Lixuan Zheng 
  
Diophantine approximation and run-length function on β-expansions

Keywords: beta-expansion, Diophantine approximation, run-length function, Hausdorff dimension, residual 2010 AMS Subject Classifications: 11K55, 28A80

For any β > 1, denoted by rn(x, β) the maximal length of consecutive zeros amongst the first n digits of the β-expansion of x ∈ [0, 1). The limit superior (respectively limit inferior) of rn(x,β) n is linked to the classical Diophantine approximation (respectively uniform Diophantine approximation). We obtain the Hausdorff dimension of the level set

Furthermore, we show that the extremely divergent set E0,1 which is of zero Hausdorff dimension is, however, residual. The same problems in the parameter space are also examined.

Introduction

Let β > 1 be a real number. The β-transformation on [0, 1) is defined by

T β (x) = βx -βx ,
where ξ means the integer part of ξ. It is well-known (see [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]) that, every real number x ∈ [0, 1) can be uniquely expanded as a series

x = ε 1 (x, β) β + • • • + ε n (x, β) β n + • • • , (1.1) 
where ε n (x, β) = βT n-1 β (x) for all n ≥ 1. We call ε n (x, β) the n-th digit of x and ε(x, β) := (ε 1 (x, β), . . . , ε n (x, β), . . .) the β-expansion of x.

For each x ∈ [0, 1) and n ≥ 1, the run-length function r n (x, β) is defined to be the maximal length of consecutive zeros amongst the prefix (ε 1 (x, β), . . . , ε n (x, β)), i.e.,

r n (x, β) = max{1 ≤ j ≤ n : ε i+1 (x, β) = • • • = ε i+j (x, β) = 0 for some 0 ≤ i ≤ n -j}.
If such j does not exist, we set r n (x, β) = 0. In 1970, Erdös and Rényi [START_REF] Erdös | On a new law of large numbers[END_REF] showed that for Lebesgue almost all x ∈ [0, 1), we have

lim n→∞ r n (x, 2) log 2 n = 1. (1.
2)

The result of Erdös and Rényi [START_REF] Erdös | On a new law of large numbers[END_REF] has been extended to the general case β > 1 by Tong, Yu and Zhao [START_REF] Tong | On the maximal length of consecutive zero digits of βexpansions[END_REF]. Ma, Wen and Wen [START_REF] Ma | Egoroff 's theorem and maximal run length[END_REF] showed that the exceptional set of points violating (1.2) is of full Hausdorff dimension. Let E denote the set of increasing functions ϕ : N → (0, +∞) satisfying lim The set E ϕ a,b has been proved to have full Hausdorff dimension by Li and Wu (see [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF]) for the case β = 2 and by Zheng, Wu and Li [START_REF] Zheng | The exceptional sets on the run-length function of β-expansions[END_REF] for the general case β > 1.

Remark that the above E does not contain the function ϕ(n) = n. In fact, the asymptotic behavior of rn(x,β) n is directly related to the Diophantine approximation of β-expansions. For all x ∈ [0, 1), Amou and Bugeaud [START_REF] Amou | Expansions in integer bases and exponents of Diophantine approximation[END_REF] defined the exponent v β (x) to be the supremum of the real numbers v for which the equation

T n β x ≤ β -nv
has infinitely many positive solutions with integer n. Bugeaud and Liao [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] defined the exponent vβ (x) to be the supremum of the real numbers v for which, for all N 1, there is a solution with 1 ≤ n ≤ N , such that

T n β x ≤ β -N v .
We will see (Lemmas 3.1 and 3.2) that for all 0 < a < 1, 0 < b < 1, Denote the Hausdorff dimension by dim H . For more information about the Hausdorff dimension, we refer to [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF]. We establish the following theorem. Corollary 1.2 (1) When 0 ≤ a ≤ 1 2 , we have

lim inf n→∞ r n (x, β) n = a ⇔ vβ (x) = a 1 -a and lim sup n→∞ r n (x, β) n = b ⇔ v β (x) = b 1 -b .
dim H E a = (1 -2a) 2 .
Otherwise, E a = ∅.

(2) For all 0 ≤ b ≤ 1, we have

dim H F b = 1 -b.
We remak that the statement (2) of Theorem 1.2 was also been obtained in [9, Theorem 1.1] (see [START_REF] Zou | Hausdorff dimension of the maximal run-length in dyadic expansion[END_REF] for the case β = 2).

A set R is called residual if its complement is meager (i.e., of the first category). In a complete metric space, a set is residual if it contains a dense G δ set, i.e., a countable intersection of open dense sets (see [START_REF] Oxtoby | Measure and Category[END_REF]). Similar to the results of [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF][START_REF] Zheng | The exceptional sets on the run-length function of β-expansions[END_REF], the set of extremely divergent points is residual, and thus is large in the sense of topology.

Theorem 1.3 The set E 0,1 is residual in [0, 1].
It is worth noting that the set E 0,1 is negligible with respect to the Lebesgue measure and Hausdorff dimension. However, the sets considered in [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF][START_REF] Zheng | The exceptional sets on the run-length function of β-expansions[END_REF] have Hausdorff dimension 1. Let ϕ ∈ E. Since the intersection of two residual sets is still residual, by combining Theorems 1.3 and [22, Theorem 1.2], we deduce that the smaller set

E := E(ϕ, β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = 0, lim sup n→∞ r n (x, β) n = 1 is also residual in [0, 1].
The β-expansion of 1 completely characterizes all of the admissible words in the β-dynamical system (see Theorem 2.1 in Section 2 for more details). We also study the run-length function r n (β) of the β-expansion of 1 as β varies in the parameter space {β ∈ R : β > 1}, i.e.,

r n (β) = max{1 ≤ j ≤ n : ε i+1 (β) = • • • = ε i+j (β) = 0 for some 0 ≤ i ≤ n -j}.
There are some results on r n (β) which are similar to those of r n (x, β). In [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1[END_REF], Hu, Tong and Yu proved that for Lebesgue almost all 1 < β < 2, we have

lim n→∞ r n (β) log β n = 1. (1.5)
Cao and Chen [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] showed that for any ϕ ∈ E and for all 0 ≤ a ≤ b ≤ +∞, the set

β ∈ (1, 2) : lim inf n→∞ r n (β) ϕ(n) = a, lim sup n→∞ r n (β) ϕ(n) = b
is of full Hausdorff dimension. Remark that the results of [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1[END_REF] and [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] can be easily generalized to the whole parameter space {β ∈ R : β > 1}. For simplicity, in this paper, we will also consider the parameter space [START_REF] Amou | Expansions in integer bases and exponents of Diophantine approximation[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF]. For all 0 ≤ a ≤ b ≤ 1, let

E P a,b = β ∈ (1, 2) : lim inf n→∞ r n (β) n = a, lim sup n→∞ r n (β) n = b . (1.6)
We have the following theorem.

Theorem 1. [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] The set E P 0,0 has full Lebesgue measure.

If b 1+b < a ≤ 1, 0 < b ≤ 1, then E P a,b = ∅. Otherwise, we have dim H E P a,b = 1 - b 2 (1 -a) b -a .
Similarly, for every 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, we consider the set

E P a = β ∈ (1, 2) : lim inf n→∞ r n (β) n = a , and 
F P b = β ∈ (1, 2) : lim sup n→∞ r n (β) n = b . Corollary 1.5 (1) When 0 ≤ a ≤ 1 2 , we have dim H E P a = (1 -2a) 2 .
Otherwise, E a = ∅.

