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It has recently been proposed that natural concepts are those represented by the cells of an optimally partitioned similarity space. In this proposal, optimal partitioning has been defined in terms of rational design criteria, criteria that a good engineer would adopt if asked to develop a conceptual system. It has been argued, for instance, that convexity should rank high among such criteria. Other criteria concern the possibility of placing prototypes such that they are both similar to the items they represent-each prototype ought to be representative-and dissimilar to each other: the prototypes ought to be contrastive. Parts of this design proposal are already supported by evidence. This paper reports results of a new study meant to address parts still lacking in empirical support. In particular, it presents data concerning color similarity space which indicate that color prototypes are indeed located such that they trade off optimally between being representative and being contrastive.

Introduction

According to an increasingly popular research program, concepts can be thought of geometrically, as regions in so-called similarity spaces [START_REF] Shepard | Attention and the metric structure of the stimulus space[END_REF][START_REF] Krumhansl | Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density[END_REF][START_REF] Nosofsky | Attention, similarity, and the identification-categorization relationship[END_REF][START_REF] Nosofsky | Attention and learning processes in the identification and categorization of integral stimuli[END_REF][START_REF] Clark | Sensory qualities[END_REF][START_REF] Gärdenfors | Conceptual spaces: The geometry of thought[END_REF][START_REF] Gärdenfors | The geometry of meaning: Semantics based on conceptual spaces[END_REF][START_REF] Churchland | Plato's camera[END_REF]Decock & Douven, 2014;[START_REF] Bellmund | Navigating cognition: Spatial codes for human thinking[END_REF]Verheyen & Egré, 2018). Researchers working on this program recognized early on that not just any region in such a space qualifies as a concept, at least not as one which might ever figure in our thinking or theorizing-not a natural concept [START_REF] Lewis | New work for a theory of universals[END_REF]. But it has proven difficult to pinpoint what distinguishes those regions in similarity spaces that are suited to represent natural concepts from those that are not. [START_REF] Gärdenfors | Conceptual spaces: The geometry of thought[END_REF] tentatively proposed convexity as a criterion for singling out the natural concepts. But although there is evidence that concepts in actual use are represented by convex regions (e.g., [START_REF] Sivik | Color naming: A mapping in the IMCS of common color terms[END_REF][START_REF] Jäger | The evolution of convex categories[END_REF][START_REF] Jäger | Natural color categories are convex sets[END_REF][START_REF] Jäger | Language structure: Psychological and social constraints[END_REF][START_REF] Douven | Vagueness, graded membership, and conceptual spaces[END_REF], this only supports convexity as a necessary condition for naturalness; there are good reasons to hold that it is not sufficient (see below).

Recently, a stronger condition for naturalness has been proposed, one which subsumes convexity [START_REF] Douven | What are natural concepts? A design perspective[END_REF]. According to the new proposal, natural concepts are concepts represented by the cells of an optimally partitioned similarity space. In line with a long tradition in cognitive psychology (e.g., [START_REF] Marr | Vision: A computational investigation into the human representation and processing of visual information[END_REF][START_REF] Anderson | The adaptive character of thought[END_REF][START_REF] Anderson | Is human cognition adaptive?[END_REF][START_REF] Oaksford | A rational analysis of the selection task as optimal data selection[END_REF][START_REF] Chater | Ten years of the rational analysis of cognition[END_REF], this proposal defines the notion of optimal partitioning in terms of rational design criteria, criteria that a good engineer would adopt if asked to develop a conceptual system for creatures like us. In [START_REF] Gärdenfors | Conceptual spaces: The geometry of thought[END_REF], convexity had been motivated on precisely such grounds, specifically, as helping to speed up learning and to economize memorization. The newer proposal argues that the same kind of thinking motivates criteria for naturalness that go beyond convexity. For instance, it asserts that an optimal partitioning of a similarity space is parsimonious (not too fine-grained, in order not to overtax memory) while at the same time is informative (not too coarse-grained, to ensure that enough conceptual distinctions can be made). Moreover, such a partitioning is said to allow placement of prototypes in the space that makes them both representative-highly similar to the items they are meant to represent-and contrastive: highly dissimilar to each other.

While there is accumulated evidence that conceptual systems obey the convexity, parsimony, and informativeness criteria (see Section 3), few researchers so far have looked at representativeness and contrastiveness. To address this lacuna, we conducted a new study concerning color similarity space (or color space, for short). This study was meant to determine the locations in color space of the prototypes of the eleven so-called basic color terms [START_REF] Berlin | Basic color terms[END_REF]. The data obtained, together with recently published color-naming data covering all of color space [START_REF] Jraissati | Delving deeper into color space[END_REF], allowed us to assess the extent to which color prototypes satisfy the criteria of representativeness and contrastiveness.

Section 2 outlines the similarity spaces approach to conceptualization and also reviews the proposal to explain the naturalness of our common concepts by reference to design criteria. Section 3 summarizes previous empirical work relevant to the present project, specifically recent work on color naming whose data are to be re-used for our current purposes. Section 4 makes our hypothesis formally precise. Section 5 presents the outcomes of our new study concerning color prototypes. Section 6, finally, recapitulates our findings and points to directions for future research.

Theoretical background

From the 1960s onward, cognitive psychologists have been trying to represent people's similarity judgments spatially by using statistical techniques such as principal component analysis and multidimensional scaling (see, e.g., [START_REF] Krumhansl | Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density[END_REF][START_REF] Borg | Modern multidimensional scaling (2nd edition)[END_REF]. These procedures output what are generally known as "similarity spaces." The idea is that distances between pairs of points in such spaces predict how similar people will judge items represented by those points to be in whichever the relevant respect of similarity is. For example, distances between pairs of points in color space are meant to predict how similar people will judge the colors represented by the points to be. Similarity spaces are not guaranteed to be adequate representations of whatever they are purported to represent: predictions based on them may prove to be false. By now, however, a fair number of empirically successful similarity spaces have been charted, among them color space, which will concern us in the following.1 Most readers may associate the term "color space" with RGB or CMYK space, frequently used by photographers, video editors, and other professionals concerned with defining the graphics output of some physical device. It is important to note, however, that these are not color similarity spaces: distances in these spaces are not purported to, and in fact do not, accurately predict human judgments of color similarity. While to date there is no known space that is entirely accurate in this respect, two are considered good approximations. These two-the CIELAB and CIELUV spacesare meant to apply under different viewing conditions: when comparing colors printed on paper or cloth, the degrees to which we deem the colors similar appear to be best predicted by CIELAB space, while CIELUV space does better when we compare colors on a TV or computer screen (Malacara, 2002, pp. 86-90;Fairchild, 2013, Ch. 10). Because all data to be used in our analysis were collected online, we will be assuming CIELUV space throughout the following. Figure 1 gives an impression of this space by placing in it the 1,332 color chips that figured prominently in [START_REF] Jraissati | Delving deeper into color space[END_REF] color-naming study (see Section 3 for details). Distances in CIELUV space are measured using the Euclidean metric, meaning (intuitively) that the distance between any pair of points in the space is given by the length of the line segment between those points.

