
HAL Id: hal-03484681
https://hal.science/hal-03484681

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NEWCAST: Joint Resource Management and
QoE-Driven Optimization for Mobile Video Streaming

Imen Triki, Rachid El-Azouzi, Majed Haddad

To cite this version:
Imen Triki, Rachid El-Azouzi, Majed Haddad. NEWCAST: Joint Resource Management and QoE-
Driven Optimization for Mobile Video Streaming. IEEE Transactions on Network and Service Man-
agement, 2020, 17 (2), pp.1054-1067. �10.1109/TNSM.2019.2952498�. �hal-03484681�

https://hal.science/hal-03484681
https://hal.archives-ouvertes.fr


1054 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020
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QoE-Driven Optimization for Mobile

Video Streaming
Imen Triki, Rachid El-Azouzi , and Majed Haddad

Abstract—Predicting future throughput in mobile networks
becomes more and more possible today thanks to the rich con-
textual information provided by mobile applications and smart-
phone sensors. It is even likely that such contextual information,
which may include traffic, mobility and radio conditions will
lead to a novel agile resource management not yet thought of.
In this paper, we propose a framework (called NEWCAST) that
anticipates the throughput variations to deliver video streaming
content. NEWCAST takes advantage of the capacity prediction
in order to better distribute the resources allocated by the sched-
uler among users over the prediction horizon. This has the
advantage of leading towards better user engagement for video
streaming users without harming other traffics present in the
system. We develop an optimization problem that realizes a fun-
damental trade-off among critical metrics that impact the user’s
perceptual quality of experience (QoE) and the cost of system uti-
lization. Both simulated and real-world throughput traces were
carried out to evaluate the performance of NEWCAST. It is
shown from our numerical results that NEWCAST provides the
efficiency that the new 5G architectures require in terms of
computational complexity and robustness. We also implement
a prototype system of NEWCAST and evaluate it in a real envi-
ronment with a real player to show its efficiency and scalability
in a multi-users scenario compared to baseline adaptive bitrate
algorithms.

Index Terms—Adaptive video streaming, quality of
experience, resource allocation, mobile network, capacity
prediction.

I. INTRODUCTION

DUE TO the breakthrough evolution of smartphones and
their large penetration in daily life, mobile networks have

witnessed an unrivaled growth of their mobile traffic posing
new challenges to their resource management. The evolution
of multimedia services in the Internet and the increasing con-
sumer demand for high definition (HD) contents have even
led the operators and the industry to rethink the way networks
are dimensioned. According to recent statistics carried out by
Cisco [3], 82% of all Internet consumers’ traffic will be http
video streaming by 2021, which explains the huge amount of
care being accorded to video streaming services.
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In the literature, many studies were carried out to iden-
tify the critical metrics that may impact the user’s percep-
tual QoE [4]–[8]. To estimate QoE, researchers have also
developed model using data from extensive subjective qual-
ity assessment tests [5], [9], [10]. One of the key factors that
may reflect the users’ experience is user engagement. Authors
in [11] quantified the user engagement and identified some
critical metrics that may affect it such as the buffering ratio,
the rate of buffering, the start-up delay, the rendering qual-
ity, and the average bitrate. It was revealed through [11] that
the rebuffering events have a significant impact on the QoE
in the sense that the time spent on rebuffering during a video
session can significantly reduce user engagement. One other
aspect that may impact user engagement is the temporal vari-
ations of the video quality. Indeed, authors in [12] claimed
that temporal variability in quality can be considered as worse
as a constant quality with a lower average bitrate. Additional
empirical results in [13] showed that humans appear to be
more forgiving on buffer stalls than they are on video qual-
ity variations. Long buffer freezing events are even not rated
worse than short buffer freezing towards high video quality
levels.

To improve user engagement in real time, DASH (Dynamic
Adaptive Streaming over HTTP) appeared as an emerging
standard for video content delivery [14]. Various commercial
solutions adopting DASH have been proposed to improve the
user’s QoE such as Microsoft’s smooth streaming, Adobe’s
HTTP dynamic streaming and Apple’s live streaming. In
DASH, each video file is divided into multiple small seg-
ments encoded at multiple quality levels, and it is up to
the client to chose the most suitable quality level (bitrate)
to stream the future segment. In the literature, adaptive
bitrate algorithms are classified in three main classes: buffer-
based [15], throughput-based [16] and buffer–throughput-
based algorithms [17]. While the first class makes the decision
based on the playback buffer occupancy state, the second class
exploits the historical TCP throughput measurements [18]
to estimate the current bandwidth and instantaneously adapt
the quality. From tests conducted on millions of real users,
authors in [15] were able to conclude that a buffer-based
approach reduces the re-buffering rate by 20% while pro-
viding better video quality. To efficiently ensure network
performance along with QoE, several researchers are explor-
ing HTTP Adaptive Streaming (HAS) enabled architectures
[8], [19], [20].
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RELATED WORK

Within these classes, many adaptive strategies were
proposed to reduce the interruption of the playback buffer.
In [17], authors proposed a predictive control algorithm
that combines throughput and buffer occupancy information.
Reference [21] developed a suite of techniques that guide
the trade-offs between stability, fairness, and efficiency lead-
ing to a general framework for robust video adaptation.
In [22], authors addressed the resource management issue
in DASH QoE provisioning while considering user prefer-
ences on rebuffering and cost of video delivery. Several works
have also explored cross-layer bandwidth allocation schemes
to improve the QoE of adaptive video streams. Cross-layer
allocation schemes that factor the channel quality, video qual-
ity requirements and encoding rate fluctuations of HAS video
streams with the goal of minimizing the transmission delays
experienced by users were proposed in [23], [24]. The authors
in [25] propose a cross-layer scheme to optimize the total
utility of all clients while maintaining stable video quality
and supporting user and device-specific needs. AVIS presented
in [26] is yet another cross-layer scheme that can separate
resource management of adaptive video flows from regular
video flows. In [27], authors investigated the buffer-based
selection problem and formulated the problem as a stochastic
optimization problem with an objective to maximize the QoE
metrics. Their solution outperforms other alternative solutions
such as FESTIVE [28], prediction method in [16], but they
obtained low improvement compared to buffer based in [15].

We have compared NEWCAST with a recent approach
developed in [15], [27]. Performance results have been
obtained through real-world LTE traces from the University
of Ghent. Our algorithm can be considered as a pure buffer-
based algorithm as the capacity estimation is unnecessary in
the steady state. Authors compared their approach with Netflix
default algorithm, and they reduced the buffer rate by 10-20%
while delivering a similar average video quality and a higher
video quality in steady state. Now, if we ignore the cost
of delivering, NEWCAST reduces the bitrate switching from
13 for throughput-based (TB) algorithms to 2, and from 27
for buffer-based (BB) algorithms in [27] to 2, which is very
well appreciated for the users’ perceptions. A more detailed
analysis is presented in Section VI-E.

Although there is a rich literature on methods used for opti-
mizing the QoE in video streaming services, very few papers
exploited the knowledge of future throughput variations for
quality adaptation. The main idea of this paper is inspired
from [29], where authors designed a QoE-driven optimization
framework that exploits the knowledge of future through-
put variations to minimize the system utilization cost while
avoiding rebuffering events. The main shortcoming of their
approach is that it is only suited for classical video stream-
ing as it ignores important visual quality metrics related to
adaptive streaming.

In [30], [31], authors design a low-latency prediction based
bitrate adaptation scheme over wireless access, which lever-
ages TCP throughput predictions on multiple time scales (i.e.,
1 to 10 seconds). They proposed several prediction methods
in order to maximize the average video quality under some

constraints on target latency, number of quality and number
of playback interruptions. These techniques may result in some
performance problems when multiple adaptive video streaming
share a wireless link. These problems manifest as large num-
ber of switching rate and inefficient utilisation of the wireless
link. Indeed, these frameworks ignored the system utilisation
and how knowledge of future capacity variations could be
used towards reducing system utilisation while maximizing
the QoE [26]. NEWCAST exploits both future temporal and
multi-user diversity to reduce the congestion in the wireless
link and to maintain high QoE in terms of average video qual-
ity, number of quality and number of playback interruptions.
The level of congestion is modeled here through the capacity
that a user can get as function of the time. Small capacity
reflects high congestion in the wireless link shared by several
users. Since video streaming is very bandwidth consuming,
its delivery cost became too high for operators to support
the increasing bandwidth demand with the arrival of ultra
high definition (UHD) video quality, which requires 16 times
more pixels than full HD. However, it is important to develop
solutions taking into account the delivery cost as well as the
QoE through different metrics like rebuffering, average qual-
ity and switching in quality levels. In this paper, we design
a QoE-driven optimization framework that realizes the trade-
off between bandwidth utilization cost and content resolution
under constraints on rebuffering events. It extends the model
developed in [29] by considering adaptive video streaming.

