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Abstract: Parkinson’s Disease (PD) and Multiple System Atrophy (MSA) are two parkinsonian 

syndromes that share many symptoms, albeit having very different prognosis. Although previous 

studies have proposed multimodal MRI protocols combined with multivariate analysis to discriminate 

between these two populations and healthy controls, studies combining all MRI indexes relevant for 

these disorders (i.e. grey matter volume, fractional anisotropy, mean diffusivity, iron deposition, 

brain activity at rest and brain connectivity) with a completely data-driven voxelwise analysis for 

discrimination are still lacking. In this study, we used such a complete MRI protocol and adapted a 
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fully-data driven analysis pipeline to discriminate between these populations and a healthy controls 

(HC) group. The pipeline combined several feature selection and reduction steps to obtain 

interpretable models with a low number of discriminant features that can shed light onto the brain 

pathology of PD and MSA. Using this pipeline, we could discriminate between PD and HC (best 

accuracy = .78), MSA and HC (best accuracy = .94) and PD and MSA (best accuracy = .88). Moreover, 

we showed that indexes derived from resting-state fMRI alone could discriminate between PD and 

HC, while mean diffusivity in the cerebellum and the putamen alone could discriminate between 

MSA and HC. On the other hand, a more diverse set of indexes derived by multiple modalities was 

needed to discriminate between the two disorders. We showed that our pipeline was able to 

discriminate between distinct pathological populations while delivering sparse model that could be 

used to better understand the neural underpinning of the pathologies.  

Keywords: parkinsonism discrimination, multimodal MRI, data-driven clinical classification 
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1 Introduction 

Parkinson’s Disease (PD) and Multiple System Atrophy (MSA) are two neurodegenerative 

diseases characterized at the neuropathological level by the accumulation of α-synuclein, either in 

neurons in PD or in oligodendrocytes in MSA (Halliday et al., 2011). The clinical diagnosis of MSA can 

be challenging as no specific symptom or biomarker allows a “definite” diagnosis in vivo. Currently, 

the “definite” diagnosis of MSA requires post-mortem confirmation, by means of a neuropathological 

examination. It is often challenging in clinical practice to differentiate MSA, especially its 

parkinsonian variant (MSA-p) as opposed to the cerebellar variant (MSA-c), from PD as both entities 

can share similar phenotypes, especially in early stages.  

Brain modifications related to neurodegeneration due to aging as well as psychiatric or 

neurodegenerative diseases can be characterized using multimodal MRI protocols with sequences 

sensitive to different tissue characteristics (Barbagallo et al., 2016; Cherubini et al., 2016; Eustache, 

et al., 2016; Lee et al., 2018; Nemmi et al., 2015; Péran et al., 2010, 2018; Spoletini et al., 2011). 

Previous multimodal MRI studies have mainly used structural markers: grey and white matter volume 

(calculated using T1-weighted imaging), microstructural integrity of the white and grey matter by 

using diffusion weighted imaging (DWI) related indexes (e.g. fractional anisotropy, FA, and mean 

diffusivity, MD) and iron deposition by using R2* imaging. Several studies have focused on 

characterizing the pathophysiological substrate of PD and MSA from a multimodal perspective. Our 

group showed that PD patients displayed higher iron deposition (as measured by R2* imaging) in the 

substantia nigra (SN), lower FA in the SN and thalamus, and higher MD in the thalamus compared to 

healthy controls (HC) (Péran et al., 2010). Moreover, a combination of indexes extracted from three 

clusters by using voxel-wise analysis (i.e. R2* in a cluster in the SN, MD in the putamen and FA in the 

SN) reached area under the curve in ROC analysis as high as 95% (Péran et al., 2010). More recently, 

we extended these methods to MSA patients, showing that they show microstructural changes in the 

putamen and the cerebellum, regardless of the subtype, relative to both HC and PD patients 
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(Barbagallo et al., 2016; Péran et al., 2018). To our knowledge, no previous studies combined 

functional and structural MRI indexes to discriminate between PD and MSA patients.  

Together with the development of multimodal MRI imaging, there has been an increasing use 

of multivariate assessments and machine learning for the analyses of MRI data (Haller et al., 2013). 

Multivariate methods are intrinsically well suited for the analysis of brain imaging; they use the 

global pattern of the data, rather than focusing on one voxel at a time as in massive univariate 

analyses, thus leveraging the information about the whole spatial pattern of brain modifications. 

When multivariate methods are coupled with multimodal imaging, one can make full use of the 

complementarity of the information acquired through the different MRI sequences. Several studies 

have used multivariate methods to discriminate PD patients from healthy controls, both using single 

modality (Adeli et al., 2016; Chen et al., 2015; Huppertz et al., 2016; Zhang, Liu, Chen, & Liu, 2014) 

and multimodal MRI imaging (Bowman et al., 2016; Long et al., 2012), or different indexes extracted 

from the same modalities (Focke et al., 2011; Peng et al., 2017). Only two of these studies also 

included MSA patients (Focke et al., 2011; Huppertz et al., 2016), without using multimodal protocol. 

Although these studies could successfully discriminate between PD and controls (and MSA and 

controls) they have some limitations: some of them used non-independent features selection (Zhang 

et al., 2014), some used a-priori parcellation of the brain (Adeli et al., 2016; Bowman et al., 2016; 

Huppertz et al., 2016; Long et al., 2012; Peng et al., 2017), and some used a leave-one-out cross-

validation scheme (Chen et al., 2015; Focke et al., 2011; Huppertz et al., 2016; Long et al., 2012; 

Zhang et al., 2014), which is known for introducing an optimistic bias in the evaluation of the 

performance of the classifier (Varoquaux et al., 2017). Most importantly, to our knowledge the most 

complete multimodal protocol was used by DuBois Bowman and colleague (2016), including T1, rs-

fMRI and DWI, but not another important biomarker for parkinsonian syndromes, as R2*. 

In the light of the limitation of the previous studies, we performed a study with the following 

characteristics 
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• A complete multimodal MRI protocol including T1, DWI, rs-fMRI and R2* sequences 

• A completely data-driven (i.e. voxel-wise rather than ROI based) pipeline 

• A pipeline striking a good balance between performance (i.e. accuracy) and 

interpretability of the model (i.e. final number of features included in the model) 

• A pipeline that could evaluate the relative importance of the different modalities 

• The use of 10-folds cross-validation, less prone to optimistic bias 

• A comparison of performance when discriminating between PD and HC, MSA and HC, 

and PD and MSA, using the same sequences. 

