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Abstract

In this paper, we present a new approach for model order reduction in large-scale dynamical
systems, with multiple inputs and multiple outputs (MIMO). This approach will be named:
Adaptive Block Tangential Arnoldi Algorithm (ABTAA) and is based on interpolation via
block tangential Krylov subspaces requiring the selection of shifts and tangent directions via an
adaptive procedure. We give some algebraic properties and present some numerical examples
to show the effectiveness of the proposed method.
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1. Introduction

A multi-input and multi-output (MIMO) linear time invariant (LTI) dynamical system can
be expressed in the state-space form as{

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t),

(1)

where x(t) ∈ Rn denotes the state vector , u(t) ∈ Rp and y(t) ∈ Rp are the input and output
signals, respectively. The matrix A ∈ Rn×n is assumed to be large, sparse and stable, B ∈ Rn×p

and C ∈ Rp×n. Applying the Laplace transform to (1) yields{
ωX(ω) = AX(ω)+BU(ω)
Y (ω) = CX(ω),

(2)
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where X(ω), Y (ω) and U(ω) are the Laplace transform of x(t), y(t) and u(t), respectively. If
we eliminate X(ω) in the previous two equations we obtain Y (ω) = H(ω)U(ω), where H(ω)
is called the transfer function of the system (1) defined as

H(ω) :=C(ωIn−A)−1B ∈ Rp×p. (3)

The LTI dynamical system (1) is usually denoted as

Σ :=
[

A B
C 0

]
. (4)

When the dimension n of the original system is very large, it is not practical to use the com-
plete system for simulation or execution control. The goal of model reduction techniques is to
produce a much smaller order system with the state-space form{

ẋm(t) = Amxm(t)+Bmu(t)
ym(t) = Cmxm(t),

(5)

and its transfer function

Hm(ω) :=Cm(ωIm−Am)
−1Bm ∈ Rp×p, (6)

where Am ∈ Rm×m, Bm ∈ Rm×p and Cm ∈ Rp×m, (with m� n), such that the reduced system
(6) will have an output ym(t) as close as possible to the one of the original system to any given
input u(t), which means that for some chosen norm, ‖y− ym‖ should be small.

Various model reduction methods for MIMO systems, such as Padé approximation [13, 34],
balanced truncation [27], optimal Hankel norm [17, 18] have been used for the reduction of
large scales dynamical systems. The most popular techniques used for model reduction these
last years are based on interpolation methods [7, 8, 24]. These methods use block Krylov
subspace

Km(A,B) = Range{B,AB, ...,Am−1B},

or rational block Krylov subspace

Km(A,B) = Range{(σ1I−A)−1B, ...,(σmI−A)−1B},

where σ1, ...,σm are some selected complex shifts. The purpose of those methods is to produce
a reduced order model with a moderate space dimension, by projecting the original problem
onto Km(A,B) or Km(A,B), see [2, 14, 23]. In the present paper, we use a method that was
first introduced in [28] where one has to interpolate the transfer function at some points and in
directions di ∈ Rp. The tangential Krylov subspace is defined as

Wm = span{(s1I−A)−1Bd1, ...,(smI−A)−1Bdm}.
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In this work, the tangent directions are blocks of p× s with s < p, and the computation of the
parameters (si,di) will be done in an adaptive way.

The paper is organized as follows: In Section 2, we introduce the tangential interpolation
method. In Section 3 we present the Adaptive Block Tangential Arnoldi method, where an
adaptive approach is used for the selection of the shifts and the tangential directions, that will
be used in the construction of tangential Krylov subspaces. The last section is devoted to some
numerical tests and comparisons with some well known model order reduction methods.

Throughout the paper we use the following notations: The field of values of A is defined by

W (A) = {xT Ax,x ∈ Cn,‖x‖= 1},

where ‖.‖ is the Euclidean vector norm. We assume that W (A) is strictly a subset of C−.

2. Tangential interpolation

2.1. Moments and interpolation

Given the LTI dynamical system defined by (1), then its associated transfer function H(ω)=
C(ωI−A)−1B can be decomposed through a Laurent series expansion around a given σ ∈ C
(shift point), as follows

H(ω) = η
(σ)
0 +η

(σ)
1 (ω−σ)+η

(σ)
2 (ω−σ)2 + ... (7)

where η
(σ)
i ∈ Rp×p for i≥ 0 are called the i-th moments at σ associated to the system (1) and

given as follows

η
(σ)
i =C(σ In−A)−(i+1)B = (−1)i di

dω i H(ω)|ω=σ , i = 0,1, ... (8)

In the case where σ = ∞, the η
(σ)
i ’s are called Markov parameters and are given by

ηi =CAiB.

