

my —nyp — 1 <rn(x,6) < mk—nk—f—QN'

Nk41 - n o mg
Combining the above three cases, by (3.11) and (3.12), we have

lim inf M >a and limsup M
n—00 n n—s00 n

<b.

Now we complete our proof by finding the subsequences such that the limit inferior and limit
superior are reached. In fact, by (3.11), we get

. Tng+my_1—ng_1 . Mp—1 — Ng—1 + 2N _
lim < lim =a

k—oo N +Mpg—1 — Np—1 ~ k—oo N+ Mpk—1 — Nk—1

It follows from (3.12) that

. . omp—np—1

lim = lim —— =b.
k—oo My, k— o0 mg

Tmy

Now we estimate the cardinality of the set Dy defined by (3.14). Write qx := $Dj.

Lemma 3.5 Let 3 > 1. Let S be an approzimation of 3. For every f < By, there exist an integer
k(B,Bn) and real numbers c¢(B, Bn), ¢ (B, Bn) such that, for all k > k(B, Bn), we have

k—1
> (niy1—my)
i=1

qk > CI(B? ﬁN)C(Ba BN)ICBZZ . (315)
Proof. Recall the definition of My as (3.13). Theorem 2.2 implies

My > BN

10



for all d > N. Since 3 < By, there exists an integer d’ which depends on § and Sy such that, for

every d > d’', we have
_ —d
BN > B (3.16)

Moreover, the fact that my — ny is increasing and tends to +o0c as k — 400 ensures that we can

find a large enough integer k(3, Bx) satisfying that, for all & > k(8, Bn),

mg—ngk

Moy > BT > B (3.17)

Then, when p; < 2N, we have

1

iG> (ﬁ./\/lmk,nk)tk > B(mk_"’f)tk > TBTLICJrl—TTLk.

When p. > 2N, we deduce that

—(mr—ng)t _ 1 —(mpr—npg)t _ /
Gt > (ﬁMmk—nk)tk . ﬁMpk > ﬂ( =Tk )tk ) ﬁ/k 2N _ 5 dzﬁ( k—Nk) kﬂNpk 2N+d'
N

Note that pr — 2N +d’ > d’. By (3.16), we have

’

1 —(mr—np)te—pr+d’
G = BT = D

B Bn? g
N N

Let (7, Bx) i=min{zhe, 257 }. Tt follows that for all k > k(B fx),
N

8Grt1 > (B, Bn)B T

Immediately, by the relationship between Dy and Gy, for any k > k(B, By), it comes to the
conclusion that

k—1
k > (nig1—my)

k —
g =10k =[G > [[  4Gi = (B, By) - HOPG=r G
i=1 i=k(8,6n)

k-1
> (nig1—my)
=1

> (B, Bn)c(B, Bn)*B ;

where
k(B.BN)—1
- > (nipai-my)

CI(B? BN) :B =1
O

Now we divide into three parts to complete our proof of the lower bound of dimyg E, ; by using
the modified mass distribution principle (Theorem 2.5).
(1) Define a probability measure p supported on Ep. Set

w([0,1]) =1 and u(l,, (uv) = ﬁ%l7 for u € Dy.

For each k > 1, and u = (u1,...,Uk41) € Dgt1, let

() = Hlns (ﬁtg;;l- k) (3.18)

M(Ink-u

11



For any u ¢ Dy, (k > 1), let (L, (v)) = 0. It is routine to check that p is well defined on En and

it can be extended to a probability measure on [0, 1].
(2) Calculate the local dimension lim inf w
n— 00 &)

]

for any x € En. For convenience, we denote

I,(x) by I,, without ambiguity. Then we have

1 1

— S i—1

qi _ — =2 (njp1—my)
Cl(ﬂNv B)c(ﬁNa ﬁ)lﬁ]:l

/‘(Ini) =

(3.19)

for every i > k(B8n, 3), where k(Sx, 3) is an integer given in Lemma 3.5. For all n > 1, there is an
integer £ > 1 such that ny < n < ngyy. By the construction of En and the definition of u, it is

% by dividing into the following three cases.