To this aim we adapted a pipeline recently developed by Meng and colleagues (2017). As in 

the original pipeline, we used several feature reduction steps and further reduced feature 

dimensionality by clustering spatially close voxels before fitting the discriminative model. However, 

at variance with Meng and colleagues, we used what we call a “totally data driven” pipeline; we 

included a nested cross-validation step to select the most relevant modalities for each classification 

problem. This has the added benefit of identifying the minimum set of modalities needed to achieve 

the best discrimination between groups. Moreover, we tested several cluster extent thresholds in 

the clustering step. 
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2 Materials and Methods 

2.1 Patients 

Twenty-nine MSA and 26 PD patients matched for age and sex were prospectively recruited 

at the outpatient clinic of the Toulouse PD Expert Center and the Toulouse site of the French 

Reference Center for MSA. Inclusion criteria were: (1) diagnosis of PD or MSA according to 

established international diagnostic criteria (Gilman et al., 2008; Hughes et al., 1992); (2) Hoehn and 

Yahr score (Hoehn & Yahr, 1967) < 4 on treatment; (3) negative history of neurological or psychiatric 

diseases other than PD or MSA; (4) lack of significant cognitive decline (Mini Mental State 

Examination score > 24); (5) no treatment with deep brain stimulation; and (6) no evidence of 

movement artefacts, vascular brain lesions, brain tumor, and/or marked cortical and/or subcortical 

atrophy on MRI scan (2 expert radiologists examined all MRIs to exclude potential brain 

abnormalities as apparent on conventional FLAIR, T2-weighted, and T1-weighted images). At the 

time of MRI data acquisition, 22 MSA patients were classified as “probable”, while 7 MSA patients 

were classified as “possible”. All "possible" MSA patients were subsequently reclassified as 

“probable” while followed-up for another 2 years at the French Reference Center for MSA. No PD 

patient had his/her diagnosis reclassified after 2 years of subsequent follow-up. All patients receiving 

antiparkinsonian treatments were tested on medication. A healthy control group of 26 right-handed 

subjects closely matched to patients for age, sex, and education was also included.  

The study was conducted according to the Declaration of Helsinki and approved by the 

Toulouse Ethics Committee. Written informed consent was obtained from all participants. 

 

2.2 Image acquisition 

We used a multimodal MRI protocol including T1-weighted imaging, T2 relaxometry, DWI and resting 

state fMRI (rs-fMRI) (details in Supplemental data). 

 



7 
 

2.3 Images preprocessing 

2.3.1 T1 images 

T1 images were segmented in grey matter and white matter map using CAT12 

(http://www.neuro.uni-jena.de/cat/) (Gaser & Dahnke, 2016). This toolbox is an improvement over 

the VBM8 toolbox. Briefly, the tissue probability maps are only used in a first (affine) registration 

step, the actual segmentation is performed using an adaptive MAP approach with local adaptation of 

local intensity changes in order to deal with varying tissue contrast (Dahnke, Ziegler, & Gaser, 2012; 

Gaser & Dahnke, 2016). The final normalization is performed using DARTEL (Ashburner, 2007). The 

grey and white matter tissue maps were not modulated, as it has been shown that unmodulated 

maps are best suited to detect atrophy (Radua et al., 2014). The grey matter volume images were 

smoothed with a Gaussian kernel of 8mm FWHM (results obtained using non-smoothed images are 

reported in the supplementary materials). 

CAT12 provide an automatic QA value for each segmented image; this normalized QA values 

take into account resolution, bias and noise present in the images. This unique value is then 

transformed in a note that ranges from A to E. Images with note lower than D are usually discarded 

from the analysis. None of our subjects had a QA note lower than D. 

 

2.3.2 Resting state images 

rs-fMRI data were analyzed using the conn toolbox (Whitfield-Gabrieli & Nieto-Castanon, 

2012). Briefly, all images were time-slicing corrected, unwarped and realigned to the first volume, 

normalized using the standard normalization algorithm in SPM12 (Friston et al., 2007) and smoothed 

with a Gaussian kernel of 8mm FWHM (results obtained using non-smoothed images are reported in 

the supplementary materials). We also used the art toolbox 

(http://nitrc.org/projects/artifact_detect/) to detect corrupted volumes, defined as volume with 

more than 2 mm movement in any direction or a root mean squared change in bold signal from 



8 
 

volume to volume greater than 9. Noise correction was performed using CompCor (Behzadi et al., 

2007), that regresses out from the functional time-series the first two principal components of the 

time-series extracted from white matter and CSF. Moreover, six movement regressors calculated 

during realignment plus their time derivatives and their quadratic values were regressed out from 

the BOLD time-series. Volumes deemed corrupted were also regressed out. No subjects showed a 

mean framewise displacement greater than 2mm. Note that the CONN preprocessing pipeline output 

QA measurement that can be accounted for in statistical analyses and to compare groups. From 

these variables we retained the mean movement and the mean global signal change for each subject. 

After preprocessing and denoising we calculated the fraction of amplitude of low frequency 

fluctuations (fALFF). fALFF measure the proportion of the power of each frequency at the low-

frequency range (.01–.08 Hz) to that of the entire frequency range (0 – .25 Hz), thus providing a 

normalized quantity that it is thought to reflect local activity at rest (Zou et al., 2008). fALFF maps 

were smoothed with a Gaussian Kernel of 8mm FWHM.  

We also calculated two other indexes of voxel-wise connectivity: local correlation and global 

correlation. Local correlation is a measure of local coherence and measure the average correlation 

among each voxel and its neighbors. Local coherence has been shown to be reduced in PD patients 

(Borroni et al., 2015). On the other hand, global correlation is an index of a voxel network centrality; 

it measures the average correlation between each voxel and all the other voxels in the brain. It has 

been shown that the network centrality of several regions is modified in PD patients relative to 

controls (Gu et al., 2017; Wang et al., 2018). 

All fMRI-derived indexes were calculated using the conn toolbox with the default parameters. 

 

2.3.3 Diffusion weighted images 

DWI were processed using fsl 5.0 (Jenkinson et al., 2012). In particular, DWI images were corrected 

for eddy current and realigned using eddy_correct, then a standard tensor model was fit to each 
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image in order to calculate FA and MD (Behrens et al., 2003). FA images were non-linearly 

normalized onto the standard FA template provided with FSL using FLIRT (Jenkinson & Smith, 2001) 

for the affine registration and FNIRT for the nonlinear registration (Anderson, Jenkinson, & Smith, 

2010). FA and MD images were smoothed using a Gaussian kernel 8mm FWHM (results obtained 

using non-smoothed images are reported in the supplementary materials). Both FA and MD have 

been shown to discriminate between PD and MSA patients, and to discriminate PD and MSA from 

healthy controls (Péran et al., 2010, 2018). While other DWI-derived indexes may have been 

calculated (e.g. radial or perpendicular diffusivity), we limited our choice to FA and MD because they 

differentiate the assessed groups and because they are the most used indexes in the literature. 