The aim of this paper is to produce a transfer function Hm corresponding to the low order
model, that approximates the original transfer function H. Various model reduction methods
for MIMO dynamical systems have been explored these last years. Some of them are based on
Krylov subspace interpolation methods. the main idea is as follows:
Select a set of points {σi}m

i=1 ⊂ C and seek for a reduced order transfer function Hm such that
Hm(σi) = H(σi) for i = 1, ...,m; see [3, 4, 10, 11] for more details.

The tangential interpolation is a more powerful method in which the interpolation conditions
above are acting in specified directions. Assume that the following parameters are given: Right
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complex interpolation points {σi}m
i=1 and right tangent directions {ri}m

i=1 ⊂Cp. The aim of the
tangential interpolation is to produce a low-order dimensional LTI dynamical system (5) such
that the associated transfer function, Hm in (6) is a tangential interpolant to H, i.e.

• Hm(σi)ri = H(σi)ri, f or i = 1, ...,m. (9)

The interpolation points and tangent directions are selected to realize the model reduction goals
described later. We want to interpolate H without ever computing explicitly the quantities
in (9), since these parameters are numerically ill-conditioned, as provided in [13] for single-
input/single-output dynamical systems. This can be achieved by using Petrov-Galerkin projec-
tions by carefully choosing the projection subspaces.
The model reduction interpolation projectors were first introduced in [9, 22]. Later, Grimme
[19] modified this approach into a numerically framework by using the rational Krylov sub-
space method of Ruhe [37]. For MIMO dynamical systems, a rational tangential interpolation
method has been developed in [1, 15].

In this paper we considered another approach based on a work of Druskin and Simoncini
[11], as well as some theory in [1]. For this approach, we considered the tangential direc-
tions as blocks of p× s size with s < p and we used the block Arnoldi procedure to generate
orthogonormal bases of the desired projection subspaces.

3. The adaptive block tangential Arnoldi method

Let the original transfer function H(ω) =C(ωI−A)−1B be expressed as H(ω) =CX where X
is such that

(ωIn−A)X = B. (10)

Hence, approximating H(ω), for a fixed ω such that ωI−A is nonsingular, is equivalent to
approximate the solution X of the multiple linear systems (10). This will be done as follows:
Given a system of matrices {V1, . . . ,Vm} where Vi ∈ Rn×s, the approximate solution Xm of X is
computed, at step m, such that

X i
m ∈ Range{V1, ...,Vm}, (11)

and
Ri

B(ω)⊥ Range{V1, ...,Vm} , i = 1, ..., p (12)

where X i
m and Ri

B are the i-th columns of Xm and RB = B− (ωIn−A)Xm, respectively.
If we set Vm = [V1, . . . ,Vm], then from (11) and (12) , we obtain

Xm = Vm(ωIms−Am)
−1VT

mB,

which gives the following approximate transfer function

Hm(ω) =Cm(ωIms−Am)
−1Bm,
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where Am = VT
mAVm, Bm = VT

mB and Cm =CVm. Notice that the residual can be expressd as

RB(ω) = B− (ωIn−A)Vm(ωIms−Am)
−1VT

mB. (13)

Next, we introduce the block tangential Arnoldi algorithm that allows us to compute an or-
thonormal basis of some specific matrix subspace and we derive some algebraic relations re-
lated to this algorithm.

3.1. The block tangential Arnoldi method

We present here the block tangential Arnoldi algorithm (BTAA) for computing an orthonormal
matrix Vm = [V1, ...,Vm] such that

Range{V1, ...,Vm}= Range
{
(σ1In−A)−1BR1, ...,(σmIn−A)−1BRm

}
, (14)

where σ = {σi}m
i=1 is a set of interpolation points and {Ri}m

i=1 is a set of tangential matrix
directions, where Ri ∈ Rp×s. The algorithm is summarized as follows:

Algorithm 1 The Block Tangential Arnoldi Algorithm (BTAA)

– Inputs: A, B, C, σ = {σi}m+1
i=1 , R = {Ri}m+1

i=1 , Ri ∈ Rp×s.
– Output: Vm+1 = {V1, ...,Vm+1}.

• Set Ṽ1 = (σ1In−A)−1BR1.

• Compute Ṽ1 =V1H1,0, QR decomposition.

