
HAL Id: hal-03484670
https://hal.science/hal-03484670

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speed based optimal power control in small cell networks
Veeraruna Kavitha, Manu K Gupta, Véronique Capdevielle, Rahul Kishor M.,

Majed Haddad

To cite this version:
Veeraruna Kavitha, Manu K Gupta, Véronique Capdevielle, Rahul Kishor M., Majed Haddad. Speed
based optimal power control in small cell networks. Computer Communications, 2019, 142-143, pp.48
- 61. �10.1016/j.comcom.2019.04.009�. �hal-03484670�

https://hal.science/hal-03484670
https://hal.archives-ouvertes.fr


Computer Communications 142–143 (2019) 48–61

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Speed based optimal power control in small cell networks
Veeraruna Kavitha a,∗, Manu K. Gupta b, Véronique Capdevielle c, Rahul Kishor M. a,
Majed Haddad d

a Industrial Engineering and Operations Research, IIT Bombay, Mumbai, India
b Singapore University of Technology and Design, Singapore
c Nokia, France
d University of Avignon, France

A R T I C L E I N F O

Keywords:
Small cell networks
Mobility
Power control
Drop probability
Constrained optimization

A B S T R A C T

Small cell networks promise good quality of service (QoS) even for cell edge users, however pose challenges
to cater to the high-speed users. The major difficulty being that of frequent handovers and the corresponding
handover losses, which significantly depend upon the speed of the user. It was shown previously that the
optimal cell size increases with speed. Thus, in scenarios with diverse users (speeds spanning over large ranges),
it would be inefficient to serve all users using common cell radius and it is practically infeasible to design
different cell sizes for different speeds. Alternatively, we propose to allocate power to a user based on its
speed, e.g., higher power virtually increases the cell size. We solve well known Hamiltonian Jacobi equations
under certain assumptions to obtain a power law, optimal for load factor and busy probability, for any given
average power constraint and cell size. The optimal power control turns out to be linear in speed. We build
a system level simulator for small cell network, using elaborate Monte-Carlo simulations, and show that the
performance of the system improves significantly with linear power law. The power law is tested even for the
cases, for which the system does not satisfy the assumptions required by the theory. For example, the linear
power law has significant improvement in comparison with the ’equal power’ system, even in presence of time
varying and random interference. We observe good improvement in almost all cases with improvements up to
89% for certain configurations.

1. Introduction

Since the advent of smartphones, mobile networks are witnessing an
exponential traffic growth. Cisco has recently predicted 11-fold increase
in the global mobile data traffic between 2015 and 2020 [1], while
Qualcomm has forecasted an astounding 1000x increase in mobile data
traffic in near future [2]. The increased traffic creates new challenges
for service provider in various aspects, for example, mobility manage-
ment [3]. To cater to the increasing traffic demands, cellular networks
are transformed into heterogeneous networks (HetNets), by deploying
additional small cells (pico cells, femto cells, metro cells, etc.) along
with the existing macro cells [4,5]. Sometimes, small base stations (BSs)
are installed in high traffic sub-regions to share the load of the macro
BS. Major streets (high ways) are one such example sub regions, which
often carry heavy traffic. Proposals are made to install small BSs on the
lamp posts along the side of major streets/high ways (e.g., [6]).

Mobility management raises various novel research questions for
short radius cells, more so when they cater to high speed users. As
the cell size decreases, the handover rate critically increases especially
for high or medium speed users which will increase the rate of call
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drops [7]. Any handover is dropped if the entering new cell does not
have a free server. Thus, the drop rate increases with the frequency of
handovers. On the other hand, with reduced cell radius, one can serve
even the cell edge users with good service rate.

This trade-off (good service rates versus handover loss) is studied
in [8] and optimal cell size for appropriate performance measure
(e.g., expected service time, load factor and drop or busy probability,
etc.) is obtained. It was concluded that the optimal cell size for higher
velocity users is larger. However, it would be a practically infeasible
procedure to vary the physical cell size based on speed. 3GPP has
proposed to offset the received signal power from various BSs to the
user (under consideration) using a cell selection bias (CSB), before
selecting the serving BS of the user. With CSB, one may not always
select the BS with the strongest received power. The main idea is to
favour the handover (HO) of high mobility users towards macro cells,
while low or medium mobility users are offloaded to small cells. But
this is a coarse (small or macro BS) control, which may not improve
the performance significantly.
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We propose to allocate power to the users based on their speed,
which makes it possible to have a fine control. The higher power
virtually increases the cell size: a far away user with higher power
can be served at the same transmission rate as a near-by user with
an appropriate smaller power (capacity of the far away user increases
with higher power) [9]. This work is motivated by above natural
phenomenon. One can have as many levels of power allocation as
required, enabling finer control. We derive optimal speed-based power
allocation policies.

The user speed estimates have been recently studied by many
researchers in small cell networks [10–12]. These estimates may (or
may not) be available with high accuracy. If the estimates are not
accurate, one can classify the users into finite number of classes (each
class specified by a range of user speeds); allocate same power to all the
users in a speed class. We derive a closed form expression for an optimal
power control vector, whose components represent the power allocated
to different speed classes, subject to a constraint on the average power
used. We refer this as discrete power law. Alternatively, if the user speed
can be estimated accurately, we obtain the optimal power law using
Hamilton–Jacobi–Bellman (HJB) equations and Lagrange multipliers as
function of user-speed. We refer this as continuous power law.

The continuous law turns out to be (affine) linear with user speed.
The disparities in the powers allocated to various speeds, increases
with the increase in the path-loss factor and (or) the cell size. Further
the discrete power law converges to continuous one, as the number of
speed classes increases to infinity. The numerical experiments confirm
a remarkable improvement in drop probability with optimal power
law, in comparison with the case where equal power is allocated
to all the users. The performance improves as the number of speed
classes increases and best performance is obtained with continuous
law. However, a significant improvement is achieved with just two
user-speed classes.

The optimal power law is derived under the assumption of zero
interference from other cells due to theoretical tractability. However,
we built a system level small cell network simulator (SCNS) to test the
performance of optimal power law and we included some test cases
with interference. The SCNS is made by emulating cars moving along a
straight road (with random speeds), and receiving (random amount of)
service from a series of pico towers adjacent to the road. This simulator
assumes perfect transmission when one operates below the capacity (at
that time and at that position). First, we validate SCNS in order to test
the optimal power law. We notice that power law fails only when the
block/drop probabilities are large (of order 10−1). However, wireless
networks seldom operate in such scenarios due to low efficiency.

SCNS is used extensively to test the applicability of the proposed
power law. We consider different test cases spanning over various
configurations, for example, with a common set of transmission rates,
and or with different levels of interference and or with various user
speed profiles etc. We notice a significant improvement (most of the
cases above 30% and upto 89% in some cases) in performance with
linear power law in comparison with the systems that allocate equal
power to all users. The improvement is significant even for the test
cases that do not satisfy the assumptions required by theory, e.g., test
cases considering the influence of interference or non-uniform speeds
etc. Even in the presence of interference we noticed good improvement
(some cases upto 70%).

Related work: For an excellent survey on power control in wireless
networks, readers are referred to [13] and references therein (e.g., [14–
19]). Most of the existing algorithms focus on either optimizing the
total power spent while maintaining QoS or optimizing the QoS under
a power budget constraint. Further refinement on these algorithms are
based on speed of the user (e.g., [20–22] are few of them). These
algorithms either vary a control parameter or a step size of the adaptive
algorithm so that the algorithm is better suited to the user mobility.
They explore the convergence issues associated with mobility patterns.
While we consider a small cell network with one dimensional users

where: (a) the service rate is adapted based on the received SNR; and
hence (b) the rate varies in a periodic fashion as the distance between
unidirectional user and the serving BSs changes periodically. Given
such a system, we obtain the performance which is sensitive to the
speed of the user due to frequent HOs. We come up with the classifica-
tion of users based on their speed and power control, so as to improve
the performance of the overall system which shares resources among
all the users. Most of the existing algorithms attempt to overcome the
hurdles created by difficult phenomenon such as high speed variations,
whereas our fundamental goal is to design optimal systems based on
these variations. We achieve this goal by deriving an optimal policy
which can either be stored as a lookup table (in case of finite classes)
or the formula can be remembered and system can allocate power using
this stored information and the estimate of the user speed (in case of
continuous power control). Thus this algorithm has negligible overload
and one can use this in self organizing networks.

Authors in [8] considered uni-directional users travelling on a
straight road, while deriving service from series of BSs. In [8], it is
assumed that the rate of communication can be changed continually
that too with ‘‘maximal" transmission rates (i.e., capacity). This gives
‘‘maximal" performance, which is not realistic. We also consider a sim-
ilar uni-directional user scenario, but for a radically different change
in the selection of the transmission rates: communication can happen
at one of the 𝑁 given choices of the transmission rates. At any given
time, the rates chosen are less than the ‘‘maximal" transmission rate
(capacity) at that time.

Parts of this work were presented in [23]. In this paper, we gen-
eralized the set of rates and more importantly included the system
level simulator. The system should provide sufficiently large choices
of transmission rates to obtain significant advantage of power law.
The more the choices, the finer is the control and better would be the
improvement in performance. In [23], we assumed that system supports
𝑁 choices and the set of these choices is different for different speeds.
In this paper, using the system level simulator, we also include a study
with a common (possibly bigger) set of rate choices. We then consider
the influence of interference on the performance of the proposed linear
law, by comparing it with the system that allocates equal power to all
users. We study this comparison using the system level simulator and
perform detailed numerical analysis, which includes random and time
varying interference patterns resulting from randomly originated and
moving users deriving service from the encountered small cell base
stations. We observe that the improvement in performance (though
reduced once interference is considered), is significant even in the
presence of interference.

This paper is organized as follows. The system model is described
in Section 2, performance measures are derived in Section 3 and the
optimal power law is obtained in Section 4. The simulator and the
extensive numerical results are described in Sections 5–7. Section 8
concludes the paper.

2. System model

We consider users moving in a fixed direction. The users are moving
in one direction (in a one dimensional line [−𝐷,𝐷]) and at high speeds,
which vary negligibly during the call. One such example (see Fig. 1) is
when user, driving in a car, derives its service from portable BSs which
are installed on street infrastructure (like lamp posts). The distance
between successive BSs is 2𝐿. The users can move in one of the two
directions with equal probability, i.e., with half probability. We assume
symmetry in both the directions and hence any performance (e.g., busy
probability, drop probability etc.), conditioned on the direction of the
user, will be same for both the directions. Thus, without loss of
generality we only consider users moving from left to right. We assume
the channel to be weakly time-varying. In particular, we assume that
the optimal power allocation is achieved before significant channel
variations, as is customarily assumed in all power control schemes.
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Fig. 1. User moving in a car while deriving service.

Fig. 2. Rate partitioning and user’s movement.