 

2.3.4 R2* images 

The six T2*-weighted volumes were averaged to generate a mean T2*-weighted volume. A 

full affine 3D alignment was calculated between each of the six T2*-weighted volumes and the mean 

T2*-weighted volume. For each subject, a voxel-by-voxel nonlinear least-squares fitting of the data 

was acquired at the six TEs to obtain a mono-exponential signal decay curve (S = S0e− t/T2*). This 

method combining data acquisition and data processing of T2* images demonstrated good 

reproducibility (Péran et al., 2007). To facilitate the analysis of the relaxation results, we considered 

the inverse of the relaxation times (i.e., relaxation rates R2* = 1/T2*) as previously described 

(Cherubini et al., 2009; Péran et al., 2007, 2009). The mean T2*-weighted volume was registered to 

the T1-weighted volume using a full affine alignment, T1-weighted volume was than non-linearly 

registered into the MNI space and the calculated deformation field applied to the R2* images. The 

normalized R2* images were smoothed with a Gaussian kernel of 8mm FWHM (results obtained 

using non-smoothed images are reported in the supplementary materials). 
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2.4 Machine learning pipeline 

The machine learning pipeline consisted of several feature selection and reduction steps detailed 

below. 

2.4.1 Matrix reshaping and range normalization 

Separately for each modality, images were reshaped from 3D matrix to 2D matrix with subject x voxel 

dimensions after being masked for the relevant mask (i.e. a liberal grey matter mask for grey matter 

and all rs-fMRI related indexes, white matter for FA and whole brain mask for MD and R2* maps). 

We chose to convert the images from 3D to 2D matrix for easiness of processing. These matrices 

were then normalized so that the values were comprised between 0 and 1. Note that the masking 

was performed to speed the computation, only limiting each modality to the brain regions 

meaningful for each modality (e.g. global connectivity of white matter would not be meaningful). 

2.4.2 Variance thresholding 

Similarly to (Meng et al., 2017) we reasoned that features with only minor variation among 

subjects would not be useful to separate the groups. For this reason, we adopted a simple variance 

feature reduction step in which, for each modality, we eliminated the 25% of features with the 

lowest variance. This step can be considered conceptually similar to the one described by (Wilhelm-

Benartzi et al., 2013) and a more liberal version adapted to classification problem of the one 

proposed in (Meng et al., 2017). 

2.4.3 Relieff based features selection 

Relieff (Kira & Rendell, 1992; Kononenko, Šimec, & Robnik-Šikonja, 1997) is a feature selection 

algorithm that is widely used in the machine learning literature. It estimates a weight for each 

feature by comparing, for each case, the distance of the closest intra and inter-class cases in that 

feature space and increasing the weight if the distance is greater for the inter-class than for the intra-

class case. For each modality, we submitted the features surviving the variance threshold to the 
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Relieff algorithm (as implemented in the CORElearn package for R (Robnik-Sikonja & Savicky, 2017)). 

In order to select the most relevant features we used a screen test approach (Mori et al.s, 2000) as 

implemented in (Meng et al., 2017). We calculated the selection threshold as the first minimum of 

the second derivative of the sorted (in decreasing order) and smoothed (via a loess regression 

(Cleveland, Grosse, & Shyu, 1992)) Relieff weights. This is equivalent to find the point at which the 

speed of the function approaches zero (i.e. the Relieff weight values drop dramatically). Only 

features with a weight exceeding the threshold were retained.  

 

2.4.4 Spatial clustering of the features 

Features from brain imaging are intrinsically non-independent; this is partially due to the 

smoothing applied to the images, but it is above all related to the fact that voxels that lie close 

usually belong to the same anatomical/functional region. In the light of this knowledge spatially 

cluster features (i.e. voxels) that are close to each other is an effective and meaningful way of 

reducing the number of features. For each modality, we submitted the features surviving the Relieff 

threshold to a recursive spatial clustering algorithm: at first adjacent voxels (i.e. less than 3mm apart) 

were assigned the same cluster, all clusters smaller than a certain extent k (and isolated voxels) were 

then submitted to a second clustering step with a radius of 9mm, again those clusters smaller than k 

and isolated voxels were submitted to a third and last clustering with a radius of 12mm. After the 

third step all clusters smaller than k and isolated voxels were discarded (this step was performed 

using the spatstat package in R (Baddeley, Rubak, & Turner, 2015)). The rationale for this step was 

that voxels with supra-threshold Relieff weight but “isolated” could add noise in the model (i.e. due 

to the spatial dependency of voxels in the brain, isolated voxels have higher chance of not being 

physiologically relevant). Moreover, too many such voxels would increase the space of possible 

features subsets to evaluate (see below). We tried several k (i.e. 30, 50, 100, 200) in order to observe 

the effect that this parameter could have on the discrimination performance. Finally, we extract the 
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average signal for each cluster, thus effectively reducing the number of features for each modality 

from hundreds to tens. 

 

2.4.5 Merging of modalities and subset/modalities selection 

In order to have a completely data-driven pipeline, one should empirically test the number and 

type of modalities that enter the discriminant model. Moreover, even after Relieff selection and 

spatial clustering, some clusters may be not very informative, and some clusters may convey 

redundant information (e.g. spatially overlapping low FA and high MD may actually capture similar 

characteristics of the white matter). For these reasons, we combined a cross-validated scheme to 

select the number and type of modalities to use for discrimination with subset selection based on 

correlation. The latter technique is aimed to found the subset of features (i.e. clusters in the case at 

hand) that maximize the predictive power relative to the outcome while minimizing redundancy 

among clusters (measured as collinearity) (Kohavi & John, 1997; Tripoliti et al, 2010). Using an inner 

10-fold cross-validation scheme we tested all the possible combinations of modalities: for each 

combination we merged the modalities in one matrix (having dimensions [subjects] x [N of clusters 

from all modalities in the combination at hand]) and performed subset selection using the select.cfs 

function (Wang et al., 2005) of the Biocomb package (Novoselova et al., 2017). We chose a 10-folds 

cross validation to be consistent with the outer cross-validation loop. In the end, we obtained a 

cross-validated performance score for each combination (i.e. balanced accuracy). We selected the 

subset of cluster/modalities that maximized the performance score and used this subset to fit the 

discriminant model. 