• Initialize: V1 = [V1].

• For j = 1,...,m

1. If σ j+1 6= ∞, Ṽj+1 = (σ j+1In−A)−1BR j+1, else Ṽj+1 = ABR j+1.
2. For i = 1,...,j

– Hi, j =V T
i Ṽj+1,

– Ṽj+1 = Ṽj+1−ViHi, j,
3. End.
4. Ṽj+1 =Vj+1H j+1, j, QR Decomposition.
5. V j+1 = [V j, Vj+1],

• End

In Algorithm 1, we assume that the interpolation points σ = {σi}m+1
i=1 and tangential directions

{Ri}m+1
i=1 are given. At each iteration j, we use a new interpolation point σ j+1 and a new

tangential direction R j+1, j = 1, ...,m and we initialize the subsequent tangential subspace by
setting Ṽj+1 = (σ j+1In−A)−1BR j+1 if σ j+1 is finite and Ṽj+1 = ABR j+1 if σ j+1 = ∞. The
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matrices Hi, j constructed in Step 2 are of size s× s and they are used to construct the block

upper Hessenberg matrix H̃m =
[
H̃(1), ...,H̃(m)

]
∈ R(m+1)s×ms, where

H̃( j) =


H1, j

...
H j, j

H j+1, j
0

 , f or j = 1, ...,m,

and we define the (m+1)s× s matrix H̃(0) as

H̃(0) =

[
H1,0

0

]
.

where 0 is the zero matrix of size (m− j)× s. The upper Hessenberg matrix Hm is the ms×ms
matrix obtained from H̃m by deleting its last row

H̃m =

[
Hm

Hm+1,m(eT
m⊗ Is)

]
.

The next proposition gives some algebraic properties corresponding to the matrices derived
from Algorithm 1.

Proposition 3.1. Let Vm+1 be the orthonormal matrix of Rn×(m+1)s constructed by Algorithm
1. Then we have the following relations

AVm+1H̃m = Vm+1K̃m−BR̃m+1, (15)

Am = VT
mAVm =

[
Km−BmR̃m+1−VT

mAVm+1Hm+1,m(eT
m⊗ Is)

]
H−1

m , (16)

and
Tm+1 = Vm+1Gm+1, (17)

where K̃m = H̃m(Dm⊗Is), Dm =Diag{σ2, ...,σm+1}, R̃m+1 = [R2, ...,Rm+1], Gm+1 =
[
H̃(0) H̃m

]
is a block upper triangular matrix and Km is the ms×ms matrix obtained from K̃m by deleting
its last row. The matrix Hm is assumed to be non singular.

Proof From Algorithm 1, we have

Vj+1H j+1, j = (σ j+1In−A)−1BR j+1−
j

∑
i=1

ViHi, j j = 1, ...,m. (18)
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Multiplying (18) on the left by (σ j+1In−A) and re-arranging terms, we get

A
j+1

∑
i=1

ViHi, j = σ j+1

j+1

∑
i=1

ViHi, j−BR j+1 j = 1, ...,m,

which gives

AV j+1


H1, j

...
H j, j

H j+1, j

= σ j+1V j+1


H1, j

...
H j, j

H j+1, j

−BR j+1, j = 1, ...,m,

also be written as

AVm+1


H1, j

...
H j, j

H j+1, j
0

= σ j+1V j+1


H1, j

...
H j, j

H j+1, j
0

−BR j+1, j = 1, ...,m, (19)

where 0 is the zero matrix of size (m− j)× s. Then we have

AVm+1H̃( j) = σ j+1V j+1H̃( j)−BR j+1, j = 1, ...,m. (20)

Therefore, we can deduce from (20), the following expression

AVm+1

[
H̃(1), ...,H̃(m)

]
= Vm+1

[
H̃(1), ...,H̃(m)

]
(Dm⊗ Is)−BR̃m+1,

which ends the proof of (15).
For the relation (16), we have from (15),

AVmHm +AVm+1Hm+1,m(eT
m⊗ Is) = VmKm +σm+1Vm+1Hm+1,m(eT

m⊗ Is)−BR̃m+1.

Multiplying on the left by VT
m gives

VT
mAVmHm =Km−VT

mBR̃m+1−VT
mAVm+1Hm+1,m(eT

m⊗ Is).

Therefore

Am = VT
mAVm =

[
Km−BmR̃m+1−VT

mAVm+1Hm+1,m(eT
m⊗ Is)

]
H−1

m .