SUMMARY OF CONTRIBUTIONS

We summarize our main contributions as follows:
• We provide a general optimization framework for stored

video delivery that accounts for heterogeneous client
preferences, QoE models and capacity variations,

• Under the constraint of no rebuffering events, we for-
mally obtain an optimal solution where the transmission
schedule is of a threshold type and the bitrate distribution
is of an ascending order,

• We propose an efficient heuristic, which we call
NEWCAST, that performs close to the optimal approach.
NEWCAST performances are evaluated through simula-
tions under the constraint of no rebuffering events,1

• We study the characteristics of NEWCAST in terms of
robustness (using real traces) and complexity. We then
compare it to baseline adaptive bitrate algorithms,

• We conduct extensive simulations to evaluate the
proposed solution. Experimental results indicate that
NEWCAST achieves a good trade-off between the cost
of the delivery and QoE metrics. Noticeably, we also
observe that NEWCAST can be stabilized effectively and
video bitrate switches occur rarely (at the maximum num-
ber of bit-rate levels). The freezing events can be almost
completely avoided if the predictive capacity can down-
load a video with lower quality. Our solution clearly
outperforms the solution proposed in [27],

1Due to the lack of space, we moved the results where we tolerate buffer
stall during the video duration in [32].
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• We implement NEWCAST in a real environment and
adapt it for real interactions with a real DASH player. We
present a detailed design of NEWCAST at client side and
how it interacts with the base station in a multi-users sce-
nario. This allows NEWCAST to work with any existing
bases station scheduler, facilitating simpler deployments.

The rest of the paper is organized as follows: In Section II,
we introduce the system model and formulate the optimization
problem. In Section III, we discuss the properties of
the optimal solution. In Section IV, we propose optimal
approaches and heuristic algorithms for the problem resolu-
tion with the constraint of no rebuffering events. Then, in
Section V, we consider the hypothesis to allow rebuffering
events during the streaming session. Section VI is dedicated to
both simulations and numerical results and Section VII is ded-
icated to experiments. We conclude the paper in Section VIII.

II. PROBLEM FORMULATION

We consider a video file stored in a video streaming server
and divided into N segments of equal length in second. Each
segment is composed of S frames and encoded at L different
bitrates {b1, . . . , bL}, such that bi < bj for i<j. To stream the
video, the client requests the segments to the server one by
one and indicates at each request the video quality (bitrate)
needed for the streaming. Denote by b(t) the video bitrate
being streamed at time t, and by γ(t) the quotient bL

b(t)
where

bL is the highest video bitrate. We assume that, at the client
side, the video frames are played at a rate of λ frames per
second (fps), and that, before starting the video, a prefetch-
ing stage is introduced till having Q0 frames in the playback
buffer. Thus, Q0 represents the number of accumulated frames
that playout buffer should reach before the media player starts
to play. To avoid buffer overflows, we assume that the playback
buffer is very large.

In our problem modelling, we exploit the knowledge of the
user’s future available throughput (hereinafter called network
capacity) to optimize the system usage cost and the QoE. Let
c(t) be the network future capacity at time t and r(t) be the
transmission bitrate of the user at that time, note that 0≤ r(t)≤
c(t). Inspired by [29], we define the system utilization cost as

σ =
1
T

∫ T

0

r(t)
c(t)

dt , (1)

where r(t)
c(t)

is the proportion of resources allocated to the user
at time t (can be interpreted as the proportion of time the user
is occupying the network if we use discretize the time), and T
defines the video length in second. We compute the number
of frames that will be streamed with quality level j during the
streaming session as∫ T

0

δ{b(t)=bj }r(t)λ

b(t)
dt =

∫ T

0

γj (t)r(t)λ
bL

dt , (2)

where

γj (t) =
{

γ(t) if b(t) = bj , j ∈ [1 . . .L],
0 otherwise. (3)

Assume that the user’s perception on the video quality levels
can be expressed by the mean of weights {w1, . . . ,wL} such

that wj corresponds to quality level j and wi < wj for i<j.
Hence, we define the weighted average quality of the video as

ρ =

∑j=L
j=1 wj

∫ T
0 γj (t)r(t)λdt

bL × (N × S )

=

∑j=L
j=1 wj

∫ T
0 γj (t)r(t)dt

SL
, (4)

where SL represents the video total size in bits when it is
coded with the highest bitrate level bL, i.e., SL = bL×N×S

λ .
Normally, a high video quality comes at a high cost.

However, it may happen that a user wishes to reduce his cost
in return of a low quality, or that an operator wishes to save
the network resources for further usage. To cover such situa-
tions, we define a positive parameter π to make the tradeoff
between system utilization cost and video quality. Therefore,
we define our optimization cost function as

F = σ − π × ρ.

Remark 1: All results obtained in this paper are still avail-
able for other types of function F that satisfy the following
assumptions: the objective function F is increasing in system
utilisation and decreasing in average quality of the video.

Let u(t) be the cumulative number of arrival frames at time
t and l(t) be the cumulative number of frames being already
played at that time. Therefore, we define the buffer underflow
constraint as u(t)≥l(t) ∀ t≤ T. Given the transmission bitrate
r(t) and the corresponding video bitrate b(t), we express the
network frame rate as λ r(t)

b(t)
.

Denote by (r, γ) the video transmission strategy during the
streaming session, where r defines the transmission schedule
and γ characterizes the distribution of video bitrates. We start
with the case where no rebuffering events will happen during
the streaming session. Hence, we summarize our optimization
problem, as follows2

min
(r ,γ)

F(r , γ) =
1
T

∫ T

0

r(t)
c(t)

dt − π

×
∑j=L

j=1 wj
∫ T
0 γj (t)r(t)dt

SL

s.t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ t
0

λ c(t)γ1

bL
≥ l(t), ∀t ≤ T

∫ t
0

∑j=L
j=1

λ r(t)γj (t)
bL

≥ l(t), ∀t ≤ T

∫ T
0

∑j=L
j=1

λ r(t)γj (t)
bL

= l(T ),

(5)

where the first constraint ensures the existence of at least one
solution which corresponds to a mono-quality streaming using
the lowest video bitrate and the whole resources. At the end
of Section VI-B, we study the case where several rebuffering
events are tolerated during the streaming session.

2We emphasize that all results obtained hereafter can be extended to other
functions such as logarithm function. The more important assumption needed
for our theoretical results is to assume that the objective function F is increas-
ing in system utilization and decreasing with the weighted average quality of
the video.
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Fig. 1. Sketch of proof of the threshold strategy. Here, the hatched area on
the right can be entirely shifted to the left, which gives a value of β equal
to 1.

III. PROPERTIES OF OPTIMAL SOLUTION WITHOUT

REBUFFERING EVENTS

A. The Threshold Scheme for Transmission Schedule

Definition 1: Giving the network capacity c, we define the
threshold transmission schedule by

rth(t) =
{

c(t) if c(t) ≥ α
0 otherwise. (6)

Proposition 1: Assume that there exists a feasible solution
that satisfies the constraints in (5), then there exists an optimal
strategy (rth , γrth ) of optimization problem (5), where rth is
a threshold transmission schedule.

This propriety was actually inspired by [29]. Nevertheless,
authors in [29] assumed a classical video streaming with only
one bitrate level, whereas we consider adaptive video stream-
ing with multiple bitrate levels, which makes our optimization
problem more appealing as it fits current video streaming
schemes.