Case 1. np <n < my. It follows from (3.19) that

natural to estimate the lower bound of

o) - - kil(anrl*m])
p(I) = p(ln) < ¢ (B, B) " e(Bn. B) "B = .

Furthermore, Theorem 2.3(3) implies

As a consequence,

k—1 _ _ _
> (njp1 —my)log B+ klogc(Bn, ) + log ¢/ (B, B)
log u(ly) o =1

10g|1n| B mg 1Og6

Case 2. n = my, + i(mg — ng) + £ for some 0 < i <t and 0 < £ < my — ng. In this case, when
0 <{¢< N, by (3.19) and (3.17), we have

1
:U‘(In) = .UJ(Imk-H(mk—nk)‘M) < M(Imk) . W

k—1
> (nj1—my)+i(me—ng)
=1

<d(Bn,B) " e(Bn, B) B (J* )
When N < £ < my — ny, we similarly see that

1 1
p(In) = p(Loypi(mp—np)+e) < 1(Imy,) - i
n k+i(me—ng)+ mp (ﬁMmkfnk) ZgNQN

k—1
> (njp1—mj)+i(me—n)

< (Bn.B) e(Bn, B)*B <]:1 >5N_e+2N-
Moreover, by (3.10), it holds that

1
k+i(mk*nk)+z‘ > ﬁmk+i(mk—nk)+€+21\/”

Therefore,

k—1 _ _ _
> (njp1 —my) +i(my — nk)) log 8+ (¢ — N)log By + klog c(Bn, B) + log ¢/ (Bn, B)

log p(In) <J’—1
log [I,| — (my +i(mk —ng) + £+ N)log 8

12



Case 3. n = my + ti(my — ng) + £ where 0 < ¢ < pr,. When 0 < ¢ < 2N, we have

pIn) = Tyt (mi—ni)) = (T (2)) - m

k—1
> (Nj+1—mj)+tk(mk—w)>

< C/(ﬁN,B)_lc(ﬁN,B)_kB_ <j:1
When 2N < ¢ < pi, we get

1 1
k*nk)tk Eg}—\f[\f

M(In) = N(Imk—&—tk(mk—nk)-&%) < N’(Imk (x)) ' (ﬁ M.

k—1
> (njp1—my)+t(me—nyg)
j=1

< (Bn,B) ' e(Bn, B)_kﬁi (J‘ ) By
In addition, by (3.10),

1
[ n| > |Imk+tk(mk—nk)+é| > Bt b (mg—n) TN

Hence,

k—1 _ _ _
<Z (njr1 —my) + tr(my — nk)) log 8+ (¢ — 2N)log Bn + klogc(Bn, B) + log ¢ (BN, B)
IOgM(In) > J=1

log|I,| — (mg + t(mk —ng) + €+ N)log 8

In all three cases, using (3.8), we obtain

lim inf M > .
n—oo  log|I,| k—o0 My log 8

By (3.11) and (3.12), it immediately holds that

lim —=1-5, lim Det1 _ bl —a) and lim = .
k—oo My k—oo My a k—oo My a(l — b)

23

By the Stolz-Cesaro Theorem, we have

k-1

T — 170

Z( j+1 ]) Nk+1 9
= . Mgyl — Mg o Tme 1 b*(1 —a)
lim ———————— = lim ————— = lim =1-

k—o00 myg k=00 Mgyl — My k—oo — == — 1 b—a

As a consequence,

lim inf
oo log |1,

log (L) <1 B 621()1 a)) iogg'
—a og

(3) Use the modified mass distribution principle (Theorem 2.5). We first let 3 — By, and then
let N — oco. Applying Theorem 2.5, we finish our proof.

13



3.3 Proof of Corollary 1.2

Note that when % < a < 1, the inequality (3.9) implies E, = (. We only need to consider the case
0<a< % By Lemma 3.1, we have

Ea:{xe[o,l):f)g(x)z laa}.