As can be (somewhat) seen in this figure, CIELUV space looks a bit like a spindle, with a northsouth axis placed more or less centrally. This axis represents brightness, which can be thought of as the amount of white that is mixed into the color: the left panel of Figure 1 shows the dark end up, the right panel the light end. Perpendicular to this axis, at about its midpoint, lies the familiar color circle, which goes through all colors of the rainbow. This represents hue. Finally, the distance from the brightness axis represents saturation, which indicates the depth or fullness of a color, with colors further away from the axis being more saturated.

Color space and other similarity spaces have not only been used to predict people's similarity judgments, they have also served as main building blocks in a new approach to concepts. Philosophers have traditionally understood concepts as characterized by a list of conditions necessary and sufficient for membership [START_REF] Sutcliffe | Concepts, class, and category in the tradition of Aristotle[END_REF]. But this understanding is hard to maintain in all-encompassing account of concepts, it is to be admitted that, at the moment, virtually all of the empirical results supporting the approach are limited to perceptual concepts. light of empirical work on concepts conducted in cognitive psychology over the past fifty years [START_REF] Murphy | The big book of concepts[END_REF]. Therefore, psychologists have looked for different approaches to concepts, with many psychologists now being drawn to the geometric approach that views concepts as regions in similarity spaces. In this approach, the concept of redness is a region in color space (i.e., CIELAB or CIELUV space), as is the concept of greenness (see Gärdenfors, 2000, and references given there). Note how predictively powerful this idea is: given the region in color space that represents the concept of greenness, say, we can randomly draw shades from that space and ask people to name them; if sizable majorities agree that the shades drawn from the "green" region are green, and that those from outside that region are not, that gives us reason to believe we have a successful representation of the concept of greenness.

Granting that concepts are regions in similarity spaces, it surely cannot be that every such region represents a concept-not, at any rate, one that would be of practical use for us or that we would otherwise want to have a predicate for in our language. Indeed, any of the infinitely many connected sets of points in color space is, mathematically speaking, a region in that space, but only very few such regions consist of points that represent shades we experience as being worthy of a common name. The distinction between regions we do and do not care to single out is often stated in terms of naturalness: only few regions in color space strike us as representing natural concepts, while the vast majority are said to represent, at best, unnatural or gerrymandered concepts [START_REF] Lewis | Putnam's paradox[END_REF].

A next question, then, is what makes a concept natural. Gärdenfors (2000, p. 71) ventured the following answer:

Convexity: A natural concept is a convex region of a conceptual space, where a region is convex if, and only if, for any two points in the region, the line segment connecting those points lies in its entirety in the region as well. Gärdenfors (2000, p. 70) proposed this criterion (to which he refers as "Criterion P") as being necessary and sufficient for naturalness, though very tentatively so, and already expressed some concern that, while necessary, convexity may not really be sufficient. The sufficiency part of the claim is indeed doubtful. To see this, note that the intersection of any number of convex sets is guaranteed to be convex itself (Douven et al., 2013, p. 147). This means, for instance, that carving up color space by randomly picking some planes intersecting that space will yield a partitioning of the space with only convex cells. Clearly, though, some or all of those cells may group together shades that no normal observer would judge to be of the same color. Yet the cells would represent natural color concepts if convexity were sufficient for naturalness. Gärdenfors (2000, p. 70) motivates the convexity criterion as "a principle of cognitive economy; handling convex sets puts less strain on learning, on your memory, and on your processing capacities than working with arbitrarily shaped regions." As [START_REF] Douven | What are natural concepts? A design perspective[END_REF] argue, very similar considerations support further principles, which can all be conceived as rationality constraints on the design of a conceptual system. For instance, we will want a conceptual system to be informative in the sense that it will allow us to make fine-grained distinctions in all parts of the relevant similarity space. On the other hand, in view of memory limitations, informativeness will have to be balanced against the system being parsimonious, so as to tax our memory no more than is required for us to function properly [START_REF] Marzen | The evolution of lossy compression[END_REF]. Furthermore, there is much empirical support for prototype theory, according to which concepts have members that stand out for being typical of the concept. Such so-called prototypes give useful summary information about concepts and have been shown to play various important roles in the process of concept learning [START_REF] Rosch | Natural categories[END_REF][START_REF] Rosch | Principles of categorization[END_REF][START_REF] Rosch | Family resemblances: Studies in the internal structure of categories[END_REF]. [START_REF] Douven | What are natural concepts? A design perspective[END_REF] argue that, given our limited discriminatory capacities, it will be useful if prototypes can be chosen so that they are easy to tell apart. For instance, for children it will be easier to learn the difference between what counts as typically red and what as typically orange if the red and orange prototypes are not too similar to each other. In general, there should be enough contrast among the prototypes of the various concepts in the system. At the same time, we will want a prototype to be a good representative of the items falling under the concept: the more similar the prototype is to those other items, the better it will "summarize" the concept and thereby facilitate identifying what else falls under the concept.

Douven and Gärdenfors propose still further constraints concerning the acquisition, processing, and communicability of concepts. Their main claim is that natural concepts can be singled out as precisely those that we find represented in optimally partitioned similarity spaces, which are similarity spaces furnished with concepts following a design that satisfies the rationality constraints, or rather, given that some of the constraints can pull in different directions, that achieves the best trade-off among the various constraints.