The user moves with speed 𝑉 , which is independent and identically
distributed (IID) across various users. We assume uniform arrivals in
the system. In small cell networks, the (adjacent) BSs are reasonably
close and hence one has to design carefully with sufficient reuse factor
to avail the advantages of small BS separations. In this work, we
indeed assume this is the case for theoretical results, i.e., we assume
no interference from the other cells. Many other techniques like inter-
ference cancellation, beam forming etc. are used to effectively mitigate
interference. Alternatively one can assume interference to be constant
and our results follow under such assumption on interference. This
assumption is valid when one gets interference from large number
of sources. In the last section of the paper, we present numerical
results considering interference. We observe that the performance of
the optimal policies, derived in this paper, is remarkable even in the
presence of interference.
Rate Regions: The cell is divided into 2𝑁 disjoint segments (depending
upon distance from BS1) and users within a segment are served with
the same transmission rate. Let {𝑛}𝑛∈ represent these segments (see
Fig. 2):

𝑛 ∶=
[

𝜙𝑛−1𝐿,𝜙𝑛𝐿
]

1{𝑛>0} +
[

𝜙𝑛𝐿,𝜙(𝑛+1)𝐿
]

1{𝑛<0},

 ∶= {−𝑁,… ,−1, 1,… , 𝑁}, (1)

where the coefficients {𝜙𝑛} determine the partition of the cell, with
𝜙𝑛 = −𝜙−𝑛 for all 𝑛. Segments 𝑛,−𝑛 placed at the same distance
on either side of BS (Fig. 2) are served with common rate 𝑟𝑛 and
these common rates decrease as the distance from BS increases. Let
 ∶= {𝑟1,… , 𝑟𝑁} (decreasing set) represent the ensemble of all possible
transmission rates. The service rate changes once the user moves from
one region to another. We consider 𝜙0 ∶= 0 for notational simplicity,
and there is actually no change in rate when users move from −1 to
1.
Arrivals: There are two types of arrivals: (1) arrivals from external
world (represented by subscript 𝑒 and this subscript is used only when
there is ambiguity) modelled as Poisson arrivals with parameter 𝜆; (2)
HO arrivals (subscript ℎ) modelled again as Poisson2 arrivals is the
sub-stream of external arrivals whose service is not completed in the
previous cell. Rate of arrivals into the cell of interest [−𝐿,𝐿] (referred
as cell 0) depends upon the cell dimension 𝐿 and this is shown by either
𝜆𝐿 (for external arrivals) or 𝜆ℎ;𝐿 (for HO arrivals). For external arrivals,
we assume3 𝜆𝐿 = 𝜆𝐿 while 𝜆ℎ;𝐿 will be derived in later sections. Every

1 In small cell networks (transmission at small distances), distance based
propagation losses would be sufficient for deciding the theoretical rate limits
as well as the practical transmission rates.

2 This is a commonly made assumption, see [24,25].
3 If the arrivals in the entire line segment [−𝐷,𝐷] occur at rate 𝜆′ those

in segment [−𝐿,𝐿] occur at a smaller rate 𝜆𝐿 = 𝜆′𝑃𝑟𝑜𝑏(arrival in [−𝐿,𝐿]). For
the special case of uniform arrivals (i.e., arrivals landing uniformly in [−𝐷,𝐷])
𝜆𝐿 = 𝜆𝐿.

arrival brings along with it the marks (𝛷,𝑆), where 𝛷 ∈  is the
position of arrival with distribution 𝛱 ∶= {𝜋𝑛}𝑛 and 𝑆, the number of
bytes to be transmitted, is exponentially distributed, i.e., 𝑆 ∼ 𝜇𝑒𝑥𝑝−𝜇𝑡𝑑𝑡
for some 𝜇 > 0.
Resources: A cell can attend 𝐾 parallel calls. The power per transmis-
sion 𝑃 can depend upon the speed of the user and we obtain the optimal
power function given an average power constraint.
Set of transmission rates : With speed based power control, there
would be significant variations in the received power. One can consider
different set of rates for different speeds to design an efficient system.
Alternatively, one can consider a common set of supported rates which
is sufficiently big and choose one among them based on the received
signal. First alternative is discussed below, while the other scenario
is explored in Section 7. As of now, we assume that the system has
predefined rate regions which are common for all the speeds/transmit
powers. The (common) rate supported in any given rate region depends
upon the transmit power and the farthest point of the region. The
capacity of the farthest point provides the best possible rate.

We use the following low SNR approximation of the theoretical
(capacity) rate4:

𝑟(𝑑) ∶= 𝑃
(

1{𝑑≤𝑑0} + 𝑟0 |𝑑|
−𝛽 1{𝑑>𝑑0}

)

with 𝑟0 = 𝑑𝛽0 . (2)

Here, 𝑟(𝑑) is the rate at distance 𝑑, 𝑑0 is a small lossless distance5

while 𝛽 is the propagation co-efficient. The farthest user of 𝑛, will
be at distance |𝜙𝑛|𝐿. Hence the maximal transmission rate, that can be
allocated, equals

𝑟𝑛 = 𝑟
(

𝜙𝑛𝐿
)

= 𝑟0𝑃𝐿
−𝛽
|𝜙𝑛|

−𝛽 . (3)

Remark: Alternatively, if the system under consideration can design
modulation and or channel coding schemes so as to achieve (almost) 𝜈
percent of the theoretical rates where 𝜈 < 1 is a fixed coefficient, then
again the above rate structure is applicable (after absorbing 𝜈 into 𝑟0
of (3)).
Handovers: When the user reaches the boundary {|𝐱| = 𝐿} the call is
handed over to the neighbouring cell (if the call is not completed and
free servers are available in the new cell).
Information to initiate HO: Every new connection requires 𝑠ℎ extra
bytes to be exchanged to initiate it. The effect of these bytes (on the
system performance) for a new call will be negligible (as it would be
once), however one needs to consider their effect on HO calls. These
bytes are usually very small in proportion to the actual information to
be transmitted, i.e., 𝑠ℎ ≪ 𝑆 with probability close to one. In particular
we assume that 𝜇𝑠ℎ ≪ 1. We also assume that 𝑠ℎ bytes are exchanged
with probability very close to one (actually w.p.1), while user is in the last
region 𝑟−𝑁 .
Notations: We denote the transpose by 𝑡. Calligraphic letters represent
mostly represent sets (e.g.,  — set of segment numbers,  — set
of all possible transmission rates, 𝑛 — rate region 𝑛). The contents
inside two flower brackets represent either a set or an ordered tuple
(as according to convenience): for example {𝑟𝑛}𝑛 represents the set 
while {𝜋𝑛}𝑛 represents the ordered tuple𝛱 . Lower case letters represent
time index (𝑘) or the segment index (𝑛).

Upper case letters represent system parameters. For example, 𝐷 —
dimension of macro cell, 𝐿 — dimension of small cell, 𝑃 — Power
per transmission, 𝐾 — Number of servers, 𝑁 — Total number of
possible transmission rates (number of elements in ), 𝛱 = {𝜋𝑛}𝑛 =
{𝑃𝑟𝑜𝑏(Arrival in segment 𝑛)}𝑛 — Vector of arrival probabilities etc.
Upper case letter can also represent random variables (𝑉 — Velocity,
𝑆 — number of bytes to be transmitted etc.).

4 For unit noise variance, capacity equals log(1 + 𝑆𝑁𝑅), where signal to
noise ratio 𝑆𝑁𝑅 = 𝑃𝐴 and attenuation 𝐴 = 1{𝑑≤𝑑0} + (𝑑∕𝑑0)−𝛽1{𝑑>𝑑0}. For low
SNRs, log(1 + 𝑆𝑁𝑅) ≈ 𝑆𝑁𝑅 and hence capacity equals 𝑃𝐴.

5 Typically 𝑑0 is small and in this paper we consider optimizing over cell
sizes 𝐿 > 𝑑0𝑁 . That is, we always consider distances 𝑑 > 𝑑0 and hence use the
simpler formula 𝑟(𝑑) = 𝑟0𝑃𝑑−𝛽 .
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3. User speed dependent performance measures

In this section we derive the performance metrics (e.g., load factor,
busy probability, drop probability etc.), which capture the trade off be-
tween HO losses and the service quality, for a given user speed profile.
We eventually conclude this section by showing that the optimizers of
load factor and busy probability are the same.

We consider non elastic traffic which comprises of users demanding
immediate service. These users (e.g., voice calls) drop the call if it is not
picked up immediately, i.e., if all the 𝐾 servers are busy (see [8,26]).
The probability that a call is not picked up immediately is called
the Busy probability 𝑃𝐵𝑢𝑠𝑦 and the probability that a call that was
picked up is ever dropped before completing its service is called the
Drop probability 𝑃𝐷𝑟𝑜𝑝. The former is the probability that an incoming
call is not picked-up, while the later is the probability that, a call
that was picked-up, is dropped before service completion. Both these
performance metrics depend upon HOs as well as the average service
time and hence capture the required trade-off.

In this paper we work with metrics proportional to 𝑃𝐵𝑢𝑠𝑦, to be
specific with load factor 𝜌 (equation (9) derived in later sections). One
can obtain 𝑃𝐷𝑟𝑜𝑝 as in [8] and show that it can be approximately optimized
by minimizing the load factor, but we omit this discussion here. Similarly
in [8], it is shown (under certain conditions) that the expected waiting time
of an elastic user (a user who can wait for its turn but demands high quality
of transmission) can be optimized by minimizing the load factor. We expect
similar results to hold even in this case. In all, we optimize the load factor
𝜌.