Thus, applying Theorem 2.7, we have, for all 0 < a < %,

dimy E, = dimy {x €10,1) : vg(x) = 1 i a} = (1 —2a)*.
When a = 0, by noting that Ey o C Ep, we deduce that Ey has full Lebesgue measure and thus
has Huasdorff dimension 1.

4 Proof of Theorem 1.3

The key point to prove Theorem 1.3 is constructing a set U with the following properties: (1) U is
a subset of Ey1; (2) U is dense in the interval [0,1]; (3) U is a G set, i.e., a countable intersection
of open sets.

Let 8 > 1. Define M = min{i > 1: &f(8) > 0}. For all k¥ > 1, let T';, be defined by (2.7). We
choose two sequences {n;}72, and {my}32, such that ny, < my < ngpq1 with ng > 2k + T’ and
my — ng > max{2(mr_1 — ng—1),nx — k, M}. In addition, {ny}72, and {my};>, satisfy
. My — N
lim

—:0
k—oo N1 + Mg — Ny ’

and
mg —mn
lim ———% — 1,
k— o0 mg
In fact, let

ny, = (2k +Tk)%* and mj) = (2k + 2 + Tpyq)?F L

Then by small adjustments, we can obtain the required sequences.
For all k > 1, write ngr1 = (mg — ng)tx + nk + pr where 0 < pp < my — ng. Now we define

U= U it (Ingg, (e, e, 078 (1,0m ) o))

n=1k=n (61,...,6k)€2§,
where int (/|| (€)) stands for the interior of I||(e) for all € € ¥7%.

Remark 1 For all (ey,...,e;) € Xk it follows from Proposition 2.4(3) that (e1, ..., e, 0" 7F) is
full since ny > 2k + T'y. Note that my — ny > M. Then the word (1,0™~"x=1) s full. By
Proposition 2.4(2), the word 0P is full. Thus U is well defined.

The set int(/|¢|(€)) is open which implies that U is a G5 set. Consequently, it suffices to show
that U is a subset of Ey; and is dense in [0, 1].

Lemma 4.1 The set U is a subset of Ey ;.

Proof. For any x € U, it follows from the construction of U that there exist infinitely many k such
that e(x, B) = (e1, ..., e, 0~ F (1,0mc—m =1tk OPr) for some (e1,...,€x) € Eg. Now we are going

to give the upper limit and lower limit of w

14



Let n = ngy1 + my — ng — 1. Since my, — ng > max{2(mg_1 — ng_1),nr — k, M}, we obtain
rnk+1+mk7nkfl(x76) =MmE — Nk — 1.
As a result,

. .ol . T —np—1(z, B . mg —ng — 1
lim inf n( aﬂ) < lim Nk+1+MmE—ng ( ) ) — lim _
n—00 n k—oo N1 +mp —ngp — 1 k—oo Npy1 +mp —ng — 1

0.

Let n = my. Note that my — ng > max{2(my_1 — ng_1),nx — k, M'}. The definition of r,(z, )
shows that

Ty, (T, 8) = myp — g — 1.

It therefore follows that

rn(x T, (T mp —ng — 1 mg —ni — 1
limsupin( 8 > 1 m (7, 5) = lim —=% k =1 k k =1.
n—o00 n k—o0 my k— o0 my k— o0 mg
By the above discussion, we conclude that

o (x, . T (x

lim inf M =0 and limsup M =1.

n—00 n n—00 n

Hence, x € Ey,; which gives U C Ep ;. O

Proof of Theorem 1.3 It remains to show that for all n > 1, the set

U, = U U int (Lo, (€1,...,ex, 0™ % (1,0ms )tk Pr))

k=n (ey,...,ex) €Y

is dense in [0,1]. Now we will concentrate on finding a real number y € U such that |z —y| < r
for every z € [0,1] and r > 0. Suppose that ¢(z, 8) = (e1(z, 8),£2(z, B),...). Let £ be an integer
satisfying 3¢ < r. Let £ = max{n, ¢'}. Since (¢1(z, ), ... ,e¢(z, 8)) € £4, we choose a point

y € int (I (61, TR Oneff’ (1, Ome*ne)tz70pe)) )

