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Abstract 23 

Background: Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound 24 

therapy, in which low frequency moderate power ultrasound is combined with microbubbles to 25 

trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical 26 

effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, 27 

cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. 28 

While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use 29 

of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. 30 

UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of 31 

anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy 32 

delivery confirmed safety and efficacy of this approach.  33 

Aim: The present review summarizes ultrasound settings, cavitation approaches, biophysical 34 

mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD 35 

for drug delivery into tumors. 36 

Key points: 37 

• UTMD is used for non-invasive localized drug delivery. 38 

• Microbubbles serve as excellent cavitation nuclei. 39 

• Stable and inertial UTMD cavitation effects contribute to tissue permeabilization. 40 

• Drug carriers can be co-injected or directly coupled to microbubbles. 41 

• A first clinical trial confirmed therapeutic efficacy in pancreatic cancer patients. 42 

 43 

Graphical abstract: 44 
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1. Localized drug delivery in cancer 47 

In intermediate and advanced cancer when surgery is not an option, patients are subjected 48 

to local radiotherapy, systemic chemotherapy, systemic molecular therapies, or combinations of 49 

these. Systemic therapies for cancer entail off-target delivery and toxicity side-effects which 50 

require the limitation of doses and decreased therapeutic efficacy [1]. Thus, local drug delivery 51 

approaches are required which either limit the drug’s activity to the target site, release the drug at 52 

the target site, or activate the drug at the target site. Ultrasound-triggered drug delivery is 53 

mediated by thermal and/or mechanical effects including cavitation and radiation force. In this 54 

review, cavitation-mediated drug delivery is discussed. Ultrasound-targeted microbubble 55 

destruction (UTMD) causes cavitation and enhances permeability across natural barriers of 56 

tumors including vessel walls and cell membranes, resulting in spatio-temporally controlled 57 

enhanced drug delivery into tumors (Figure 1). Furthermore, mechanical ultrasound activities 58 

destabilize drug carriers and trigger drug release [2]. Ultrasound drug delivery is particularly 59 

attractive as it is non-invasive, enables the regulation of tissue penetration depth, and does not 60 

rely on ionizing radiation [2]. In contrast to alternative drug delivery techniques, UTMD allows 61 

for targeted drug delivery. 62 

The present review aims at discussing the approach of UTMD for localized drug delivery 63 

into solid tumors. First, ultrasound settings are presented. Then, different approaches to achieve 64 

cavitation are elucidated. We then focus on the discussion of the biophysical mechanisms of 65 

UTMD. Different drug carrier systems are introduced. Finally, preclinical and clinical 66 

applications are summarized. 67 

 68 

2. Ultrasound settings 69 
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Ultrasound enables the delivery of drugs at different tissue depths by modulation of 70 

ultrasound parameters such as frequency, duty cycle, mechanical index, and exposure time [2]. 71 

For drug delivery, ultrasound frequencies range from kHz to MHz [16]. Lower frequencies 72 

enable deeper tissue penetration as attenuation effects are reduced. Furthermore, the frequency is 73 

adjusted to match the resonance frequency of ultrasound contrast agents such as microbubbles 74 

(MBs). Ultrasound intensity for drug delivery ranges from 0.3 to 3 W/cm² [16]. Lower intensities 75 

of US are used with longer pulse lengths or pulse repetition frequencies to achieve higher duty 76 

cycles and similar temporal average intensities than with high intensity ultrasound. The different 77 

parameters ensure fine-tuning according to the specific application such as tissue depth and MB 78 

type. The mechanical index is dependent on the peak negative pressure and center frequency and 79 

proportional to the ultrasound intensity. The FDA predefines the limit of the mechanical index to 80 

1.9 for clinical applications to minimize tissue damage [22]. Duration of ultrasound exposure is 81 

fixed to provide sufficient time to induce and maintain cavitation and tissue permeabilization 82 

while preventing tissue heating [16]. 83 

Focused and non-focused ultrasound transducers have been used for drug delivery in 84 

previous studies [23]. Non-focused ultrasound transducers cover bigger tissue volumes at once, 85 

which can accelerate the therapy protocol. However, cavitation is not limited to the tumor volume 86 

but can occur all along the acoustic ultrasound beam. Focused ultrasound transducers are 87 

commonly used for drug delivery as they ensure spatially controlled cavitation which is limited to 88 

a few millimeters [23]. While this guarantees specifically localized drug delivery, it brings along 89 

the drawback of longer treatment protocols to electronically steer or mechanically displace the 90 

transducer in order to insonify the whole tumor volume.  91 

Image guidance ensures correct positioning of the therapy transducer to reach the target 92 

tissue. Image guidance further enables assessment of MB cavitation in real-time as MBs appear 93 
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as contrast-enhanced regions prior to cavitation and the signal is lost after MB destruction [24]. 94 