Without loss of generality we consider cell 0, [−𝐿,𝐿]. Let 𝜓𝑛 rep-
resent the probability that a call originated in rate segment 𝑛, 𝑛, is
completed before reaching boundary {𝐿} (one element set). The user is
served at rate 𝑟𝑛 and hence a total of (𝐿∕𝑁)(1∕𝑉 )𝑟𝑛 bytes are transferred
before it crosses 𝑛 and then served at rate 𝑟𝑛+1 and so on till it reaches
the boundary point 𝐿. Total number of bytes transferred during this
transit equal ∑𝑁

𝑚=𝑛 𝑟𝑚𝐿∕(𝑁𝑉 ) and so the user will complete its call
(i.e., transfer of 𝑆 (exponential) bytes of information) before leaving
the cell with probability (conditioning on 𝑉 ):

𝜓𝑛 = 𝑃𝑟𝑜𝑏

(

𝑆 < 𝐿
𝑁𝑉

𝑁
∑

𝑚=𝑛
𝑟𝑚

)

= 1 − 𝐸

[

𝑒−
𝜇𝐿

∑𝑁
𝑚=𝑛 𝑟𝑚
𝑁𝑉

]

. (4)

In general it is difficult to obtain the above Laplace transform and hence
𝜓𝑛. For example, when 𝑉 is uniformly distributed. However, one can
obtain a good approximation if we assume, 𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥, with 𝑉𝑚𝑎𝑥
close to 𝑉𝑚𝑖𝑛 and both away from 0. When the high speed users are
partitioned to a large number of classes, each class will satisfy the above
assumption. Further when 𝜇 is small (large jobs) and/or 𝑉𝑚𝑖𝑛 is large
(as with high speed users of this paper) one can use the approximation,
𝑒−𝑥 ≈ 1 − 𝑥, and then

𝜓𝑛 ≈
𝜇𝐿

∑𝑁
𝑚=𝑛 𝑟𝑚
𝑁

𝐸[1∕𝑉 ]. (5)

On the other hand, one can approximate 1 − 𝜓𝑛 directly with 1 as 𝜓𝑛
in (5) is very small in comparison with 1. Let 𝑃𝑒,ℎ𝑜 (𝑃ℎ,ℎ𝑜) represent
the probability that a new or external (handover) call is handed over
(again) to the neighbouring cell. Note that we are modelling the HOs
also as Poisson arrivals. A new call can arrive in any segment 𝑛
with probability 𝜋𝑛 while a HO call always occur at −𝐿, i.e., in rate
region −𝑁 (calls are from left to right). Any new arrival (same is
the case with HO call) is handed over to the next cell if the call is
not completed in the current cell, or if its message 𝑆 bytes are not
transferred completely before the user reaches the cell edge. Finally by
unconditioning (w.r.t. the event of arrival being in 𝑛) we have,

𝑃𝑒,ℎ𝑜 = 1 −
𝑁
∑

𝑛=−𝑁
𝜋𝑛𝜓𝑛 ≈ 1 − 𝑃𝐿1−𝛽𝐸[1∕𝑉 ]𝐶𝑒,ℎ𝑜

with 𝐶𝑒,ℎ𝑜 ∶=
𝜇
𝑁
𝑟0

𝑁
∑

𝑛=−𝑁
𝜋𝑛

𝑁
∑

𝑚=𝑛
|𝜙𝑚|

−𝛽 (6)

is an appropriate constant and is obtained by substituting 𝑟𝑛 from (3).
Every HO call needs exchange of extra 𝑠ℎ control bytes and an HO call
arrives only in −𝑁 . Thus using similar logic (𝐶ℎ,ℎ𝑜 is another constant
like 𝐶𝑒,ℎ𝑜), 𝑃ℎ,ℎ𝑜 = 1 − 𝜓−𝑁,ℎ and so:

𝑃ℎ,ℎ𝑜 = 1 − 𝑃𝑟𝑜𝑏

(

𝑆 + 𝑠ℎ <
𝐿
𝑁𝑉

𝑁
∑

𝑚=−𝑁
𝑟𝑚

)

≈ 1 −
(

𝐶ℎ,ℎ𝑜𝑃𝐿
1−𝛽𝐸[1∕𝑉 ] − 𝜇𝑠ℎ

)

with

𝐶ℎ,ℎ𝑜 ∶=
𝜇
𝑁
𝑟0

𝑁
∑

𝑛=−𝑁
|𝜙𝑛|

−𝛽 . (7)

3.1. Expected service time

This expected service time is the expected amount of time for which
a user is served in a cell. Let 𝑏𝑛 represent the expected time for which
the service is received in cell 0, given the call is originated in region 𝑛.
When high speed users travel in small cells, with a very high probability
a call is not completed in one cell. Hence one can approximate 𝑏𝑛 with
the time taken to reach the boundary:

𝑏𝑛 ≈
∑

𝑘≥𝑛
(𝜙𝑘+1 − 𝜙𝑘)𝐿𝐸

[ 1
𝑉

]

= 𝐿
(

𝜙𝑁 − 𝜙𝑛
)

𝐸
[ 1
𝑉

]

.

Recall that 𝜙𝑛 = −𝜙−𝑛. The service time of a new call (𝑏𝑒) and that of a
handed over call (𝑏ℎ) on average equals (by unconditioning)6:

𝑏𝑒 =
𝑁
∑

𝑖=−𝑁
𝑏𝑛𝜋𝑛 = 𝐶𝑏,𝑒𝐿𝐸[1∕𝑉 ], 𝐶𝑏,𝑒 ∶=

𝑁
∑

𝑛=−𝑁
𝜋𝑛(𝜙𝑁 − 𝜙𝑛)

𝑏ℎ = 𝑏−𝑁 = 𝐶𝑏,ℎ𝐿𝐸[1∕𝑉 ], 𝐶𝑏,ℎ ∶= 2. (8)

The expectation in 𝐸[1∕𝑉 ] is with respect to the distribution of the user
speeds. However, the corresponding distribution in 𝑏ℎ (the expected
service time for HO users) is the speed distribution of the HO users,
which may not be the same as that of the new users. The higher speed
users are handed over more frequently than the lower speed ones.
So, the distribution of the HO user velocities can be different. In [8,
Appendix B], it is shown that the HO user speed distribution converges
to new-user speed distribution as the cell size reduces to zero, when
the new-user speed distribution is uniform. In exactly similar lines one
can show the same result for any arbitrary new-speed distribution, when
it has a density. Thus we approximate the HO user speed distribution with
the new-user speed distribution. That is, we approximate the distribution
of 𝑉 in the expression of 𝑏ℎ with that of the user speed of the new
call. Further and more importantly, the accuracy of this approximation
increases as the difference (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) decreases. Or equivalently the
approximation is accurate, when the number of velocity based user
classes, considered in Section 4, increases.

Performance metrics obtained in the remaining part of this section,
Section 3, are derived in similar way as in [8,26]. These derivations
are obtained using the stochastic equivalence of calls going out of and
coming into cell 0 (details are in [8,26]). We present the derivations
briefly and more details can be found in the two papers. These results
are useful in deriving optimal power law in Section 4.

3.2. HO arrival rate

We obtain the rate, 𝜆ℎ;𝐿, at which HOs occur. Let 𝜆𝐿 represent
the fraction of the new calls that arrive in the cell of interest [−𝐿,𝐿]
which equals 𝜆𝐿 for uniform arrivals (for appropriate 𝜆 > 0). A fraction
of the new arrivals as well as HO calls get converted (again) to HO
calls. The calls that have not finished their service before reaching

6 The time taken for exchange of 𝑠ℎ HO bytes has to be included in the time
of the cell utilized by the user and hence the (HO) service time 𝑏ℎ. However,
the rate of HOs is high and we are approximating 𝑏ℎ by the average time taken
to traverse the entire cell, 𝑏ℎ does not change with 𝑠ℎ.
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the boundary are exactly this fraction, whose value is given by 𝑃𝑒,ℎ𝑜
and 𝑃ℎ,ℎ𝑜 respectively for new arrivals and the HO calls. By memory
less nature of 𝑆 (the bytes to be transferred), we have a stochastic
equivalence between the calls entering and leaving the cell (see [8,26]).
Basically the fraction of new arrivals that get converted to HO calls
would be 𝜆𝐿𝑃𝑒,ℎ𝑜 and the number of HO calls that get converted to
HO calls (again) would be 𝜆ℎ;𝐿𝑃ℎ,ℎ𝑜 and the sum of these two should
equal the rate of HO arrivals 𝜆ℎ;𝐿 because : (a) either of the former
calls require same amount/distribution of job to be done (remaining
𝑆 is again exponentially distributed); and (b) either of these calls will
need to communicate using extra 𝑠ℎ bytes to affect the transfer of call
to the entering cell. Using this, 𝜆ℎ;𝐿 satisfies the fixed point equation,
𝜆ℎ;𝐿 = 𝜆𝐿𝑃𝑒,ℎ𝑜 + 𝜆ℎ;𝐿𝑃ℎ,ℎ𝑜. Hence, from Eqs. (6), (7)

𝜆ℎ;𝐿 =
𝜆𝐿𝑃𝑒,ℎ𝑜
1 − 𝑃ℎ,ℎ𝑜

= 𝜆𝐿
1 − 𝑃𝐿1−𝛽𝐸[1∕𝑉 ]𝐶𝑒,ℎ𝑜
𝑃𝐿1−𝛽𝐸[1∕𝑉 ]𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ

.

3.3. Overall expected service time

(On considering both HO and new arrivals) equals (see (8)),

𝑏̄ =
(

𝜆𝐿
𝜆𝐿 + 𝜆ℎ;𝐿

𝑏𝑒 +
𝜆ℎ;𝐿

𝜆𝐿 + 𝜆ℎ;𝐿
𝑏ℎ

)

.

By ergodicity, the probability that a given call is new, equals the ratio
of the arrival rate of new or external calls and the arrival rate of all the
calls and hence the above result.

3.4. Load factor

The product of the average service time and the arrival rate gives
the rate at which the overall load is arriving into the system and this
product divided by the number of servers is called load factor, which
is given by:

𝜌 = (𝜆𝐿 + 𝜆ℎ;𝐿)𝑏̄∕𝐾.

On simplification,

𝜌 =
𝜆𝐿2𝐸[1∕𝑉 ]

𝐾

(

𝐶𝑏,𝑒 + 𝐶𝑏,ℎ
1 − 𝑃𝐿1−𝛽𝐸[1∕𝑉 ]𝐶𝑒,ℎ𝑜
𝑃𝐿1−𝛽𝐸[1∕𝑉 ]𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ

)

. (9)

3.5. Busy probability

A small cell catering to non elastic traffic can be modelled by an
M/G/K/K queue (as in [8]). By Erlang’s loss formula, busy probability

𝑃𝐵𝑢𝑠𝑦 =
𝜌𝐾∕𝐾!

∑𝐾
𝑘=0 𝜌𝑘∕𝑘!

. (10)

Thus from above, the busy probability depends upon 𝐿 only via
𝜌 and both are differentiable in 𝐿. By differentiating twice one can
immediately obtain the following result (see [8, Theorem 5] for similar
details).

Lemma 1. Optimizers of 𝜌 and 𝑃𝐵𝑢𝑠𝑦 are same, i.e.,

𝐿∗
𝜌 ∶= arg inf

𝐿
𝜌 = arg inf

𝐿
𝑃𝐵𝑢𝑠𝑦(𝐿) =∶ 𝐿∗

𝑃𝐵𝑢𝑠𝑦
. □

By Lemma 1, the cell size optimizing 𝑃𝐵𝑢𝑠𝑦 is the same as that
optimizing the load factor. In a similar way the power control affects
busy probability only via the load factor 𝜌. Hence we optimize load
factor (𝜌) in subsequent sections.

4. Optimal power law

In this section, we derive optimal power law for the given cell size 𝐿
and power constraint 𝑃 . Subsequent sections discuss the optimal power
law for finite and infinite number of user classes.