(2) For every 0 ≤ b ≤ 1, we have

dim H F P b = 1 -b.
In addition, similar to Theorem 1.3, we have the following theorem.

Theorem 1. [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF] The set E P 0,1 is residual in [START_REF] Amou | Expansions in integer bases and exponents of Diophantine approximation[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF].

We end this introduction by depicting the organization of our paper. In Section 2, we review some standard facts on the β-expansions without proofs. Theorem 1.1 and corollary 1.2 are proved in Section 3. We give the proof of Theorem 1.3 in Section 4. Section 5 contains a summary of some classical results of β-expansion in the parameter space. The proofs of Theorems 1.4 and 1.6 are given in Sections 6 and 7 respectively.

Fundamental results of β-expansion

Throughout this section, we set up some notations and terminologies on β-expansions. Meanwhile, we give some basic results on β-expansion directly. For more properties on β-expansions, we refer the readers to [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF][START_REF] Parry | On the β-expansions of real numbers[END_REF][START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF].

Let A = {0, 1, • • • , β -1}
where ξ stands for the smallest integer larger than ξ. The definition of β-expansion gives the fact that every digit ε n (x, β) lies in the set A. A word (ε 1 , . . . , ε n ) ∈ A n is called admissible with respect to β if there exists an x ∈ [0, 1) such that the β-expansion of x begins with (ε 1 , . . . , ε n ). Similarly, an infinite sequence (ε 1 , . . . , ε n , . . .) is called admissible with respect to β if there exists an x ∈ [0, 1) whose β-expansion is (ε 1 , . . . , ε n , . . .). Denote by Σ n β the set of all β-admissible words of length n, i.e.,

Σ n β = {(ε 1 , . . . , ε n ) ∈ A n : ∃ x ∈ [0, 1), s.t. ε j (x, β) = ε j , ∀ 1 ≤ j ≤ n}.
Denote by Σ * β the set of all β-admissible words of finite length, i.e.,

Σ * β = ∞ n=0 Σ n β . The set of β-admissible sequences is denoted by Σ β , i.e., Σ β = {(ε 1 , ε 2 , . . .) ∈ A N : ∃ x ∈ [0, 1), s.t. ε(x, β) = (ε 1 , ε 2 , . . .)}.
The β-expansion of the unit 1 plays an important role in the research of admissible words and admissible sequences. By extending the definition of T β (x) = βx -βx to x = 1, the β-expansion of 1 is given by

1 = ε 1 (1, β) β + • • • + ε n (1, β) β n + • • • . where ε n (1, β) = βT n-1 β 1 .
We call β a simple Parry number if the β-expansion of 1 is finite. That is, there exists an integer m ≥ 1 such that ε m = 0 and ε k (β) = 0 for every k > m. In this case, we let

ε * (β) := (ε * 1 (β), ε * 2 (β), . . .) = (ε 1 (β), ε 2 (β), . . . , ε m (β) -1) ∞ ,
where ω ∞ is the infinite periodic sequence (ω, ω, . . .). If the β-expansion of 1 is not finite, let

ε * (β) = ε(1, β).
In both cases, we can check that

1 = ε * 1 (β) β + • • • + ε * n (β) β n + • • • .
The sequence ε * (β) is therefore called the infinite β-expansion of 1.

We endow the space A N with the lexicographical order < lex :

(ω 1 , ω 2 , . . .) < lex (ω 1 , ω 2 , . . .)

if ω 1 < ω 1 or there exists an integer j > 1, such that, for all 1 ≤ k < j, ω k = ω k but ω j < ω j . The symbol ≤ lex means = or < lex . Moreover, for all n, m ≥ 1, (ω 1 , . . . , ω n ) < lex (ω 1 , . . . , ω m ) stands for

(ω 1 , . . . , ω n , 0 ∞ ) < lex (ω 1 , . . . , ω m , 0 ∞ ).
The following theorem due to Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF] yields that the β-dynamical system is totally determined by the infinite β-expansion of 1. Let ω = (ω 1 , . . . , ω n ) ∈ A n for all n ≥ 1. Let σ be the shift transformation such that σω = (ω 2 , . . . , ω n ).

Theorem 2.1 (Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]) Let β > 1.

(1) For every n ≥ 1, ω = (ω 1 , . . . , ω n ) ∈ Σ n β if and only if σ j ω ≤ lex (ε * 1 , . . . , ε * n-j ) f or all 0 ≤ j < n.

(

) For all k ≥ 1, σ k ε(1, β) < lex ε(1, β). (3) For each 1 < β 1 < β 2 , it holds that ε * (β 1 ) < lex ε * (β 2 ). Consequently, for every n ≥ 1, we have Σ n β1 ⊆ Σ n β2 and Σ β1 ⊆ Σ β2 . 2 
The estimation of the cardinality of the set Σ n β was given by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]. We will use the symbol to denote the cardinality of a finite set in the remainder of this paper. Theorem 2.2 (Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]) For all n ≥ 1,

β n ≤ Σ n β ≤ β n+1 β -1 .
For an admissible word ω = (ω 1 , . . . , ω n ), the associated cylinder of order n is defined by 

I n (ω) := I n (ω, β) = {x ∈ [0, 1) : ε j (x, β) = ω j ,
if |I n (ω)| = β -n
and the corresponding word of the full cylinder is said to be full. Now we give some characterizations and properties of full cylinders.

Theorem 2.3 (Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]) For any integer n ≥ 1, let ω = (ω 1 , . . . , ω n ) be an admissible word.

(1)The cylinder

I n (ω) is full if and only if T n β (I n (ω)) = [0, 1), if and only if for any m ≥ 1 and ω = (ω 1 , . . . , ω m ) ∈ Σ m β , the concatenation ω * ω = (ω 1 , . . . , ω n , ω 1 , . . . , ω m ) is still admissible. (2) If (ω 1 , . . . , ω n-1 , ω n ) with ω n > 0 is admissible, then the cylinder I n (ω 1 , . . . , ω n-1 , ω n ) is full for every 0 ≤ ω n < ω n . ( 3 
) If I n (ω) is full, then for any (ω 1 , . . . , ω m ) ∈ Σ m β , we have |I n+m (ω 1 , . . . , ω n , ω 1 , . . . , ω m )| = β -n • |I m (ω 1 , . . . , ω m )|.
In order to construct full words, we introduce a variable Γ n which is defined as follows. Recall that the infinite β-expansion of 1 is (ε * 1 (β), ε * 2 (β), . . .). For every integer n ≥ 1, define

t n = t n (β) := max{k ≥ 1 : ε * n+1 (β) = • • • = ε * n+k (β) = 0}.
If such k does not exist, let t n = 0. Now let

Γ n = Γ n (β) := max 1≤k≤n t k (β). (2.7) 
Then we can check that Γ n is a finite integer for all n ≥ 1. Theorem 2.3 implies the following results which are important for construction of full words.

Proposition 2.4 (Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]) (1) If both admissible words (ω 1 , . . . , ω n ) and (ω 1 , . . . , ω m ) are full, then the concatenation word (ω 1 , . . . , ω n , ω 1 , . . . , ω m ) is still full.

(2)For all ≥ 1, the word 0 := (0, . . . , 0 ) is full. For any full word (ω 1 , . . . , ω n ), the word (ω 1 , . . . , ω n , 0 ) is also full.

(3) For any admissible word (ω 1 , . . . , ω n ), the word (ω 1 , . . . , ω n , 0 Γn+1 ) is full.