Ne41

Then it holds that |z —y| < 7% <r and y € U,,. To sum up, the set

U U it (T (e, 0778, (1,0m7m) % oPr))

k=n (51,...,%)62};“i

is dense in [0, 1].
Thus, we can conclude by the Baire Category Theorem that U is residual in [0,1]. Then, Ey1
is residual in [0,1] by Lemma 4.1.
O

5 Classical results of f-expansion in the parameter space

In this section, we recall some important results of S-expansion in the parameter space {8 € R :
B > 1}. The readers can refer to [4, 8, 12, 15, 18] for more information.

Definition 5.1 We call a word w = (w1, . ..,wy) self-admissible if for all 1 <1i <mn,

in Slox (Wla e awn—i)-
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An infinite sequence w = (w1, ws, ...) is called self-admissible if 0w <jex w for all i > 1.

Denote by A, the set of all self-admissible words with length n, i.e.,
A, = {w = (w1,ws,...,wy): forevery 1 <i<mn, 0w <jex (W1,...,Wn_s)}.
For convenience, for all 1 < 51 < (s, let

A (B1,82) = {w = (w1,...,wn) €A, T B E(B1,P2] : st.€1(8) =wr,...,en(B) =wn}. (5.20)

The definition of self-admissible word immediately gives the following result. The proof is
evident and will be omitted.

Proposition 5.1 Foranym >n > 1, letw € A,,. Let > 1 whose infinite B-expansion of 1 satisfy
(€1(8)s--+,n(B)) <tex w. Then for all vi,va, ..., v; € X (i > 1), the concatenation w vy * -+ v;
1s still self-admissible for all 1 < j < 1.

The characterization of the the S-expansion of 1 was given by Parry [15].

Theorem 5.2 (Parry [15]) An infinite sequence (w1,wa,...) is the B-expansion of 1 for some
B > 1 if and only if it is self-admissible.

Now we consider the cylinders in the parameter space { € R: 5 > 1}.

Definition 5.2 For any w = (wy,...,w,) € A,. The cylinder IF (w) associated to w in the param-
eter space is the set of B € (1,+00) whose [-expansion of 1 has the prefix (wi,...,wy), i.e.

IP(w):={B € (1,+) : e1(B) =wi,..,en(B) = wn}.

The cylinders in the parameter space are intervals (see [18, Lemma 4.1]). The length of the
cylinders of w € A,, in the parameter space is denoted by |IF’(w)|. For simplicity, the left endpoint
and right endpoint of I’ (w) are written as S(w) and B(w) respectively.

To estimate the length of cylinders in the parameter space, we need the notion of recurrence
time 7(w) (see [12]) of the self-admissible word w = (w1, ...,wy,) € A,. Define

T(w) = inf{l <k <n:o®(Wi,...,wn) = (Wi, Wn i)}

If we cannot find such an integer k, we set 7(w) = n. In this case, the self-admissible word w is said
to be non-recurrent.

The above definition of recurrence time immediately provides the following properties.

Remark 2 (1) Write

Then we have

n

(Wi, ywp) = ((wl,...,wT(w))Lﬂw)J,wl,...,wt(w)) .

(2) If w = (w1, ...,wy) is non-recurrent, then the word (w1, ... ,w,,0%) is still non-recurrent for
all £ > 1.

The following result gives the upper and lower bounds of the length of the cylinder I (w).

Lemma 5.3 (Schemling [18], Li, Persson, Wang and Wu [12]) Let w = (w1,...,wy) € Ay,.
We have the following inequalities:

(1) I} (w)] < Blw) ™"
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(2)

C(w)B(w)™™, when t(w) = 0;

|ITILD(w)| 2> — _n [ Wiw)+1 Wr (w) +1 )
C(w)ﬂ(w) ( B(wj; + -+ ﬂ(u))T(“’)t(“’)>’ otherwzse,
where
(Bw) —1)

The study of the parameter space usually concerns on the set of parameters with respect to
which the approximation properties of the orbit of 1 are prescribed. Persson and Schmeling [16]
proved the following result.