4.1. Finite number of user classes

The users are divided into different classes based on their speeds.
Divide the (speed) interval [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] into 𝐼 disjoint intervals {𝑖}𝑖≤𝐼
and classify users into one of the 𝐼 classes based on their speed. From
(9), load factor 𝜌 depends upon the user speed profile only via 𝐸[1∕𝑉 ]
and so we are interested in the conditional expectation

𝛶𝑖 ∶= 𝐸
[

1
𝑉
|

|

|

|

𝑉 ∈ 𝑖
]

.

Let 𝑝𝑖 ∶= 𝑃𝑟𝑜𝑏(𝑉 ∈ 𝑖) represent the probability of class 𝑖 and 𝑃𝑖 is the
transmit power allocated to class 𝑖.

HO rates of the different user classes can be calculated using earlier
logic:

𝜆ℎ;𝐿,𝑖 = 𝜆𝐿,𝑖
𝑃𝑒,ℎ𝑜,𝑖

1 − 𝑃ℎ,ℎ𝑜,𝑖
= 𝜆𝐿𝑝𝑖

1 − 𝑃𝑖𝐿1−𝛽𝛶𝑖𝐶𝑒,ℎ𝑜
𝑃𝑖𝐿1−𝛽𝛶𝑖𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ

.

Similarly the expected service time for different user classes can be
obtained and then the overall load factor 𝜌 simplifies7:

𝜌(𝐿,𝐏) = 1
𝐾

(

𝜆𝐿𝑏𝑒 +
∑

𝑖
𝜆ℎ;𝐿,𝑖𝑏ℎ,𝑖

)

= 𝜆𝐿2

𝐾
∑

𝑖
𝑝𝑖𝛶𝑖

(

𝐶𝑏,𝑒 + 𝐶𝑏,ℎ
1 − 𝛿𝑖𝐶𝑒,ℎ𝑜
𝛿𝑖𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ

)

(11)

where 𝛿𝑖 ∶= 𝑃𝑖𝛶𝑖𝐿1−𝛽 . We are interested in power control 𝐏 ∶=
{𝑃1,… , 𝑃𝐼} which minimizes 𝜌 while the average power satisfies fol-
lowing constraint:
∑

𝑖
𝑝𝑖𝑃𝑖 ≤ 𝑃 .

Assuming that 𝑃 is sufficiently large to ensure useful communica-
tion (see Appendix A), one can solve above optimization problem and
we obtain:

Theorem 1. Assume 𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ𝐶𝑒,ℎ𝑜 > 0 and assume that the following
matrix is positive definite,

𝑉 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝1 +
𝑝21
𝑝𝐼

𝑝1𝑝2
𝑝𝐼

⋯ 𝑝1𝑝𝐼−1
𝑝𝐼

𝑝1𝑝2
𝑝𝐼

𝑝2 +
𝑝22
𝑝𝐼

⋯ 𝑝2𝑝𝐼−1
𝑝𝐼

⋮
𝑝1𝑝𝐼−1
𝑝𝐼

𝑝𝐼−1𝑝2
𝑝𝐼

⋯ 𝑝𝐼−1 +
𝑝2𝐼−1
𝑝𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

> 0.

Then, the power control that minimizes 𝜌, given by (11), while satisfying the
average power constraint equals:

𝑃 ∗
𝑖 (𝐿;𝑃 ) = 𝑃 +

𝜇𝑠ℎ𝐿𝛽−1

𝐶ℎ,ℎ𝑜

(

1
𝛶𝑖

−
∑

𝑗
𝑝𝑗

1
𝛶𝑗

)

, 𝛶𝑖 ∶= 𝐸
[

1
𝑉
|

|

|

|

𝑉 ∈ 𝑖
]

.

(12)

Proof: is provided in Appendix B. □
From (6)–(7) 𝐶ℎ,ℎ𝑜 ≥ 𝐶𝑒,ℎ𝑜 and from our earlier assumptions, 𝜇𝑠ℎ ≪

1. So, the first assumption would be trivially satisfied. The second
assumption is often satisfied, for example when users are classified into
𝐼 uniform classes, i.e., when

𝑖 = 𝑉𝑚𝑖𝑛 +
[ 𝑖 − 1
𝐼

, 𝑖
𝐼

]

(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) and so 𝑝𝑖 =
1
𝐼

∀ 𝑖.

We obtain the following interesting properties of the optimal power
division (from (12)): (1) allocated power increases with the speed range

7 Load factor 𝜌 equals the product of total average arrival rate (𝜆̄ ∶=
𝜆𝐿 +

∑

𝑖 𝜆ℎ;𝐿,𝑖) and average service time divided by 𝐾. An arrival turns
out to be a new arrival with probability 𝜆𝐿∕𝜆̄, it turns out to be an HO
arrival of class 𝑖 with probability 𝜆ℎ;𝐿,𝑖∕𝜆̄ and so average service time equals
(

𝜆𝐿𝑏𝑒 +
∑

𝑖 𝜆ℎ;𝐿,𝑖𝑏ℎ,𝑖
)

∕𝜆̄.
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Fig. 3. Optimal power control for two user classes.

of users in a class (users with lower 𝛶𝑖 get higher power), which in
turn implies an increased virtual cell; (2) the disparity in the allocated
powers between different classes increases with cell size, the disparity
in speeds and the path-loss factor. Thus from (12) in a medium with
large path losses, one needs to allocate larger power to high speed users
in order to improve the overall system performance. Intuitively otherwise,
large speed users hold on to the system resources for longer time periods
which can deteriorate the performance of the low speed users. And the same
applies to the case when the system has to support wide range of user speeds
(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛).

4.2. Continuous optimal power law

When one has an accurate estimate of the velocity, it might be
optimal to do finer power control, i.e., transmit power is varied contin-
ually based on the precise value of velocity. Further, as mentioned in
the previous sections, the modelling in-accuracies (while obtaining HO
rates, HO velocity distribution etc.) mitigate as the number of classes
increase. In this continuous case, we expect to model more accurately.

We assume that user velocity is a continuous random variable with
density 𝑝𝑉 (𝑣) and with support in the range [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] for some 0 <
𝑉𝑚𝑖𝑛 < 𝑉𝑚𝑎𝑥 <∞. For example for uniform case, 𝑝𝑉 (𝑣) ≡ 1∕(𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛).

We obtain an optimal power law, which is a function of velocity
𝑣 and optimizes the load factor 𝜌. By power law we meant a function
𝑃 (.) which maps velocity 𝑣 to a positive real number, that represents the
power allocated to user travelling with speed 𝑣. We are only interested
in those functions, whose average is constrained by 𝑃 , i.e., we are
interested in policies, {𝑃 (.)}, that satisfy:

∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
𝑃 (𝑣)𝑝𝑉 (𝑣)𝑑𝑣 ≤ 𝑃 .

Let 𝐵 represent the random service time (the time for which the
cell resources are utilized by the user). The conditional average service
times 𝑏𝑒(𝑣), 𝑏ℎ(𝑣), the probabilities of service not getting completed
𝑃𝑒,ℎ𝑜(𝑣), 𝑃ℎ,ℎ𝑜(𝑣) and the HO rates 𝜆ℎ;𝐿(𝑣) can be computed by condi-
tioning on user velocity 𝑉 as in the previous section. These expressions
depend upon the power policy 𝑃 (.). It is easy to see that these con-
ditional expressions will be same as in the previous section except
that 𝛶𝑣 = 𝐸[1∕𝑉 |𝑉 ∈ (𝑣 − 𝑑𝑣, 𝑣 + 𝑑𝑣)] (conditioned that 𝑉 is in an
infinitesimal interval around 𝑣) has to be replaced by 1∕𝑣, i.e., for
example:

𝑏𝑒(𝑣) =
𝐶𝑏,𝑒𝐿
𝑣

, 𝑃𝑒,ℎ𝑜(𝑣) = 1 −
𝑃 (𝑣)𝐿1−𝛽𝐶𝑒,ℎ𝑜

𝑣

𝑏ℎ(𝑣) =
𝐶𝑏,ℎ𝐿
𝑣

, 𝑃ℎ,ℎ𝑜(𝑣) = 1 −
𝑃 (𝑣)𝐿1−𝛽𝐶ℎ,ℎ𝑜

𝑣
+ 𝜇𝑠ℎ.

Overall arrival rate
By conditioning and un-conditioning on velocity 𝑉 , the overall

arrival rate including the HOs, equals (𝐸 is the expectation with respect
to 𝑉 ):

𝜆̄ = 𝐸[𝜆𝐿(𝑉 ) + 𝜆ℎ;𝐿(𝑉 )] = 𝜆𝐿𝐸
[

1 +
𝑃𝑒,ℎ𝑜(𝑉 )

1 − 𝑃ℎ,ℎ𝑜(𝑉 )

]

. (13)

4.2.1. Average of the overall service time 𝐵
The expected value of 𝐵 is obtained in Appendix C and it equals:

𝑏̄ =
𝐸
[

𝑏𝑒(𝑉 ) + 𝑏ℎ(𝑉 ) 𝑃𝑒,ℎ𝑜(𝑉 )
1−𝑃ℎ,ℎ𝑜(𝑉 )

]

𝐸
[

1 + 𝑃𝑒,ℎ𝑜(𝑉 )
1−𝑃ℎ,ℎ𝑜(𝑉 )

] (14)

= 𝐿

𝐸
[

1 + 𝑃𝑒,ℎ𝑜(𝑉 )
1−𝑃ℎ,ℎ𝑜(𝑉 )

] ∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

⎛

⎜

⎜

⎝

𝐶𝑏,𝑒 + 𝐶𝑏,ℎ
1 − 𝑃 (𝑣)𝐿1−𝛽𝐶𝑒,ℎ𝑜

𝑣
𝑃 (𝑣)𝐿1−𝛽𝐶ℎ,ℎ𝑜

𝑣 − 𝜇𝑠ℎ

⎞

⎟

⎟

⎠

𝑝𝑉 (𝑣)
𝑣

𝑑𝑣.

And so the load factor

𝜌 = 𝜆𝐿2

𝐾 ∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

⎛

⎜

⎜

⎝

𝐶𝑏,𝑒 + 𝐶𝑏,ℎ
1 − 𝑃 (𝑣)𝐶𝑒,ℎ𝑜

𝐿𝛽−1𝑣
𝑃 (𝑣)𝐶ℎ,ℎ𝑜
𝐿𝛽−1𝑣

− 𝜇𝑠ℎ

⎞

⎟

⎟

⎠

𝑝𝑉 (𝑣)
𝑣

𝑑𝑣. (15)

We are interested in power law {𝑃 ∗(.)} which minimizes the load factor
𝜌 under the average power constraint. One can rewrite:

1 − 𝑃 (𝑣)𝐶𝑒,ℎ𝑜
𝐿𝛽−1𝑣

𝑃 (𝑣)𝐶ℎ,ℎ𝑜
𝐿𝛽−1𝑣

− 𝜇𝑠ℎ
= −

𝐶𝑒,ℎ𝑜
𝐶ℎ,ℎ𝑜

+
1 − 𝜇𝑠ℎ

𝐶𝑒,ℎ𝑜
𝐶ℎ,ℎ𝑜

𝑃 (𝑣)𝐶ℎ,ℎ𝑜
𝐿𝛽−1𝑣

− 𝜇𝑠ℎ
.