In their paper, Douven and Gärdenfors cite various publications as providing important inspiration for their proposal. Some of those publications also contain evidence indicating that in particular convexity, informativeness, and parsimony have been operative in shaping our concepts in a number of domains. Among these publications are influential papers by Regier, Kay, and various of their co-authors, showing that conceptual systems obtained via computational procedures programmed to satisfy certain rationality requirements match systems in actual use remarkably well. For example, following an idea put forward by [START_REF] Jameson | It's not really red, green, yellow, blue: An inquiry into perceptual color space[END_REF], [START_REF] Regier | Color naming reflects optimal partitions of color space[END_REF] apply a computational clustering algorithm to a set of color chips that has been extensively used in color-naming studies (see below), showing that when the algorithm was tasked to cluster those chips into three, four, five, or six clusters, the outcomes tended to closely match how those same chips were carved up into categories by languages with corresponding numbers of color terms.

Further evidence of design principles being at work in conceptualization, also beyond the color domain (e.g., evidence of their role in shaping concepts of kinship, numerical concepts, and container concepts), is to be found in [START_REF] Regier | Color naming and the shape of color space[END_REF], [START_REF] Kemp | Kinship categories across languages reflect general communicative principles[END_REF], [START_REF] Xu | Numeral systems across languages support efficient communication: From approximate numerosity to recursion[END_REF], [START_REF] Regier | Word meanings across languages support efficient communication[END_REF], [START_REF] Xu | Historical semantic chaining and efficient communication: The case of container names[END_REF], [START_REF] Douven | Clustering colors[END_REF], and [START_REF] Zaslavsky | Communicative need in colour[END_REF]; see also Douven (2019b) for further discussion. Support especially for constraints related to communicability of conceptual systems is to be found in work by [START_REF] Jäger | Language structure: Psychological and social constraints[END_REF], [START_REF] Warglien | Semantics, conceptual spaces, and the meeting of minds[END_REF], [START_REF] Xu | Cultural transmission results in convergence towards colour term universals[END_REF][START_REF] Xu | Cultural transmission results in convergence towards colour term universals[END_REF][START_REF] Gärdenfors | The geometry of meaning: Semantics based on conceptual spaces[END_REF].

On the other hand, [START_REF] Jraissati | Does optimal partitioning of color space account for universal color categorization[END_REF] present results suggesting that previous research may have failed to identify some operative design principles. Using Regier et al.'s algorithm to obtain higher numbers of clusters of the color chips used in their study yielded results that were not nearly as satisfactory as those obtained for up to six clusters. Most notably, the clustering into eleven clusters of the said color chips starkly deviated from how those chips are categorized by native speakers of English and French, languages featuring eleven so-called Basic Color Terms (BCTs). This negative result was an important starting point for Douven and Gärdenfors and led them to look for a more comprehensive account of the role of design in conceptualization.

3 Related empirical work [START_REF] Berlin | Basic color terms[END_REF] made the first systematic effort to chart color-naming systems across a variety of cultures. Continuing their research with others led to the even more systematic and inclusive results published in the World Color Survey, which contains color-naming data for over a hundred languages [START_REF] Cook | The World Color Survey database: History and use[END_REF]. All this work was conducted on the basis of a relatively small sample of the so-called Munsell chips [START_REF] Munsell | A color notation: An illustrated system defining all colors and their relations[END_REF]. Specifically, the researchers elicited their participants' responses to the 330 chips shown in Figure 2, which consist of 320 chromatic chips, covering 40 hues across 8 levels of brightness, and 10 achromatic chips, going from black to white through various shades of gray. Importantly, all 320 chromatic chips were chosen so that they were at maximum saturation for their hue-brightness combination, meaning that they all lie on the surface of CIELUV space, as seen in Figure 3. As a result, Berlin, Kay, and their collaborators' work does not provide any information on how non-maximally saturated colors are named. The limitation to 330 stimuli is understandable, given that Berlin and colleagues collected all data through one-on-one interviews. However, recent work on color perception and color categorization carried out online showed that, contrary to what many had expected, the quality of the data was not significantly impacted by the lack of control inherent in this type of data-gathering process. Indeed, various papers showed that studies conducted in specialized color laboratories could be successfully replicated using an online methodology; typically, the greater variability in the data was offset by the fact that vastly more data were obtained than in any of the laboratory studies. See, for instance, [START_REF] Moroney | Unconstrained web-based color naming experiment[END_REF], [START_REF] Sprow | Web-based psychometric evaluation of image quality. Image quality and system performance VI[END_REF], [START_REF] Mylonas | Online colour naming experiment using Munsell samples[END_REF], and [START_REF] Mylonas | Gender differences in colour naming[END_REF].

This finding inspired [START_REF] Jraissati | Delving deeper into color space[END_REF] to run a large online color-naming study among native English speakers, with the explicit aim of also covering the not fully saturated interior of CIELUV space. Their materials were the 1,332 Munsell chips represented in Figure 1. They recruited over 1,800 participants, each of whom was shown a random selection of 65 chips and was asked to name the colors of these chips. A main research question Jraissati and Douven sought to answer was whether the BCTs-"black," "white," "gray/grey," "red," "blue," "green," "yellow," "purple," "pink,", "orange," and "brown"-are used with greater frequency for more saturated colors than for less saturated ones, which indeed turned out to be the case. Other results concerned the relation between frequencies of compound expressions ("baby blue," "hunter green," etc.) and saturation as well as the relation between saturation and consensus in naming.

For our present concerns, however, Jraissati and Douven's (2018) study is mostly important because it gives us an idea of the extensions of the eleven BCTs in CIELUV space. Figure 4 shows a mode map of all the stimuli on the basis of BCT naming. Specifically, the left panel pictures each of the stimuli colored according to which pure BCT was most frequently used to name it. The right panel shows, for each BCT, the convex hull of the chips that were most frequently named by the BCT. 2If we think of the convex hulls shown in Figure 4 as representing, at least approximately, the basic color concepts, then an interesting observation is that the concepts satisfy the earliermentioned convexity criterion almost perfectly, in that there are hardly any chips that had one BCT as their modal response but that lie in the convex hull associated with a different BCT. Arguably, together the basic color concepts as (approximately) presented by the convex hulls also give a fair coverage of CIELUV space: it is not as though we can make very fine distinctions in some parts of the space but then only crude distinctions in other parts. Thus, the system of basic colors concepts, supposing these to be given (more or less) by the structure shown in the right panel of Figure 4, so far appears to satisfy at least two of our rational design principles: convexity and informativeness.