Theorem 5.4 (Persson and Schmeling [16]) Let v > 0. Then

1

dimp{s € (1,2) : vg(1) > v} =

Analogous to Theorem 2.7, Bugeaud and Liao [2] obtained the following theorem in the param-
eter space.

Theorem 5.5 (Bugeaud and Liao [2]) Let 0 < © <1 and v > 0. Ifv < 12, then the set
U(0,v) :={8€(1,2): 05(1) = 0, vg(l) = v}

is empty. Otherwise, we have

v—(14v)o

dimy U (9,v) = Axow=1)

Moreover,

dimp {8 € (1,2) : v5(1) =0} = <1 {’>2.

—_
_l’_
>

6 Proof of Theorem 1.4

As the same discussion at the first part of Section 3, it holds that dimy Eéa’ o is of full Lebesgue
measure by using the result of Cao and Chen [4] that the set

{Be (1,2) : lim ”(ﬂ):1}

n— 00 logﬁ n

is of full Lebesgue measure. By the same argument as the proof of Theorem 1.1 for the case

a > 1;:-1)7 0 < b <1 in the end of Section 3.1, we get that Eﬁb is empty when a > 1%7-1)’ 0<b<1.

When 0 < a < 1L+b’ 0 <b <1, Lemmas 3.1 and 3.2 imply that

b b
Bra={pe 02100 = 14w = 12 b =U ().

a

Then by Theorem 5.5, it holds that

201 _
dimHEjjb:dimHU< o b >:1_b(1a)_

1—a’1-0 b—a

But Theorem 5.5 is not applicable for the case of a =0, 0 <b<land 0 < a < %, b=1. Note
that E(fl C FY where FF is defined by (1.4). So we first give the Hausdorff dimension of F{ .
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Since
FP ={B€(1,2): v3(1) = +00} S {B € (1,2) : v(1) > v}

for all v > 0, we have

1
1+wv

dimy F{” < dimg {8 € (1,2) : vp(1) > v} =

where the last equality follows from Theorem 5.4. Letting v — +o00, we have dimy F{” < 0. This
implies dimy Ef:l < 0. In conclusion, dimy E(}:l =0forany 0 < a < % For the other case, we
have

B, {6 €(1,2) :vp(1) > 1bb}

By Theorem 5.4, we deduce that the upper bound of dimy Eét:b is 1 —b for all 0 < b < 1. Hence,
we only need to give the lower bound of dimy Eyp for all 0 < b < 1. We also include our proof of
thecase0<a§1i+b, 0<b< 1.

For every 1 < 1 < B2 < 2, instead of dealing with the Hausdorff dimension of the set Ef: b
directly, we will technically investigate the Hausdorff dimension of the following set. For all 0 <

b
aSm7 O<b§1,1et

EP (81, B) = {/3 & (81,2 < timint ™ i sup ) b} . (6.22)

n—00 n

For all 1 < 81 < B2 < 2, throughout this section, we assume that both 5; and 2 are not simple
Parry number. We will give the lower bound of dimg Eﬁb(ﬂl, Bo) forall 1 < 81 < B2 < 2.
Suppose that N is a large enough integer such that e (82) > 0 and

(e1(B1)s -+ en(B1)) <iex (€1(B2),---,en(B2))
Let EN be the unique solution of the equation:

_a(B) en(B2)
1*7—’_"._*_ xN .

Then N
e"(BN) = (e1(B2), - - en(B2) — 1),

An observation of the lexicographical order of €*(3;), €*(82) and s*(gN) implies #; < BN < P2 and
EN — P2 as N tends to infinity.

For every k > 1, similar to what we did in Section 3.2, we take two sequences {n;}7>, and
{mi}72, such that ny < my < np41 with nq > 2N and my —ng > mg_1—ng_1 with mq —n; > 2N.