Proof: Let c and r be the network capacity and the user
transmission bitrate on a given interval of time [0, ε]. Without
loss of generality3 and for the sake of illustration, we choose
an interval of time where c is monotonically decreasing as
shown in Fig. 1. As we have r(t) ≤ c(t) ∀ t ∈ [0, ε], then
∃ (δ, β) ∈ [0, ε

2 ] × [0, 1] such that ∀ t ∈ [0, δ]

c(t) ≥ c(t + ε − δ) (7)

and
∫ δ

0

r(t) + βr(t + ε − δ)
c(t)

dt ≤ δ, (8)

where Inequality (7) derives from the decreasing pace of c,
and Inequality (8) derives from the fact that some data at the
end can be transmitted beforehand. On the other hand, we have

∫ ε

0

r(t)
c(t)

dt =
∫ δ

0

r(t) + βr(t + ε − δ)
c(t)

dt +
∫ ε−δ

δ

r(t)
c(t)

dt

+
∫ ε

ε−δ

r(t)
c(t)

dt −
∫ δ

0

βr(t + ε − δ)
c(t)

dt . (9)

3The proof still holds for a monotonically increasing c.

Using Inequality (7), we obtain
∫ ε

0

r(t)
c(t)

dt ≥
∫ δ

0

r(t) + βr(t + ε − δ)
c(t)

dt +
∫ ε−δ

δ

r(t)
c(t)

dt

+
∫ ε

ε−δ

(
r(t)
c(t)

dt
)
−

∫ ε

ε−δ

βr(t)
c(t)

dt . (10)

Obviously, if
∫ δ

0

r(t) + βr(t + ε − δ)
c(t)

dt = δ,

then all the given capacities in [0, δ] will be used, i.e., all the
white surface in Fig. 1 will be filled. In that case, we define
a new transmission schedule r ′ such that

r ′(t) =

⎧⎨
⎩

c(t) t ∈ [0, δ]
r(t) t ∈ [δ, ε − δ]

(1 − β)r(t) t ∈ [ε − δ, ε]
(11)

which gives ∫ ε

0

r(t)
c(t)

dt ≥
∫ ε

0

r ′(t)
c(t)

dt

Otherwise, if
∫ δ

0

r(t) + βr(t + ε − δ)
c(t)

dt < δ, (12)

then β will be equal to 1 since our objective is to shift as much
data as possible from the times where the capacity is low to
the times where the capacity is high. Therefore, to completely
use the highest capacities, we must repeat the same shifting
operation on [0, ε−δ] considering a new transmission function
r ′ verifying{∫ δ

0
r ′(t)
c(t)

dt =
∫ δ
0

r(t)+βr(t+ε−δ)
c(t)

dt
r ′(t) = r(t) ∀ t ∈ [δ, ε − δ].

(13)

In both cases, Inequality (10) holds, which means that the
highest capacities are less expensive than the lowest capacities
in terms of network utilization cost if they were used for trans-
mitting data. If we keep repeating the shifting operation on all
the future horizon, we end up having all the highest capacities
entirely used and all the lowest one unused, which is clearly
a threshold transmission schedule as defined in Definition 1.

Now, we assume that, knowing c, there exists a feasible
solution (r, γ) that satisfies the constraints in (5). To per-
form the data shifting operation on the transmission schedule,
three main conditions should be verified: (i) The shifted data
must have the same video bitrate as the bitrate used in the
shifted-to time, (ii) data shifting shall not interrupt a segment
transmission schedule, (iii) data shifting shall not violate the
stall constraints.

Actually, shifting the data transmission can be either done
to the left (earlier) or to the right (later). As we assume a
very large playback buffer, sending the video data at earlier
times will not cause packets rejection and, thus, will not cause
video stalls. In other words, any data shifting to earlier times of
higher capacities will be performed without violating the stall
constraints. However, when the higher capacity values come
later, the data shifting must be checked whether it violates
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Fig. 2. Ascending bitrate level strategy.

the stall constraints or not. As we only shift the data trans-
mission without changing their corresponding video bitrates,
we end up having a new bitrate level strategy γrth that gives
the same weighted average quality as given by γ. Thereby,
the resulting strategy (rth , γrth ) outperforms strategy (r, γ),
which completes the proof.

In practice, the setting of the transmission threshold α does
not follow the data shifting process of the proof. We will
thus design an approach to build a threshold strategy for the
transmission schedule.

B. Ascending Bitrate Level Strategy

In this section, we study the proprieties of the bitrate level
strategy under a threshold based transmission schedule. More
specifically, we analyze the impact of the video quality levels’
order on the setting of α.

Definition 2: We say a bitrate level strategy is ascending if
the quality levels of the video segments increases during the
session, i.e., for all 0 ≤ t ≤ t ′ ≤ T

b(t) ≤ b
(
t ′

)
, i.e., γ(t) ≥ γ

(
t ′

)
.

Proposition 2: Assume that there exists a threshold-based
solution (rth , γ) that satisfies the constraints in (5), then
there exists a threshold-based ascending bitrate level solution
(r ′th , γ′) that optimizes problem in (5).

Proof: Pick a suite of N segments with a non ascending
order quality levels, in a way that they can be streamed without
video stalls over the future horizon. Then, according to this
quality levels’ order, set a threshold-based solution (rth , γ)
with threshold α such that, beyond this threshold, the first
constraint violation will occur at time t = sn . Suppose that,
under this solution, two bitrate levels b1 and b2 will be respec-
tively streamed over [τ, τ + δ] and [τ ′, τ ′ + δ′] as depicted in
Fig. 2, such that

τ + δ < sn , τ ′ > sn , b1 > b2,

and ∫ τ+δ

τ
rth(t)dt =

∫ τ ′+δ′

τ ′
rth(t)dt .

Let frth(t) be the network frame rate at time t. As we have
b1 > b2, then the number of frames that will be streamed
during [τ ′, τ ′ + δ′] is greater than the number of frames that
will be streamed during [τ, τ+δ]. Therefore, ∃ β > 0 such that

∫ τ ′+δ′

τ ′
frth(t)dt =

∫ τ+δ

τ
frth(t)dt + β. (14)

Fig. 3. Impact of bitrates switching on the cumulative number of arrival
frames u.

Suppose that we switch between b1 and b2 over these two
intervals of time. Then, the number of cumulative received
frames at sn will be increased by β. Let u and u ′ be the
cumulative number of arrival frames functions before and after
switching the bitrates. therefore, we have

u ′(sn) = u(sn) + β. (15)

Actually, if u ′(sn) is large enough and allows increasing
the threshold beyond α without violating the stall constraint
at t = sn and later, then the cost function will be reduced.
Otherwise, the threshold remains the same without chang-
ing the system performance. In fact, as explained in the
previous section, streaming the data beforehand will only add
more flexibility toward the stall constraints since the buffer is
assumed to be very large. We show by the sequel that, even
if we switch between the two bitrate levels the streaming will
remain without video stalls under the same threshold since
u ′ ≥ u(t) ∀t ∈ [0,T ] (see Fig. 3). Let fr ′th be the network
frame rate function after switching. Then, we have

fr ′th(t) > frth(t) ∀t ∈ [τ, τ + δ], (16)

fr ′th(t) < frth(t) ∀t ∈ [
τ ′, τ ′ + δ′

]
, (17)∫ τ+δ

τ
fr ′th(t) − frth(t) dt

=
∫ τ ′+δ′

τ ′
frth(t) − fr ′th(t) dt = β. (18)

We further define u ′ as

u ′(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t) t < τ

u(τ) +
∫ t
τ fr ′th(s) ds t ∈ [τ, τ + δ]

u(t) + β t ∈ [
τ + δ, τ ′

]
u
(
τ ′

)
+ β +

∫ t
τ ′ fr ′th(s) ds t ∈ [

τ ′, τ ′ + δ′
]

u(t) t ≥ τ + δ′.
(19)

Actually, the cumulative watched frames function l will
remain the same as the playback frame rate λ remains the same
for all bitrate levels. Now, we see clearly that ∀ t �∈ [τ ′, τ ′+δ′],
u ′(t) ≥ u(t). However, for t ∈ [τ ′, τ ′ + δ′], we have

u ′(t) − u(t) = β −
∫ t

τ ′
frth(s) − fr ′th(s) ds, (20)

which is positive according to (17) and (18). To conclude,
putting the segments in an ascending bitrates’ order may
allow a higher transmission threshold which further reduces
the cost function without degrading the average quality of the
video.
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IV. ALGORITHMIC APPROACHES UNDER NO

REBUFFERING EVENTS CONSTRAINT

In this section we solve optimization problem (5) through
algorithmic approaches based on the properties of the optimal
solution characterised in the previous section. We provide an
approach that compute the optimal threshold-based solution
but this algorithm is faced with a high computational com-
plexity necessary to obtain the optimal solution. Due to this
shortcoming, we propose an alternative heuristic approaches
to obtain nearly optimal solutions under the assumption of no
rebuffering events during the session. Afterwards, we extend
the study to the case where the number of video playback
interruptions (stalls) can be tolerated to a certain level.