In the following, the focus will be on other principles, notably, those having to do with the locations in a space of the various concepts' prototypes: the principles of contrastiveness and representativeness. To verify whether these are satisfied by what, from Jraissati and Douven's study, we may take to be our system of color concepts, it is not enough just to know which region in CIELUV space represents which color concept; we must also know the locations in that space of the prototypes. While there is some empirical work on color prototypes, this for the most part has the same limitations as Berlin and colleagues' color studies, namely, the work was conducted using the selection of the most saturated Munsell chips shown in Figure 2. And while prototypes may tend to be located toward the surface of the space, results reported in [START_REF] Douven | Measuring graded membership: The case of color[END_REF] concerning the blue and green prototypes suggest that it would be incorrect to hold that color prototypes lie always on the surface. Moreover, for gray and brown (sometimes described as a desaturated orange; e.g., Palmer, 1999, p. 141) we would not even expect to find the prototypes near the surface. The new study we conducted was aimed at locating more precisely the color prototypes in CIELUV space.

Hypothesis

Before turning to the study, it is important to state our hypothesis with greater precision than has been done so far. The overarching idea is that natural concepts are represented by the cells of an optimally partitioned similarity space. Basic color concepts are generally considered as paradigmatically natural [START_REF] Kripke | Naming and necessity[END_REF][START_REF] Hardin | Color for philosophers: Unweaving the rainbow[END_REF]. We now have an approximate understanding of which regions in color space represent these concepts. We also observed that the resulting division of that space obeys at least some of the rationality principles-convexity and informativeness-that were meant to give content to the notion of optimal partitioning. Our hypothesis is that the partitioning obeys contrastiveness and representativeness as well.

To make this hypothesis more precise, we note that in the context of the similarity spaces approach both principles have a straightforward geometric interpretation. As for contrastiveness, we previously said-by way of example-that we would not want the orange and red prototypes to be too similar to each other. In geometric terms, this means that they should not be too close together in color space. More generally speaking, we would like all prototypes to be spaced far apart, while of course remaining within the regions corresponding to the concepts they are meant to represent. A simple geometric translation of this desideratum is to say that we would like the sum of the distances among all the prototypes in a space to be as large as is possible, while respecting the constraint that they ought to lie in the appropriate regions. But then again, this should be balanced against the prototypes being representative, meaning that they should be similar to the items falling under the concepts they represent. Given that the center of gravity of a region minimizes the average distance to the points lying in that region, it makes sense to operationalize representativeness as the closeness between the prototype of a concept and the center of gravity of the region representing that concept.

With these definitions in place, and once the locations of the prototypes in color space are known, we can find out whether considerations of contrastiveness and representativeness have plausibly played a role in the design of that space. In particular, we can then answer the question of whether the prototypes are so placed that their locations are an optimal trade-off between being centrally located in the corresponding concepts and being as distant from each other as is compatible with their still lying within those concepts. Concretely, given that we know, or at least have an approximate idea, of how the BCTs partition CIELUV space, then if the constellation of prototypes in the space is also known, we can compare it with other possible constellations, and we might find that on balance none of those other constellations does better than the actual one in terms of contrastiveness and representativness.

More concretely still, note that in simulations we can, as often as we like, pick a random location in each color concept and then compare the resulting constellations of candidate prototypes with the actual one. Consider the possibility that, among those randomly chosen constellations, the ones that do better than the actual constellation with respect to one of representativeness and contrastiveness will turn out to do worse than the actual constellation with respect to the other of the two. To the extent that this possibility is realized, we have evidence that the constellation of actual prototypes in color space is in a clear sense optimal (viz., Pareto optimal; see below). If we can determine more directly which constellations of prototypes are optimal in the requisite sense, we can look at whether the actual constellation is among them, or at least close to some of them. If it is, that would constitute even stronger evidence for our hypothesis.

5 Study [START_REF] Douven | Measuring graded membership: The case of color[END_REF] were concerned with vagueness and graded membership, and in that context the authors experimentally determined the locations of the blue and green prototypes in CIELUV space. Here, we use the data obtained in that study and also use the same method to determine the prototypes of the remaining basic colors: black, white, gray, red, orange, yellow, purple, pink, and brown. Douven and coauthors proceeded in two stages. In a pilot stage, they aimed to obtain a rough approximation of where in CIELUV space the prototypes for blue and green where to be found. They then used the data obtained in that stage to create more refined materials, which were used in the main study to determine the locations of prototypical blue and prototypical green with greater precision.

For piloting the approximate locations of the nine basic colors not covered by Douven and coauthors, we used exactly the same materials that they had used. These consisted of 81 crosssections of RGB space with, for each of the R, G, and B axes, 27 equally spaced cross-sections normal to the axis. PNG images of these cross-sections were uploaded to the Qualtrics platform, on which the pilot was run. Figure 5 shows the middle (i.e., fourteenth) image of each series.

There were over 1,500 participants in the pilot study. All were from Australia, Canada, Great Britain, New Zealand, and the United States. In return for their cooperation, they received a small amount of money. Each participant was randomly assigned to two colors. The pilot study then had two parts: one in which the participant was asked about typical instances of one of the chosen colors, and the other in which he or she was asked about typical instances of the other color. For each part, 25 of the 81 cross-sections were randomly chosen per participant. These cross-sections were shown individually on screen, one after the other, in an order randomized per participant. Each time, participants were asked to indicate which spot, if any, in the cross-section they considered to be typical for the color corresponding to the part; participants were asked to indicate this by clicking on that spot in the image, or to proceed to the next screen without clicking on a disk if none of the colors struck them as typical.

There were on average 2,251 (± 948) clicks per color. To produce the materials for the main study, we calculated for each color the medoid of the coordinates in CIELUV space of the clicks that color had received. 3 We then selected, for each color, the 50 percent clicks that were closest to that color's medoid. Figure 6 illustrates the process for two colors, the top row showing all clicks for purple (left) and orange (right), and the bottom row showing the medoids for purple and orange (left) and the 50 percent clicks for purple closest to the purple medoid as well as the 50 percent clicks for orange closest to the orange medoid.