Furthermore, Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] provided the following modified mass distribution principle which is of great importance in estimating the lower bound of the Hausdorff dimension of E a,b .

Theorem 2.5 (Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]) Let µ be a Borel measure and E be a Borel measurable set with µ(E) > 0. Assume that there exist a constant c > 0 and an integer N ≥ 1 such that for all n ≥ N and each cylinder I n , the inequality

µ(I n ) ≤ c|I n | s is valid. Then, dim H E ≥ s.
Now we will introduce some results on Diophantine approximation. We fist give the following exponents of approximation.

Shen and Wang [START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF] obtained the following theorem which gives the dimensional results of the set of points with classical Diophantine property.

Theorem 2.6 (Shen and Wang

[19]) Let β > 1. Let 0 ≤ v ≤ +∞. Then dim H {x ∈ [0, 1) : v β (x) ≥ v} = 1 1 + v .
Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF] studied the set of points with uniform Diophantine properties and established the theorem as follows.

Theorem 2.7 (Bugeaud and Liao

[2]) Let β > 1. Let 0 < v < 1 and v > 0. If v < v 1-v , then the set U β (v, v) := {x ∈ [0, 1) : vβ (x) = v, v β (x) = v} is empty. Otherwise, we have dim H U β (v, v) = v -(1 + v)v (1 + v)(v -v) .
Moreover,

dim H {x ∈ [0, 1) : vβ (x) = v} = 1 - v 1 + v 2 .
3 Proofs of Theorem 1.1 and Corollary 1.2

Notice that for all β > 1, we have

x ∈ [0, 1) : lim n→∞ r n (x, β) log β n = 1 ⊆ E 0,0 .
In [START_REF] Tong | On the maximal length of consecutive zero digits of βexpansions[END_REF], Tong, Yu and Zhao showed that the set x ∈ [0, 1) : lim n→∞ rn(x,β) log β n = 1 is of full Lebesgue measure. As a result, the set E 0,0 has full Lebesgue measure. Hence, we only need to study the case that 0 ≤ a ≤ 1, 0 < b ≤ 1. Before we give the proof of Theorem 1.1, we uncover the relationship between run-length function and Diophantine approximation. 

Run-length function and Diophantine approximation

only if vβ (x) = a 1-a .
Proof. It suffices to show the following two cases. The details are left to the readers. On the one hand, suppose that vβ (x) < a 1-a , then we have

v 0 = a 2(1-a) + vβ (x) 2 > vβ (x). By the definition of vβ (x), there is a sequence {n k } ∞ k=1 such that, for all 1 ≤ n ≤ n k , T n β x > β -v0n ≥ β -( v0n +1) .
So it holds that

r n k + v0n k (x, β) < v 0 n k + 1.
This implies that

lim inf n→∞ r n (x, β) n ≤ lim k→∞ r n k + v0n k (x, β) n k + v 0 n k ≤ lim k→∞ v 0 n k + 1 n k + v 0 n k = v 0 1 + v 0 = 2a + vβ (x)(1 -a) -a 2 + vβ (x)(1 -a) -a < a,
where the last inequality follows from

a -x b -x < a b
, for all 0 ≤ a < b, x > 0.

On the other hand, suppose that

vβ (x) > a 1-a , then v 0 = a 2(1-a) + vβ (x) 2 < vβ (x).
The definition of vβ (x) implies that for all N 1, there exists 1 ≤ n ≤ N , such that

T n β x ≤ β -v0N .
Then for all k = N + v 0 N + 1 1, we have

r k (x, β) ≥ v 0 N .
This implies that

lim inf k→∞ r k (x, β) k ≥ lim N →∞ v 0 N N + v 0 N + 1 = v 0 1 + v 0 = 2a + vβ (x)(1 -a) -a 2 + vβ (x)(1 -a) -a > a,
where the last inequality follows from

a + x b + x > a b for all 0 ≤ a < b, x > 0. (3.8)
This contradicts with lim inf = b, then for all δ > 0, there exits a sequence

{n k } ∞ k=1 such that r n k (x, β) ≤ (b + δ)n k and ε n k (x, β) > 0.
Thus, when we consider the prefix at the position n k + bn k , there are at most

(b + δ)n k consecutive 0's. Immediately, r n k + bn k (x, β) ≤ (b + δ)n k . Hence, a = lim inf n→∞ r n (x, β) n ≤ lim k→∞ r n k + bn k (x, β) n k + bn k ≤ lim k→∞ (b + δ)n k n k + bn k = b + δ 1 + b .
Letting δ → 0, we have

a ≤ b 1 + b . (3.9) Therefore, E a,b is empty when a > b 1+b , 0 < b ≤ 1. When 0 < a ≤ b 1+b , 0 < b < 1, Lemmas 3.
1 and 3.2 give the fact that the sets we consider here are essentially the same as the sets studied in Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF], that is

E a,b = x ∈ [0, 1) : vβ (x) = a 1 -a , v β (x) = b 1 -b = U β a 1 -a , b 1 -b .
Consequently, we can apply Theorem 2.7 to obtain

dim H E a,b = dim H U β a 1 -a , b 1 -b = 1 - b 2 (1 -a) b -a .
However, Theorem 2.7 cannot be applied for the cases a = 0, 0 < b < 1 and

0 < a ≤ 1 2 , b = 1. Remark that E a,1 ⊆ F 1 where F 1 is defined by (1.4) and dim H F 1 = 0 by [9, Theorem 1.1]. So dim H E a,1 = 0 (0 < a ≤ 1
2 ) and there is nothing to prove. For the other case, we have

E 0,b ⊆ x ∈ [0, 1) : v β (x) ≥ b 1 -b .
Then we can use Theorem 2.6 to obtain the upper bound of

dim H E 0,b which is 1-b for all 0 < b < 1.
Hence it remains to give the lower bound of dim H E 0,b for all 0 < b < 1.

Lower bound of dim

H E 0,b (0 < b < 1)
Now we give the lower bound of dim H E 0,b for the case 0 < b < 1. In fact, we can also include the proof of the lower bound of dim H E a,b for the case 0 < a ≤ b 1+b , 0 < b < 1, though the later case has already been given in the end of Section 3.1.

Let β > 1. Recall that the infinite β-expansion of 1 is ε * (β) = (ε * 1 (β), ε * 2 (β), . . .). We will apply the approximation of β to construct the Cantor subset as follows. For all N with ε * N > 0, let β N > 1 be the unique solution of the equation:

1 = ε * 1 (β) x + • • • + ε * N (β) x N . Then ε * (β N ) = (ε * 1 (β), . . . , ε * N (β) -1) ∞ .
Hence 1 < β N < β and β N is increasing to β as N goes to infinity. The number β N is called an approximation of β. Moreover, by Theorem 2.1(3), Σ n β N ⊆ Σ n β for all n ≥ 1 and Σ β N ⊆ Σ β . We therefore have the following facts. Proposition 3.3 (Shen and Wang [START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF]) For every ω ∈ Σ n β N , when regarding ω as an element of Σ n β , we have

β -(n+N ) ≤ |I n (ω, β)| ≤ β -n . (3.10)
Moreover, every ω ∈ Σ n β N (n ≥ N ) end with 0 N is full when regarding ω as an element of

Σ n β . For all k ≥ 1 and N > 1 with ε * N (β) > 0, choose two sequences {n k } ∞ k=1 and {m k } ∞ k=1 which satisfy n k < m k < n k+1 with n 1 > 2N , and m k -n k > m k-1 -n k-1 with m 1 -n 1 > 2N . Moreover, {n k } ∞
k=1 and {m k } ∞ k=1 can be chosen to satisfy

lim k→∞ m k -n k n k+1 + m k -n k = a (3.11)
and

lim k→∞ m k -n k m k = b. (3.12)
In fact, such sequences do exist by the following arguments.