A. Optimal Threshold-Based Solution

We summarize here our global optimal approach in three
main steps : (i) first, we look for all the possible values of α ∈
[αmin , αmax ] that satisfy the constraints in (5) and associate
to each one the birates level strategy that gives the highest
possible weighted average quality, (ii) for each threshold and
its corresponding video quality, we compute the resulting cost
function F , (iii) the optimal solution corresponds to the one
that minimizes F .

1) Optimal Transmission Schedule α: To find the optimal
threshold α with the lowest complexity, we propose to sort
the future capacity in an ascending way, then try its ascendent
values as thresholds till reaching the one that causes video
stalls. This approach will determine all the possible thresh-
olds [αmin , αmax ]. Fig. 8 illustrates the example used for the
simulation section.

2) Optimal Bitrate Level Strategy: Our approach for gen-
erating an optimal ascending bitrate level strategy consists of
using a tree of choice of N levels as depicted in Fig. 4, where
each level corresponds to a video segment. The nodes of a
tree level i correspond to all possible quality levels that can
be assigned to segment i. The parent of a node (if it exists)
has either a worse or equal quality. The children (if they exist)
have either a better or equal quality. We construct the tree
level by level to form the path that gives the optimal sequence
of bitrates. At each level, we remove the nodes whose paths
cause a constraint violation in order to minimize the number
of nodes at the bottom of the tree. At each level, we compute
the partial weighted average quality till reaching the end of
the tree. The optimal sequence of bitrates corresponds to the
path that maximizes the total weighted average quality. The
complexity of this algorithm may reach up to O((L + 1)N ),
which makes it non suited for online streaming services.

B. NEWCAST Design

NEWCAST (aNticipating qoE With threshold sCheme And
aScending biTrate levels) follows the same principle as the
optimal global approach, but it uses two heuristics INVEST
and AWARE for respectively computing the thresholds and
generating the sequence of bitrates. Let γα and Fα be
the ascending bitrate levels strategy and the cost function
under rα-based transmission schedule. The main steps of this
heuristic are described in Algorithm 3.

Algorithm 1: INVEST: INcrease With VariablE Foot STep
Data: c, i, Q

1 SortedC=sort(c),
2 CumSortedC=CumulativeSum(SortedC),
3 ind = max(find (CumSortedC ≤ i × Q)),
4 return SortedC(ind)

Fig. 4. Tree of choice for optimal ascending bitrate.

Fig. 5. INVEST: INcrease with VariablE foot STep.

1) INVEST (INcrease With VariablE Foot STep): This
heuristic also follows the same principle as the optimal
approach. However, instead of trying all the sorted capacity
values as thresholds till violating the contraints, it defines a
variable foot step to increase the threshold initially set to cmin .
The values taken by this foot step will depend on the dynamic
of the network capacity, Let {α1, . . . , αM } ⊂ [αmin , αmax ]
such that αi+1 > αi , i ∈ {1, . . . ,M − 1}. To compute αi+1

knowing αi , we set the number of bits that we want to aban-
don through increasing the threshold (denoted by Q). Then,
we find the capacity value (threshold) that allows doing that
as described in Fig. 5. αi+1 −αi will define the i th foot step
(See Algorithm 4).

2) AWARE (Anticipating Qoe With Ascending BitRate lEv-
els): This heuristic has a polynomial complexity and is quite
faster than the optimal approach. Our simulation results show
that its outcoming solution approaches the optimal solution
at almost 98% in terms of the video average quality. We
summarize its steps in the few following points:

At the beginning, we assign the lowest bitrate to all video
segments. Then, starting from the end of the video (latest
segment) back to the beginning, we increase the bitrate of
each segment by one level as long as the stall constraints are
satisfied. We repeat this step many times till reaching the high-
est available bitrate (See Fig. 6). By following this approach,
the number of times the bitrate will be increased is at most
equal to L−1 (see Algorithm 2). To reduce the startup delay,
which is a prominent key QoE factor (but not included in
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Algorithm 2: AWARE: Anticipating QoE With Ascending
bitRate lEvels

Data: c, α, videoProperties, b1 . . . bL
1 s = 1, SegmentsBitrates[1 : N ]=bs ,
2 while s < L do
3 s = s + 1,
4 Start=FirstSegmentOfBitrate(bs−1),
5 End=N,
6 middle = (End-Start) div2 +1,
7 while middle ≥ 1 and End ≥ Start and middle ≤ End ) do
8 init=SegmentsBitrates,
9 SegmentsBitrates[middle:End]=bs ,

10 SegmentsBitrates[1:StartupSegments]=b1,
11 Test =

ExistViolation(SegmentsBitrates,c, α,videoProperties),
12 if Test then
13 SegmentsBitrates[middle:End] = init[middle:End],
14 middle=middle+(End-middle) div2 +1,

else
15 End=middle-1,
16 middle=Start+(End-Start) div2 +1,

end
end

end
17 [rα,γα]=TransmitVideo(c, α, VideoProperties,

SegmentsBitrates),
18 Test = ExistViolation(SegmentsBitrates, c, α, VideoProperties),
19 return (Test , rα, γα)

Algorithm 3: NEWSCAST: aNticipating qoE With
Threshold sCheme and aScending biTrate Levels

Data: c, VideoProperties, L,w ,Q
1 α=cmin , i = 1,
2 [PossibleTransmission, rα, γα]=AWARE(c, α, videoProperties,

L),
3 while PossibleTransmission do
4 Fα=computeObjFunction (c, rα, γα,w ),
5 i=i+1,
6 α = INVEST(c, i ,Q),
7 [PossibleTransmission, rα, γα]=AWARE(c, α,

videoProperties, L),
end

8 F∗
α∗=min{Fα},

9 αth=α∗,
10 return (αth ,γαth )

our optimization problem), we set the startup-segments to the
lowest bitrate and stream them using a greedy4 transmission
rather than a threshold-based transmission. As shown in Fig. 7,
an inherent advantage of this algorithm is that it ensures a
progressive increase of the bitrate instead of an aggressive
increase as given by the optimal approach, which is quite more
appreciated by the users.

V. ALGORITHMIC APPROACHES UNDER

REBUFFERING EVENTS

So far, we have assumed no rebuffering events during the
streaming session, i.e., the future capacity has been assumed
quite sufficient to allow streaming the hole video at the lowest
bitrate. In extreme cases, the capacity may not be sufficient

4A greedy transmission uses all the available network capacities.

Fig. 6. Illustrative example of the bitrate increasing steps used in AWARE.

Fig. 7. Comparative example between optimal approach and AWARE.

and may cause the player having video stalls even with the
lowest quality level. End-user may prefer to tolerate few stalls
in order to have a better quality. To go further with the analysis,
we adapt our approach to a similar case where q stalls can be
tolerated during a session. The optimization problem in (5)
becomes

min
(r ,γ)

F(r , γ) =
1
T

∫ T

0

r(t)
c(t)

dt − π

×
∑j=L

j=1 wj
∫ T
0 γj (t)r(t)dt

SL
,

s.t

{∫ T
0

∑j=L
j=1

λ r(t)γj (t)
bL

= l(T ),
F(r ,γ)(T ) ≤ q ,

(21)

where F(r ,γ)(T ) is the number of stalls during the streaming
session under strategy (r, γ).

Lemma 1: Any optimal strategy will experience exactly q
stalls.

Proof: Assume that there exists an optimal solution (r, γ)
that has experienced q ′ stalls such that q ′ < q . Suppose that
under (r, γ), x0 frames have been downloaded over [τ, τ + x̄0]
where x̄0 is the time needed to download x0 frames. By
imposing an additional starvation at time τ , the number of
cumulative frames at playout buffer will be increased by x0.
This allows to give more opportunity for the transmission
schedule to reduce the cost of transmission without chang-
ing their corresponding video bitrate γ and without violating
the stall constraints. Thus, the strategy (r, γ) may decrease the
cost function F by forcing an additional stall, which completes
the proof.