Methods

Participants

There were 302 participants in the main study. They were from the same countries as the participants in the pilot. They were also remunerated for their cooperation. Data from participants who returned incomplete response sets were removed, as were data from the 5 percent fastest and slowest responders. We also removed data from participants who indicated that they were nonnative speakers of English (the language of the survey), or that they were colorblind, or that they had not responded seriously [START_REF] Aust | Seriousness checks are useful to improve data validity in online research[END_REF]. Finally, we removed data from participants who failed the color-sorting task described in [START_REF] Douven | Measuring graded membership: The case of color[END_REF] that served as a quality check. (The task presented participants with 14 colored bars, where the colors went from clearly blue to clearly green and were so chosen that their locations in CIELUV space were equally spaced on a straight line. The bars appeared in an order randomized per participant, and participants were asked to rearrange them such that the bars would vary smoothly from blue to green.) This left 218 participants for the final analysis. These participants had an average age of 39 (± 13); they spent on average 645 (± 277) seconds on the survey.

Materials and procedure

For each basic color except blue and green (which had already been covered by [START_REF] Douven | Measuring graded membership: The case of color[END_REF], we sampled 144 different points in CIELUV space from the 50 percent clicks in the pilot that were closest to the color's medoid, determined on the basis of all clicks for that color. Each set of 144 points was then randomly split into four, and from each of the four subsets we created a 6 by 6 grid of uniformly colored disks, each disk having the color of a unique element of the subset. The disks were placed, in random order, on a uniformly gray background. Figure 7 shows two of the grids that were used in the study, one grid for purple and one for orange.

Each participant was shown all four grids for all nine colors, in an order randomized per participant. Each grid was shown on a separate screen, and for each grid of a given color, participants were asked to click on the disk they deemed most typical for that color, if any.

Results

All participants clicked a disk on each of the grids, yielding a total of 7,848 clicks. For the analysis, these data were merged with the data from the first part of Experiment 2 from [START_REF] Douven | Measuring graded membership: The case of color[END_REF], the part concerned with locating the blue and green prototypes. On the basis of those data, we Figure 7: One of the four grids for purple (left) and one of the four grids for orange (right) that were part of the materials for the main study. See the text for further explanation. estimated the location of the prototype for each of the BCTs in CIELUV space by calculating the center of gravity of the color coordinates of the disks that had been deemed typical for the color.

As noted in [START_REF] Douven | Measuring graded membership: The case of color[END_REF], there is no obvious cutoff point for the percentage of participants that should have clicked on a disk for that disk to count as showing a typical representative of a color. Douven and coauthors therefore considered various cutoffs points and verified that their main results held whichever of those points was chosen. We followed the same procedure and considered as possible cutoffs the 25 percent most-clicked disks for a color, the 50 percent mostclicked disks, and all disks (i.e., the selection that was made on the basis of the pilot). Table 1 gives the CIELUV coordinates of the prototypes for each cutoff point. Figure 8 shows the prototypes as based on the strictest ("25 percent most-clicked") cutoff point. as well as the locations of the prototypes of those concepts (from the new study), the analysis could proceed as outlined in Section 4. Specifically, we ran simulations in which we took 5,000,000 samples of eleven points in CIELUV space, where these points were randomly chosen, subject to the constraint that there would be one point from each region representing a basic color (i.e., one point from each of the convex hulls shown in Figure 4). Any such sample was considered a possible constellation of prototypes in CIELUV space, and for all samples we calculated their representativeness and contrastiveness, the former operationalized as the closeness of the candidate prototype to the center of gravity of the region in which it lies, and the latter as the sum of the distances in CIELUV space between every pair of candidate prototypes. Each of the resulting 5,000,000 pairs of values for representativeness and contrastiveness was then compared with the corresponding pair of values for the empirically determined constellation of prototypes. This whole procedure was repeated three times, the only difference consisting in the cutoff point chosen to determine the locations of the actual prototypes. For all three cases, it was found that, in over 99.99 percent of the samples, when we obtained better representativeness, we got worse contrastiveness, and vice versa. We can interpret this result as giving us an empirical p-value, indicating that we can reject with p < .0001 the null hypothesis according to which optimality considerations (with optimality understood in terms of representativeness and contrastiveness) played no role in the placement of color prototypes. Figure 9 illustrates the procedure we followed, showing a hexbin plot of the outcomes for 5,000,000 randomly sampled constellations as well as, in red, the coordinates of the constellation of prototypes determined in our study.

Naturally, our results so far do not prove that the actual constellation of prototypes is optimal or even near-optimal. For all we have shown, there are constellations that do much better than the actual one along both dimensions of comparison but that random sampling is unlikely to hit Figure 9: In green, a hexbin plot of pairs of representativeness and contrastiveness values of 5,000,000 randomly sampled constellations of candidate prototypes, with lighter shades indicating higher counts. Indicated by a red cross, the pair of values for the constellation of prototypes as actually found in the study (based on the 25 percent cutoff point).

upon. Ideally, one would determine the optimal constellation or constellations analytically and then compare those to the actual one. Unfortunately, however, analytical methods tend to be unhelpful in the case of multi-objective optimization problems [START_REF] Coello Coello | A comprehensive survey of evolutionary-based multi-objective techniques[END_REF][START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF]. In the present case, analytical methods are inapplicable if only because the constraint that there be exactly one candidate prototype from each region representing a basic color concept cannot be mathematically specified (e.g., those regions cannot be defined by means of parametric equations).

The good news is that we can have something close to a proof (or disproof, as the case may be). In multi-objective optimization problems, one looks for so-called Pareto optimal solutions, which are solutions that can do better with respect to one objective only by doing worse with respect to another. There can be infinitely many of those, and in the criterion space, whose dimensions represent the various objectives to be balanced against each other, the Pareto optimal solutions make up what is known as "the Pareto front." Genetic algorithms have been found to be well suited for identifying solutions distributed along such a front.