We again assume, 𝐶𝑒,ℎ𝑜𝜇𝑠ℎ < 𝐶ℎ,ℎ𝑜, this makes the numerator of the
second factor positive and after leaving out the constants the optimal
power law is given by:

𝑃 ∗(.) = arg inf
𝑃 (.)

(

∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

1
𝑃 (𝑣)𝐶ℎ,ℎ𝑜 − 𝑣𝐿𝛽−1𝜇𝑠ℎ

𝑝𝑉 (𝑣)𝑑𝑣

)

subject to ∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
𝑝𝑉 (𝑣)𝑃 (𝑣) ≤ 𝑃 . (16)

With 𝜚 representing the Lagrange multiplier we minimize:

∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

(

1
𝑃 (𝑣)𝐶ℎ,ℎ𝑜 − 𝑣𝐿𝛽−1𝜇𝑠ℎ

− 𝜚(𝑃 (𝑣) − 𝑃 )

)

𝑝𝑉 (𝑣)𝑑𝑣.

This is (exactly resembles) a state independent optimal control prob-
lem, for any given 𝜚 and can be solved using Hamilton–Jacobi–Bellman
(HJB) equation (see for e.g., [27,28]):

𝑑𝑈
𝑑𝑣

= 𝑝𝑉 (𝑣) inf𝑃

{

1
𝐶ℎ,ℎ𝑜𝑃 − 𝜇𝑠ℎ𝐿𝛽−1𝑣

− 𝜚𝑃

}

(17)

where 𝑈 , the value function, is given by:

𝑈 (𝑣) ∶= inf
𝑃 (.)∫

𝑉𝑚𝑎𝑥

𝑣

[

1
𝑃 (𝑣)𝐶ℎ,ℎ𝑜 − 𝑣𝐿𝛽−1𝜇𝑠ℎ

− 𝜚𝑃 (𝑣)

]

𝑝𝑉 (𝑣)𝑑𝑣.

The value function 𝑈 satisfies the HJB equation (17) when it is
continuously differentiable (e.g., [27,28]) and we will see that this
indeed is the case. The optimal control 𝑃 ∗() equals the minimizer of
the optimization in the right hand side of the HJB equation (17) (see
for example [27,28]). This can be computed easily for any 𝑣 and

𝑃 ∗(𝑣) = 1
𝐶ℎ,ℎ𝑜

𝜇𝑠ℎ𝐿
𝛽−1𝑣 +

√

1
𝐶ℎ,ℎ𝑜𝜚

.

53



V. Kavitha, M.K. Gupta, V. Capdevielle et al. Computer Communications 142–143 (2019) 48–61

Fig. 4. Performance comparison (load factor and busy probability) with and without optimal power control, as 𝑉2 varies.

The average power equals:

∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
𝑃 ∗(𝑣)𝑝𝑉 (𝑣)𝑑𝑣 =

1
𝐶ℎ,ℎ𝑜

𝜇𝑠ℎ𝐿
𝛽−1𝐸[𝑉 ] +

√

1
𝐶ℎ,ℎ𝑜𝜚

.

Equating the above to average power constraint 𝑃 , we obtain the
optimal Lagrange multiplier 𝜚 and optimal power law:

Theorem 2. The power function 𝑃 ∗(.) that optimizes 𝜌 given by (15),
while satisfying the average power constraint equals:

𝑃 ∗(𝑣) = 𝑃 + 1
𝐶ℎ,ℎ𝑜

𝜇𝑠ℎ𝐿
𝛽−1 (𝑣 − 𝐸[𝑉 ]) . □ (18)

Remarks: From (18), we notice that the optimal power law is linear in
the speed. In fact even from discrete case (12), it is proportional to 1∕𝛶𝑖
which approximately equals a speed 𝑣 ∈ 𝑖 if interval 𝑖 is sufficiently
thin. This is surprising for us, as we anticipated that the power law will
be scaled by factors proportional to path-loss factor 𝛽. We reconfirmed
using the small cell network simulator built in Section 6 that, the
linear power law indeed performs superior in comparison to many other
functions. We compared linear power law (18) with power functions
that are square or square root of the velocity (𝑃 (𝑣) ∝ 𝑣2 or

√

𝑣)
or functions such that (𝑃 (𝑣) ∝ 𝑣𝛽 or 1∕𝑣𝛽) etc., and observed that
the former provides the best performance. However the coefficients of
the linear power law depend upon the cell size 𝐿, path-loss factor 𝛽,
amount of extra information required at each hand over 𝑠ℎ etc., also as
in discrete case. For example, higher the path-loss factor and or larger
the cell size is, larger is the disparity in the powers allocated to various
speed users.

One can easily verify that the continuous power law (18) equals8

the limit of the discrete optimal power policy (12). Thus we obtained
optimal power law via two different methods for continuous control
and the two methods are resulting in the same solution. Also, the
optimal power increases linearly with the speed 𝑣.

The load factor at optimal power law parametrized by threshold 𝑃
equals:

𝜌∗(𝐿;𝑃 ) = 𝜆𝐿2

𝐾 ∫

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

(

𝐶𝜌,1
𝑣

+
𝐶𝜌,2

𝑃𝐿1−𝛽𝐶ℎ,ℎ𝑜 − 𝐸[𝑉 ]𝜇𝑠ℎ

)

𝑝𝑉 (𝑣)𝑑𝑣

(19)

= 𝜆𝐿2

𝐾

(

𝐶𝜌,1𝐸
[ 1
𝑉

]

+
𝐶𝜌,2

𝑃𝐿1−𝛽𝐶ℎ,ℎ𝑜 − 𝐸[𝑉 ]𝜇𝑠ℎ

)

with

𝐶𝜌,1 ∶= 𝐶𝑏,𝑒 −
𝐶𝑏,ℎ𝐶𝑒,ℎ𝑜
𝐶ℎ,ℎ𝑜

, and 𝐶𝜌,2 ∶= 𝐶𝑏,ℎ

(

1 − 𝜇𝑠ℎ
𝐶𝑒,ℎ𝑜
𝐶ℎ,ℎ𝑜

)

.

8 As one increases the number of user classes 𝐼 to infinity, the conditional
expectation 𝛶 converges to 1∕𝑉 while the sum for any 𝐼 equals, ∑

𝑖 𝑝𝑖𝛶𝑖 =
𝐸[1∕𝑉 ], the unconditional expectation.

Fig. 5. Relative improvement in 𝑃 ∗
𝑏𝑢𝑠𝑦 compared to 𝑃𝑏𝑢𝑠𝑦, as a function of 𝑉2.

Fig. 6. 𝜌∗ decreases with 𝐼 and approaches towards the one with continuous law (given
by broken line).

5. Numerical examples

We reinforce the theoretical results of previous sections using nu-
merical examples. In the subsequent section, we build an elaborate
Monte-Carlo simulation based set-up to study the system with further
details.

We first consider a two speed-class example in Fig. 3, with settings
as mentioned in caption, and study the differences in the optimal
powers allocated to the two sets of users. We consider the equidistant
partition of the cell, i.e., 𝜙𝑛 = 𝑛∕𝑁 . We plot the two optimal powers
(given by (12)) as a function of path loss factor (𝛽). We notice that
the difference between the two allocated powers increases as the path-
loss factor increases (see Fig. 3). Thus, power control becomes more
important, as the path-loss factor increases.

We study the improvement in load factor and busy probability by
using continuous optimal power law in Fig. 4. The parameter settings
are as follows: 𝐾 = 60, 𝑁 = 9, 𝜆 = 0.7, 𝜇 = 0.2, 𝑠ℎ = 0.4, 𝑑0 =
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10, 𝛽 = 2.5, 𝑟0 = 0.4𝑑𝛽0 , 𝐿 = 70, 𝑃 = 1.3. Quantities 𝜌∗ and 𝑃 ∗
𝑏𝑢𝑠𝑦 are the

performance (𝜌 given by (15) and 𝑃𝐵𝑢𝑠𝑦 given by (10)) using optimal
power law (given by (18)) while 𝜌 and 𝑃𝑏𝑢𝑠𝑦 are the performance
obtained by allocating equal power to all users (i.e., when 𝑃 (𝑣) ≡ 𝑃 ). In
Fig. 4, we kept 𝑉1 (𝑉𝑚𝑖𝑛) fixed at 15 and varied 𝑉2 (𝑉𝑚𝑎𝑥) from 30 to 90.
From the two sub-figures of Fig. 4, it is clear that we obtain significant
improvement (upto 60% and 100% respectively) in load factor and
𝑃𝐵𝑢𝑠𝑦 with optimal power law. Further, we calculate percentage relative
improvement in 𝑃 ∗

𝐵𝑢𝑠𝑦 using,

Relative difference =
(𝑃𝑏𝑢𝑠𝑦 − 𝑃 ∗

𝑏𝑢𝑠𝑦)

(𝑃𝑏𝑢𝑠𝑦 + 𝑃 ∗
𝑏𝑢𝑠𝑦)

× 200,

and plot the same in Fig. 5. We notice a percentage improvement upto
100%. Similar improvements are noted when 𝑉2 is fixed and 𝑉1 is
varied.

While conducting the experiments we studied the improvement
obtained with finite classes. We notice that the performance with finite
classes converges to that of the continuous one and both are close when
𝐼 ≥ 10. Thus it appears that one needs fine control (more number of
user classes) to obtain good improvement. However, we will observe
below that there is a significant jump (Fig. 6) in system performance
even with two classes, which further improves as 𝐼 increases.

Discrete to continuous power law

When one can estimate the speed accurately, one can use finer
power control and we expect this to improve the performance signifi-
cantly. Further one may achieve a major part of this improvement with
few classes, as low as 2. This is established in Fig. 6. We compute
the load factor 𝜌, for the case with 𝐼 number of speed classes, using
expression9 (15) and when the power law is piece-wise continuous:

𝑃 (𝑣; 𝐼) ∶=
∑

𝑖≤𝐼
𝑃 ∗
𝑖 (𝐿;𝑃 )1{𝑣∈𝑖},

with constants {𝑃 ∗
𝑖 (𝐿;𝑃 )}𝑖≤𝐼 given by (12). The stars in Fig. 6 represent

these values for different 𝐼 . In Fig. 6 we compare these values as
𝐼 increases, with that obtained using continuous power law (18) (a
dashed horizontal line in Fig. 6).

Experimental setting for this figure is same as that in Fig. 4, except
for 𝑉𝑚𝑖𝑛 = 20 and 𝑉𝑚𝑎𝑥 = 90. We notice that the load factor with optimal
power law using finite classes decreases monotonically towards that of
the continuous optimal power law. Thus one obtains best performance
when one uses the optimal continuous linear power law. However, a
significant improvement in performance can be noted for just 2 speed
classes (load factor reduces from 0.43 to 0.3) and with 𝐼 = 5 onwards,
one can achieve performance very close to the best (0.28).