(

) If 0 < a ≤ b 1+b , 0 < b < 1, let n k = b(1 -a) a(1 -b) k and m k = 1 1 -b b(1 -a) a(1 -b) k . Note that a < b, so b(1-a) a(1-b) > 1. 1 
Then both sequences {n k } ∞ k=1 and {m k } ∞ k=1 are increasing to infinity as k tends to infinity. A small adjustment can attain the required sequences.

(2) If a = 0, 0 < b < 1, let

n k = k k and m k = 1 1 -b k k .
We can adjust these sequences to make sure that

m k -n k > m k-1 -n k-1 with m 1 -n 1 > 2N . Now let us construct a Cantor subset of E a,b .
For all d > 2N , let

M d = {ω = (1, 0 N -1 , ω 1 , . . . , ω d-2N , 0 N ) : (ω 1 , . . . , ω d-N ) ∈ Σ d-2N β N }. (3.13) Remark that (1, 0 N -1 , ω 1 , . . . , ω d-N , 0 N ) ∈ Σ d β N
ends with 0 N . Thus, by Proposition 3.3, every word belonging to M d is full when regarding it as an element of

Σ d β . Now let G 1 = {ω : ω ∈ M n1 }. Next, for all k ≥ 1, let n k+1 = (m k -n k )t k + m k + p k where 0 ≤ p k < m k -n k . Define G k+1 = {u k+1 = (1, 0 m k -n k -1 , u (1) 
k , . . . , u

(t k ) k , u (t k +1) k ) : u (i) k ∈ M m k -n k for all 1 ≤ i ≤ t k } where u (t k +1) k = 0 p k , when p k ≤ 2N ; ω ∈ M p k , when p k > 2N.
It follows from Propositions 3.3 and 2.4(2) that every u k ∈ G k is full. Hence, we can define the set D k as:

D k = {(u 1 , . . . , u k ) : u i ∈ G i , for all 1 ≤ i ≤ k} . (3.14)
Notice that the length of

u k ∈ G k satisfies |u k | = n k -n k-1 . For each u = (u 1 , . . . , u k ) ∈ D k , we have |u| = |u 1 | + |u 2 | + • • • + |u k | = n 1 + (n 2 -n 1 ) + • • • + (n k -n k-1 ) = n k . Define E N = ∞ k=1 u∈D k I n k (u).
The following lemma shows that E N is a subset of E a,b .

Lemma 3. [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] We have E N ⊆ E a,b for every 0 ≤ a ≤ b 1+b and 0 < b < 1.

Proof. For every integer n ≥ 1, there exists a k ≥ 1 such that n k < n ≤ n k+1 . We distinguish three cases.

(

) If n k < n ≤ n k +m k-1 -n k-1 +2N , we have m k-1 -n k-1 -1 ≤ r n (x, β) ≤ m k-1 -n k-1 +2N by the construction of E N . It follows that m k-1 -n k-1 -1 n k + m k-1 -n k-1 + 2N ≤ r n (x, β) n ≤ m k-1 -n k-1 + 2N n k . 1 
(

) If n k + m k-1 -n k-1 + 2N < n ≤ m k , the construction of E N gives r n (x, β) = n -n k . By (3.8), we have m k-1 -n k-1 + 2N n k + m k-1 -n k-1 + 2N ≤ r n (x, β) n ≤ m k -n k m k . (3) If m k ≤ n ≤ n k+1 , we deduce from the construction of E N that m k -n k -1 ≤ r n (x, β) ≤ m k -n k + 2N . Consequently, m k -n k -1 n k+1 ≤ r n (x, β) n ≤ m k -n k + 2N m k . 2 
Combining the above three cases, by (3.11) and (3.12), we have

lim inf n→∞ r n (x, β) n ≥ a and lim sup n→∞ r n (x, β) n ≤ b.
Now we complete our proof by finding the subsequences such that the limit inferior and limit superior are reached. In fact, by (3.11), we get

lim k→∞ r n k +m k-1 -n k-1 n k + m k-1 -n k-1 ≤ lim k→∞ m k-1 -n k-1 + 2N n k + m k-1 -n k-1 = a.
It follows from (3.12) that

lim k→∞ r m k m k = lim k→∞ m k -n k -1 m k = b. 2 
Now we estimate the cardinality of the set D k defined by (3.14). Write q k := D k .

Lemma 3.5 Let β > 1. Let β N be an approximation of β. For every β < β N , there exist an integer k(β, β N ) and real numbers c(β, β N ), c (β, β N ) such that, for all k ≥ k(β, β N ), we have

q k ≥ c (β, β N )c(β, β N ) k β k-1 i=1 (ni+1-mi) . ( 3 

.15)

Proof. Recall the definition of M d as (3.13). Theorem 2.2 implies

M d ≥ β d-2N
N for all d ≥ N . Since β < β N , there exists an integer d which depends on β and β N such that, for every d ≥ d , we have

β d-2N N ≥ β d . (3.16)
Moreover, the fact that m k -n k is increasing and tends to +∞ as k → +∞ ensures that we can find a large enough integer k(β, β N ) satisfying that, for all k ≥ k(β, β N ),

M m k -n k ≥ β m k -n k -2N N ≥ β m k -n k . (3.17)
Then, when p k ≤ 2N , we have

G k+1 ≥ ( M m k -n k ) t k ≥ β (m k -n k )t k ≥ 1 β 2N β n k+1 -m k .
When p k > 2N , we deduce that

G k+1 ≥ ( M m k -n k ) t k • M p k ≥ β (m k -n k )t k • β p k -2N N = 1 β N d β (m k -n k )t k β N p k -2N +d .
Note that p k -2N + d > d . By (3.16), we have

G k+1 ≥ 1 β N d β (m k -n k )t k β p k +d = β d β N d β n k+1 -m k . Let c(β, β N ) := min{ 1 β 2N , β d β N d }. It follows that for all k ≥ k(β, β N ), G k+1 ≥ c(β, β N )β n k+1 -m k .
Immediately, by the relationship between D k and G k , for any k ≥ k(β, β N ), it comes to the conclusion that

q k = D k = k i=1 G k ≥ k i=k(β,β N ) G i ≥ c(β, β N ) k-k(β,β N ) β k-1 i=k(β,β N ) (ni+1-mi) ≥ c (β, β N )c(β, β N ) k β k-1 i=1 (ni+1-mi) , where c (β, β N ) = β - k(β,β N )-1 i=1 (ni+1-mi)
.

2

Now we divide into three parts to complete our proof of the lower bound of dim H E a,b by using the modified mass distribution principle (Theorem 2.5).

(1) Define a probability measure µ supported on E N . Set

µ([0, 1]) = 1 and µ(I n1 (u)) = 1 G 1 , for u ∈ D 1 .
For each k ≥ 1, and u = (u 1 , . . . , u k+1 ) ∈ D k+1 , let

µ(I n k+1 (u)) = µ(I n k (u 1 , . . . , u k )) G k+1 . (3.18) 
For any u / ∈ D k (k ≥ 1), let µ(I n k (u)) = 0. It is routine to check that µ is well defined on E N and it can be extended to a probability measure on [0, 1].