Thus, image-guidance renders drug delivery more reliable and efficient. However, imaging does 95 

not allow tracking drug delivery as drugs diffuse differently from MBs. 96 

 97 

3. Cavitation nuclei 98 

Cavitation can be achieved with high pressure ultrasound and without the use of 99 

ultrasound contrast agents such as MBs. High pressure ultrasound results in generation and 100 

activation of gas nuclei in the tissue or vessels creating a cavitation cloud for pore formation, 101 

endocytosis, and vessel permeabilization [4]. Furthermore, ultrasound alone induces acoustic 102 

streaming which is weaker than microstreaming but can also trigger biological effects [4]. In 103 

these conditions, a high mechanical index is applied, which possibly limits the clinical translation 104 

of the approach. The use of MBs allows decreasing the mechanical index to diagnostic ultrasound 105 

levels as MBs are highly sensitive to ultrasound exposure and serve as excellent cavitation nuclei 106 

[2]. The cavitation response of MBs depends on their size and shell, and the ultrasound settings 107 

have to fit the MBs’ resonance frequency. Further, the ultrasound pressure influences cavitation 108 

activity, and higher pressures have been shown to trigger successive MB implosions. The use of 109 

clinical-grade contrast agents, such as BR38 which was previously used for UTMD, further 110 

facilitates clinical translation [13–15]. Phase change nanodroplets are another option to provide 111 

cavitation nuclei which can be activated by low-intensity ultrasound, and in contrast to 112 

intravascular MBs, they can penetrate into the tissue and might further enhance the efficacy of 113 

drug delivery [16,17]. The use of molecularly targeted MBs, recognizing tumor endothelial 114 

markers, was shown to enhance drug delivery by creating direct contact with cell membranes and 115 

vessel walls [6]. Nanometer-sized ultrasound contrast agents, such as perfluorocarbon 116 
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nanoemulsions or echogenic liposomes with air pockets, have to be used for targeting of 117 

epithelial tumor markers as opposed to endothelial markers that can be reached by MBs [2]. 118 

 119 

4. Biophysical mechanisms of ultrasound drug delivery with microbubbles 120 

The combination of ultrasound with MBs for drug delivery is most widely studied and 121 

presents the focus of the present study. UTMD is based on the interaction of ultrasound and MBs 122 

to induce openings in vessels and membranes. Under low-pressure ultrasound, MBs expand and 123 

contract inversely proportional to the acoustic pressure waves, a process called stable cavitation. 124 

If the pressure is high enough, MBs cavitate non-linearly i.e. they expand more than they contract 125 

which leads to an increase in MB size until implosion and collapse (Figure 2). Low-intensity 126 

ultrasound-mediated stable cavitation and high-intensity ultrasound-induced inertial cavitation 127 

trigger different biophysical responses, which are discussed separately.  128 

Stable cavitation 129 

Stably oscillating MBs exert direct mechanical effects on adjacent biological barriers. 130 

They push and pull on surfaces and induce fluid jets, microstreaming, and shear stress (Figure 3) 131 

[3]. The shear stress intensity varies with the ultrasound settings between 100 Pa and 1000 Pa and 132 

is much higher than blood flow-associated shear stresses (0.1-4 Pa) [4]. Stable cavitation is 133 

mainly associated with formation of small pores and endocytosis [4]. As ultrasound can trigger 134 

pore formation, this type of tissue permeabilization is also called sonoporation. Small molecules 135 

enter cells through small pores while larger molecules are taken up by endocytosis. Pore 136 

formation requires direct contact between cell surfaces and MBs to mechanically disturb the 137 

membrane by pushing and pulling, or microstreaming which surrounds the oscillating MB [5]. 138 