The following result extends the proprieties of the optimal
solution by including the possibility of rebuffering. By
Lemma 1, the following corollary holds.

Corollary 1: Assume that there exists a feasible solution
that satisfies the constraints in (21), then there exists an optimal
strategy (rth , γth) of optimization problem (21), where rth is
a threshold transmission schedule and γth is a threshold-based
ascending bitrate level solution.
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Algorithm 4: AWARE-MSq : AWARE With at Maximum
q Stalls

Data: c, α, videoProperties, b1 . . . bL, maxStalls=q,
1 s = 1, SegmentsBitrates[1:N]=bs ,
2 while s < L do
3 s = s + 1,
4 Start=FirstSegmentOfBitrate(bs−1),
5 End=N,
6 middle = (End-Start) div2 +1,
7 while middle ≥ 1 and End ≥ Start and middle ≤ End ) do
8 init=SegmentsBitrates,
9 SegmentsBitrates[middle:End]=bs ,

10 SegmentsBitrates[1:StartupSegments]=b1,
11 nbrStalls = ComputeViolations(SegmentsBitrates, c, α,

videoProperties),
12 if nbrStalls > maxStalls then
13 SegmentsBitrates[middle:End] = init[middle:End],
14 middle=middle+(End-middle) div2 +1,

else
15 End=middle-1,
16 middle=Start+(End-Start) div2 +1,

end
end

end
17 [rα,γα]=TransmitVideo(c,α, VideoProperties,

SegmentsBitrates),
18 nbrStalls = ComputeViolations(SegmentsBitrates,c,α,

VideoProperties),
19 Test= nbrStalls ≤ maxStalls,
20 return (Test,rα,γα)

With the above results, the algorithmic approaches under
no rebuffering events still hold for the general case where the
number of video playback stalls can be tolerated.

In Algorithm 4, we present the modified NEWCAST algo-
rithm where we allow video playback stalls to happen. The
major modification concerns only AWARE algorithm to com-
pute the optimal bitrate level strategy since INVEST algorithm
remains unchanged under rebuffering events.

VI. SIMULATIONS AND NUMERICAL RESULTS

A. Simulation Tools and Setup

We performed all our simulations using MATLAB server
R2015b on a Dell PowerEdge T420 Intel Xeon running Ubuntu
14.04. The streaming session was configured according to
some DASH and Youtube parameters [33], [34]. To the best of
our knowledge, no explicit way does really exist to compute
the weights that can be accorded to the video bitrates. In [35],
authors were exploring a QoE estimation model in which they
were assigning to each video segment a QoE metric with a
logarithmic variation as function of the bitrate and the motion
factor. In [36], however, authors used a MOS (Mean Opinion
Score) factor in order to reflect the user’s satisfaction toward
each quality level. In this paper, we assign the weights to the
bitrates in a proportional way as follows: wi = bi/

∑L
i=1 bi ,

where bi is the i th bitrate level and wi is its corresponding
weight. All the parameters are listed in Table I. For the sake
of accuracy, we explore the values of the threshold α using the
optimal approach. Our heuristic (INVEST) will be discussed
later in Section VI-D.

TABLE I
PARAMETERS OF MATLAB SIMULATIONS

Fig. 8. Network capacity and its corresponding threshold α.

B. Framework Performance

As a first step, we generate the network capacity randomly
around a constant average value. This capacity will serve us
to show the main characteristics of the proposed algorithm.
Then, we resort to use real-world capacities for robustness and
performance comparison with baseline rate adaptation policies.
Fig. 8 illustrates the dynamic of the capacity along with its
correspondent threshold values α. Note that, when α exceeds
its maximum value, a stall constraint will be violated. By the
sequel, we define our benchmark as the case where all the
future capacity is used and the highest possible video qual-
ity is delivered, i.e., α = cmin . The execution of NEWCAST
using the above parameters shows a variation in the system
performance for π ranging from 4.50 to 4.70. Beyond the lim-
its of this interval, the system performance remains the same.
In the following analysis, we will only focus on three values of
π: low, medium and high. Let us denote by απ the outcoming
threshold after running NEWCAST using the a chosen value
of π.

Fig. 9 illustrates the variation of απ as function of π. A
small value of π results in a high απ as it prioritizes the
system utilization cost. A big value of π, however, results
in a low threshold as it gives more importance to the average
quality. As a matter of fact, a medium π leads to an in-between
threshold that balances QoE and system cost.

In Fig. 10, we plot the playback buffer state evolution over
time and its correspondent sequence of bitrates for the three
aforementioned values of π. When π is small, many silent
times are noticed and the buffer state evolves with high slopes
(mainly at the beginning and at the middle of the video).
This is actually due to the low quality of the segments being
streamed. Note that the player streams as much frames as the
bitrate is low. For the medium value of π, more flexibility is
noticed with shorter silent times and better quality. As for the
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Fig. 9. Variation of απ as function of π.

Fig. 10. Playback buffer state evolution and corresponding sequence bitrates
for different π.

big value of π, no silent times are noticed since almost all the
network resources are used. The buffer state evolves gradually
with low slopes, given the fact that segments of high-order
quality are being streamed.

Now, we explore the idea of enforcing a stall during the
streaming session. Let For be the original cost function before
enforcing a stall, and Fst be the resulting cost function after
enforcing a stall. In Fig. 11, we plot again the playback buffer
state evolution over time for the three values of π, and plot
below the variation of Fst as function of the stall emplace-
ment (1st segment, 2nd segment, etc.). As depicted in the
figure, for π = 4.5, Fst experiences high fluctuations around
For mainly when the stalls are enforced at the beginning of
the video. The lowest values of Fst are noticed when the
stalls are enforced at the moments where the original buffer
state is critical, i.e., a low quality with no much flexibility
toward the stall constraint. Note that, the critical states of the
buffer at these moments prevent NEWCAST from setting a
higher threshold. When a stall is enforced there, the video is
divided into two independent parts and the streaming strategy
is optimized before and after the stall, leading to two differ-
ent thresholds that reduce the overall system utilization cost.
Now, by increasing π, we observe a quasi-constant decrease
in Fst . A stall enforcement certainly enhances the quality at
the beginning part of the video, but it condemns the flexibility

and the average quality for the rest of the video. The degra-
dation in the global quality induces a reduction in the global
system cost that outweighs the resulting Fst . To sum it up,
a stall enforcement may be only interesting when the value
of π is low since it may reduce the system cost. A judicious
choice of its emplacement would be at the moments where the
original buffer state is critical.

C. Robustness Under Prediction Errors

One key limitation of the proposed idea is that there is
still no explicit approach that accurately predicts the network
capacity over more than ten seconds to the future. In order
to evaluate the robustness of NEWCAST, we used the real
throughput traces of the HSDPA dataset [1]. This dataset con-
sists of 30 minutes of continuous throughput measurements
of a moving device in Telenor’s 3G/HSDPA wireless mobile
network. We used the traces of the Ljabru-Jernbanetorget tra-
jectory as it has the least variance in the throughput spatial
variation (see Fig. 13 and Fig. 14). A temporal mapping of
the throughput variation was performed by supposing the user
moving at a speed of 50 Kmph. Using the same parameters of
Table I, we computed the performance Pav of NEWCAST by
averaging all the throughput realizations, then, we computed
its performance Preal by using each throughput realization
apart. The robustness of the framework was evaluated through
the performance averaged error rate

Perror =
∣∣∣∣Preal − Pav

Pav

∣∣∣∣.
Results shown by Fig. 14 depict an averaged error rate less
than 15% for both the system cost and the average quality.
They even depict a lower sensitivity of the system cost to
prediction errors when π is smaller, and a lower sensitivity of
the average quality to prediction errors when π is higher. In
general, we can claim that our scheme performs pretty well
even with the presence of real prediction errors.