For the proof of (17), we first use (18) to obtain

j+1

∑
i=1

ViHi, j = (σ j+1In−A)−1BR j+1 j = 1, ...,m,
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which gives

Vm+1


H1, j

...
H j, j

H j+1, j
0

= (σ j+1In−A)−1BR j+1, j = 1, ...,m.

It follows that

Vm+1

[
H̃(1), ...,H̃(m)

]
=
[
(σ2In−A)−1BR2, ...,(σm+1In−A)−1BRm+1

]
,

Since V1H1,0 = (σ1In−A)−1BR1, we have

Vm+1

[
H̃(0),H̃(1), ...,H̃(m)

]
=
[
(σ1In−A)−1BR1,(σ2In−A)−1BR2, ...,(σm+1In−A)−1BRm+1

]
,

which ends the proof of (17). �

The following theorem generalizes a result given in [1].

Theorem 3.1. Let σ ∈ C be such that (σ I−A) is invertible. Let Vm = [V1, ...,Vm] have full-
rank, where the Vi ∈ Rn×s. Let R = [r1, ...,rs] ∈ Rp×s be a chosen tangential matrix direction.
Then,

1. If (σ I−A)−1Bri ∈ Range{V1, ...,Vm} for i = 1, ...,s, then

Hm(σ)R = H(σ)R.

2. If in addition A is symmetric and C = BT , then,

RT H ′m(σ)R = RT H ′(σ)R.

Proof 1) We follow the same techniques as those given in [1] for the non-block case. Define

Pm(ω) = Vm(ωIm−Am)
−1VT

m(ωI−A),

and
Qm(ω) = (ωI−A)Pm(ω)(ωI−A)−1 = (sI−A)Vm(ωIm−Am)

−1VT
m.

It is easy to verify that Pm(ω) and Qm(ω) are projectors. Moreover, for all ω in a neighbor-
hood of σ we have

Vm = Range{V1, ...,Vm}= Range(Pm(ω)) = Ker(I−Pm(ω)).

Observe that

H(ω)−Hm(ω) =C(ωI−A)−1(I−Qm(ω))(ωI−A)(I−Pm(ω))(ωI−A)−1B. (21)
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Evaluating this expression at ω = σ and multiplying by ri from the right, yields the first asser-
tion.

2) If A is symmetric and C = BT , we have V ⊥m = Ker(Qm(ω)) = Range(I −Qm(ω)).
Notice that

((σ + ε)I−A)−1 = (σ I−A)−1− ε(σ I−A)−2 +O(ε2),

and
((σ + ε)Im−Am)

−1 = (σ Im−Am)
−1− ε(σ Im−Am)

−2 +O(ε2).

Therefore, evaluating (21) at s = σ + ε , multiplying by rT
j and ri, from the left and the right

respectively, for i, j = 1, ...,s, we get

rT
j H(σ + ε)ri− rT

j Hm(σ + ε)ri = O(ε2).

Now notice that since rT
j H(σ)ri = rT

j Hm(σ)ri, we have

lim
ε−→0

[
1
ε
(rT

j H(σ + ε)ri− rT
j H(σ)ri)−

1
ε
(rT

j Hm(σ + ε)ri− rT
j Hm(σ)ri)

]
= 0,

which proves the second assertion. �

Proposition 3.2. Let RB(ω) be the residual RB(ω) = B−(ωIn−A)VmQm(ω) as given in (13),
where Qm(ω) = (ωIms−Am)

−1VT
mB. We have the following new expression given by

RB(ω) = (In−VmVT
m)B+(AVm−VmAm)Qm(ω). (22)

Proof We have

RB(ω) = B−ωVmQm(ω)+AVmQm(ω)
= B+AVmQm(ω)−Vm(ωIms−Am)(ωIms−Am)

−1VT
mB

−VmAm(ωIms−Am)
−1VT

mB
= B+AVmQm(ω)−VmVT

mB−VmAmQm(ω)
= (In−VmVT

m)B+(AVm−VmAm)Qm(ω),

which proves (22). �

Proposition 3.3. Let Tm =
[
(A−σ1I)−1BR1, ...,(A−σmI)−1BRm

]
= VmGm, where Gm and

Vm are obtained by the Block Tangential Arnoldi Algorithm (BTAA). Let Rm = [R1, ...,Rm],
then

AVm−VmAm =−
(
In−VmVT

m
)

BRmG−1
m , (23)

and
RB(ω) =

(
In−VmVT

m
)

B
(
Ip−RmG−1

m Qm(ω)
)
. (24)
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Proof Let Σm = [diag(σ1, ...,σm)⊗ Is], then from the fact that

A(σiI−A)−1BRi =−BRi +σi(σiI−A)−1BRi,

it follows that
AVm = ATmG−1

m = (−BRm +TmΣm)G−1
m .