 

2.4.6 Fitting of the model 

Finally, the model is fitted using the sequential minimal optimization (SMO) algorithm(Platt, 

1998; Schölkopf & Smola, 2002) with polynomial kernel. The model was fitted using the RWeka 
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package (Hornik, Buchta, & Zeileis, 2009), a wrapper of the java-based software Weka (Witten, Frank, 

& Hall, 2011). The free parameters of the SMO algorithm are the order of the polynomial and the 

lambda (i.e. allowed error); we left these parameters to the default value of respectively 5 and 10. 

 

2.4.7 Cross validation scheme 

We adopted a 10-fold full cross-validation scheme. This means that each step in the machine 

learning pipeline (except for the images reshaping and range normalization) was performed within 

the cross-validation framework. At each iteration, we divided our sample in ten folds and used 9 of 

them as training set and 1 as testing set. The feature selection and reduction steps were carried out 

using the training sample, then we used the clusters found in the training sample as features in the 

test sample and evaluated the model using only the test sample. This procedure was repeated 10 

times and then the predicted values for each fold were stacked in order to have a prediction for 

every and each subject in the sample. We then calculated accuracy, sensitivity and specificity for the 

stacked prediction (merged scores). Figure 1 schematically represents the predictive pipeline.  The 

code for the pipeline is released on github. 

 

2.4.8 Model repetitions 

Each discrimination (i.e. PD vs HC, MSA vs HC, PD vs MSA) and cluster extent (i.e. 30, 50, 100, 

200) was repeated 10 times to have a better estimate of the performance of the model and a 

measure of its stability. 

 

2.4.9 Modalities included 
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Considering the 10 repetitions of each 10-fold CV pipeline, we had a total of 100 folds for each 

discrimination and cluster extent. To gain insight about the relative importance of the different 

modalities we report the rate of occurrence of each modality in the 100 folds. 

 

2.5 Statistical analysis 

Sex distribution in the 3 groups was compared using a Fisher exact test. Age was normally 

distributed and was compared among groups using a one-way analysis of variance. The QA variables 

from structural, rs-fMRI and DWI acquisition were non-normally distributed and were compared 

among groups by means of a Kruskal-Wallis test. 

Following (Combrisson & Jerbi, 2015) we used binomial cumulative distribution testing  in order 

to assess the statistical significance of the classification pipelines. Briefly, classical binomial testing 

relies on the assumption that the theoretical chance level in a classification task is 
�

�
 where c is the 

number of classis. However, this is only true when the number of observations is (or approach to) 

infinite. Whenever we are dealing with a sample of finite amount, the chance level depends on the 

sample size. One way of taking this into account is to assume that the classification error follows a 

binomial cumulative distribution and calculate the number of correctly classified observations that 

allows to say that the classification accuracy depart from chance with an α level of certitude. This can 

indeed be achieved using the binomial cumulative distribution function as follow 

������	
��
 ������
�� ��	���������� = ��
���	� ��� �1 −  �, 
, �ℎ	
�� ������, where α is the 

desired statistical threshold, n is the sample size and chance level is the probability to correctly 

classify an observation at random. We used the qbinom function in R to calculate the binomial 

cumulative distribution function, testing several statistical thresholds. For two of the comparisons 

(i.e. MSA vs HC and MSA vs PD) we had an unbalanced sample, so instead of a chance level of .5 we 

used a chance level of 
 !"# $%&$%"%'#%( �)*""

'
 (i.e. .527). The reason to choose this chance level is that 
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with unbalanced classes, the best expected random model is a model that simply classify all 

observations as member of the most represented class. On the other hand, for the comparison 

between PD and HC, we choose a chance level equal to .5. Combrisson and colleagues have shown 

that the binomial cumulative distribution function method yield similar results as permutations 

method, even if this latter is slightly more conservative for small sample. 

Since we have 10 repetitions for each discrimination and cluster extent, we report the mean 

accuracy together with its [95% confidence interval], as well as the range of p values and the median 

p values for each combination of discrimination and cluster extent. 

--Insert Figure 1 about here-- 
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3 Results 

3.1 Demographic and clinical variables 

 
n 

Sex, 

M/F 
Age 

Age 

at 

onset 

Disease 

duration 
MMSE 

LEDD, 

mg/die 
H&Y 

UPDRS-

III 
UMSARS 

II- 

Groups           

PD 26 12/14 63.8 
± 6.3 

56 ± 
6.8 

7.4 ± 4.5 29.1 ± 
1.4 

689 ± 
367.2 

2.3 ± 
.5 

19.1 ± 
10 

 

MSA-tot 
 

29 13/16 64 ± 
7.5 

58.3 ± 
8.2 

5.7 ± 2.3 27.9 ± 
1.7 

470 ± 
500.5 

2.4 ± 
.5 

 29.8 ± 8 

MSA-p 16 7/9 66.1 
± 7.8 

60.7 ± 
7.9 

5.4 ± 2.2 28.1 ± 
1.5 

700.1 ± 
386.4 

2.5 ± 
.5 

 31.1 ± 
8.7 

MSA-c 13 6/7 61.5 
± 6.5 

55.2 ± 
7.7 

6.1 ± 2.5 27.7 ± 
2 

187.8 ± 
490.8 

2.2 ± 
.4 

 28.2 ± 7 

           

Statistics           

PD vs MSA-
tot 

 
0.92 0.899 0.227 0.317 <.01 0.028 0.581 NA NA 

PD vs MSA-
p vs MSA-c 

 
0.99 0.277 0.147 0.527 <.01 <.01 0.278 NA NA 

Table 1 Demographic and clinical variables. The table reports frequency or mean ± sd of the relevant demographic and clinical 

variables. Comparisons between PD and MSA as a whole were performed using a Mann-Whitney U test while the comparisons 

among PD, MSA-p and MSA-c were performed using a Kruskal-Wallis one-way analysis of variance. The post-hoc comparisons 

for the variables leading to significant main effect of group among PD, MSA-cc and MSA-p are reported in Supplementary 

table 1. 

 

3.2 PD patients versus control 

When training the model to discriminate between PD patients and HC we obtained the following 

results; for a cluster extent threshold (k) = 30 we obtained a mean accuracy of .76 [.74 - .80] (range p 

= .00001 - .001, median p = .00005). For k = 50 a median accuracy of .78 [.74 - .82] (range p = .00001 - 

.01, median p = .00001). For k = 100 we obtained an accuracy of .74 [.71 - .76] (range p = .0001 - .01, 

median p = .0005). For k = 200 we obtained an accuracy of .65 [.61 - .68] (range p = .001 - .2, median 

p = .01). Figure 1 compares the performance of this discrimination in terms of accuracy, specificity 

and sensitivity to the other discriminations. Figure 2 reports the frequency of occurrence of the 

different modalities (and combinations of modalities) for 100 folds. 