In addition,

Mg — Nk Mg — N

lim =a and lim =b.

k—oo Npy1 + My — N k—o0 my

We can choose such two sequences by the same way in Section 3.2.
Now let us construct a Cantor set contained in E(i »(B1, B2) as follows.
For any integer d > 2N, we set

M =A{w=(e1(B2), - en(B) — Lwr, ... waan, 0%) : (w1, waan) € 85 *} (6.23)

Let
Gll = {(€1<ﬁ2)7 s aeN(/@Q)awlv -+, Wd—2N, ON) : (wla s awd—ZN) € E%;QN}

Note that (51‘(5]\;), .. ,5}‘\,(51\;)) <lex (£1(B2),-..,en(P2)). Now we give some observations on
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the elements in G as follows.

Remark 3 (1) For all w € G, since (wl, e ,wd,gN,ON) € E%;N (d > 2N), by Proposition 5.1,
w s self-admissible.

(2) For every u € M/, (d > 2N), we have u € Z%N. By Lemma 5.1, the word w x u is still
self-admissible for every all w € GY.

For every k > 1, write ng1 = (mg —ng)tk +mg +pr with 0 < p < my —ng, then define G;H_l =

{ugs1 = (31(62), .., en(B2) — l,Omk_"’“_N,ug), ... ,uét’“),u,(:’ﬁl)) : u,(j) eEM, ., 1<i <t}
where
(trt1) 0P when pg < 2N;
u =
F we./\/l;k, when pg > 2N.
Let
Dy, ={(u1,...,ux) :u; € G, 1 <i<k}. (6.24)
Notice that every uy € G}, ends with 0V. This guarantees that (u1,...,u,) can concatenate with

any ug+1 to be a new self-admissible word. As a result, the set Dj, is well-defined.
As the classical technique of constructing a Cantor set, let

E@,B) =) U Im.(w.

k=1 uED;C

Similar to the process of Section 3, we now give the following result which means that E (81, 52)
is a subset of E:b(ﬁl, B2).

Lemma 6.1 For every 1 < 1 < f2 < 2, E(f1,52) C Ef,b(ﬂhﬂQ) for all 0 < a < %«.b and
0<b<1.

Proof. The proof is just as the same as the proof of Lemma 3.4 by dividing into three cases. We
omit it here. O

Analogously, we now focus on the estimation of the cardinality of the set Dj. Let ¢ := #Dj.
We obtain the following lemma.

Lemma 6.2 For every 1 < 1 < By < 2, let EN be the real number defined in this section.
Then there exist an integer k(B1, Bn) and real numbers ¢(B1,Bn),c (81, Bn) such that, for every

k> k‘(ﬁl,EN), we have

k—1
/ / 2 2 \k i¥1(ni+limi)
Qe = ¢ (B, Bn)e(Br, BN) B : (6.25)
Proof. We use the similar method as Lemma 3.5, the details are left to the readers. O
Let
(Br1—1)?

C(p) = 5
Notice that S(u) > 1 > 1 for any u = (u1,...,un) € Ap(B1, B2) where A, (B1,B2) is defined by
(5.20). Then
(B(u) —1)

C(B(u) = Tu) > C(B1).

The following lemma gives the estimation of the length of the cylinders with non-empty intersection

log u(B(B,r))

with the Cantor set E (31, 82) which will be useful to estimate the local dimension lim inf Tog 7]

n—oo
for any r > 0 and 8 € E(S4, B2).

19



Lemma 6.3 For any 8 € E(B1, B2), suppose £(1, 8) = (u1, uz,...). Then we have
TP (... un)| > C(B1)B; ™)
for anyn > 1.