These algorithms exploit computational analogs of principles from evolutionary biology. In particular, they apply the principles of variation and selection first to a (typically randomly selected) starting population, and then again to each next generation. If all goes well, later generations tend to be "fitter" than previous ones, and the algorithm terminates either after some point of convergence is reached (after which later generations do not improve significantly) or after a predetermined number of steps. Different algorithms vary in the way they implement the evolutionary process.

One of the currently most popular genetic algorithms is the Nondominated Sorting Genetic Algorithm [START_REF] Srinivas | Multiobjective optimization using nondominated sorting in genetic algorithms[END_REF][START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF], in particular the incarnation NSGA-II as introduced in [START_REF] Deb | A fast and elitist multi-objective genetic algorithm: NSGA-II[END_REF]. This algorithm is schematically illustrated by Figure 10, which shows these key steps:

Step 1. The algorithm starts by creating a random parent population, which can be regarded as a set of candidate solutions to whichever the problem at hand is.

Step 2. It then applies the crossover and mutation operations to generate a child population. The crossover operation pairs off solutions in the parent generation and lets them "mate," resulting in a child which inherits some features from each parent. The mutation operation brings about random changes in the features of a (typically small) portion of the generated children.

Step 3. The parents and children are joined to form one population, each member of which is scored along each of the objectives involved.

Step 4. On the basis of these scores, the algorithm divides the population into a number of socalled fronts, where the first front consists of the solutions not dominated by any other solution-that is, any solution that does better with respect to one objective does worse with respect to some other objective-the second front consists of the solutions that are nondominated if the solutions in the first front are removed from the population, and so on. 4 This step goes by the name of "nondominated sorting." (In the illustration in Figure 10, there are four fronts, but in general there can be any number of fronts, the maximum being the total number of solutions in the population.)

Step 5. A limited number of places is available in the new parent population to be created, and competition for those places follows the principle that solutions belonging to a "higher" front (the first front being the highest) take precedence over solutions belonging to a lower front, and for solutions belonging to the same front, ones with greater "crowding distance" take precedence over ones with smaller crowding distance, where (informally put) crowding distance measures how dissimilar a solution is to the other solutions in the population. The step of "crowding-distance sorting" is meant to increase the diversity of the set of solutions in the new parent population and thereby to help the algorithm explore the fitness landscape.

Steps 2-5 are repeated until some pre-determined criterion is met.

The algorithm requires by way of user input (i) a number for crossover points, which determines how the features of the parents are to be mixed in the child; and (ii) a mutation probability, which determines the likelihood that a mutation will occur in an individual solution. There are no hard and fast rules for how these parameters are to be set; finding good settings is typically a matter of trial and error.

The NSGA-II algorithm has been applied with considerable success to multi-objective optimization problems in a broad variety of fields, including chemistry, economics, medicine, operations research, and robotics; see, for instance, [START_REF] Sarkar | Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm[END_REF], [START_REF] Dhanalakshmi | Application of modfied NSGA-II algorithm to combined economic and emission dispatch problem[END_REF], [START_REF] Heris | Open-and closed-loop multiobjective optimal strategies for HIV therapy using NSGA-II[END_REF], and, for a general overview, Coello Coello, Lamont, and Van Veldhuizen (2007, Ch. 7). We recruited the algorithm to investigate more systematically the question of the optimality (or otherwise) of the constellation of color prototypes that came out of our study. We started the algorithm with a parent population of 200 random solutions, so 200 random constellations of candidate prototypes, one for each basic color, which is to say that each constellation consisted of eleven points in CIELUV space, randomly chosen though subject to the constraint that there should be one point from each of the convex hulls shown in Figure 4. Randomly formed pairs of parents then each generated one child via the crossover operation, which meant that, for instance, the child would inherit the candidate color prototype for some basic colors from one parent and the candidate color prototype for the remaining colors from the other parent. Children were also susceptible to mutations, in that there was some chance for a candidate prototype in the child's genome to be replaced by a randomly chosen different candidate prototype for the same color. After the parent and child population were merged, all solutions were scored on contrastiveness and representativeness, scores which were then used to select, via the two sorting operations (nondominated sorting and crowding-distance sorting), the solutions that were going to make it to the next round. Then the process was repeated.

The algorithm consistently reached convergence after about 25 generations, the results of different runs also being highly consistent with each other. Not only that: the results turned out to be highly robust in that fast convergence was achieved for a vast range of combinations of required input values (number of crossover points and mutation probability). Figure 11 shows the evolution toward the Pareto front, in steps of five, for one run (with three crossover points and a mutation probability of .2), and Figure 12 shows the stable solutions of two other runs, to give an impression of the consistency that the algorithm achieves. It is manifest that the actual solution is toeing the front. 5 To be clear, this is not a proof that the actual solution is at least near-optimal. But in view of the many published successes of the NSGA-II algorithm, the results achieved here do strongly support the conclusion that the actual constellation of color prototypes is near-optimal indeed.

Discussion

This study was the first to use the whole color space to determine the locations of the prototypes for the basic colors in that space. Figure 8 shows the prototypes in the colors corresponding to their respective CIELUV coordinates. Visual inspection suggests that the prototypes have, for the most part, been correctly identified: the blue prototype looks typically blue, the red prototype typically red, and so on, the only possible exception being the prototype for pink, which appears slightly too purple. Determining the locations of the prototypes was only an intermediate goal, the ultimate goal being testing the hypothesis stated in Section 4, to wit, that the prototypes are optimally placed in color space, in that they trade off as well as possible between being representative of the items they are supposed to represent and being pairwise distinguishable.

To operationalize the desideratum of representativeness, we drew on the data from [START_REF] Jraissati | Delving deeper into color space[END_REF] color-naming study. These data give an impression of which regions in color space represent which basic color concepts. How representative a prototype of a given color is, is a matter of how distant it is from the center of gravity of the region that, according to Jraissati and Douven's study, represents that color. The desideratum of contrastiveness is a matter of how far apart in color space the prototypes are. We calculated both quantities for the constellation of prototypes that was found in our study and compared those with the same quantities calculated for 5,000,000 constellations randomly put together by sampling one point from each of the eleven regions representing basic colors. It turned out that if a random constellation did better than the actual constellation in one respect, then it almost always did worse in the other respect. This allowed us to reject the hypothesis that optimality considerations had no role in the placement of color prototypes. Using a genetic algorithm, we even obtained evidence that the actual constellation is in fact an at least near-optimal trade-off between representativeness and contrastiveness.