6. Small cell network simulator

We built a small cell network simulator (SCNS) for elaborate study
of the system under consideration. We validate the SCNS before using
it for case studies. In all the test cases we compare the performance of
the system using proposed linear power law with that of the systems
which allocate equal power to all the users. The simulator also enables
us to study the test cases that do not satisfy the assumptions required
by the theory.10 In the next section, we consider two such important
generalizations.

9 As already discussed, with finer divisions, the accuracy of theoretical
expressions improve. Hence we use (15) to compute load factor even for
discrete case by treating the power law as piece-wise continuous function.
With this, the integral of (15) would be replaced by (finite) sum of integrals
over sub-intervals.

10 We proved that the linear power is optimal under certain assumptions
(see Theorems 1–2). However we compare an ‘appropriate’ (explained in
respective places) linear power allocation strategy with equal power allocation
strategy, even for the system configurations/test cases that do not satisfy those
assumptions, and found it to perform better.

In all the examples of this section and the next, the pathloss factor
𝛽 has been set from 2.1 to 3.5. We have also assumed that users are
moving with a speed ranging from 20 Kmph to 100 Kmph. The range of
the small cells (2𝐿) has been set between 140 m to 160 m using a power
between 0.7 Watt to 1.6 Watt which corresponds to a typical outdoor
metro cell or pico cell.

The SCNS emulates cars moving along a straight road, and receiving
services from a series of pico towers adjacent to the road. Without
loss of generality, we consider cars moving only in one direction. The
SCNS emulates the arrival of new users, service of the user by the
nearest tower based on SNR, hand over of services between towers
and departure of users from system once service is completed. The
simulator also accounts for the data rates lost due to transfer of extra
control information per HO. It updates the value of variables at regular
time intervals of length 𝛿, where 𝛿 > 0 is sufficiently small, to achieve
‘almost’ continuous time simulations. The cars leaving the last tower
is tied to the first tower to ensure the stochastic equivalence of cars
entering and leaving the system.

Before we proceed, we would like to clarify an important underlying
assumption. In SCNS, we assume that there are no transmission errors
when one transmits at rates below the SNR/SINR (the approximation
for capacity). Here, we are estimating the SNR at any position and then
choosing the best rate (among ) below the SNR. In that sense, these
are the results of partial simulations and complete simulations would
incorporate channel coding, decoding transmission errors etc. Now, we
discuss several stages involved in building SCNS.
(1) Deterministic variables: A single tower with a single server and a
single supported rate is built with all other variables (e.g., inter arrival
time, service requests etc.) as deterministic.
(2) Stochastic variables: We continued with single tower and single
server, but the variables are randomized one by one. We also consider
multiple transmission rates. We run simulations for considerably long
time to estimate the confidence interval for each case.
(3) Multiple servers and small cell network: Finally, we considered the
case with multiple towers (each having multiple servers), with the
road from final tower leading back to that of the first tower. The
performance measures are estimated, after running the simulations for
even longer periods to ensure convergence.

6.1. Validation of SCNS

In order to validate our results of the previous sections, we compare
the theoretical analysis with simulation results obtained by SCNS.
But prior to that, one needs to verify the SCNS itself. Towards this,
we build the SCNS in stages, as mentioned above, and some easily
computable performance metrics are computed at each stage and are
verified against the estimates provided by SCNS. We consider many
intermediate measures for this validation purpose. Then, the important
performance measures (𝑃𝐵𝑢𝑠𝑦 and 𝑃𝐷𝑟𝑜𝑝) are estimated using SCNS and
are compared with the theoretical ones.

The results of SCNS are verified using corresponding theoretical
expressions first under deterministic setting (when job sizes, user speed
etc. are considered constants) and then for stochastic system setting.
Then the experiments are performed for small cell network with mul-
tiple servers. Theoretical performance measures derived in Section 3
are applicable for this system under following assumptions: (a) the
values of 𝑃𝑒;ℎ𝑜 and 𝑃ℎ;ℎ𝑜 are close to 1; (b) The values of busy and drop
probabilities are small; and (c) The values of 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are away
from zero. These assumptions are easily satisfied by almost all practical
scenarios (to provide reasonable QoS) and we also consider case studies
satisfying these assumptions.

We compare the SCNS based estimates of intermediate performance
measures 𝑃𝑒,ℎ𝑜, 𝑃ℎ,ℎ𝑜, 𝑏𝑒, 𝑏ℎ with the corresponding theoretical values
(given by Eqs. (6), (8), (7)) in Fig. 7. The table details various config-
urations (Unif meaning uniformly distributed), while the two figures
illustrate the comparison of SCNS based estimates with theoretical

55



V. Kavitha, M.K. Gupta, V. Capdevielle et al. Computer Communications 142–143 (2019) 48–61

Fig. 7. SCNS based estimates versus theoretical values for different configurations. Other details common to all configurations are 𝑁 = 6, 𝜙𝑛 = 𝑛∕𝐿, 𝐿 = 70, 𝑑0 = 10, 𝐾 = 60,
𝑃 = 0.6, 𝜇 = 0.22, 𝑛𝑡𝑜𝑤 = 7, 𝑠ℎ = 0.01 and 𝜆 = 0.7.

Fig. 8. Theoretical 𝑃𝐵𝑢𝑠𝑦 and its estimate using SCNS.

Table 1
Test system configurations to compare performance and percentage improvement in
performance.

No. System configurations 𝑃𝐷𝑟𝑜𝑝 %Improvement

𝑃 𝛽 𝑠ℎ 𝑉 range

1 0.85 2 0.4 [20, 30] 24.08
2 1 2.5 0.4 [20, 40] 25.08
3 1.2 2.5 0.4 [20, 25] 66.07
4 1.6 3.1 0.5 [20, 40] 89.82
5 1.6 2.1 0.5 [20, 40] 47.93

expressions. It is clear that there is a good match (around 10 to 15%
normalized difference) between the two quantities. Here we define,

200(𝑃𝑒𝑟th − 𝑃𝑒𝑟SCNS )
𝑃𝑒𝑟th + 𝑃𝑒𝑟SCNS

, (20)

as the normalized (percentage) difference for any given performance
𝑃𝑒𝑟.

We complete the final phase of validation, by comparing the block-
ing probability 𝑃𝐵𝑢𝑠𝑦 estimated using SCNS and its theoretical expres-
sion. We consider the case without power law and the results are in
Fig. 8, with all system details as given in the figure itself. One can
see that there is sufficiently good match in the busy probability per-
formance, with the normalized difference ranging from 2% to 30%. In
many more test cases we found similar normalized differences between
the performance estimated using SCNS and the theoretical one, as long
as the conditions defined at the beginning of this section are satisfied.

Fig. 9. Performance comparison for different configurations.

6.2. Testing of power law

We now explore the efficiency and optimality of power law. In
Section 4, it is theoretically established that affine power law is optimal
for small cell network under certain assumptions. We demonstrate the
supremacy of the power law, even in scenarios where the system/test
case does not satisfy the assumptions required by theory.

Table 1 and Fig. 9 show that power law works well for different
(with variety of parameter sets) test cases especially when probability
𝑃𝐷𝑟𝑜𝑝, 𝑃𝐵𝑢𝑠𝑦 is small (at least of order 10−2). In all test cases the
normalized improvement (defined like in (20), now using the estimates
with and without power law) is above 24% and for one configuration
the improvement is upto 89% (configuration 4 in Table 1). Power law
fails when 𝑃𝐷𝑟𝑜𝑝 takes large value in the order of 10−1 (see Table 2).
The loss in performance due to power law is of orders less than 10%.
However, wireless networks generally do not operate in such scenarios
due to low efficiency. Thus power law is useful in all ‘operating’ case
studies.

Table 3 shows that the performance of power law improves with
increase in power (upto 66%). It is noted from the results of Table 4
that the improvement also depends upon the path loss factor 𝛽. One
has huge improvements for large path-loss scenarios. Further, in all the
test cases (irrespective of the configuration), we again notice a very
good improvement when 𝑃𝐷𝑟𝑜𝑝 is small and is in the range of 10−2–10−4
(see Tables 3–4). We make a similar observation in the experiments of
subsequent section.

We consider another example in Figs. 10–11. We plot the normal-
ized percentage improvement as a function of average power constraint
𝑃 in Fig. 10, while the block, drop probabilities are plotted in Fig. 11.
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Table 2
System configuration (large 𝑃𝐷𝑟𝑜𝑝) when power law fails.

System configurations Without power law With power law 𝑃𝐷𝑟𝑜𝑝 % improvement

𝑃 𝛽 𝑠ℎ 𝑉 range 𝑃𝐵𝑢𝑠𝑦 𝑃𝐷𝑟𝑜𝑝 𝑃𝐵𝑢𝑠𝑦 𝑃𝐷𝑟𝑜𝑝
1 2.5 0.6 [20, 40] 3.72E−02 6.71E−01 3.90E−02 6.62E−01 −1.35
1 3.1 0.5 [20, 40] 4.05E−02 7.24E−01 4.33E−02 7.40E−01 −2.18

Table 3
Power law performing better for higher power.

System configurations Without power law With power law 𝑃𝐷𝑟𝑜𝑝 % change

𝑃 𝛽 𝑠ℎ Range 𝑉 𝑃𝐵𝑢𝑠𝑦 𝑃𝐷𝑟𝑜𝑝 𝑃𝐵𝑢𝑠𝑦 𝑃𝐷𝑟𝑜𝑝
1 3 0.4 [20, 40] 2.47E−02 4.30E−01 2.37E−02 3.92E−01 9.24
1.2 3 0.4 [20, 40] 8.25E−03 1.34E−01 6.67E−03 1.02E−01 27.11
1.4 3 0.4 [20, 40] 3.26E−04 4.36E−03 1.75E−04 2.19E−03 66.25

Table 4
Improvement with power law for smaller values of 𝑃𝐵𝑢𝑠𝑦.

System configurations Without power law With power law 𝑃𝐷𝑟𝑜𝑝 % change

P 𝛽 𝑠ℎ Range 𝑉 𝑃𝐵𝑢𝑠𝑦 𝑃𝐷𝑟𝑜𝑝 𝑃𝐵𝑢𝑠𝑦 𝑃𝐷𝑟𝑜𝑝
1.6 2.1 0.5 [20, 40] 7.35E−03 1.20E−01 4.90E−03 7.36E−02 47.93
1.6 3.1 0.5 [20, 40] 6.07E−04 8.47E−03 2.53E−04 3.22E−03 89.82

Fig. 10. Normalized % improvement for two cases.