D. Complexity

1) Framework Performance Under Bigger Time Slots: In
Fig. 15, we compute the mean execution time of NEWCAST
(using optimal thresholds) by averaging results on 100 (ran-
domly generated) capacities and using different time slots
(from 1 s to 5 s). It takes almost 4 s to compute the final
strategy with a time slot equal to 1 s. As expected, using big-
ger time slots takes much shorter time. However, this comes
at the expand of the final result accuracy depending on the
value of π. In the same figure, we show the system response
(through F) for each time slot by averaging results over the
100 capacities. We compute an accuracy rate factor (≤ 1) by
comparing the obtained results with the result of 1 s time slot.
In our model, we assume that in a time slot only one bitrate
level can be streamed, which explains why using bigger time
slots may add constraints to the QoE. For high values of π,
very slight degradation is noticed since the system tends to use
all the network resources. However, for low values of π, the
constraints have bigger impact since the system tends to use
less network resources, which explains the higher degradation
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Fig. 11. System performance with buffer stall enforcement.

Fig. 12. Experimental spatial variations of the capacity for the tramway
Ljabru-Jernbanetorget trajectory.

Fig. 13. Average spatial variations of the capacity for the tramway Ljabru-
Jernbanetorget trajectory.

Fig. 14. Average error rate on the system performance under real throughput
prediction errors.

in the QoE, and, by the sequel, the higher reduction in the
system cost.

2) Framework Performance Under Different Values of
Q: Here, we set the time slot to 1 s and run NEWCAST
using different values of Q (between 1 Mbit and 5 Mbits) by
averaging results on the same 100 capacities. Results in Fig. 16

Fig. 15. Accuracy and complexity variations with different time slots.

Fig. 16. Accuracy and complexity variations with different Q.

show that setting Q to the average throughput (2Mbps) leads
to a high accuracy rate (≈ 1) with an execution time of 4 s (as
for optimal thresholds). Setting lower values of Q, increases
the execution time and keeps almost the same accuracy on F .
For higher Q, the complexity is notably reduced, but slight
degradations are noticed on the accuracy rate (less than 16%).
A judicious choice of Q should then be made depending on
the operator’s preferences: a high Q gives a high QoE and a
very low complexity, whereas, a low Q gives a low system
cost and a higher complexity.

E. Comparison With Baseline Adaptive Bitrate (ABR)
Algorithms

In this section, we compare NEWCAST to two baseline
ABR algorithms: one is throughput-based (TB-ABR) in [16],
the other is buffer-based (BB-ABR) in [27]. We develop each
algorithm on MATLAB and simulate its behaviour on different
video streaming sessions. We keep all the parameters setting
of Table I.
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1) ABR Algorithms: The key difference between current
ABR algorithms is the logic they use for bitrate selection.
As found in the literature, ABR logics can be categorized in
two main classes: throughput-based class [21], [34], [37] and
buffer-based class [15], [27], [38]. While the first class relies
only on the next throughput prediction to decide on the current
bitrate selection, the second class relies only on the current
playback buffer occupancy. Few algorithms, however, were
proposed as a mixture of throughput-based and buffer-based
algorithms [17].

2) TB-ABR and BB-ABR Configuration (Criteria of Choice
for Comparison With NEWCAST): The main characteristic of
NEWCAST is that it increases the quality of segments pro-
gressively to avoid bothering the user with sudden quality
jumping. To do so, we configure the TB-ABR and the BB-
ABR algorithms to be both conservative. For TB-ABR, we
use the smoothed throughput estimation such that

T̂ (i + 1) =
i∑

k=i−3

pkT (k), (22)

with p1 = 0.5, p2 = 0.3, p2 = 0.15 and p2 = 0.05. T(i)
designs the throughput measured after downloading segment
i, and T̂ (i +1) is the throughput estimate of segment i+1. As
for the bitrate selection, we use a method close to that defined
in “Microsoft Smooth Streaming”.

For BB-ABR, we use the algorithm in [27]. The bit rate
selection is determined by a mapping function that charac-
terises the relation between the bitrate of the next segment
and the current buffer size. The algorithm defines two thresh-
olds Bmin and Bmax and design a buffer-based controller that
take into account several metrics such as playback freezing,
bitrate switch and video quality.

3) Capacities of Test: In this section, we use the real
throughput traces of the online 4G/LTE dataset [2] collected
for the car trajectory. Both NEWCAST and the ABR algo-
rithms are evaluated. Our analysis is driven by the three
metrics that mostly characterize NEWCAST: the system cost,
the per segment average video quality and the average number
of quality switching. In Fig.17, we plot each of these metrics
as function of π for π ranging from 1 to 7.

4) Main Comparison Points:
a) TB-ABR vs. NEWCAST: According to Fig. 17, the

main advantage of NEWCAST is that it can achieve the same
quality as TB-ABR with a system utilization cost reduced by
at least 21%, and that it can achieve the same system cost with
an average quality enhanced by up to 28%. This is mainly due
to the smart threshold-based-strategy of NEWCAST that uses
the less expensive resources depending on the value of π. It
is then up to the operator to make the tradeoff and to wisely
calibrate the value of π to outperform the TB-ABR algorithm.
A further important observation lies in the very reduced num-
ber of quality switching achieved by NEWCAST (at most 2)
compared to that achieved by TB-ABR (around 13).

b) BB-ABR vs. NEWCAST: We notice from Fig. 17
that BB-ABR is very greedy toward the resource usage
compared to TB-ABR, which makes it give near performance
to NEWCAST when applied with high values of π. Actually,

Fig. 17. TB-ABR vs. NEWCAST and BB-ABR vs. NEWCAST (without
stalls).

for some values of π, NEWCAST outperforms BB-ABR,
but this outperformance is marginal. In fact, the same aver-
age quality can be achieved with a system cost reduced by
11.68%, and the same system cost can be achieved resulting
in an average quality increased by 3.49%. The greedy char-
acter of BB-ABR can be either emphasized or de-emphasized
depending on the mapping function, which chooses the bitrate
of the next chunk based on the current buffer state. So, it
may happen that BB-ABR uses all the resources and gives
a higher average quality than NEWCAST, but this outper-
formance will not exceed 2% since the heuristic used by
NEWCAST approximates the optimal quality arrangement by
98%. Overall, the most noteworthy advantage of NEWCAST,
is that it gives a far less number of quality switching (at most
2 against 27 with BB-ABR), which is very well appreciated
for the users’ perceptions. Moreover, NEWCAST limits the
risk to have a starvation compared to BB-ABR. Recall that
NEWCAST avoid a starvation when the predictive capacity
allows to download the video with low quality.

In conclusion, when the knowledge of the future throughput
is perfect,5 NEWCAST can perform better than the baseline
TB-ABR and BB-ABR algorithms. By mean of a wise calibra-
tion of the value of π, the tradeoff between system utilization
cost and QoE can be steered to either save more resources
or increase the average quality. In all cases, the number of
quality switching remains the most suitable for the end user’s
perception.

VII. FRAMEWORK DESIGN AND IMPLEMENTATION

NEWCAST is designed to manage the video streaming pro-
cess in order to maximise the subjective video quality with

5The case where no accurate throughput prediction is made available is left
for another work [39].
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Fig. 18. Illustration of NEWCAST interactions with the network scheduler
and the media player.

minimum radio resources. In order to achieve this target, we
implement NEWCAST at the client side to ensure that each
adaptive video stream can adapt its strategy as function of
the time window in which the prediction is accurate. Such a
design has several benefits (i) NEWCAST can be combined
with any existing scheduling policy implemented at the base
station such as proportional fair (PF) scheduler. Notice that
PF schedulers strive to achieve fairness of resources allocated
across the users. (ii) NEWCAST does not require modifica-
tion of existing base station schedulers, facilitating quicker
deployments and (iii) all types of traffic can be handled with
the existing scheduler at the base station.

As the prediction of future capacity is done by the oper-
ator based on collected data, it is natural to consider that
this information on the future capacity is available at the
base station side. However, the future capacity is sent to
each adaptive video flow and each user computes the optimal
threshold strategy αth and the optimal bitrate levels strategy
using NEWCAST. The optimal threshold strategy αth is sig-
naled to the base station in order adjust its priorities among
users. The scheduler can use a filtering approach to allocate
resource to mobiles based on values of αth of all video stream-
ing users in the cell. If the capacity of a user is accurate, then
the scheduler knows at each TTI whether a mobile user needs
to be served or not. A simple way to do this consists in adding
a filter behind the scheduler to restrict the set of UEs to be
served at each TTI, which corresponds to 1 ms in LTE. If the
predicted capacity of a given user is below the threshold αth ,
this user will be excluded from being served by the scheduler
during the time slot TTI. This allows the scheduler to allo-
cate the resource not used by adaptive traffic to other types of
traffic.