Interestingly, the use of targeted MBs that bind to cell surfaces requires lower ultrasound 139 

intensities to achieve the same membrane permeabilizing effects [6]. MBs are further modulated 140 
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by ultrasound waves through radiation forces which push MBs into the direction of the 141 

ultrasound beam. This phenomenon can potentially contribute to ultrasound-mediated drug 142 

delivery bringing MBs into contact with cell membranes and facilitating permeabilization [4]. 143 

Radiation forces might also cause MB compression and pushing into cellular membranes thereby 144 

directly permeabilizing the cells [7]. MBs were also observed to be  internalized  into  cells  145 

possibly  through  fusion  of cell membrane and MB shell [8]. Sonoporation-mediated membrane 146 

pore formation is reversed when ultrasound is switched off [4]. Thus, membrane permeabilization 147 

duration is dependent on the duration of the ultrasound treatment, which has to be taken into 148 

consideration for effective delivery of drugs. Besides these mechanical effects, stably cavitating 149 

MBs in close vicinity of cells produce chemical stress leading to formation of free radicals and 150 

reactive oxygen species, which contribute to the permeabilization of cell membranes [4]. Further, 151 

stable cavitation was shown to mediate membrane hyperpolarization through activation of ion 152 

channels mediating calcium influx and potassium efflux [4]. 153 

Inertial cavitation 154 

Under high-intensity ultrasound exposure, the oscillation amplitude of MBs increases 155 

with every cycle and ultimately results in MB collapse; a process called inertial cavitation. Upon 156 

collapse, MBs fragmentize into several smaller MBs which in turn undergo inertial cavitation. 157 

Collapsing MBs exert high shear stresses, and shock waves, which rupture surfaces and induce 158 

pores (Figure 3) [9]. MBs in contact with cell membranes undergo asymmetrical collapse which 159 

results in liquid jet formation [10]. Shock waves and liquid jets not only perforate adjacent cell 160 

membranes but have the energy to permeabilize blood vessels [4]. Ultrasound settings such as 161 

pressure, exposure time, and pulse repetition frequency determine the size of induced pores 162 

which affects the delivery of larger drugs or drug carriers [11]. Indeed, UTMD-mediated 163 

membrane pore formation allows cytosolic delivery which is important for gene therapy as DNA 164 
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can be degraded in the endocytic uptake pathway [2]. In addition to the biophysical effects 165 

described for stable cavitation, inertial cavitation triggers harsh mechanical and chemical insults 166 

causing membrane perforation and vessel permeabilization. Inertial cavitation enhances drug 167 

delivery even when MBs are not directly interacting with cell surfaces as its effects act over 168 

longer distances [4]. In comparison to stable cavitation, inertial cavitation induces membrane 169 

pores of larger sizes ranging from hundreds of nanometers to a few micrometers [4]. 170 

Both stable and inertial cavitation were shown to trigger endocytosis-mediated uptake of 171 

larger drugs (150 – 500 kDa) while smaller drugs (4 – 70 kDa) entered cells through pores [12]. 172 

Although, the exact mechanism triggering endocytosis after cavitation is not understood, it is 173 

speculated that microstreaming and acoustic streaming deform the plasma membrane, re-arrange 174 

the cytoskeleton, and activate mechano-sensors, and all of these processes contribute to 175 

endocytosis signaling (Figure 3) [4].  176 

 177 

5. Drug carriers  178 

In addition to the ultrasound settings and the type of cavitation nuclei, UTMD-mediated 179 

drug delivery is affected by drug administration, which can be performed by intra-tumoral, 180 

intraperitoneal, or intravenous injection [16]. Due to the invasiveness of intra-tumoral and 181 

intraperitoneal injections, and the heterogeneous delivery upon intra-tumoral administration, the 182 

intravenous administration route is usually preferred [16]. Drawbacks of the intravenous delivery 183 

are systemic toxicity and degradation, which have to be addressed with the preparation of 184 

appropriate drug carriers. There are generally two options for UTMD drug delivery: drugs can be 185 

encapsulated into drug carriers which will be co-injected with MBs, or drugs are loaded into MBs 186 