Since Am = VT
mAVm =G−T

m TT
mATmG̃−1

m , we have

AVm−VmAm =−BRmG−1
m +TmΣmG−1

m −VmVT
mAVm,

=−BRmG−1
m +TmΣmG−1

m −VmVT
m (−BRm +TmΣm)G−1

m ,

=−BRmG−1
m +TmΣmG−1

m +VmVT
mBRmG−1

m −VmVT
mTmΣmG−1

m .

Now, as Tm = VmGm, we have VmVT
mTmΣmG−1

m = TmΣmG−1
m and then

AVm−VmAm =−BRmG−1
m +VmVT

mBRmG−1
m

=−(In−VmVT
m)BRmG−1

m .

�
The expression in (24) will be used in the next section in order to reduce the cost when com-
puting the residual.

3.2. An adaptive strategy for selecting the interpolation points and tangent directions

In this subsection we use an adaptive strategy for choosing the interpolation points and
tangent directions. This technique was first proposed in [10] to choose the shifts for the rational
Krylov subspaces. The iterative rational Krylov algorithm (IRKA) was proposed in [1], where
an initial set of interpolation points is given and a new set of interpolation points is chosen as
a set of the mirror images of the eigenvalues of Am, i.e σi = −λi(Am), i = 1, ...,m. In [35] the
iterative tangential interpolation algorithm (ITIA) was also proposed, with the same strategy as
the one of IRKA, and the tangential directions are selected as

li =Cmdi, ri = BT
mgi, (25)

where di and gi, i = 1, ...,m, are right and left eigenvectors respectively, of the reduced model ,
i.e.,

Amdi = λidi, gT
i Am = λigT

i .

In this paper we use an adaptive approach, inspired by the work given in [12].
In the adaptive approach, we seek to extend our subspace

Wm = Range{(σ1In−A)−1BR1, ...,(σmIn−A)−1BRm},

by a new block defined by

Wm+1 = (σm+1In−A)−1BRm+1, (26)
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which means that, at each iteration, we seek to define a new interpolation point σm+1 and a new
tangent direction Rm+1.
They will be computed as follows

(Rm+1,σm+1) = arg max
ω ∈ Sm

R ∈ Rp×s ,‖R‖2 = 1

‖RB(ω)R‖ 2. (27)

Here Sm ⊂ C+ is the convex hull of {−λ1, ...,−λm} where {λi}m
i=1 are the eigenvalues of Am.

Now we explain how to solve the problem (27). First we compute the interpolation point σm+1,
by maximizing the the residual norm on the convex hull Sm, i.e we solve the following problem,

σm+1 = argmax
ω∈Sm
‖RB(ω)‖2. (28)

In the case of small to medium systems, this is done by computing the norm of RB(ω) for each
ω in Sm and the tangent direction Rm+1 is computed by evaluating (27) at ω = σm+1

Rm+1 = arg max
R∈Rp×s,‖R‖=1

‖RB(σm+1)R‖2 . (29)

Notice that the tangential matrix direction Rm+1 = [r(m+1)
1 , ...,r(m+1)

s ], can be determined such
that r(m+1)

i are the right singular vectors corresponding to the s largest singular values of
RB(σm+1).
In the case where the problem is large, the expression (24) of the residual given in Proposition
3.3

RB(ω) =
(
In−VmVT

m
)

B
(
Ip−RmG−1

m Qm(ω)
)
,

allows us to reduce the computational cost, while seeking for the next interpolation point and
tangent direction. Applying the skinny QR decomposition (In−VmVT

m)B = QL, we get

‖RB(ω)‖2 =
∥∥L
(
Ip−RmG−1

m Qm(ω)
)∥∥

2 . (30)

This means that, solving (27) requires only the computation of matrices of size ms×ms for
each value of ω .
Next, we present the adaptive block tangential Arnoldi algorithm (ABTAA). The algorithm is
summarized as follows:
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Algorithm 2 Adaptive block tangential Arnoldi algorithm (ABTAA)

– Inputs A, B, C m, ω
(1)
0 ∈ R and R1 ∈ Rp×s.

– Outputs: Am = VT
mAVm, Bm = VT

mB and Cm =CVm.