--Insert Figure 2 about here-- 
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--Insert Figure 3 about here-- 

 For the anatomical localization of the clusters, figure 3 shows the results from the cluster 

extent pipeline with the highest accuracy (i.e. k = 50). The intensity of the images reflects the 

proportion of folds in which a certain voxel was selected (out of 100). The most frequently observed 

voxels for fALFF were in the left anterior parahippocampal gyrus/ temporal fusiform cortex (a 

contralateral cluster was observed less frequently) also covering part of the head of the hippocampus 

and the amygdala; a small cluster was observed in in the left VIIb lobule of the cerebellum. For the 

global correlation we found two clusters of frequently selected voxels in the right and left 

precentral/postcentral gyrus. A consistent cluster was found also spanning the cingulate gyrus and 

the precuneus. For the local correlation, a cluster of frequently observed voxels was observed in the 

left precentral gyrus, anterior to the cluster observed for the global correlation. A cluster with a 

similar frequency of observation was found in the left orbitofrontal cortex, extending into the 

subcallosal cortex.  

--Insert Figure 4 about here-- 

 

3.3 MSA patients versus control 

When training the model to discriminate between MSA patients and HC we obtained the 

following results; for a cluster extent threshold (k) = 30 we obtained a mean accuracy of .92 [.89 - 

.94] (range p = .00001 - .00001, median p = .00001). For k = 50 a median accuracy of .94 [.91 - .96] 

(range p = .00001 - .00001, median p = .00001). For k = 100 we obtained an accuracy of .93 [.90 - .95] 

(range p = .00001 - .00001, median p = .00001). For k = 200 we obtained an accuracy of .89 [.86 - .92] 

(range p = .00001 - .00001, median p = .00001). Figure 4 report the frequency of occurrence of the 

different modalities (and combinations of modalities) for 100 folds.  

--Insert Figure 5 about here-- 
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 For the spatial localization of the clusters, figure 5 shows the results from the cluster extent 

pipeline with the highest accuracy (i.e. k = 50).  

 

--Insert Figure 6 about here-- 

 

MD most observed voxels were in a cluster covering almost the entire cerebellum as well as part of 

the brainstem and the medial inferior occipital lobe. Of notice, in all the folds we observed MD voxels 

in the right putamen (and in a quarter of folds we observed a contralateral cluster in the left 

putamen). As for r2s, in half the folds we observed a cluster in the deep nuclei of the brainstem. 

 

3.4 PD vs MSA patients 

When training the model to discriminate between MSA patients and PD we obtained the 

following results; for a cluster extent (k) = 30 we obtained a mean accuracy of .83 [.80 - .86] (range p 

= .00001 - .0001, median p = .00001). For k = 50 a median accuracy of .84 [.81 - .86] (range p = .00001 

- .0001, median p = .00001). For k = 100 we obtained an accuracy of .87 [.84 - .90] (range p = .00001 - 

.00001, median p = .00001). For k = 200 we obtained an accuracy of .88 [.85 - .90] (range p = .00001 - 

.00001, median p = .00001). Figure 6 report the frequency of occurrence of the different modalities 

(and combinations of modalities) for 100 folds. 

--Insert Figure 7 about here-- 

 

For the spatial localization of the clusters, in figure 7 shows the results from the cluster 

extent pipeline with the highest accuracy (i.e. k = 200).  

--Insert Figure 8 about here-- 
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 Discriminative grey matter volume voxels were consistently observed in the cerebellum, in 

particular in the vermis (expanding into the adjacent brainstem) and in the right and left crus II. 

Other consistent clusters were observed at the interface of the lingual gyrus and the VI lobule of the 

cerebellum bilaterally. Finally, bilateral clusters were observed in the whole putamen, extending into 

the adjacent insular cortex. For FA, a consistent discriminant cluster was observed covering almost 

the entirety of the cerebellum and the adjacent brainstem. This cluster closely resembled the one 

found for MD both when comparing PD and MSA patients (see below), and when comparing MSA 

patients and HC (see above). Global correlation was also consistently selected (56 out of 100 folds), 

however, its spatial distribution appeared less consistent, a small cluster observed in 30 folds 

comprised several sub regions of the right cerebellum (crus I, lobule V and VI). Finally, MD was 

observed almost as frequently as global correlation, but the spatial distribution of the discriminant 

clusters was much more consistent; in almost all the folds for which MD was selected, the relevant 

clusters covered the cerebellum and the brainstem, similarly to FA. For the sake of clarity, Figure 8 

summarizes the main findings. 

--Insert Figure 9 about here— 

3.5 Non smoothed images and comparison between MSA-c vs MSA-p 

We report the results of the discriminant analyses performed using non-smoothed data and the 

discriminant analysis between MSA-c and MSA-p in the supplementary materials. 
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4 Discussion 

Using a data-driven whole brain discriminant approach based on both structural and functional MRI 

we could discriminate between PD and HC, MSA and HC, and PD and MSA. We showed that the most 

discriminative modalities were different according to the discriminant task at hand. In discriminating 

between PD and HC, resting state-related indexes were the only features consistently selected, MD 

in isolation (with some contribution by R2*) can discriminate with high accuracy between MSA and 

HC, and a combination of structural and functional indexes is needed to discriminate between PD 

and MSA. These results confirmed the complementarity and usefulness of using different MRI 

modalities and parameters to discriminate parkinsonian syndromes. 

Relative to our previous studies, we have introduced several important novelties. First of all, for the 

first time we added rs-fMRI markers to structural ones to discriminate parkinsonian syndromes. 

Moreover, for the first time we combined a fully data-driven pipeline with a whole-brain approach. 

Perhaps more importantly, relative to our previous work (Barbagallo et al., 2016; Nemmi et al., 2015; 

Péran et al., 2010, 2018), for the first time we used cross-validation methods and independent 

feature selection steps that ensure generalizability. Another important aspect of this work is the 

competition between markers to discriminate patients determining the most effective markers. 

Studies that combine voxel-wise multimodal approaches with methods apt to select the most 

relevant modalities are uncommon in the literature. 