(Figure 4).  187 
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During MB synthesis, drug-loaded liposomes can be attached to the MB shell, negatively 188 

charged nucleic acids can be absorbed on a cationic MB surface, a second hydrophobic shell can 189 

be added to the MB membrane in order to provide a drug storage compartment, or hydrophobic 190 

drugs are directly inserted into the MB membrane [18]. These different loading strategies enable 191 

loading of different types and quantities of drugs, and sufficient drug delivery requires 192 

adjustment of injected MB concentrations [16]. Direct coupling of drugs to MBs is considered a 193 

more effective drug delivery strategy because drugs are more proximal to vessels and membranes 194 

that are permeabilized by cavitating MBs. 195 

Alternatively, different types of drug carriers can be co-injected with MBs and used in 196 

combination with UTMD. Gold nanoparticles (NPs), silica NPs, polymer NPs, nanoemulsions, 197 

liposomes, and micelles were studied for UTMD [16,19]. PEGylated poly (lactic-co-glycolic 198 

acid) nanoparticles (PLGA-NPs), are larger therapeutic carriers (~110 nm), which are 199 

biocompatible, biodegradable, and FDA-approved [16]. They protect encapsulated drugs from 200 

clearance by the reticuloendothelial system, and allow for slow and prolonged release of drugs in 201 

the range of days to weeks so that they have more time to reach the target site [14,16]. The use of 202 

encapsulated chemotherapeutics further showed to reduce systemic toxicity, as observed with 203 

free doxorubicin while liposomal doxorubicin (Doxil) is better tolerable [20]. To ensure sufficient 204 

loading capacity, drug carriers have a size range of 90 to 300 nm and can be efficiently delivered 205 

by UTMD applying acoustic pressures below 1 MPa for small molecules (<1 nm) and high 206 

pressures at 5-6 MPa for larger drug carriers (>100 nm) [14]. Using PLGA-NPs, Willmann and 207 

colleagues were able to achieve the delivery of microRNAs for colon cancer and hepatocellular 208 

carcinoma (HCC) therapy in pre-clinical studies [14,15,21]. 209 

  210 

6. Applications 211 
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UTMD is applied for delivery of drugs ranging from nucleic acids, to proteins, and 212 

chemotherapies. It is currently intensively studied for blood brain barrier opening and targeted 213 

drug delivery in the central nervous system which is naturally well protected against external 214 

factors hindering therapy by systemic administration [25]. UTMD-triggered drug delivery was 215 

further studied in pre-clinical models of different types of cancer including brain, liver, 216 

pancreatic, breast, and ovarian cancers [26–30]. Sonochemotherapy describes ultrasound-217 

mediated delivery of chemotherapy and pre-clinical studies showed positive therapy outcomes 218 

when UTMD resulted in increased intra-tumoral drug concentrations [31]. UTMD-mediated drug 219 

delivery further proved to decrease accumulation of drugs in healthy tissues such as heart, spleen, 220 

liver, lung, and kidney [29]. Though, UTMD can affect tumor perfusion as strong cavitation 221 

causes not only blood vessel permeabilization but also damage, and this can cause vascular 222 

shutdown which counteracts UTMD drug delivery [31,32]. Thus, control of cavitation 223 

localization and dose is required to obtain optimal drug delivery efficacy.  224 

Ultrasound is further used for in vitro delivery of immunomodulatory agents such as 225 

tumor antigen-encoding and dendritic cell-stimulating mRNA to enable cancer immunotherapy 226 

[33]. Furthermore, ultrasound-mediated cavitation was shown to trigger tissue damage at the 227 

subcellular level thereby releasing different danger signals that elicit immune responses [34]. 228 

Different studies showed that cavitation enabled penetration of dendritic cells, activated cytotoxic 229 

T cells, and Natural Killer cells into the tumor tissue [35–37]. Moreover, UTMD was applied to 230 

facilitate delivery of immuno-modulatory molecules or genes that encode tumor antigens and co-231 

stimulatory factors [38,39]. Mechanical ultrasound without drugs decreased tumor growth and 232 

enhanced immune cell infiltration into subcutaneous solid tumors and across the blood brain 233 

barrier [40,41]. The degree of tissue destruction, which is dependent on ultrasound settings and 234 

tissue characteristics, is expected to contribute to the resulting biologic responses [42]. 235 
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Researchers from Stanford University developed a novel approach based on ultrasound-236 

guided delivery of molecular drugs encapsulated in NPs for HCC therapy. Their results showed 237 