• Set σ1 = ω
(1)
0 , Ṽ1 = (σ1In−A)−1BR1.

• Compute Ṽ1 =V1H1,0 (QR decomposition)and initialize: V1 = [V1].

• For k = 1 : m−1

1. If σ̄k−1 6= σk ∈ C then σk+1 = σ̄k else compute {λ1, ...,λks} the eigenvalues of Ak.

2. Determine Sk, the convex hull of {−λ1, ...,−λks,ω
(1)
0 , ω̄

(1)
0 } and solve (28).

3. Compute Rk+1 by solving (29).
4. If σk+1 6= ∞, Ṽk+1 = (σk+1In−A)−1BRk+1 else Ṽk+1 = ABRk+1.
5. For i = 1,...,k

– Hi,k =V T
i Ṽk+1,

– Ṽk+1 = Ṽk+1−ViHi,k,
6. End.
7. Ṽk+1 =Vk+1Hk+1,k, (QR Decomposition).
8. Vk+1 = [Vk, Vk+1].

• End

Algorithm 2 allows us to compute a low dimensional dynamical system by computing the re-
duced matrices Am = VT

mAVm, Bm = VT
mB and Cm = CVm. The interpolation points and the

tangent directions are computed in an adaptive way.

Proposition 3.4. Let Vk = [V1, ...,Vk], be the orthonormal matrix obtained by Algorithm 2 at
the iteration k, then setting Mk = Range{V1, ...,Vk,(σk+1In−A)−1BRk+1}, we have

Range(Mk) = Range{V1, ...,Vk,(σk+1In−A)−1RB(σk+1)Rk+1},

and
dim(Mk) = k+1 if and only if RB(σk+1)Rk+1 6= 0.

Proof We have,

RB(σk+1)Rk+1 = B(σk+1)Rk+1− (σk+1In−A)Vk(σk+1I js−Ak)
−1BkRk+1.

Multiplying the last equality on the left by (σk+1In−A)−1, gives

(σk+1In−A)−1RB(σk+1)Rk+1 = (σk+1In−A)−1BRk+1−Vk(σk+1Iks−Ak)
−1BkRk+1,

12



which proves the first assertion.

If RB(σk+1)Rk+1 = 0, then dim({V1, ...,Vk,(σk+1In−A)−1BRk+1}) = k.
Now assume that RB(σk+1)Rk+1 6= 0, then we only need to prove that

Y = (I−VkVT
k )
(
(σk+1In−A)−1RB(σk+1)Rk+1

)
6= 0.

We observe that,

(RB(σk+1)Rk+1)
TY = (RB(σk+1)Rk+1)

T (σk+1In−A)−1RB(σk+1)Rk+1)

− (RB(σk+1)Rk+1)
TVkVT

k ((σk+1In−A)−1RB(σk+1)Rk+1).

Using the fact that the residual RB(σk+1) is orthogonal to [V1, ..,Vk], we get

RB(σk+1)Rk+1)
TVkVT

k ((σk+1In−A)−1RB(σk+1)Rk+1 = 0,

and then

(RB(σk+1)Rk+1)
TY = (RB(σk+1)Rk+1)

T (σk+1In−A)−1RB(σk+1)Rk+1).

Now, as W [(σk+1In−A)−1]⊂ C+/{0}, we have Y 6= 0, which proves the second assertion.
�

Proposition 3.5. Let Am+1 = VT
m+1AVm+1 = [a:,1, ...,a:,m+1], where a:,i,∈ R(m+1)s×s are the i-

th block column of the (m+1)s×(m+1)s matrix Am+1, and H̃m =
[
H̃(1), ...,H̃(m)

]
is the upper

Hessenberg matrix obtained from Algorithm 2. The, for j = 1, ...,m, we have

a:, j+1 =
[
σ j+1H̃( j)− [a:,1, ...a:, j]H̃

( j)
1: js,:−Bm+1R j+1

]
H−1

j+1, j. (31)

Proof We have from Algorithm 2

Vj+1H j+1, j = (σ j+1In−A)−1BR j+1−
j

∑
i=1

ViHi, j j = 1, ...,m.

Multiplying on the left by (σ j+1In−A), and re-arranging terms, we get

AVj+1H j+1, j = σ j+1

j+1

∑
i=1

ViHi, j−A
j

∑
i=1

ViHi, j−BR j+1,

which gives the following relation

AVj+1H j+1, j = σ j+1Vm+1H̃( j)−AV jH̃
( j)
1: js,:−BR j+1.