 

4.1 PD vs HC 

We obtained the best accuracy in discriminating between PD and HC when using a cluster extent of 

50 voxels (.78 [.74 - .82]). This accuracy is higher than that reported in some previous studies  (Focke 

et al., 2011; Huppertz et al., 2016), in line with the study of Adeli and colleagues (2016) and slightly 

lower than others (Chen et al., 2015; Long et al., 2012; Peng et al., 2017; Zhang et al., 2014). 

However, the comparison can be unfair, as all the studies reaching higher accuracy used LOO cross-
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validation, which is a biased estimator of the performance (Varoquaux et al., 2017). Moreover, Zhang 

and colleagues (2014) used non-independent feature selection (i.e. they performed the feature 

selection on the whole sample rather than within the cross-validation procedure). 

As for the most discriminative modalities, only the rs-fMRI-related indexes were consistently 

chosen in the pipeline. This is in line with the study of Bowman and colleagues, that reported that 

the models with the best performance were those fitted using functional connectivity features 

(Bowman et al., 2016). This result suggest that even for non-de-novo PD patients, structural 

abnormalities can be very subtle and hard to detect, as confirmed by the contrasting results obtained 

using both VBM (Brenneis et al., 2003; Pan et al., 2013; Summerfield et al., 2005; Tessitore et al., 

2012) and volumetry (Kosta et al., 2006; S. H. Lee et al., 2011; Messina et al., 2011; Péran et al., 2010; 

Pitcher et al., 2012). On the other hand, abnormalities in brain activity and connectivity may be 

detected before structural ones, and thus fMRI-related indexes are better suited to discriminate PD 

and HC. As for the spatial localization of the discriminative cluster, results for fALFF are partially in 

line with a recent metanalysis; indeed, Pan and colleagues (2017) found a reliable cluster of fALFF 

differences between PD and HC that was located in the parahippocampal gyrus/inferior temporal 

gyrus/hippocampus. The cluster found by Pan and colleagues was on the right, while the most 

consistent cluster we found was in the contralateral region. However, we also observed a less 

frequently selected cluster on the right. The fact that we did not observe any of the other clusters 

observed by Pan and colleagues can be related to the fact that our pipeline only selected the most 

discriminative clusters, eliminating redundant features (i.e. the other clusters found in Pan study 

(2017) discriminated between the two groups but were not necessary for discrimination). Although 

global correlation has not been widely used in the PD literature, it can be considered as conceptually 

similar to the graph-theory derived measure of degree connectivity; indeed, it has been shown that 

PD patients show higher average degree connectivity within the motor network (Göttlich et al., 

2013), a result in line with our finding, as the discriminative clusters most frequently selected for 

global correlation were mainly located in the primary sensorimotor cortex. Finally, index of local 
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connectivity as regional homogeneity (ReHo) and local efficiency have been repeatedly shown to be 

abnormal in PD patients (Choe et al., 2013; Kamagata et al., 2018; Li et al., 2016). Choe and 

colleagues (2013) found ReHo abnormalities in PD patients in motor and parietal regions close to the 

clusters we observed using local correlation.  

The results of the discrimination between PD and HC are strikingly different from previous 

results obtained with a structural multimodal protocol. In a previous study,  our group found that 

MD, FA and R2* in the subcortical structures (specifically, putamen and SN) were enough to 

discriminate between PD and HC with accuracy around 95% (Péran et al., 2010). However, several 

methodological differences can account for this difference: first, Peran et al (2010) did not include 

any resting state imaging in their protocol, so that a direct comparison of the relevance of rs-fMRI 

relative to structural and microstructural MRI related indexes was not possible in their study. 

Moreover, the study by Peran and colleagues used a region of interest approach hypothesis driven, 

as even their voxel-wise analyses were limited by a mask only comprising the subcortical nuclei and 

the brain-stem. Moreover, they did not downsample nor smooth their images, allowing for 

difference in more spatially defined region to be observed, relative to our approach, which used 

downsampling and smoothing as a mean of feature reduction. The downsampling coupled with the 

smoothing (and the extent threshold we imposed on the clusters) can lead the pipeline not to pick up 

indexes in small and well-defined anatomical regions (e.g. SN) that are indeed markers of the 

pathology. Images in native resolution could be used and/or the cluster extent threshold could be 

avoided, however, this would probably lead to a lack of generalization from the training to the test 

set (i.e. spurious small cluster that are found to discriminate between the group in the training set 

but not in the testing set). Moreover, the subset selection step tests all the possible combinations of 

clusters, this means that the computational time increases exponentially with the increasing number 

of clusters. A more effective way of including imaging markers from regions that are well known to 

be useful in discriminating between the groups would be to include them directly before fitting the 
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model or give them a fair chance of being selected by including them just before the subset selection 

step. 

Finally, the feature selection approach used by Peran and colleagues (2010) was not 

independent: feature selection was performed using the whole set. On the other hand, the feature 

selection steps in our pipeline were performed within the cross-validation loop, thus ensuring 

independence and hence generalizability, to a certain extent. 

 

4.2 MSA and HC 

The most striking finding for the discrimination between MSA and HC was that MD almost in 

isolation was able to discriminate between the two groups with a high accuracy (.94). This accuracy is 

higher than those obtained by Focke and colleagues (2011) using either grey or white matter volume 

and those in discriminating MSA-p from PD and MSA-c from PD in (Huppertz et al., 2016).  

The most observed clusters for MD fell in the cerebellum and the putamen, whose atrophy 

and microstructural abnormalities are among the core features of MSA neuropathology (Barbagallo 

et al., 2016; Berg et al., 2011; Péran et al., 2018; Seppi et al., 2006; Shin et al., 2007). Interestingly, 

diffusion related indexes in the cerebellum and the putamen have been shown to differ between 

MSA and HC and between MSA and PD (Nicoletti et al., 2006; Seppi et al., 2006).  

The second most selected modality was R2*, an index related to iron accumulation in the 

brain (Ordidge et al., 1994; Péran et al., 2007, 2009). The discriminant cluster for this modality was 

found in the brainstem. The involvement of the brainstem in MSA pathology is well-known 

(Benarroch, 2003, 2007; Cykowski et al., 2015) and microstructural abnormalities have been 

observed in the brainstem of MSA-c patients using apparent diffusion coefficient (ADC) (Kanazawa et 

al., 2004). However, to our knowledge, this is the first time that iron accumulation has been found in 



24 
 

the brainstem of MSA patients, at least relative to HC. Cluster of increased iron deposition in the 

brainstem have already been found for MSA patients relative to PD (Péran et al., 2018).  