to increase the concentration of delivered microRNA-loaded NPs up to 14-fold, the penetration 238 

depth of NPs up to 3-fold, and the concentration of delivered miRNAs up to 7.9-fold in tumor 239 

cells compared to treatment without ultrasound [14]. 240 

Recently a first clinical case study was performed based on sonochemotherapy. Five 241 

patients with pancreatic cancer were treated with ultrasound, MBs, and gemcitabine resulting in 242 

improved physical state and prolonged survival as the tumor size was transiently or even 243 

permanently decreased, or the tumor growth slowed down [43]. A human clinical trial using the 244 

same sonochemotherapy approach in inoperable pancreatic cancer patients confirmed safety and 245 

therapeutic efficacy as the median survival was doubled, and in five out of ten patients the tumor 246 

size decreased [44]. 247 

 248 

7. Conclusions 249 

Overall, UTMD-mediated drug delivery proved feasible in multiple pre-clinical studies 250 

and in the first studies with human cancer patients. It is a versatile technique for targeted drug 251 

delivery into cancer enhancing local drug concentration and reducing off-side delivery and 252 

toxicity. UTMD is further studied for cancer immunotherapy enhancing anti-cancer immune 253 

responses by antigen release and immune cell infiltration. Developments in ultrasound 254 

technology, MB design such as molecular targeting with ligands, drug carrier preparation, and 255 

treatment protocols are expected to leverage this technique for improved cancer management.  256 

  257 
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Figure Legends 404 

 405 

Figure 1: Ultrasound drug delivery via ultrasound-targeted microbubble destruction 406 

(UTMD). Microbubbles (MBs) are intravenously injected and circulate freely in the blood 407 

vasculature. Upon ultrasound exposure using a focused transducer, MBs in the tumor vasculature 408 

undergo cavitation, which leads to breakdown of cell junctions, cell membrane perforation, and 409 

tissue permeabilization. Co-injected drugs, such as drug-loaded nanoparticles (NPs), therefore 410 

penetrate more easily into the tumor tissue increasing the local drug concentration. 411 

 412 

Figure 2: Physical effects of ultrasound on microbubbles (MBs) and biophysical effects of 413 

MBs on the endothelium. At low acoustic pressures, MBs oscillate linearly and undergo 414 

compression and expansion proportional to the pressure wave. At high acoustic pressures, MBs 415 

oscillate non-linearly: they expand faster than they compress and continue to grow until they 416 

collapse. Stably cavitating MBs exert forces on the adjacent endothelium: MBs can get pushed to 417 

the cell barrier by acoustic radiation force, microstreaming effects around the MBs hit cell 418 

membranes, and MB oscillation pushes and pulls on cells. Inertially cavitating MBs have even 419 

stronger effects on cells: shock waves disrupt cell junctions and liquid jets perforate cells.  420 

 421 

Figure 3: Biological effects of stable ad inertial cavitation. Stably and inertially cavitating 422 

microbubbles trigger mechanical effects such as pore formation which allows drug diffusion into 423 

the cell. Cavitation further produces reactive oxygen species interfering with ion channels or 424 

opening the membrane by lipid peroxidation. Stable cavitation induces microstreaming and shear 425 

stresses, which deform membranes and activate mechano-sensors. These cavitation-triggered 426 

processes contribute to endocytosis and exocytosis. 427 
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 428 

Figure 4: Drug loading strategies for gas-filled microbubbles (MBs). Lipid-, protein- or 429 

polymer-shelled MBs can be used for drug delivery. Drugs can be loaded directly into the shell, 430 

attached to the outside or included in an oil layer inside the MB.  431 

 432 
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Figure 3: Biological effects of stable ad inertial cavitation. Stably and inertially cavitating 

microbubbles trigger mechanical effects such as pore formation which allows drug diffusion into 

the cell. Cavitation further produces reactive oxygen species interfering with ion channels or 

opening the membrane by lipid peroxidation. Stable cavitation induces microstreaming and shear 

stresses, which deform membranes and activate mechano-sensors. These cavitation-triggered 

processes contribute to endocytosis and exocytosis. 
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polymer-shelled MBs can be used for drug delivery. Drugs can be loaded directly into the shell, 

attached to the outside or included in an oil layer inside the MB.  