Proof. For any n > 1, we are going to take the word (u1, ..., u,,0") into account. We claim that
the word (ug, ..., u,,0") is non-recurrent.
In fact, by the construction of E(81,82), for any 1 <14 < n, we have

; —itN
ol(ug,. .. up,, 0N) e RN,
BN

Notice that w <jex (61(B2),-.-,en(B2) — 1) <iex (e1(B2),...,en(B2)) for any w € E%N with n > N.
It comes to the conclusion that o®(uy,. .., Uy, 0V) <jex (€1(B2),...,en(B2)) forany 1 <i<n+ N
which implies that (uq, ..., u,,0") is non-recurrent. Thus, by Lemma 5.3(2), we have

I (uy, .o up)| > \15+N(U1,...,un,ON)| > C(U1,...,un,ON)ﬁ(ul’__,’umON)f(wa).
It follows from the fact B(uy,...,un,0Y) < B that
\If(uh ceyUn)| > 0(51)65("“\’).

O

Let us now concentrate on giving the lower bound of dimyg F(1,02). As the conventional
process, we define a measure supported on E(f1, 82) which is similar to Section 3.2 by distributing

P
the mass uniformly. We will give the local dimension lim inf w

n—ooo log[IF(u)]
which has non-empty intersection with F(f51, 82). Without any confusion, here and subsequently,
IP stands for the cylinder IF (u) for all u € A,,.

(1) Define a probability measure supported on E(f1, 82). Let

for any cylinder I (u)

1
(51,62 = 1 and (1%, () = g for w € Dy,
1
For all k > 1, and u = (u1,...,ux41) € Dy, define
w(IE (uy, ... ug))
IP — Nk
., () = P
»
(2) Estimate the local dimension lim inf liigl(llgl) where I’ N E(B1, B2) # 0. 1t follows from the
n—oo n
definition of the measure that
1 1
p(If) == < — 7 (6.26)
£ 22 (njp1—my)

C/(/Bh BN)C(ﬂla EN)l iZI

for every i > k(ﬁl,EN). For any 8 € E(f1, 82), suppose £(1,8) = (u1,us,...). For each n > 1,
there exists an integer k£ > 1 such that ny < n < ngyq. It falls naturally into three cases.
Case 1. n, <n < my. It follows from (6.26) that
k—1
- Zl(njﬂ*mj)

p(IPy = u(IL ) < (81, Bn) "Le(Ba, Bn) 48, =
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Furthermore, by the construction of E(S, 82), the word (uy,...,Um, ) is non-recurrent. Thus, by
Lemma 5.3, we have

|I7ILD| > |I£Lk| > O(uty ey Uy ) BUty oy U, )™ > e(B1) By ™.
As a consequence,

- ke
p logd (B, Bn) + klog (B, Bn) + Zl(nj-H —my)log 1
log /’L(In ) Jj=1

log |IP| — log ¢(B1) + my log 1

Case 2. n = my + i(my —ng) + £ for some 0 < i < ¢ and 0 < £ < my — ng. On the one hand,
when 0 < ¢ < 2N, we have

1
Py — (1P <p(h )y ———
/J/( n) M( mk+7'(mk_nk)+£) - u( mk) (ﬁMmk*nk)Z

i) (nj41—mj)+i(mg—ng)

k—1
< ¢(Br, Bn) (B, Br) B ( )
On the other hand, when 2N < £ < mj — ny, we have

1 1
P P P

/’[/(In ) = /’(‘(Imk+i(mk7'nk)+€) S M(Imk) : (uMmkf’nk)l ’ 2{72]\7

BN

k

< cl(ﬂla EN)_lc(ﬁl,gN)_kﬁ1<j=l

1

(nj+17m]-)+i(mk7nk)> ~
B];eJrQN.