We consider two examples in Fig. 10, the improvement is more when
the range of user speeds is larger (black set of curves with 𝑉𝑚𝑎𝑥 =
100 km∕h). From Fig. 11, both drop probability and block probability
improve significantly when power law is used (curves without markers
are with power law). From theory (Theorems 1–2) the disparity in the
powers allocated to different speed classes, increases with increase in
the range of user speed, and we observe from both the figures that
this increase (in disparity) also increases the normalized improvement
obtained using the power law.

7. Numerical illustration: With a common rates set,  and inter-
ference

In previous sections, we assumed that the (finite) set of transmission
rate choices , depends upon the speed/transmit power of the user.
We relax this assumption now and consider a big common set of
transmission rate choices. System chooses a rate from the given set
based on the received signal strength and rate set is the same for all
users. One can choose this common set of possible transmission rates, (
and 𝑁), based on the practical channel coding schemes that would be used
in the network design.

We analyse this scenario using the simulator SCNS. We do not have
theoretical support as of now for this scenario, however we note that
the linear power law can improve the performance. We set power

Fig. 11. Block, drop probabilities with and without linear power law, when 𝑉𝑚𝑎𝑥=100.

control rule to be:

𝑃 (𝑉 ; 𝛼) ∶= 𝛼𝑃 + 𝑃 (1 − 𝛼) 𝑉
𝐸[𝑉 ]

for any 𝛼 ∈ [0, 1], (21)

and obtain the performance with best 𝛼 using SCNS. If the set of
transmission rates  is sufficiently big, we found that this rule provides
a huge improvement in comparison with the scheme that allocates
equal power (i.e., 𝛼 = 1) for all speeds.

The random trajectories of cars moving at random speeds, arriving
at random positions with random service requirements is simulated in
SCNS. For any given 𝛼, the arriving user is allocated a transmit power
according to rule (21). As the car moves forward, its position changes
and the received power changes accordingly. At any point the best rate
among the rates of , which is below received SNR (using low SNR
approximation (2) for capacity) is chosen as the transmission rate.

We tabulate the improvement in performance with affine power
law (21) for many configurations in Table 5, after finding a good
𝛼 = 0.7. We also plot corresponding 𝑃𝐵𝑢𝑠𝑦, 𝑃𝐷𝑟𝑜𝑝 for all test cases
in the adjacent figure, Fig. 12. We notice a significant improvement
in performance for all cases. However, this improvement requires the
availability of 26 different rate choices as mentioned in the caption
of the table. This requirement is mandatory, because using this large
set, we can create the effect of significantly different (virtual) cell sizes
for different speed classes. In next subsection, we consider an example
with common rates set in presence of interference. We notice significant
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Table 5
Improvement due to Power Law with common rates set  = {0.8 ∶
−0.035 ∶ 0.03, 0.011 ∶ −0.004 ∶ 0.003} and || = 26 Other system
parameters: 𝑠ℎ = 0.4, 𝑛 = 10, 𝛿 = 0.04, 𝐿 = 70, 𝑉𝑚𝑖𝑛 = 20 kmph, 𝑉𝑚𝑎𝑥 = 100
kmph.

Sl. no System configuration % Impr

𝑃 𝛽 𝑉 range

1 0.75 3.5 [20, 100] 53
2 0.75 3 [20, 100] 39
1 0.75 2.5 [20, 100] 62

1 0.7 35 [20, 100] 35
1 0.7 3 [20, 100] 29
1 0.7 2.5 [20, 100] 54

1 0.7 3.5 [5, 100] 45
1 0.7 3 [5, 100] 48
1 0.7 2.5 [5, 100] 47

Fig. 12. 𝑃𝐵𝑢𝑠𝑦, 𝑃𝐷𝑟𝑜𝑝, with Power law (best 𝛼 = 0.7) and without Power law (𝛼 = 1).

improvement in this case also (see Fig. 13). Thus by using a big set of
transmission rates, we are able to illustrate a very good improvement in
performance. It is practically impossible to create different (physical) cell
sizes for different speed classes, however one can probably work with a large
set of transmission rates. And hence this can be a good design alternative.

7.1. With interference and ‘non-uniform’ speeds

In this subsection, we further consider the effects of interference.
Our theoretical results are valid for any distribution of velocity/speed.
We also consider speeds that are not uniformly distributed. We assume
that the velocity is a conditional Gaussian random variable as below:

𝑉 = 
(

𝑉𝑚𝑖𝑛 + 𝑉𝑚𝑎𝑥
2

, 10
)

|

|

|

|

|

 ∈ [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥],

where  (𝑚, 𝑣) is a Gaussian random variable with mean 𝑚 and variance
𝑣. Basically we generate Gaussian random variables and consider only
the values that are within [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥]. We set 𝑉𝑚𝑖𝑛 = 40 kmph, 𝑉𝑚𝑎𝑥 =
100 kmph for this set of experiments. We assume that the towers of
the cells other than the serving cell cause interference to the user. The
total interference term, , is computed using the received powers at
the user under consideration, received from all the towers that serve
the other users currently utilizing the system. These received powers
are attenuated values of the power allocated according to rule (21),
after distance based attenuation as according to Eq. (3). Hence the
interference term and the SINR (Signal to Noise and Interference ratio)
of the tagged user equals:

 =
∑

users of other cells
in same channel

𝑃 (𝑉𝑖, 𝛼)(𝑑𝑖∕𝑑0)−𝛽 ,

𝑆𝐼𝑁𝑅 =
𝑃 (𝑉𝑡𝑎𝑔𝑔𝑒𝑑 , 𝛼)(𝑑𝑡𝑎𝑔𝑔𝑒𝑑∕𝑑0)−𝛽

1 + 
𝜎2

, (22)

where 𝑉𝑖 is the velocity of user 𝑖, whose tower is at distance 𝑑𝑖 from
the tagged user and where 𝜎2 is the thermal noise variance. Recall, by
the convention of our paper, that 𝑃 actually represents the transmit
power divided by the thermal noise variance. Here, we are estimating
the SINR in place of SNR and the best rate (in ) below the SINR is
chosen for transmission, similar to previous section.

Numerical examples

We consider two different case studies and the respective set of
(common) rate choices are (respectively of sizes 30 and 45):

1 = {0.83 ∶ −0.03 ∶ 0.01, 0.007, 0.003},

2 = {0.80 ∶ −0.02 ∶ 0.02, 0.009 ∶ −0.002 ∶ 0.001}.

Basically when the path-loss factor is large one requires more number
of rate choices.

The results are provided in Fig. 13. This figure has four sub-figures,
sub-figure (a) provides the system configuration for all test cases,
while the remaining illustrate the performances and the normalized
improvement in performance. The light blue bars, orange bars and dark
blue bars respectively represent the performance with zero interference,
medium interference (noise variance 0.5) and strong interference (noise
variance 1) respectively in all the sub-figures. The bars with broken
lines as borders represent the performance when linear power law
is used. As noted from Fig. 13.(b), the power law improves the
performance even for non-uniform speeds. The performance of the
system degrades with interference (see sub-figures (c)–(d)), however a
significant improvement is noted with power law. We also observe that
improvement increases with a bigger set of rates (Configurations 2, 4
and 5 with 2). Good 𝛼 turns out to be smaller for bigger cell sizes
(configurations 1 and 2). This indicates a bigger disparity in powers
allocated to various speeds.

We considered many more test cases and found that the power
law provides good improvement. We noticed that the percentage im-
provement increases as the SINR increases or equivalently as 𝑃𝐷𝑟𝑜𝑝
decreases.

The percentage improvement is reduced when one considers the ef-
fects of interference. Nevertheless the improvement has not diminished
completely, but rather is sufficiently significant even with interference.
The simulations show an improvement up to 52% (and in many cases
well above 9%) even in the presence of (time varying and random)
strong interference (dark blue bars of sub-figures of Fig. 13 with 𝜎2 =
0.1). In presence of smaller interference (with 𝜎2 = 0.5) the percentage
improvement is much higher (well above 35% in all cases). Further,
the impact of considering interference on reduction in percentage im-
provement is higher with smaller path losses (first four configurations
with 𝛽 = 2.5 in Fig. 13).

8. Conclusions

Mobility management is a challenging issue in HetNet deployments,
where the main objective is to reduce call drops and network signalling
flow, optimize traffic scheduling, and achieve resource optimization.
As an example, a common and currently adapted solution for high
speed trains is to densify the network along the railway tracks to
combat the large penetration loss (coverage holes). However, this will
increase HO frequency due to smaller site-to-site distance. Another
way is to increase the transmission power of the BSs, which also
helps in reducing the large penetration losses. However, this results
in high energy consumption (and more interference) and neither of
these solutions are cost-effective. Previously in literature, for efficient
design, it was suggested to vary inter BS distances based on the speed of
the user. However, it is practically infeasible to do so. Alternately, we
have proposed in this paper to reflect the speed based (optimal) design
variations in the allocated powers.
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Fig. 13. With interference and ‘non-uniform’ speeds: 𝛿 = 0.01, 𝑠ℎ = 0.4, 𝜇 = 0.2, 𝐾 = 60, 𝜆 = 0.7𝑛, 𝑑0 = 10, 𝑃 = 0.7 and # of towers 𝑛 = 10 and noise variance 𝜎2 = 0.5 (medium
interference) or 0.1 (strong interference). From sub-figure (b) % improvement is 50 for the second configuration without considering interference (without interference) while it
equals 48 and 24 respectively with noise variances 𝜎2 = 0.5 and 0.1. Sub figures (c) and (d) provide 𝑃𝐵𝑢𝑠𝑦, 𝑃𝐷𝑟𝑜𝑝 respectively, with and without power law, for three levels of
interference and for five configurations.

We have obtained a closed form expression for optimal power con-
trol (optimal for load factor and/or busy probability), which allocates
different transmit powers to different user (speed) classes, for any
given average power constraint and the cell size. The optimal control
ensures larger power to higher speeds and the differences in the powers
allocated increase with path loss factor and the disparities in the speeds.
It is noteworthy that whenever an accurate user speed estimate is
made available, one can obtain a very fine optimal power control with
speed. We have shown that the optimal power varies linearly with the
user speed and this result is obtained using Hamilton–Jacobi–Bellman
equations.

We have also observed via numerical simulations that, there is large
improvement in busy probability and load factor when optimal power
control is used instead of equal powers for all users. The improvement
in performance increases as the number of user classes increases and
one obtains the best improvement with continuous optimal power law.
The systems with large (path) losses and or the ones which support
wide variations of user speeds, improve significantly with optimal
power control.