A. NEWCAST Interactions With Real Video Streaming
Entities

In real environments, NEWCAST shall be implemented at
the client side as an independent framework. It shall be able to
communicate the threshold αth to the network scheduler and
the set of video bitrates γth to the media player as described
in Fig. 18. The transmission threshold αth as a kind of a cross
layer that also allows to apply the threshold-based transmis-
sion scheme. The set of video bitrates γth , however, can be
directly sent to the player at the beginning of the streaming
session. These bitrates will then be consecutively requested by
the player to the streaming server. Note that, in our analytical
model, the variable γth was set to describe the variation of the

Fig. 19. Sequence diagram of a video streaming session using NEWCAST.

video bitrate in function of time, in real implementation, the
player will not use it that way, it will rather use the bitrate vari-
ation in function of the segments’ orders, which can be directly
returned by NEWCAST. In Fig. 19, we show the sequence
diagram of the video streaming process using NEWCAST.

The prediction of the future capacity is available at base sta-
tion, and each video streaming user receives its future capacity
by the base station. However, each user computes the optimal
threshold strategy αth and the optimal bitrate levels strategy
γth . The base station receives the value of αth from each user
and incorporates it into the scheduler. The scheduler uses a
filtering approach to allocate resource to mobiles based on
values of αth of all mobile users in the cell. If the prediction
of the future capacity of a user is accurate, then the scheduler
knows at each time slot if a mobile user needs to be served
or not. A simple way to do this consists in adding a filter
behind the scheduler to restrict the set of users to be served at
each transmission time interval (TTI), which corresponds to
1 ms in LTE. If the predicted capacity of a user is below the
threshold αth , this user will be excluded from being served
by the scheduler during the time slot TTI. Unused resource
could be affected to other types of traffic or users that their
future capacities are not available.

B. Implementation Tools and Environment

We use a Linux environment with two virtual machines:
one is used as a DASH server and the other is used as a
DASH client. In the DASH server, we install Apache and put
inside the Dashjs framework [40] with the Envivio video seg-
ments encoded at different quality levels [41]. In the DASH
client, we only install Google chrome browser. We configure
the two virtual machines to be able to communicate through
their Ethernet interfaces. To emulate the network schedule
and make the bandwidth between the two machines follow
a predefined variation (considered as the predicted capac-
ity), we use the Linux tc-tool for traffic shaping as shown
in Fig. 20. To develop NEWCAST and make it interact with

Authorized licensed use limited to: LABO EA 4128 Avignon. Downloaded on December 17,2021 at 07:51:36 UTC from IEEE Xplore.  Restrictions apply. 



1066 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Fig. 20. Architecture of the system used for experiments.

TABLE II
DETAILS ON THE SOFTWARE/HARDWARE TOOLS USED FOR

REAL IMPLEMENTATION

the Dashjs player, we use Javascript and other basic Web lan-
guages. NEWCAST is put with the player call function in a
same .php file that the DASH client requests to start the video
streaming session. A video demo of NEWCAST is put avail-
able online in [42]. In Table II, we put more details on the
hardware/software tools used for the implementation.

C. Requirements for Real Implementation

1) Changes Inside the Dashjs Framework: To make
NEWCAST interact with the Dashjs framework, we made
some changes inside the media player: (i) A new event was
added to the player class to detect the moments where a
segment of type “video” is completely loaded to the client.
(ii) The restrictions on the playback buffer size defined at
the “MediaPlayerModel.js” file were changed to fit the infi-
nite buffer size assumption, since, otherwise, the player will
remove the earliest played segments and, in some cases, delay
the requests of the coming segments. (iii) The threshold of
prefetching after a stall happens was changed inside the check-
IfSufficientBuffer() function to fit the prefetching threshold
used by NEWCAST.

2) Required Player APIs: Two essential APIs are actu-
ally responsible for the interaction between NEWCAST and
the Dashjs framework: The setAutoSwitchQuality() API to
disable the quality auto-switch mode of the player and the
setQualityFor() API to enforce the quality of the coming
segments.

3) Traffic Configuration: To make the real throughput com-
pliant to the throughput r modelled by NEWCAST, we pro-
cessed as follows: (i) We deleted the “audio traffic” description
from the .mpd file since, in our study, we are only interested
in video traffic. (ii) We added Apache to the Linux sudoer list
to allow it use the tc-tool functions and shape the bandwidth
in parallel to the streaming. (iii) As we found that the average
duration of a real segment-request is equal to 0.06 s, which is
not insignificant as was assumed in our theoretical model, we
considered, for the implementation, each segment-request as a

Fig. 21. NEWCAST performance in real environment.

virtual file of size 0.06 multiplied by the predicted throughput
at the considered second. (iv) A long stall duration caused by a
high threshold αth may lead the session to be closed. To avoid
such situations we were disabling the threshold transmission
schedule during prefetching when a stall happens.

D. Validation Through Experiments

To supervise the system behavior in real time, we developed
a graphical interface in which we plot the real time throughput
variation, the real time buffer evolution and the real time video
bitrate alongside with the strategies modeled by NEWCAST,
as shown in our video demo [42]. We conduct the same exper-
iment several times using one of the throughput logs available
in [1] and different values of π. Results shown by Fig. 21
depict a high instability of the system behaviour when the
value of π is small (between 0.1 and 0.7), i.e., when the thresh-
old απ is high. This instability actually induced high numbers
of video stalls. More stability, however, is noticed when the
value of π is high (between 0.8 and 1.6). A noteworthy obser-
vation here is in the fact that the real system reacts very closely
to what was modeled by NEWCAST. The difference in the
system utilization cost is very small (approximately equal to
5.2%) and the average number of video stalls too (almost equal
to 0.53). Although we were conducting the same experiments
for each value of π, the system behaviour was variable. We link
this, mainly, to the casual errors of the bandwidth shaping and
to the variation of the segment-request duration. Overall, these
results offer hope that, under high values of π, the exploita-
tion of NEWCAST in real environments becomes feasible,
unless an accurate throughput prediction is available. Under
low values of π, however, the quality of the streaming risks to
be degraded since the system becomes sensitive to the tiniest
prediction error.

VIII. CONCLUSION

In this paper, we have developed a new framework called
NEWCAST, for optimizing the delivery of video streaming

Authorized licensed use limited to: LABO EA 4128 Avignon. Downloaded on December 17,2021 at 07:51:36 UTC from IEEE Xplore.  Restrictions apply. 



TRIKI et al.: NEWCAST: JOINT RESOURCE MANAGEMENT AND QoE-DRIVEN OPTIMIZATION FOR MOBILE VIDEO STREAMING 1067

content under the knowledge of future capacity. This frame-
work has been designed to balance the system utilization cost
and some key QoE metrics such as average video quality and
rebuffering events. From an implementation point of view,
results have shown the possibility to use NEWCAST as an
online algorithm (well suited for dynamic adaptive streaming
over HTTP). Real experiments conducted with a real DASH
player have shown that NEWCAST can be efficiently used in
real-world streaming provided that the throughput is accurately
estimated. Interesting future directions consist in incorporat-
ing errors in the throughput prediction to see how much this
impacts on the robustness of the proposed approach.

REFERENCES

[1] DATASET: HSDPA-Bandwidth Logs for Mobile HTTP
Streaming Scenarios. [Online]. Available: http://home.ifi.uio.no/
paalh/dataset/hsdpa-tcp-logs/

[2] DATASET: 4G/LTE Bandwidth Logs. [Online]. Available:
http://users.ugent.be/ jvdrhoof/dataset-4g

[3] Cisco Visual Networking Index: Forecast and Methodology,
2016–2021. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-
vni/complete-white-paper-c11–481360.pdf

[4] Y. Xu, E. Altman, R. El-Azouzi, M. Haddad, S. Elayoubi, and
T. Jimenez, “Analysis of buffer starvation with application to objec-
tive QoE optimization of streaming services,” IEEE Trans. Multimedia,
vol. 16, no. 3, pp. 813–827, Apr. 2014.