It is important to highlight that the fact that we did not found discriminant clusters for other 

modalities (e.g. GM or FA) does not mean that MSA and HC do not differ in these modalities. It is 

possible that univariate voxel-wise analyses would have found significant differences between the 

two groups, but MD abnormalities in the cerebellum and the putamen can be considered the 

signature of MSA in this sample. 

 

4.3 PD and MSA 

Not surprisingly, the accuracy for the discriminant model between PD and MSA (.88) was 

lower than the accuracy for MSA vs HC but higher than the accuracy for PD vs HC. This accuracy is 

higher than those obtained by Focke et al. (2011) when discriminating between PD and MSA-p, and 

in line with the accuracy obtained by Huppertz and colleagues (2016) (.90 and .94 for MSA-p and 

MSA-c respectively). However, one should bear in mind that the accuracy in Huppertz et al (2016) 

was calculated using LOO cross-validation, which can introduce an optimistic bias in the performance 

(Varoquaux et al., 2017). 

The comparison between MSA and PD led to the richest model, with 4 modalities that were 

selected in more than half the folds. Three of these four modalities covered almost the entire 

cerebellum. This result is not surprising, given the extensive differences in this region found by Peran 

and colleagues (2018) in the same sample for GM, MD and FA. Similarly, the fact that GM clusters 

were also found in the bilateral putamen is well in line with the known neuropathology of MSA (Berg 

et al., 2011; Seppi et al., 2006; Seppi et al., 2006; Shin et al., 2007). What is interesting about this 

result is that, at variance with the discrimination between MSA and HC, three separate indexes of 

microstructural integrity in the cerebellum were selected. This suggests that the differences in 

cerebellar microstructural integrity between MSA and PD are subtler than those between MSA and 
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HC and thus a more complete “description” of the abnormality is needed in order to discriminate 

between the two groups. 

As for global correlation, this modality has been choses quite often, but not in a stable spatial 

location. Indeed, the most frequently observed cluster, extending between cerebellum and occipital 

cortex, has only been observed in 38 out of 100 folds. One of the reasons for this lack of spatial 

consistency can be a lack of generalization for this modality between the training and the testing set: 

a cluster of global correlation could be discriminant within the training set but this discriminative 

power would not generalize to the testing set. Anyhow, this lack of spatial consistency suggests 

skepticism about the utility of global correlation in discriminating between the two groups.  

 

4.4 General discussion 

When comparing the results of the three different discrimination tasks there is a striking difference 

between the modalities selected to discriminate PD patients from HC, and those selected to 

discriminate MSA from PD and HC. Our results suggest that a single resting state fMRI acquisition, 

from which several parameters can be extracted, could be enough to successfully discriminate PD 

from HC. Combined with a T1 acquisition, necessary for the processing of the resting state data, this 

would mean an MRI sequence no longer than 15 minutes, much more feasible for any patient than a 

longer complete multimodal sequence. Of course, features studied should focus on rs-fMRI alone, 

trying to improve the overall performance of the model. There are several ways of doing so; one 

could avoid the resampling of the data to 3mm isotropic voxels, thus gaining spatial specificity, derive 

more specific indexes related to the whole connectome (i.e. graph theory-related indexes), chose to 

use a-priori knowledge of PD pathology and only focus on selected resting state networks or 

functional connectivity of selected seed regions. On the other hand, when discriminating MSA 

patients from the other two groups, structural modality both related to macro (i.e. GM) and micro 

structure (i.e. MD) have been chosen. This is not to say that fMRI related indexes do not discriminate 
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between MSA and the other groups, rather than structural pathology is more discriminant and the 

real hallmark of MSA pathology. Thus, our results suggest that to discriminate between MSA and 

other pathologies, an MRI protocol comprising a T1 and a DWI acquisition can be the best choice if 

one needs to strike a balance between accuracy and patients’ comfort.  

 When focusing on the modalities chosen for each discriminant task it is important to consider 

the systematic effect that local atrophy might exert on diffusion, R2* and functional-derived indexes 

during spatial normalization. Although we have not corrected for this (possible) effect the 

correlation-based feature selection step accounted for it. Specifically, since the CFS step select the 

cluster subset that minimizes redundancy, if a non T1-related cluster is chosen together with or 

instead of a T1-related one, this means that the former brings independent information over and 

beyond the latter, and that this is over and beyond the atrophy effect. Note also that focusing on the 

discriminant clusters between PD and MSA, it is remarkable that even if there is a fair degree of 

overlap, each modality contributes with some degree of spatial specificity (supplementary figure 10). 

It is also noteworthy that this approach (i.e. avoid correction for atrophy-related effect) was the one 

chosen in the original paper by Meng and colleagues (Meng et al., 2017) and the one used in a 

previous paper comparing PD, MSA-c and MSA-p (Péran et al., 2018). 

 Another interesting result is the influence the cluster extent threshold had on the different 

discrimination task: as figure 1 illustrates, while the discrimination between PD and HC as well as 

between MSA and HC benefitted more from small cluster extent (best accuracies for 30 and 50 

voxels), the performance was higher for higher cluster extent threshold when discriminating 

between PD and MSA (best accuracies at 100 and 200 voxels). A tentative interpretation could be 

related to an information loss/generalizability trade off: when comparing patients (PD or MSA) with 

healthy controls, smaller cluster extents allow for a finer grained pattern of differences between the 

two groups, with these differences being mostly true positive, as one could expect real differences 

between patients and controls. On the other hand, when comparing two patient populations, larger 
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cluster extent thresholds would lead to a loss of finer grained information but would ensure that only 

real (and thus generalizable) differences are retained, as smaller clusters may be due to noise. In any 

case, our results suggest that cluster extent is an important hyper parameter in our (and possibly 

others’) pipeline and different cluster extent should be tested. Another approach could be to choose 

the cluster extent threshold in a nested cross-validation loop. 

 One advantage of our pipeline is that it can be easily extended by including different 

modalities: one example could be SPECT imaging (DATscan) or PET imaging acquired using marker of 

neuroinflammation (like 18 F-DPA-714, a TSPO radioligand (Arlicot et al., 2012)), which have been 

shown to be an important component of PD (Hirsch & Hunot, 2009) as well as MSA (Vieiraet al., 

2015). Moreover, we are planning to expand our pipeline to non-imaging modalities, as for example 

biological fluids (e.g. blood and cerebrospinal fluid) or cognitive testing. Of course, the clustering step 

of the pipeline should be adapted for non-imaging features, as spatial clustering would not be 

performable. However, there are several dimensionality reduction algorithms that could be used to 

this aim (e.g. PCA, multidimensional scaling). 