That this constellation is, as Figure 11 shows, only close to the Pareto front of optimal constellations, and not quite at the front, is not a cause for concern. First, it is to be kept in mind that all results used in the analysis are approximative: as mentioned in Section 2, CIELUV space is considered to be a good but not perfect representation of color similarity space, and both the data from Jraissati and Douven's study and those from our own study were obtained online, which has proven to be a reliable manner to gather data on color perception and categorization, but which does not attain the level of precision of color studies conducted in a specialized laboratory. Indeed, that the prototype for pink appears to be somewhat off is evidence that the results we obtained are not maximally precise. That in itself gives some reason not to take too seriously the fact that, according to our computational results, there are constellations that dominate the actual one, in that they score better both on representativeness and on contrastiveness.

Second, [START_REF] Regier | Color naming reflects optimal partitions of color space[END_REF] also found that many color-naming systems were only near-optimal according to their criteria. While that finding, too, might be attributable to a somewhat limited accuracy of their input data (CIELAB coordinates of the chips in Figure 2 for the computational simulations and, for comparison with the output from those simulations, data from the WCS). But another plausible explanation is that, in looking for conceptual systems, near-optimality will, at least sometimes, be good enough for all practical purposes, so that looking for still better alternatives will not be worth the cost.

It is further to be remarked that the actual constellation of prototypes is rather toward the "upper" end of the Pareto front, meaning that it sacrifices more than average on representativeness for the benefit of a score on contrastiveness well above the average. As far as our current results go, this may simply be a coincidence. On the other hand, one can speculate that, in color categorization, and perhaps in categorization generally, false positives-mistakenly classifying something as belonging to a certain category-can be more costly than false negatives, that is, mistakenly classifying something as not belonging to a certain category. For example, mistaking an inedible mushroom for an edible one-which could easily occur if the two belong to categories of mushrooms with very similar prototypes-can cost you your life, while failing to recognize a mushroom as belonging to a certain category of edible mushrooms-which could easily occur if the mushroom is not very similar to the prototype of the category to which it belongs-may just mean that you will have to look around a little longer to gather your meal for the day. More work is needed to say with any definiteness whether this explains our finding that contrastiveness appears to have gotten more of the weight in determining the constellation of prototypes.

It is worth briefly comparing our results with the findings reported in [START_REF] Ameel | From prototypes to caricatures: Geometrical models for concept typicality[END_REF]. These authors asked participants to rate the typicality of items belonging to related categories, where these categories could be represented in a psychological space constructed on the basis of other participants' similarity judgments. They then ran an optimization procedure to determine which points in that space would best predict the typicality ratings, specifically, which would minimize the average distance to the those ratings. Ameel and Storms showed that, if those optimal points are conceived as the categories' prototypes, then they do not coincide with those same categories' centroids but are rather "shifted away" from those points in a direction opposite of contrasting categories located in the same space. From this, they inferred that at least some prototypes are best regarded as "caricatures" [START_REF] Barsalou | Ideals, central tendency and frequency of instantiation as determinants of graded structure in categories[END_REF][START_REF] Ashby | Decision rules in the perception and categorization of multidimensional stimuli[END_REF][START_REF] Goldstone | Isolated and interrelated concepts[END_REF] Figure 13: BCT centroids, based on the mode map shown in Figure 4. A comparison with Figure 8 shows that, in general, the prototypes are located much closer toward the skin of CIELUV space than the color centroids.

Palmeri & Nosofsky, 2001;[START_REF] Davis | Memory for category information is idealized through contrast with competing options[END_REF], in the sense that they exaggerate features of the category they represent so as to highlight differences with closely related categories.

While we proceeded differently-our optimization procedure was based strictly on the geometry of color space, and we compared the resulting optimal constellation of prototypes with prototypicality judgments rather than with typicality ratings (Ameel and Storms asked participants to rate how typical items were for a given category, whereas we asked participants to identify the items most typical of a category)-a comparison of Figure 13 with Figure 8 shows that our findings are entirely in line with Ameel and Storms' hypothesis. Figure 13 shows the centroids of the BCTs as based on Jraissati and Douven's (2018) mode map (shown in Figure 4), and it is manifest that these centroids are mostly much more centrally located in CIELUV space, and lying much closer together in that space, than the prototypes as shown in Figure 4. That is exactly what one would expect to see assuming that prototypes are caricatures rather than simply the categories' most representative instances.

In other related research, [START_REF] Abbott | Focal colors across languages are representative members of color categories[END_REF] found evidence for a computational representativeness model of prototypicality (in our sense), where representativeness was operationalized in statistical terms, roughly as maximizing a probabilistic measure indicating within-category likelihood of classification and across-category likelihood of non-classification. While this finding could be taken to pre-empt our results and to already provide support for the representativeness principle from [START_REF] Douven | What are natural concepts? A design perspective[END_REF], the typicality judgments collected as part of our study help to show why it is a real limitation of the said research that Abbott and colleagues' classification data, and also the typicality judgments they used, came from the World Color Survey and were thus confined to the 330 chips shown in Figure 2. At the end of Section 3, it was said that evidence already at hand suggested that prototypes do not always lie on the surface of color space. This is buttressed by the data on typicality that were newly gathered. Table 2 shows for each of the prototypes in Table 1 the Munsell coordinates of the chip in the full set of Munsell chips whose location in CIELUV space is closest to that of the prototype. The table shows that, depending on which cutoff point we choose, either for five or for six out of the eleven BCTs, the chip closest to the relevant prototype does not have maximum saturation (or chroma, Note. H = hue, V = value, C = chroma, max = maximum chroma for the given hue-value combination.

in Munsell terminology) for their hue-brightness combination (or hue-value combination, in Munsell terminology). In other words, about half of the best prototype candidates among the Munsell chips, with bestness determined on the basis of our typicality data, are not to be found among the 330 chips used in the World Color Survey research. Consequently, whatever its virtues, Abbott and colleagues' computational model was made to look for prototypes in a set of chips that, our data indicate, includes only about half of them.