Multiplying now on the left by VT
m+1, we obtain

a:, j+1H j+1, j = σ j+1H̃( j)− [a:,1, ...a:, j]H̃
( j)
1: js,:−Bm+1R j+1,

13



which gives the desired result

a:, j+1 =
[
σ j+1H̃( j)− [a:,1, ...a:, j]H̃

( j)
1: js,:−Bm+1R j+1

]
H−1

j+1, j.

�

Proposition 3.5 allows us to compute the matrix Am+1 without computing the inverse of the
(m+1)s× (m+1)s matrix Hm+1 as in (16), we only need the inverse of small matrices H j+1, j,
j = 1, ...,m.

4. Numerical experiments

In this section, we give some numerical examples to show the effectiveness of our adaptive
block tangential Arnoldi method (ABTAA). All the experiments presented in this paper were
carried out using the CALCULCO computing platform, supported by SCoSI/ULCO (Service
Commun du Système d’Information de l’Université du Littoral Côte d’Opale). The algorithms
were coded in Matlab R2017a. We used the following functions from LYAPACK [29]:

• lp lgfrq: Generates a set of logarithmically distributed frequency sampling points.

• lp para: Used for computing the initial first two shifts.

• lp gnorm: Computes ‖H( jω)−Hm( jω)‖2.

We used various matrices from LYAPACK and from the Oberwolfach collection1. These matrix
tests are reported in Table 1 with different values of p and the used values of s.

Example 1: The model of the first experiment is a model of stage 1R of the International Space
Station (ISS). It has 270 states, three inputs and three outputs; for more details on this system,
see [22]. Figure 1 shows the singular values of the transfer function and its approximation.
In Figure 2, we plotted the 2-norm of the errors ‖H( jω)−Hm( jω)‖2 versus the frequencies
ω ∈ [10−6, 106] for m = 15.

1Oberwolfach model reduction benchmark collection 2003. http://www.imtek.de/simulation/benchmark
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Table 1: Matrix Tests
Model n p s
CDplayer n = 120 p = 2 s = 1
ISS n = 270 p = 3 s = 2
RAIL3113 n = 3113 p = 6 s = 2
MNA2 n = 9223 p = 18 s = 6
FLOW n = 9669 p = 5 s = 3
FDM10000 n = 10 000 p = 9 s = 3
MNA5 n = 10 913 p = 9 s = 3
RAIL20209 n = 20 209 p = 7 s = 3
RAIL79841 n = 79 841 p = 7 s = 3
FDM40000 n = 40 000 p = 9 s = 3
FDM90000 n = 90 000 p = 9 s = 3
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Figure 1: The ISS model: singular values vs frequen-
cies.
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Figure 2: The ISS model: error-norms vs frequen-
cies.

Example 2: In this example we used the CDplayer model, that describes the dynamics between
a lens actuator and the radial arm position in a portable CD player. The model is relatively
hard to reduce. For more details on this system, see [21]. Figure 3, represents the sigma-
plot (the singular values of the transfer function) of the original system (dashed-dashed line)
and the one of the reduced order system (solid line). In Figure 4, we plotted the error-norm
‖H( jω)−Hm( jω)‖2 versus the frequencies ω ∈ [10−6, 106].
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Figure 3: The CDplayer model: singular values vs
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Figure 4: The CDplayer model: error-norms vs fre-
quencies.

Example 3: In this example we compared the ABTAA algorithm with the Iterative Rational
Krylov Algorithm (IRKA [20]) and the adaptive tangential method represented by Druskin
and Simonsini (TRKSM) see for more details [11]. We used seven models: FDM, MNA2,
MNA5, RAIL3113, RAIL20209, RAIL79841 and FLOW. The FDM model is obtained from
the centred finite difference discretization of the operator,

LA(u) = ∆u− f (x,y)
∂u
∂x
−g(x,y)

∂u
∂y
−h(x,y)u,

on the unit square [0,1]× [0,1] with homogeneous Dirichlet boundary conditions with f (x,y) =
log(x+2y+1), g(x,y) = ex+y and h(x,y) = x+y. The matrices B and C were random matrices
with entries uniformly distributed in [0,1]. The number of inner grid points in each direction
was n0 = 100 and the dimension of A is n = n2

0 = 10000.
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Figure 5: The FDM model: ABTAA (solid line),
IRKA (dashed-dotted line) & TRKSM ( dashed-
dashed line), m = 20.
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Figure 6: The FDM model: ABTAA (solid line),
IRKA (dashed-dotted line) & TRKSM ( dashed-
dashed line), m = 30.
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The MNA2 and MNA5 models were obtained from NICONET [26]. Figures 7 and 8 represent
the exact error-norm ‖H( jω)−Hm( jω)‖2 versus the frequencies for ABTAA (solid line) and
IRKA (dashed-dotted line) with m = 20.
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Figure 7: The MNA2 model: ABTAA (solid line) &
IRKA (dashed-dotted line), m = 20.
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Figure 8: The MNA5 model: ABTAA (solid line) &
IRKA (dashed-dotted line), m = 20.