Further, a system level simulator has been built on which exhaustive
simulations were conducted. We have derived the theory under certain
assumptions, however the performance of linear power law is estimated
using system level simulator for more general set-up. We have observed
that power law outperforms the counter part of the systems that uses
equal power for all speeds, in all the scenarios with moderate to
high SNR conditions. For the system with interference, the power
law out-performs by significant margin (even up to 70%) while for
systems without interference we noticed an improvement even up to
89% percentage. Achieving these results offers hope that such a smart
mechanism can be designed around small cell integration in HetNets.
This integration can further help the notion of CSB proposed by LTE
standards.
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Appendix A. Maximum velocity supported by system

In this section, we calculate a limit on the speeds that can be
supported, by a system with maximum 𝑁 possible transmission rates
and with transmission power 𝑃 . This is equivalent of [8, Theorem 2]
obtained for systems with ‘maximal’ transmission rates. User entering
at −𝐿 when moving with speed 𝑉 , can transfer in a cell, at maximum
(see the discussions while deriving 𝜓𝑛 given by (4) and using (3))

𝑔𝑁 (𝐿) ∶= 𝐿
𝑁𝑉

𝑁
∑

𝑚=−𝑁
𝑟𝑚 = 𝐶ℎ,ℎ𝑜

𝑃𝐿1−𝛽

𝜇𝑉
, (A.1)

bytes of information, out of which 𝑠ℎ are used for HO purposes. So, use-
ful communication is possible only when 𝑔𝑁 (𝐿) > 𝑠ℎ with probability
one. With 𝛽 > 1 (the practical range of path loss factors), 𝑔𝑁 (𝐿) reduces
with 𝐿 and so useful communication is not possible for any cell size if
𝑔𝑁 (𝑁𝑑0) itself is less than 𝑠ℎ and hence we have:
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Theorem 3. When 𝛽 > 1, there exists a limit on the maximum velocity
that can be supported by the system for a given power 𝑃

𝑉𝑙𝑖𝑚(𝑃 ) ∶=
1
𝑠ℎ
𝑟0

𝑁
∑

𝑛=−𝑁
|𝜙𝑛|

−𝛽𝑃𝑑1−𝛽0 𝑁𝛽 . □

From the above theorem, given a set of system parameters, useful
communication can be achieved by increasing the power 𝑃 . It is
assumed while deriving optimal power law that transmission power 𝑃
is large enough to ensure useful communication.

Appendix B. Proof of theorem

Proof of Theorem 1. The average power constraint can be satisfied
with equality by substituting 𝑃𝐼 = 1

𝑝𝐼

(

𝑃 −
∑

𝑖<𝐼 𝑝𝑖𝑃𝑖
)

, and then (with
𝐏−𝐼 ∶= (𝑃1,… , 𝑃𝐼−1))

𝜌(𝐿;𝑃 ) ∶= 𝜌

(

𝐿,

(

𝐏−𝐼 ,
𝑃 −

∑

𝑖<𝐼 𝑝𝑖𝑃𝑖
𝑝𝐼

))

= 𝜆𝐿2

𝐾
∑

𝑖<𝐼
𝑝𝑖𝛶𝑖

(

𝐶𝑏,𝑒 + 𝐶𝑏,ℎ
1 − 𝛿𝑖𝐶𝑒,ℎ𝑜
𝛿𝑖𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ

)

+ 𝜆𝐿2

𝐾
𝑝𝐼𝛶𝐼

(

𝐶𝑏,𝑒 + 𝐶𝑏,ℎ
1 − 𝛿(𝐏−𝐼 )𝐶𝑒,ℎ𝑜
𝛿(𝐏−𝐼 )𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ

)

,

𝛿(𝐏−𝐼 ) ∶= 1
𝑝𝐼

(

𝑃 −
∑

𝑖<𝐼
𝑝𝑖𝑃𝑖

)

𝛶𝐼𝐿
1−𝛽 .

We obtain the optimizer of the load factor 𝜌 via the zeros of the deriva-
tives (if they exist). The partial derivatives (for all 𝑖 < 𝐼) are given by:

𝑑𝜌
𝑑𝑃𝑖

= 𝜆
𝐾
𝐶𝑏,ℎ𝑝𝑖𝛶

2
𝑖 𝐿

3−𝛽 𝐶𝑒,ℎ𝑜𝜇𝑠ℎ − 𝐶ℎ,ℎ𝑜
(

𝛿𝑖𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ
)2

− 𝜆
𝐾
𝐶𝑏,ℎ𝑝𝑖𝛶

2
𝐼 𝐿

3−𝛽 𝐶𝑒,ℎ𝑜𝜇𝑠ℎ − 𝐶ℎ,ℎ𝑜
(

𝛿(𝐏−𝐼 )𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ
)2

= 𝜆
𝐾
𝐶𝑏,ℎ𝑝𝑖𝐿

3−𝛽 (𝐶𝑒,ℎ𝑜𝜇𝑠ℎ − 𝐶ℎ,ℎ𝑜
)

×

(

𝛶 2
𝑖

(

𝛿𝑖𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ
)2

−
𝛶 2
𝐼

(

𝛿(𝐏−𝐼 )𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ
)2

)

. (B.1)

One can easily obtain the zero of Eq. (B.1), i.e., the equilibrium
point. Equating the partial derivatives to zero, 𝜕𝜌∕𝜕𝑃𝑖 = 0 for all 𝑖, the
optimal power control 𝐏(𝐿, 𝑃 ), for a given cell size and average power
constraint 𝑃 equals:

𝐏∗(𝐿) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 0 ⋯ 0 1
0 −1 0 ⋯ 0 1

⋮
0 0 0 ⋯ −1 1
𝑝1 𝑝2 𝑝3 ⋯ 𝑝𝐼−1 𝑝𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

𝜇𝑠ℎ𝐿𝛽−1

𝛶𝐼𝐶ℎ,ℎ𝑜
𝐯𝜇

𝐯𝜇 ∶=
[

𝛶1−𝛶𝐼
𝛶1

, 𝛶2−𝛶𝐼
𝛶2

, ⋯ , 𝛶𝐼−1−𝛶𝐼
𝛶𝐼−1

, 𝑃
]

. (B.2)

This can be solved easily and

𝑃 ∗
𝑖 (𝐿;𝑃 ) = 𝑃 +

𝜇𝑠ℎ𝐿𝛽−1

𝐶ℎ,ℎ𝑜

∑

𝑗<𝐼
𝑝𝑗

(

1
𝛶𝐼

− 1
𝛶𝑗

)

−
𝜇𝑠ℎ𝐿𝛽−1

𝐶ℎ,ℎ𝑜

(

1
𝛶𝐼

− 1
𝛶𝑖

)

.

This simplifies to (12). Differentiating (B.1) again, the Hessian matrix
equals:

2𝐶ℎ,ℎ𝑜𝜆𝐶𝑏,ℎ𝐿4−2𝛽 (𝐶ℎ,ℎ𝑜 − 𝐶𝑒,ℎ𝑜𝜇𝑠ℎ
)

𝛶 3
𝐼

𝐾
(

𝛿(𝐏−𝐼 )𝐶ℎ,ℎ𝑜 − 𝜇𝑠ℎ
)3

𝑉 ,

where 𝑉 is defined in the hypothesis of the theorem. This is a positive
definite matrix under the given assumptions and hence 𝐏∗ given by (12)
is indeed a minimizer. □

Appendix C. Expected overall service time 𝑩

Let 𝑍 = (𝐻𝑂 , 𝑉 ) represent a joint random variable in which the first
component is an indicator that it is due to HO, i.e., 𝐻𝑂 = 1 implies it is
an HO call. The following are the events given that a call has arrived.
We first consider HO case. Let 𝑉 and 𝐻̈𝑂 represent the velocity and the
call type (HO or external) in the previous cell before the Handover to
the current cell. That is, 𝐻̈𝑂 = 1 implies it was a HO call in the previous
cell and is again handed over to the current cell. For any set , since
the velocity of user remains constant during the call:

𝑃 (𝐻𝑂 = 1, 𝑉 ∈ ) = 𝑃 (𝐻𝑂 = 1, 𝑉 ∈ ) = 𝑃 (𝐻𝑂 = 1, 𝑉 ∈ , 𝐻̈𝑂 = 0)

+𝑃 (𝐻𝑂 = 1, 𝑉 ∈ 𝐴, 𝐻̈𝑂 = 1) (C.1)

By stationarity 𝑃 (𝐻̈𝑂 = 0) = 𝑃 (𝐻𝑂 = 0) and this equals the probability
that a call arrived is a new call. By ergodicity this equals 𝜆𝐿∕𝜆̄. Thus,
by conditioning first on 𝐻̈𝑂 and then on 𝑉 we obtain:

𝑃 (𝐻𝑂 = 1, 𝑉 ∈ , 𝐻̈𝑂 = 0) = 𝑃 (𝐻𝑂 = 1, 𝑉 ∈ |𝐻̈𝑂 = 0)𝑃 (𝐻̈𝑂 = 0)

= ∫𝐴
𝑃𝑒,ℎ𝑜(𝑣)𝑝𝑉 (𝑣)𝑑𝑣

𝜆𝐿
𝜆̄
. (C.2)

Considering infinitesimal interval 𝑣𝑑𝑣 ∶= [𝑣−𝑑𝑣, 𝑣+𝑑𝑣] and condition-
ing as in the previous equation we obtain:

𝑃 (𝐻𝑂 = 1, 𝑉 ∈ 𝑣𝑑𝑣, 𝐻̈𝑂 = 1)

= 𝑃 (𝐻𝑂 = 1|𝑉 ∈ 𝑣𝑑𝑣, 𝐻̈𝑂 = 1)𝑃 (𝐻̈𝑂 = 1, 𝑉 ∈ 𝑣𝑑𝑣)

≈ 𝑃ℎ,ℎ𝑜(𝑣)𝑃 (𝐻̈𝑂 = 1, 𝑉 ∈ 𝑣𝑑𝑣). (C.3)

By stationarity (and 𝑆 being memoryless), 𝑃 (𝐻̈𝑂 = 1, 𝑉 ∈ 𝑣𝑑𝑣) =
𝑃 (𝐻𝑂 = 1, 𝑉 ∈ 𝑣𝑑𝑣) and thus by substituting (C.2), (C.3) into (C.1),

𝑃 (𝐻𝑂 = 1, 𝑉 ∈ 𝑣𝑑𝑣) ≈
𝑃𝑒,ℎ𝑜(𝑣)𝑝𝑉 (𝑣)𝑑𝑣

1 − 𝑃ℎ,ℎ𝑜

𝜆𝐿
𝜆̄
. (C.4)

In a similar way,

𝑃 (𝐻𝑂 = 0, 𝑉 ∈ 𝑣𝑑𝑣) = 𝑃 (𝑉 ∈ 𝑣𝑑𝑣|𝐻𝑂 = 0)
𝜆𝐿
𝜆̄

≈ 𝑝𝑉 (𝑣)𝑑𝑣
𝜆𝐿
𝜆̄
. (C.5)

Note that service requirements 𝑆 is independent of 𝑍 = (𝐻𝑂 , 𝑉 ). Hence,
using Eq. (13) and Eqs. (C.1)–(C.5) and conditioning on 𝑍, the average
of the overall service time equals Eq. (14).
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