 The main limitation of our study is the small sample size; indeed, Varoquaux and colleagues 

(2017) cautioned about machine learning studies with small samples, drawing attention on the usual 

big confidence intervals for indexes of performance, especially when using LOO cross validation. We 

tried to partially avoid this problem using a 10-fold cross-validation, even if our samples were small 

relative to other studies. The choice of this cross-validation scheme naturally leads to a reduction in 

performance, as the training set gets smaller, but gives on the same time a less biased estimate of 

the performance. Moreover, it should be noted that this is a quite unique dataset; we have well 

characterized PD and MSA patients who underwent what is, to our knowledge, the most complete 

multimodal MRI protocol in the literature. We hope that in the future more centres specialized in 

movement disorders will acquire the same sequences we did, allowing to test our pipeline on a much 

bigger sample. Another limitation is related to the difficulty in the differential diagnosis between 
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MSA-p and PD. However, the diagnosis for all patients have been confirmed at a 2-years follow up. A 

similar problem is present for the differential diagnosis between MSA (especially MSA-p) and 

progressive supranuclear palsy (O’Sullivan et al., 2008; Respondek, Levin, & Höglinger, 2018; 

Wenning & Colosimo, 2010). Since only histological post-mortem analysis confirms the diagnosis, a 

misdiagnosis is always possible. However, the high positive predictive value of a clinical diagnosis of 

MSA should minimize this risk (Gilman et al., 2008; Osaki, Ben-Shlomo, Lees, Wenning, & Quinn, 

2009). Note also that we could indeed discriminate between MSA-c and MSA-p with our pipeline 

(supplementary results 1.4 MSA-c vs MSA-p), finding discriminant clusters in the brain regions with 

prominent neuropathological abnormalities in the two subtypes (bilateral putamen and cerebellum). 

However, these results should be interpreted with caution because of the small sample size. To 

conclude, we found that our fully data-driven multimodal voxel-wise pipeline could successfully 

discriminate between PD and HC, MSA and HC, and PD and MSA while informing us on the most 

useful MRI indexes and their localization to perform this discrimination. This pipeline could be easily 

applied to other degenerative conditions as well as neurological or psychiatric disorders.  
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Captions 

Figure 1. Predictive pipeline. Colored brains represent the different indexes used for prediction, brains 

of the same color represent indexes from the same MRI modality. The outer malva square represents 

the outer 10-folds CV scheme while the inner orange square represents the inner 10-folds CV set up to 

find the best combination of modalities. Green squares represent features selection and reduction 

steps while grey squares represent preprocessing, model fitting and prediction steps, grey ovals 

represent the intermediate and final outcome of the pipeline. 

Figure 2. Comparison of the performance of the different discrimination tasks and cluster extent. 

Figure 3. Frequency of occurrence of the modalities and their combination in 100 folds (10 folds CV 

repeated 10 times) for the discrimination between PD and HC. globalCorr = global correlation; 

localCorr = local correlation; alff = fraction of alpha low frequency fluctuations, fa = fractional 

anisotropy, gm = grey matter volume, md = mean diffusivity. 

Figure 4. Most frequently selected voxels for the most frequently selected modalities (PD vs HC). A) 

fALFF; B) global correlation; C) local correlation. 

 

Figure 5. Frequency of occurrence of the modalities and their combination in 100 folds (10 folds CV 

repeated 10 times) for the discrimination between MSA and HC. globalCorr = global correlation; 

localCorr = local correlation; alff = fraction of alpha low frequency fluctuations, fa = fractional 

anisotropy, gm = grey matter volume, md = mean diffusivity, r2s = R2*. 
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Figure 6. Most frequently selected voxels for the most frequently selected modalities (MSA vs HC). A) 

MD; B) r2s. 

 

Figure 7. Frequency of occurrence of the modalities and their combination in 100 folds (10 folds CV 

repeated 10 times) for the discrimination between PD and MSA. globalCorr = global correlation; 

localCorr = local correlation; alff = fraction of alpha low frequency fluctuations, fa = fractional 

anisotropy, gm = grey matter volume, md = mean diffusivity, r2s = R2*. 

Figure 8. Most frequently selected voxels for the most frequently selected modalities (PD vs MSA). A) 

gm; B) FA; C) global correlation; D) MD 

 

Figure 9 reports the performance of the best model together with its cluster extent for each 

discrimination task (upper panel). In the middle panel are reported the modalities most frequently 

selected for each discrimination task (the brain slices are from a representative subject and intensity 

coded). In the lower panel are reported the cluster most frequently observed (> 50 folds, excepts for 

R2* > 40 folds) for each of the most observed modalities. Spatial cluster for global correlation for the 

discrimination between PD and MSA are not shown as no voxel was observed in more than 25 folds. 





















 

n 
Sex, 

M/F 
Age 

Age 

at 

onset 

Disease 

duration 
MMSE 

LEDD, 

mg/die 
H&Y 

UPDRS‐

III 

UMSARS 

II‐ 

Groups           

PD 26 12/14 63.8 

± 6.3 

56 ± 

6.8 

7.4 ± 4.5 29.1 ± 

1.4 

689 ± 

367.2 

2.3 ± 

.5 

19.1 ± 

10 

 

MSA-tot 

 

29 13/16 64 ± 

7.5 

58.3 ± 

8.2 

5.7 ± 2.3 27.9 ± 

1.7 

470 ± 

500.5 

2.4 ± 

.5 

 29.8 ± 8 

MSA-p 16 7/9 66.1 

± 7.8 

60.7 ± 

7.9 

5.4 ± 2.2 28.1 ± 

1.5 

700.1 ± 

386.4 

2.5 ± 

.5 

 31.1 ± 

8.7 

MSA-c 13 6/7 61.5 

± 6.5 

55.2 ± 

7.7 

6.1 ± 2.5 27.7 ± 

2 

187.8 ± 

490.8 

2.2 ± 

.4 

 28.2 ± 7 

           

Statistics           

PD vs MSA-

tot 

 
0.92 0.899 0.227 0.317 <.01 0.028 0.581 NA NA 

PD vs MSA-

p vs MSA-c 

 
0.99 0.277 0.147 0.527 <.01 <.01 0.278 NA NA 

Table 1 Demographic and clinical variables. The table reports frequency or mean ± sd of the relevant demographic and clinical 

variables. Comparisons between PD and MSA as a whole were performed using a Mann-Whitney U test while the comparisons 

among PD, MSA-p and MSA-c were performed using a Kruskal-Wallis one-way analysis of variance. The post-hoc comparisons 

for the variables leading to significant main effect of group among PD, MSA-cc and MSA-p are reported in Supplementary 

table 1. 

 