(2) Calculate the local dimension lim inf n→∞ log µ(In) log |In| for any x ∈ E N . For convenience, we denote I n (x) by I n without ambiguity. Then we have

µ(I ni ) = 1 q i ≤ 1 c (β N , β)c(β N , β) i β i-1 j=1 (nj+1-mj ) (3.19)
for every i > k(β N , β), where k(β N , β) is an integer given in Lemma 3.5. For all n ≥ 1, there is an integer k ≥ 1 such that n k < n ≤ n k+1 . By the construction of E N and the definition of µ, it is natural to estimate the lower bound of log µ(In) log |In| by dividing into the following three cases. Case 1.

n k < n ≤ m k . It follows from (3.19) that µ(I n ) = µ(I n k ) ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (nj+1-mj ) . Furthermore, Theorem 2.3(3) implies |I n (x)| ≥ |I m k (x)| = 1 β m k .
As a consequence,

log µ(I n ) log |I n | ≥ k-1 j=1 (n j+1 -m j ) log β + k log c(β N , β) + log c (β N , β) m k log β . Case 2. n = m k + i(m k -n k ) + for some 0 ≤ i < t k and 0 ≤ < m k -n k .
In this case, when 0 ≤ ≤ N , by (3.19) and (3.17), we have

µ(I n ) = µ(I m k +i(m k -n k )+ ) ≤ µ(I m k ) • 1 ( M m k -n k ) i ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (nj+1-mj )+i(m k -n k ) . When N < < m k -n k , we similarly see that µ(I n ) = µ(I m k +i(m k -n k )+ ) ≤ µ(I m k ) • 1 ( M m k -n k ) i • 1 Σ -2N β N ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (nj+1-mj )+i(m k -n k ) β N -+2N .
Moreover, by (3.10), it holds that

|I n | ≥ |I m k +i(m k -n k )+ | ≥ 1 β m k +i(m k -n k )+ +2N . Therefore, log µ(I n ) log |I n | ≥ k-1 j=1 (n j+1 -m j ) + i(m k -n k ) log β + ( -N ) log β N + k log c(β N , β) + log c (β N , β) (m k + i(m k -n k ) + + N ) log β . Case 3. n = m k + t k (m k -n k ) + where 0 ≤ ≤ p k . When 0 ≤ ≤ 2N , we have µ(I n ) = µ(I m k +t k (m k -n k ) ) = µ(I m k (x)) • 1 ( M m k -n k ) t k ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (nj+1-mj )+t k (m k -n k ) . When 2N < ≤ p k , we get µ(I n ) = µ(I m k +t k (m k -n k )+ ) ≤ µ(I m k (x)) • 1 ( M m k -n k ) t k • 1 Σ -2N β N ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (nj+1-mj )+t k (m k -n k ) β N -+2N .
In addition, by (3.10),

|I n | ≥ |I m k +t k (m k -n k )+ | ≥ 1 β m k +t k (m k -n k )+ +N . Hence, log µ(I n ) log |I n | ≥ k-1 j=1 (n j+1 -m j ) + t k (m k -n k ) log β + ( -2N ) log β N + k log c(β N , β) + log c (β N , β) (m k + t k (m k -n k ) + + N ) log β .
In all three cases, using (3.8), we obtain

lim inf n→∞ log µ(I n ) log |I n | ≥ lim k→∞ k-1 j=1 (n j+1 -m j ) m k log β log β .
By (3.11) and (3.12), it immediately holds that

lim k→∞ n k m k = 1 -b, lim k→∞ n k+1 m k = b(1 -a) a and lim k→∞ m k+1 m k = b(1 -a) a(1 -b) .
By the Stolz-Cesàro Theorem, we have

lim k→∞ k-1 j=1 (n j+1 -m j ) m k = lim k→∞ n k+1 -m k m k+1 -m k = lim k→∞ n k+1 m k -1 m k+1 m k -1 = 1 - b 2 (1 -a) b -a .
As a consequence,

lim inf n→∞ log µ(I n ) log |I n | ≥ 1 - b 2 (1 -a) b -a log β log β .
(3) Use the modified mass distribution principle (Theorem 2.5). We first let β → β N , and then let N → ∞. Applying Theorem 2.5, we finish our proof.

Proof of Corollary 1.2

Note that when 1 2 < a ≤ 1, the inequality (3.9) implies E a = ∅. We only need to consider the case 0 ≤ a ≤ 1 2 . By Lemma 3.1, we have

E a = x ∈ [0, 1) : vβ (x) = a 1 -a .
Thus, applying Theorem 2.7, we have, for all 0 < a ≤ 1 2 ,

dim H E a = dim H x ∈ [0, 1) : vβ (x) = a 1 -a = (1 -2a) 2 .
When a = 0, by noting that E 0,0 ⊆ E 0 , we deduce that E 0 has full Lebesgue measure and thus has Huasdorff dimension 1.

Proof of Theorem 1.3

The key point to prove Theorem 1.3 is constructing a set U with the following properties:

(1) U is a subset of E 0,1 ; (2) U is dense in the interval [0, 1]; (3) U is a G δ set, i.e., a countable intersection of open sets. Let β > 1. Define M = min{i > 1 : ε * i (β) > 0}. For all k ≥ 1, let Γ k be defined by (2.7). We choose two sequences {n k } ∞ k=1 and {m k } ∞ k=1 such that n k < m k < n k+1 with n k > 2k + Γ k and m k -n k > max{2(m k-1 -n k-1 ), n k -k, M }. In addition, {n k } ∞ k=1 and {m k } ∞ k=1 satisfy lim k→∞ m k -n k n k+1 + m k -n k = 0,
and

lim k→∞ m k -n k m k = 1.
In fact, let

n k = (2k + Γ k ) 2k and m k = (2k + 2 + Γ k+1 ) 2k+1 .
Then by small adjustments, we can obtain the required sequences. For all k ≥ 1, write

n k+1 = (m k -n k )t k + n k + p k where 0 ≤ p k < m k -n k . Now we define U := ∞ n=1 ∞ k=n ( 1,..., k )∈Σ k β int I n k+1 ( 1 , . . . , k , 0 n k -k , (1, 0 m k -n k -1 ) t k , 0 p k ) ,
where int(I | | ( )) stands for the interior of

I | | ( ) for all ∈ Σ * β . Remark 1 For all ( 1 , . . . , k ) ∈ Σ k β , it follows from Proposition 2.4(3) that ( 1 , . . . , k , 0 n k -k ) is full since n k > 2k + Γ k . Note that m k -n k ≥ M . Then the word (1, 0 m k -n k -1
) is full. By Proposition 2.4(2), the word 0 p k is full. Thus U is well defined.

The set int(I

| | ( )) is open which implies that U is a G δ set. Consequently, it suffices to show that U is a subset of E 0,1 and is dense in [0, 1]. Lemma 4.1 The set U is a subset of E 0,1 .
Proof. For any x ∈ U, it follows from the construction of U that there exist infinitely many

k such that ε(x, β) = ( 1 , . . . , k , 0 n k -k , (1, 0 m k -n k -1 ) t k , 0 p k ) for some ( 1 , . . . , k ) ∈ Σ k
β . Now we are going to give the upper limit and lower limit of rn(x,β) n .