Moreover, by Lemma 6.3,
—(mr+i(mr—mn 14
\Iﬂ = |I71;k+i(mk—nk)+€| > C(ﬁl)62 (m+i(ma =)+ +N)'

Hence,

log u(1F)
log | 1P|

Jj=1

k-1 _ _ _
(Z (1 —my) +i(my, — nk)) log 81 + (¢ — 2N) log B + klog ¢(B1, Bn) + log ¢/ (B, Bn)

- log C(B1) + (my + i(mg — ni) + £+ N)log Ba
Case 3. n = my, + tp(mg — ng) + £ for some 0 < ¢ < p. Similarly, when 0 < £ < 2N, we have

1
P P Pyt
u(ly) = M(Ikari(mkfnk)Jre) < M(Imk> (E Moy, )t

kil (njp1—mj)+tk(me *’M«))

< (B, Bn) " e(Br, Br) B (
When 2N < ¢ < pg, it follows that

1 1
P P P
:u’(In) = M(Imk+tk(mk7nk)+f) < I'L(]mk) ’ (ﬁMmk—nk)Z : E%_QN

N

k—1
> (nj41—my)+i(me—nyg)
j=1

<C/(517§N)1C(/317EN)kﬁ1<J— >BNZ+2N~
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Furthermore, we conclude from Lemma 6.3 that

‘I717,3| = |IPk+tk(mk—nk)+£| > C(Bl)62_(mk+tk(mk_nk)+e+N).

m

Therefore, we have

log (1))
log |17

— . _ _
(Zl(nj+l —my) + tp(my — nk)) log #1 + (¢ — 2N)log Bn + klogc(B1, Bn) +logc (B1, Bn)

j=1

- log C(B1) + (my + tg(mr — ng) + £+ N)log fo

Just proceeding as the same analysis in Section 3.2, for all the above three cases, we obtain

P 201 _
plogplly) o (A —a))logh
b—a log (3

-
nsee log|[IP| =

(3) Use the mass distribution principle (see [6, Page 60]). Now we take any B(8,r) with center
B € E(fB1, B2) and sufficiently small enough r verifying

(Il < v < |7 < Bt (6.27)

where the last inequalities is guaranteed by the fact that f(w) > B, for any w € A,(B1,52). By

Lemma 6.3, we have
1E| > C(B)8; "

n—1
As a result, the ball B(3,r) intersects no more than 2 {C(ﬂl)lﬁé\[ (%) J + 2 cylinders of order

n. Moreover, it follows from Lemma 6.3 that
r> |15 | > OB)s Y. (6.28)

Immediately, the combination of (6.27) and (6.28) gives

- Togp (B(,1))

limin
r—0 log r
1an (B2)\"! P
log (2 {C(ﬂl) B (ﬁ) J +2) +log p (1) log |17
> lim inf . n
= % log 17| —1og C(B1) + (n+ 1+ N)log Bs

o lming [ (= D0log B —logB)  logu () (n —1)log By
~ oo \ —logC(B1) + (n+ N)log Bz~ log|IF| | —logC(B1) + (n+ 1+ N)log B

- <1ogﬁz —logB (1 v —a)> 10gﬁ1> log f1
- log 32 b—a ) logfs) logfBs

Therefore, by the mass distribution principle and letting 51 — B2, we get our desired result.

7 Proof of Theorem 1.6

Akin to Section 5, we need to find a subset of Ef’; which is a dense Gs set in the interval [1,2].
Since the process of our proof is almost the same as Section 5. We only provide the construction
of the required set V'’ in this section.

For all £ > 1, we first choose the sequences {n;};>, and {my};>, such that my — n; >
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max{2(mr_1 — ng—1),n% — k} and ni < my < ngy1. In addition, the sequences {n;}72, and
{my}%2, is chosen to satisfy
) mg —n
lim — kT "k 0,
k=00 Npy1 + Mg — Nk

and

mg — Ng

lim =1.

k—o00 mp

Actually, let
ny, =k and mj = (k+ 1)L,

We can obtain the required sequences with some adjustments.
For all k > 1, denote ngy1 = (M — ng )ty + mg + pr where 0 < pi, < my, — ng,. We now define

V' = ﬂ U U int (Ifiﬂ (617._.76k’0nk—k7(1’Omk—nk)tk’0pk))
n=1k=n (ey,..., er)EANL(1,2)

where A (1,2) is defined by (5.20). Since my—ns, > np—k, we get (1,07 ") <joy (g1, ,&x, 0™ F)
for all £ > 1. By Lemma 5.1, the set V' is well defined.
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