[5] J. Song, F. Yang, Y. Zhou, S. Wan, and H. R. Wu, “QoE evaluation
of multimedia services based on audiovisual quality and user interest,”
IEEE Trans. Multimedia, vol. 18, no. 3, pp. 444–457, Mar. 2016.

[6] C. Zhou, C.-W. Lin, and Z. Guo, “mDASH: A Markov decision-based
rate adaptation approach for dynamic HTTP streaming,” IEEE Trans.
Multimedia, vol. 18, no. 4, pp. 738–751, Apr. 2016.

[7] B. Rainer, S. Petscharnig, C. Timmerer, and H. Hellwagner, “Statistically
indifferent quality variation: An approach for reducing multimedia
distribution cost for adaptive video streaming services,” IEEE Trans.
Multimedia, vol. 19, no. 4, pp. 849–860, Apr. 2017.

[8] A. Bentaleb, A. C. Begen, R. Zimmermann, and S. Harous, “SDNHAS:
An SDN-enabled architecture to optimize QoE in HTTP adaptive
streaming,” IEEE Trans. Multimedia, vol. 19, no. 10, pp. 2136–2151,
Oct. 2017.

[9] K. Yamagishi and T. Hayashi, “Parametric quality-estimation model for
adaptive-bitrate-streaming services,” IEEE Trans. Multimedia, vol. 19,
no. 7, pp. 1545–1557, Jul. 2017.

[10] S. Tasaka, “Bayesian hierarchical regression models for QoE esti-
mation and prediction in audiovisual communications,” IEEE Trans.
Multimedia, vol. 19, no. 6, pp. 1195–1208, Jun. 2017.

[11] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“Developing a predictive model of quality of experience for Internet
video,” in Proc. ACM SIGCOMM, 2013, pp. 339–350.

[12] C. Yim and A. C. Bovik, “Evaluation of temporal variation of video qual-
ity in packet loss networks,” Signal Process. Image Commun., vol. 26,
no. 1, pp. 24–38, 2011.

[13] A. K. Moorthy, L. K. Choi, A. C. Bovik, and G. de Veciana, “Video qual-
ity assessment on mobile devices: Subjective, behavioral and objective
studies,” IEEE J. Sel. Topics Signal Process., vol. 6, no. 6, pp. 652–671,
Oct. 2012.

[14] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
“A survey on bitrate adaptation schemes for streaming media over
HTTP,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 562–585,
1st Quart., 2019.

[15] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in Proc. ACM Conf. SIGCOMM, Chicago, IL, USA,
2014, pp. 187–198.

[16] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in
dynamic http streaming,” in Proc. 8th Int. Conf. Emerg. Netw. Exp.
Technol., Nice, France, 2012, pp. 109–120.

[17] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 325–338, 2015.

[18] A. Jain and A. Terzis and N. Sprecher and P. Szilagyi and H. Flinck,
“Mobile throughput guidance signaling protocol,” IETF, draft-flinck-
mobile-throughput-guidance-00, Apr. 2014.

[19] C. Ge, N. Wang, G. Foster, and M. Wilson, “Toward QoE-assured
4K video-on-demand delivery through mobile edge virtualization with
adaptive prefetching,” IEEE Trans. Multimedia, vol. 19, no. 10,
pp. 2222–2237, Oct. 2017.

[20] K. T. Bagci, K. E. Sahin, and A. M. Tekalp, “Compete or collaborate:
Architectures for collaborative DASH video over future networks,” IEEE
Trans. Multimedia, vol. 19, no. 10, pp. 2152–2165, Oct. 2017.

[21] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE,” in
Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol., Nice, France, 2012,
pp. 97–108.

[22] V. Joseph and G. de Veciana, “NOVA: QoE-driven optimization of
DASH-based video delivery in networks,” in Proc. IEEE INFOCOM,
Toronto, ON, Canada, Apr. 2014, pp. 82–90.

[23] S. Colonnese, F. Cuomo, T. Melodia, and I. Rubin, “A cross-layer
bandwidth allocation scheme for HTTP-based video streaming in LTE
cellular networks,” IEEE Commun. Lett., vol. 21, no. 2, pp. 386–389,
Feb. 2017.

[24] S. Colonnese, F. Cuomo, L. Chiaraviglio, V. Salvatore, T. Melodia, and
I. Rubin, “CLEVER: A cooperative and cross-layer approach to video
streaming in HetNets,” IEEE Trans. Mobile Comput., vol. 17, no. 7,
pp. 1497–1510, Jul. 2018.

[25] Y. Im et al., “FLARE: Coordinated rate adaptation for HTTP adap-
tive streaming in cellular networks,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst. (ICDCS), Atlanta, GA, USA, Jun. 2017, pp. 298–307.

[26] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and
M. Chiang, “A scheduling framework for adaptive video delivery over
cellular networks,” in Proc. 19th Annu. Int. Conf. Mobile Comput. Netw.,
Miami, FL, USA, 2013, pp. 389–400.

[27] W. Huang, Y. Zhou, X. Xie, D. Wu, M. Chen, and E. Ngai, “Buffer
state is enough: Simplifying the design of QoE-aware HTTP adaptive
video streaming,” IEEE Trans. Broadcast., vol. 64, no. 2, pp. 590–601,
Jun. 2018.

[28] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE,”
IEEE/ACM Trans. Netw., vol. 22, no. 1, pp. 326–340, Feb. 2014.

[29] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile
networks: The value of knowing the future,” in Proc. INFOCOM, Turin,
Italy, 2013, pp. 2706–2714.

[30] K. Miller, A.-K. Al-Tamimi, and A. Wolisz, “Qoe-based low-delay
live streaming using throughput predictions,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 13, no. 1, pp. 1–24, Oct. 2016. [Online].
Available: http://doi.acm.org/10.1145/2990505

[31] S. Colonnese, F. Cuomo, K. Miller, V. Sapio, and A. Wolisz, “Affordable
delay based quality selection for http adaptive video streaming,” in Proc.
IEEE Int. Symp. Local Metropolitan Area Netw. (LANMAN), Osaka,
Japan, Jun. 2017, pp. 1–2.

[32] I. Triki, R. El-Azouzi, and M. Haddad. (2018). Newcast: Anticipating
Resource Management and QoE Provisioning for Mobile Video
Streaming. [Online]. Available: http://arxiv.org/abs/1512.05705

[33] (Jul. 18, 2015). Live Encoder Settings, Bitrates and Resolutions.
[Online]. Available: https://support.google.com/youtube/answer/
2853702?hl=en

[34] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming
over HTTP dataset,” in Proc. 3rd Multimedia Syst. Conf., Chapel Hill,
NC, USA, 2012, pp. 89–94.

[35] Y. Shen, Y. Liu, Q. Liu, and D. Yang, “A method of QoE evalu-
ation for adaptive streaming based on bitrate distribution,” in Proc.
IEEE Int. Conf. Commun. Workshops, Sydney, NSW, Australia, 2014,
pp. 551–556.

[36] A. E. Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and
E. G. Steinbach, “Quality-of-experience driven adaptive HTTP media
delivery,” in Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungary,
2013, pp. 2480–2485.

[37] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive
HTTP streaming,” in ACM Multimedia Syst., San Jose, CA, USA, 2011,
pp. 169–174.

[38] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro, “An evaluation of
bitrate adaptation methods for HTTP live streaming,” IEEE J. Sel. Areas
Commun., vol. 32, no. 4, pp. 693–705, Apr. 2014.

[39] I. Triki, R. El-Azouzi, and M. Haddad, “Anticipating resource manage-
ment and QoE for mobile video streaming under imperfect prediction,”
in Proc. IEEE Int. Symp. Multimedia (ISM), San Jose, CA, USA,
Dec. 2016, pp. 93–98.

[40] Dash-Industry-Forum. [Online]. Available: https://github.com/Dash-
Industry-Forum/dash.js/

[41] Index of /129021/dash/envivio/Envivio-dash2. [Online]. Available:
http://dash.edgesuite.net/envivio/Envivio-dash2

[42] Video Demo of NEWCAST. [Online]. Available: https://drive.google.
com/open?id=0B1gjdIZb5PPIcW1OLWY4d2xKS2s

Authorized licensed use limited to: LABO EA 4128 Avignon. Downloaded on December 17,2021 at 07:51:36 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