Let

n = n k+1 + m k -n k -1. Since m k -n k > max{2(m k-1 -n k-1 ), n k -k, M }, we obtain r n k+1 +m k -n k -1 (x, β) = m k -n k -1.
As a result,

lim inf n→∞ r n (x, β) n ≤ lim k→∞ r n k+1 +m k -n k -1 (x, β) n k+1 + m k -n k -1 = lim k→∞ m k -n k -1 n k+1 + m k -n k -1 = 0. Let n = m k . Note that m k -n k > max{2(m k-1 -n k-1 ), n k -k, M }. The definition of r n (x, β) shows that r m k (x, β) = m k -n k -1.
It therefore follows that

lim sup n→∞ r n (x, β) n ≥ lim k→∞ r m k (x, β) m k = lim k→∞ m k -n k -1 m k = lim k→∞ m k -n k -1 m k = 1.
By the above discussion, we conclude that

lim inf n→∞ r n (x, β) n = 0 and lim sup n→∞ r n (x, β) n = 1. Hence, x ∈ E 0,1 which gives U ⊆ E 0,1 . 2 
Proof of Theorem 1.3 It remains to show that for all n ≥ 1, the set

U n = ∞ k=n ( 1 ,..., k )∈Σ k β int I n k+1 1 , . . . , k , 0 n k -k , (1, 0 m k -n k ) t k , 0 p k is dense in [0,1]
. Now we will concentrate on finding a real number y ∈ U such that |x -y| ≤ r for every x ∈ [0, 1] and r > 0. Suppose that ε(x, β) = (ε 1 (x, β), ε 2 (x, β), . . .). Let be an integer satisfying β -≤ r. Let = max{n, }. Since (ε 1 (x, β), . . . , ε (x, β)) ∈ Σ β , we choose a point

y ∈ int I n +1 1 , . . . , , 0 n -, (1, 0 m -n ) t , 0 p .
Then it holds that |x -y| ≤ β -≤ r and y ∈ U n . To sum up, the set

∞ k=n ( 1,..., k )∈Σ k β int I n k+1 1 , . . . , k , 0 n k -k , (1, 0 m k -n k ) t k , 0 p k is dense in [0, 1].
Thus, we can conclude by the Baire Category Theorem that U is residual in

[0, 1]. Then, E 0,1 is residual in [0, 1] by Lemma 4.1. 2 
5 Classical results of β-expansion in the parameter space

In this section, we recall some important results of β-expansion in the parameter space {β ∈ R : β > 1}. The readers can refer to [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF][START_REF] Hu | On consecutive 0 digits in the β-expansion of 1[END_REF][START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF][START_REF] Parry | On the β-expansions of real numbers[END_REF][START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF] for more information.

Definition 5.1 We call a word ω = (ω 1 , . . . , ω n ) self-admissible if for all 1 ≤ i < n, σ i ω ≤ lex (ω 1 , . . . , ω n-i ).

(2)

|I P n (ω)| ≥      C(ω)β(ω) -n , when t(ω) = 0; C(ω)β(ω) -n ω t(ω)+1 β(ω) + • • • + ω τ (ω) + 1 β(ω) τ (ω)-t(ω) , otherwise,
where

C(ω) := (β(ω) -1) 2 β(ω) .
(5.21)

The study of the parameter space usually concerns on the set of parameters with respect to which the approximation properties of the orbit of 1 are prescribed. Persson and Schmeling [START_REF] Persson | Dyadic Diophantine approximation and Katok's horseshoe approximation[END_REF] proved the following result.

Theorem 5.4 (Persson and Schmeling [START_REF] Persson | Dyadic Diophantine approximation and Katok's horseshoe approximation[END_REF]) Let v ≥ 0. Then

dim H {β ∈ (1, 2) : v β (1) ≥ v} = 1 1 + v .
Analogous to Theorem 2.7, Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF] obtained the following theorem in the parameter space.

Theorem 5.5 (Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF]

) Let 0 < v < 1 and v > 0. If v < v 1-v , then the set U (v, v) := {β ∈ (1, 2) : vβ (1) = v, v β (1) = v} is empty. Otherwise, we have dim H U (v, v) = v -(1 + v)v (1 + v)(v -v) .
Moreover,

dim H {β ∈ (1, 2) : vβ (1) = v} = 1 - v 1 + v 2 .
6 Proof of Theorem 1.4

As the same discussion at the first part of Section 3, it holds that dim H E P 0,0 is of full Lebesgue measure by using the result of Cao and Chen [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] that the set 

E P a,b = β ∈ (1, 2) : vβ (1) = a 1 -a , v β (1) = b 1 -b = U a 1 -a , b 1 -b .
Then by Theorem 5.5, it holds that

dim H E P a,b = dim H U a 1 -a , b 1 -b = 1 - b 2 (1 -a) b -a .
But Theorem 5.5 is not applicable for the case of a = 0, 0 < b < 1 and 0 < a ≤ 1 2 , b = 1. Note that E P a,1 ⊆ F P 1 where F P 1 is defined by (1.4). So we first give the Hausdorff dimension of F P 1 .

Since

F P 1 = {β ∈ (1, 2) : v β (1) = +∞} ⊆ {β ∈ (1, 2) : v β (1) ≥ v}
for all v > 0, we have

dim H F P 1 ≤ dim H {β ∈ (1, 2) : v β (1) ≥ v} = 1 1 + v
where the last equality follows from Theorem 5.4. Letting v → +∞, we have dim H F P 1 ≤ 0. This implies dim H E P a,1 ≤ 0. In conclusion, dim H E P a,1 = 0 for any 0 < a ≤ 1 2 . For the other case, we have

E P 0,b ⊆ β ∈ (1, 2) : v β (1) ≥ b 1 -b .
By Theorem 5.4, we deduce that the upper bound of dim H E P 0,b is 1 -b for all 0 < b < 1. Hence, we only need to give the lower bound of dim H E 0,b for all 0 < b < 1. We also include our proof of the case 0 < a ≤ b 1+b , 0 < b < 1. For every 1 < β 1 < β 2 < 2, instead of dealing with the Hausdorff dimension of the set E P a,b directly, we will technically investigate the Hausdorff dimension of the following set. For all 0 ≤ a ≤ b 1+b , 0 < b ≤ 1, let

E P a,b (β 1 , β 2 ) = β ∈ [β 1 , β 2 ) : lim inf n→∞ r n (β) n = a, lim sup n→∞ r n (β) n = b . (6.22)
For all 1 < β 1 < β 2 < 2, throughout this section, we assume that both β 1 and β 2 are not simple Parry number. We will give the lower bound of dim

H E P a,b (β 1 , β 2 ) for all 1 < β 1 < β 2 < 2. Suppose that N is a large enough integer such that ε N (β 2 ) > 0 and (ε 1 (β 1 ), . . . , ε N (β 1 )) < lex (ε 1 (β 2 ), . . . , ε N (β 2 ))
Let β N be the unique solution of the equation:

1 = ε 1 (β 2 ) x + • • • + ε N (β 2 ) x N . Then ε * ( β N ) = (ε 1 (β 2 ), . . . , ε N (β 2 ) -1) ∞ .
An observation of the lexicographical order of ε * (β 1 ), ε * (β 2 ) and ε * ( β N ) implies β 1 < β N < β 2 and β N → β 2 as N tends to infinity. For every k ≥ 1, similar to what we did in Section 3.2, we take two sequences

{n k } ∞ k=1 and {m k } ∞ k=1 such that n k < m k < n k+1 with n 1 > 2N and m k -n k > m k-1 -n k-1 with m 1 -n 1 > 2N . In addition, lim k→∞ m k -n k n k+1 + m k -n k = a and lim k→∞ m k -n k m k = b.
We can choose such two sequences by the same way in Section 3.2. Now let us construct a Cantor set contained in E P a,b (β 1 , β 2 ) as follows. For any integer d > 2N , we set

M d = {ω = (ε 1 (β 2 ), . . . , ε N (β 2 ) -1, ω 1 , . . . , ω d-2N , 0 N ) : (ω 1 , . . . , ω d-2N ) ∈ Σ d-2N β N }. (6.23) Let G 1 = {(ε 1 (β 2 ), . . . , ε N (β 2 ), ω 1 , . . . , ω d-2N , 0 N ) : (ω 1 , . . . , ω d-2N ) ∈ Σ d-2N β N }. Note that ε * 1 ( β N ), . . . , ε * N ( β N ) < lex (ε 1 (β 2 ), . . . , ε N (β 2 )
). Now we give some observations on the elements in G 1 as follows.