The models RAIL3113 (n = 3113, p = 6) and Flow (n = 9669, p = 5) are from the Ober-
wolfach collection. Figures 9 and 10 illustrate the error-norm ‖H( jω)−Hm( jω)‖2 versus the
frequencies for m = 20. The execution time for the RAIL3113 is as follows: ( ABTAA: 0.59
seconds, TRKSM: 2.17 seconds and IRKA: 15.21 seconds) and for the Flow model ( ABTAA:
1.69 seconds, TRKSM: 7.39 seconds, IRKA: 42.50 seconds).
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Figure 9: The RAIL3113 model: ABTAA (solid
line), IRKA (dashed-dotted line) & TRKSM (
dashed-dashed line), m = 20.
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Figure 10: The Flow model: ABTAA (solid line),
IRKA (dashed-dotted line) & TRKSM ( dashed-
dashed line), m = 20.

In the plots below, we used RAIL20209 (n=20209, p=6) and RAIL79841 (n=79841, p=6)
models with a fixed m = 12, the matrices B and C were random. Figures 11 and 12 represent
the exact error ‖H( jω)−Hm( jω)‖2 versus the frequencies of the tree methods ABTAA ( solid
line), IRKA ( dashed-dotted line) and TRKSM ( dashed-dashed line). The execution time for
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the RAIL20209 example is the following: (ABTAA: 2.92 seconds, TRKSM: 9.92 seconds and
IRKA: 44.08 seconds) and for RAIL79841 model is: (ABTAA: 32.69 seconds, TRKSM: 80.93
seconds, IRKA: 247.64 seconds).
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Figure 11: The RAIL20209 model: ABTAA (solid
line), IRKA (dashed-dotted line) & TRKSM (
dashed-dashed line).
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Figure 12: The RAIL79841 model: ABTAA (solid
line), IRKA (dashed-dotted line) & TRKSM (
dashed-dashed line).

Example 4: In this example, we used the FDM model: (n= 40.000 and n= 90.000 with p= 9).
In Table 2, we compared the execution times and the H∞ norm ‖ H −Hm ‖H∞

for ABTAA,
IRKA and TRKSM algorithms with different values of m. We notice that the obtained timing
didn’t contain the execution times used to obtain the errors. As can be seen from the results in
Table 2, the cost of IRKA and TRKSM methods is much higher than the cost required with the
adaptive block tangential Arnoldi method.

Table 2: The computation time & the Err-H∞ error-norm

Model ABTAA IRKA TRKSM
Time Err-H∞ Time Err-H∞ Time Err-H∞

FDM40.000 m=10 9.30s 5.39×10−4 126.28s 2.24×10−5 34.89s 7.9×10−4

m=20 13.29s 3.87×10−5 269.3s 1.06×10−4 36.82s 1.93×10−5

m=30 19.15 3.08×10−7 382.70s 3.30×10−4 37.48s 7.84×10−7

FDM90.000 m=10 43.29 6.49×10−4 354.12s 1.55×10−4 126.97s 1.25×10−4

m=20 52.72 1.46×10−4 725.17s 1.44×10−4 128.20s 9.83×10−5

m=30 64.24 1.90×10−5 1025.68s 6.48×10−5 127.88s 2.15×10−5
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5. Conclusion

In the this paper, we proposed a new approach named block tangential Arnoldi method
based on block tangential Krylov subspaces, to obtain reduced order dynamical systems, that
approximate the initial large scale dynamical systems with multiple inputs and multiple out-
puts (MIMO). The method constructs sequences of orthogonal blocks from block tangential
Krylov subspaces using the block Arnoldi approach. The interpolation shifts and the tangential
directions are selected in an adaptive way by maximizing the residual norms. We gave some
new algebraic properties and present some numerical experiments on some benchmark exam-
ples showing that the proposed method returns good results, as compared to some well known
methods for large problems.
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