Remark

3 (1) For all ω ∈ G 1 , since ω 1 , . . . , ω d-2N , 0 N ∈ Σ d-N β N (d > 2N ), by Proposition 5.1, ω is self-admissible. (2) For every u ∈ M d (d > 2N ), we have u ∈ Σ d β N
. By Lemma 5.1, the word ω * u is still self-admissible for every all ω ∈ G 1 .

For every

k ≥ 1, write n k+1 = (m k -n k )t k +m k +p k with 0 ≤ p k < m k -n k , then define G k+1 = {u k+1 = ε 1 (β 2 ), . . . , ε N (β 2 ) -1, 0 m k -n k -N , u (1) 
k , . . . , u

(t k ) k , u (t k +1) k : u (i) k ∈ M m k -n k , 1 ≤ i ≤ t k }, where u (t k +1) k = 0 p k , when p k ≤ 2N ; ω ∈ M p k , when p k > 2N. Let D k = {(u 1 , . . . , u k ) : u i ∈ G i , 1 ≤ i ≤ k} . (6.24)
Notice that every u k ∈ G k ends with 0 N . This guarantees that (u 1 , . . . , u k ) can concatenate with any u k+1 to be a new self-admissible word. As a result, the set D k is well-defined.

As the classical technique of constructing a Cantor set, let

E(β 1 , β 2 ) = ∞ k=1 u∈D k I P n k (u).
Similar to the process of Section 3, we now give the following result which means that

E(β 1 , β 2 ) is a subset of E P a,b (β 1 , β 2 ). Lemma 6.1 For every 1 < β 1 < β 2 < 2, E(β 1 , β 2 ) ⊂ E P a,b (β 1 , β 2 ) for all 0 ≤ a ≤ b 1+b and 0 < b < 1.
Proof. The proof is just as the same as the proof of Lemma 3.4 by dividing into three cases. We omit it here.

2

Analogously, we now focus on the estimation of the cardinality of the set D k . Let q k := D k . We obtain the following lemma. Lemma 6.2 For every 1 < β 1 < β 2 < 2, let β N be the real number defined in this section. Then there exist an integer k(β 1 , β N ) and real numbers c(β 1 , β N ), c (β 1 , β N ) such that, for every k ≥ k(β 1 , β N ), we have

q k ≥ c (β 1 , β N )c(β 1 , β N ) k β k-1 i=1 (ni+1-mi) 1 .
(6.25)

Proof. We use the similar method as Lemma 3.5, the details are left to the readers.

2 Let C(β 1 ) = (β 1 -1) 2 β 1 . Notice that β(u) ≥ β 1 > 1 for any u = (u 1 , . . . , u n ) ∈ Λ n (β 1 , β 2 ) where Λ n (β 1 , β 2 ) is defined by (5.20). Then C(β(u)) = (β(u) -1) 2 β(u) ≥ C(β 1 ).
The following lemma gives the estimation of the length of the cylinders with non-empty intersection with the Cantor set E(β 1 , β 2 ) which will be useful to estimate the local dimension lim inf for any n ≥ 1.

Proof. For any n ≥ 1, we are going to take the word (u 1 , . . . , u n , 0 N ) into account. We claim that the word (u 1 , . . . , u n , 0 N ) is non-recurrent.

In fact, by the construction of E(β 1 , β 2 ), for any 1 ≤ i < n, we have .

σ i (

2

Let us now concentrate on giving the lower bound of dim H E(β 1 , β 2 ). As the conventional process, we define a measure supported on E(β 1 , β 2 ) which is similar to Section 3.2 by distributing the mass uniformly. We will give the local dimension lim inf 

m k -n k ) < lex (ε 1 , • • • , ε k , 0 n k -k )
for all k ≥ 1. By Lemma 5.1, the set V is well defined.

.

  For every 0 ≤ a ≤ b ≤ ∞ and any function ϕ ∈ E, defineE ϕ a,b := E ϕ a,b (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = a, lim sup n→∞ r n (x, β) ϕ(n) = b .

For all 0

 0 ≤ a ≤ b ≤ 1, let E a,b := E a,b (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) n = a, lim sup n→∞ r n (x, β) n = b . (1.3) 

Theorem 1 . 1

 11 The set E 0,0 has full Lebesgue measure.If b 1+b < a ≤ 1, 0 < b ≤ 1, then E a,b = ∅. Otherwise, we have dim H E a,b = 1 -b 2 (1 -a) b -a . Let 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.We can further study the level setsE a := E a (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) n = aandF b := F b (β) = x ∈ [0, 1) : lim sup n→∞ r n (x, β) n = b . (1.4)Using Theorem 1.1, we obtain the following results of the Hausdorff dimensions of E a and F b .

Lemma 3 . 1

 31 Let β > 1. For all x ∈ [0, 1), for any 0 < a < 1, we have lim inf n→∞ rn(x,β) n = a if and

2 Lemma 3 . 2

 232 n→∞ rn(x,β) n = a. Consequently, vβ (x) ≤ a 1-a . Thus, we conclude that lim inf n→∞ rn(x,β) n = a. Let β > 1. For all x ∈ [0, 1), for each 0 < b < 1, we have lim sup n→∞ rn(x,β) n = b if and only if v β (x) = b 1-b . Proof. It can be deduced by the same arguments as the proof of Lemma 3.1. 2 Now we can give part of the proof of Theorem 1.1. We will first show when a > b 1+b , 0 < b ≤ 1, E a,b = ∅. In fact, if lim sup n→∞ rn(x,β) n

  Lebesgue measure. By the same argument as the proof of Theorem 1.1 for the case a > b 1+b , 0 < b ≤ 1 in the end of Section 3.1, we get that E P a,b is empty when a > b 1+b , 0 < b ≤ 1. When 0 < a ≤ b 1+b , 0 < b < 1, Lemmas 3.1 and 3.2 imply that

  n→∞ log µ(B(β,r)) log |r| for any r > 0 and β ∈ E(β 1 , β 2 ).

Lemma 6 . 3

 63 For any β ∈ E(β 1 , β 2 ), suppose ε(1, β) = (u 1 , u 2 , . . .). Then we have|I P n (u 1 , . . . , u n )| ≥ C(β 1 )β -(n+N ) 2

1 , for u ∈ D 1 .( 2 ) 1 c 1 ., and lim k→∞ m k -n k m k = 1 .

 112111 n→∞ log µ(I P n (u)) log |I P n (u)| for any cylinder I P n (u) which has non-empty intersection with E(β 1 , β 2 ). Without any confusion, here and subsequently, I P n stands for the cylinder I P n (u) for all u ∈ Λ n . (1) Define a probability measure supported on E(β 1 , β 2 ). Let µ([β 1 , β 2 )) = 1 and µ(I P n1 (u)) = 1 GFor all k ≥ 1, and u = (u 1 , . . . , u k+1 ) ∈ D k+1 , defineµ(I P n k+1 (u)) = µ(I P n k (u 1 , . . . , u k )) G k+1 . Estimate the local dimension lim inf n→∞ log µ(I P n ) log |I P n | where I P n ∩ E(β 1 , β 2 ) = ∅. It follows from the definition of the measure that µ(β 1 , β N )c(β 1 , β N ) i β i > k(β 1 , β N ). For any β ∈ E(β 1 , β 2 ), suppose ε(1, β) = (u 1 , u 2 , . . .). For each n ≥ 1,there exists an integer k ≥ 1 such that n k < n ≤ n k+1 . It falls naturally into three cases.Case 1. n k < n ≤ m k . It follows from (6.26) thatµ(I P n ) = µ(I P n k ) ≤ c (β 1 , β N ) -1 c(β 1 , β N ) -k β -max{2(m k-1 -n k-1 ), n k -k} and n k < m k < n k+1 . In addition, the sequences {n k } ∞ k=1 and {m k } ∞ k=1 is chosen to satisfy lim k→∞ m k -n k n k+1 + m k -n k = 0Actually, let n k = k 2k and m k = (k + 1) 2k+1 .We can obtain the required sequences with some adjustments. For all k ≥ 1, denoten k+1 = (m k -n k )t k + m k + p k where 0 ≤ p k < m k -n k . We now define V = ∞ n=1 ∞ k=n ( 1 ,..., k )∈Λ k (1,2) int I P n k+1 1 , . . . , k , 0 n k -k , (1, 0 m k -n k ) t k , 0 p kwhere Λ k (1, 2) is defined by(5.20). Since m k -n k > n k -k, we get (1, 0

  for all 1 ≤ j ≤ n}. We immediately get |I n (ω)| ≤ β -n . We write I n (x, β) as the cylinder of order n containing the point x ∈ [0, 1) and write |I n (x, β)| as its length. For simplicity, I n (x) means I n (x, β) in the rest of this paper without otherwise specified. A cylinder of order n is called full

	The cylinder I n (ω) is a left-closed and right-open interval (see [7, Lemma 2.3]). Denote by |I n (ω)|
	the length of I n (ω).

  u 1 , . . . , u n , 0 N ) ∈ Σ n-i+N β N . Notice that ω ≤ lex (ε 1 (β 2 ), . . . , ε N (β 2 ) -1) < lex (ε 1 (β 2 ), . . . , ε N (β 2 )) for any ω ∈ Σ n β N with n ≥ N . It comes to the conclusion that σ i (u 1 , . . . , u n , 0 N ) < lex (ε 1 (β 2 ), . . . , ε N (β 2 ))for any 1 ≤ i < n + N which implies that (u 1 , . . . , u n , 0 N ) is non-recurrent. Thus, by Lemma 5.3(2), we have|I P n (u 1 , . . . , u n )| ≥ |I P n+N (u 1 , . . . , u n , 0 N )| ≥ C(u 1 , . . . , u n , 0 N )β(u 1 , . . . , u n , 0 N ) -(n+N ) .It follows from the fact β(u 1 , . . . , u n , 0 N ) ≤ β 2 that |I P n (u 1 , . . . , u n )| ≥ C(β 1 )β

	-(n+N )
	2
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An infinite sequence ω = (ω 1 , ω 2 , . . .) is called self-admissible if σ i ω < lex ω for all i ≥ 1.

Denote by Λ n the set of all self-admissible words with length n, i.e., Λ n = {ω = (ω 1 , ω 2 , . . . , ω n ) : for every 1 ≤ i < n, σ i ω ≤ lex (ω 1 , . . . , ω n-i )}.

For convenience, for all 1 < β 1 < β 2 , let Λ n (β 1 , β 2 ) = {ω = (ω 1 , . . . , ω n ) ∈ Λ n : ∃ β ∈ (β 1 , β 2 ] : s.t. ε 1 (β) = ω 1 , . . . , ε n (β) = ω n }. (5.20) The definition of self-admissible word immediately gives the following result. The proof is evident and will be omitted.

The characterization of the the β-expansion of 1 was given by Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]. Theorem 5.2 (Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]) An infinite sequence (ω 1 , ω 2 , . . .) is the β-expansion of 1 for some β > 1 if and only if it is self-admissible. Now we consider the cylinders in the parameter space {β ∈ R : β > 1}.

Definition 5.2 For any ω = (ω 1 , . . . , ω n ) ∈ Λ n . The cylinder I P n (ω) associated to ω in the parameter space is the set of β ∈ (1, +∞) whose β-expansion of 1 has the prefix (ω 1 , . . . , ω n ), i.e.

The cylinders in the parameter space are intervals (see [START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF]Lemma 4.1]). The length of the cylinders of ω ∈ Λ n in the parameter space is denoted by |I P n (ω)|. For simplicity, the left endpoint and right endpoint of I P n (ω) are written as β(ω) and β(ω) respectively. To estimate the length of cylinders in the parameter space, we need the notion of recurrence time τ (ω) (see [START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF]) of the self-admissible word ω

If we cannot find such an integer k, we set τ (ω) = n. In this case, the self-admissible word ω is said to be non-recurrent.

The above definition of recurrence time immediately provides the following properties.

Remark 2 (1) Write

Then we have

(

The following result gives the upper and lower bounds of the length of the cylinder I P n (ω).

Lemma 5.3 (Schemling [START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF], Li, Persson, Wang and Wu [START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF])

We have the following inequalities:

(1)

Furthermore, by the construction of E(β 1 , β 2 ), the word (u 1 , . . . , u m k ) is non-recurrent. Thus, by Lemma 5.3, we have

As a consequence,

On the one hand, when 0 ≤ ≤ 2N , we have

.

On the other hand, when 2N < < m k -n k , we have

Moreover, by Lemma 6.3,

Hence,

Similarly, when 0 ≤ ≤ 2N , we have

Furthermore, we conclude from Lemma 6.3 that

Therefore, we have

Just proceeding as the same analysis in Section 3.2, for all the above three cases, we obtain

(3) Use the mass distribution principle (see [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF]Page 60]). Now we take any B(β, r) with center β ∈ E(β 1 , β 2 ) and sufficiently small enough r verifying

where the last inequalities is guaranteed by the fact that β(ω) ≥ β 1 for any ω ∈ Λ n (β 1 , β 2 ). By Lemma 6.3, we have

.

As a result, the ball B(β, r) intersects no more than 2 C(β 1 ) -1 β N Immediately, the combination of (6.27) and (6.28) gives

Therefore, by the mass distribution principle and letting β 1 → β 2 , we get our desired result.

7 Proof of Theorem 1.6

Akin to Section 5, we need to find a subset of E P 0,1 which is a dense G δ set in the interval [START_REF] Amou | Expansions in integer bases and exponents of Diophantine approximation[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion, Ergodic Theory Dynam[END_REF]. Since the process of our proof is almost the same as Section 5. We only provide the construction of the required set V in this section.

For all k ≥ 1, we first choose the sequences {n k } ∞ k=1 and {m k } ∞ k=1 such that m k -n k >