General discussion

Our starting point was recent work on a key question in the geometric approach to conceptualization, to wit, what the naturalness of the concepts in actual use by humans consists in. The proposal we looked at answers this question in the spirit of Anderson's and others' rational analysis program, which seeks to explain cognitive phenomena in terms of optimal functioning. [START_REF] Douven | What are natural concepts? A design perspective[END_REF] proposed to define natural concepts as those represented by regions in an optimally designed similarity space. They identified and clarified a number of engineering principles to make concrete the notion of optimal design as it pertains to similarity spaces. [START_REF] Douven | What are natural concepts? A design perspective[END_REF] already pointed out experimental evidence showing that known conceptual systems obey certain of their principles, most notably, convexity, parsimony, and informativeness. Evidence for the principles concerning the placement of prototypes was however still lacking. According to these principles, prototypes are-ideally speaking-placed in a similarity space so as to be both highly representative of the other items in their concept and easy to tell apart from other prototypes, all in order to minimize the chance of classification errors. To test this part of the design hypothesis, one needs detailed knowledge of a similarity space, including knowledge of the regions in the space representing the supposedly natural concepts and knowledge of where in the space the prototypes of those concepts are located.

In this paper, we focused on a particular similarity space, viz., color space. The study we reported was meant to gain knowledge of the locations of the basic color prototypes in that space. While those locations are sufficient to calculate contrastiveness, we relied on the data from [START_REF] Jraissati | Delving deeper into color space[END_REF] concerning the regions representing basic color concepts to calculate how representative the various prototypes are. The outcomes were compared with millions of constellations of candidate color prototypes randomly created in computer simulations as well as with the constellations obtained by using a genetic algorithm to optimize representativeness and contrastiveness of color prototype constellations. The results arrived at strongly indicated that the actual color prototypes are placed where we could have found them had they been placed by clever engineers, attending to our cognitive limitations as well as to the pressures we face on a daily basis. In other words, we obtained evidence for the part of the design hypothesis that so far had remained entirely without empirical support.

To be sure, our evidence is limited to color space. But note that the above can readily serve as a template for future studies. While, to our knowledge, at the moment there is no well-researched similarity space that is known in all its details to the extent that we now know color space-with knowledge of both the regions representing the concepts and the prototypes of those conceptsthere are many similarity spaces that are partially known, such as the spaces mentioned in note 1. To extend our knowledge of those spaces, in particular to determine which regions of those spaces represent which concepts and where in those regions we find the concepts' prototypes, one could simply follow the playbook of the study reported here. With that knowledge available, it would be straightforward to subject the design hypothesis to further testing.

Our evidence is also limited to the English language, the language in which both the colornaming study reported in [START_REF] Jraissati | Delving deeper into color space[END_REF] and our own study were conducted. [START_REF] Regier | Color naming reflects optimal partitions of color space[END_REF] work on color categorization, which was an important source of inspiration for [START_REF] Douven | What are natural concepts? A design perspective[END_REF] proposal that in turn inspired the current project, showed that a rational design approach to categorization is able to make sense also of notable differences among color categorizations. It is an interesting open question whether a similar conclusion can be drawn with respect to the placement of prototypes in conceptual systems other than those corresponding to English or closely related languages, specifically in non-Western conceptual systems. Of equal interest is to investigate whether evidence of rational design can be found as well in conceptual systems not featuring, or not only featuring, natural concepts. For instance, given enough color-naming data on non-BCTs like "teal," "violet," "crimson," "turquoise," "peach," and so on, and also given data on the prototypes of the corresponding concepts, one could basically rerun the present study and see whether there is an indication that representativeness and contrastiveness have played a role in the placement of those prototypes as well. 6

Figure 1 :

 1 Figure 1: Different views of CIELUV space.

Figure 2 :

 2 Figure 2: The 330 color chips used as stimuli by most color-naming studies.

Figure 3 :

 3 Figure 3: The 330 chips shown in Figure 2 placed in CIELUV space.

Figure 4 :

 4 Figure 4: Mode map (left) and convex hulls corresponding to the eleven BCTs (right). See the text for further explanation.

Figure 5 :

 5 Figure 5: The middle images of the series of 27 cross-sections of RGB space along the R axis (left), the G axis (middle), and the B axis (right).

Figure 6 :

 6 Figure 6: Responses from the pilot for typical purple (top left) and typical orange (top right), medoids of those responses (bottom left), and 50 percent responses closest to those medoids (bottom right).

Figure 8 :

 8 Figure 8: BCT prototypes (for 25 percent cutoff) shown in CIELUV space. Prototypes are shown in the colors actually corresponding to their CIELUV coordinates. As a consequence, the prototype for white is not visible. (It can be made visible by rotating the graphs in the Mathematica notebook contained in the Supplementary Materials.)

Figure 10 :

 10 Figure 10: Schematic illustration of the various steps involved in how the NSGA-II algorithm creates a new generation of solutions.

Figure 11 :Figure 12 :

 1112 Figure11: Added to the hexbin plot shown in Figure9are, in blue, the solutions from the NSGA-II algorithm used to jointly optimize contrastiveness and representativeness for constellations of candidate color prototypes, subject to the constraint that there must be one candidate from each basic color category. Different panels represent the outcomes for different generations, showing steps in a progression toward the Pareto front. The red cross in each panel marks the coordinates of the actual constellation of prototypes.

Table 1 :

 1 CIELUV coordinates of the BCT prototypes, for each cutoff point.

	BCT		cutoff point	
		100	50	25
	black	4.78, 0.52, -0.70	2.82, -0.29, 0.02	1.15, 0.16, -0.45
	white	97.05, -3.89, 2.22	98.49, -0.12, 2.46	98.89, 0.07, 0.51
	gray	53.76, 0.71, -4.71	53.76, 0.71, -4.71	53.65, 0.54, -2.54
	blue	32.66, -13.77, -103.12	27.44, -10.64, -103.97	26.45, -10.21, -104.25
	green	74.33, -66.38, 67.09	68.37, -64.10, 65.82	63.18, -59.74, 61.39
	yellow	93.60, 8.02, 75.73	94.66, 10.78, 78.25	94.55, 12.72, 79.97
	brown	28.11, 27.45, 16.42	22.55, 26.99, 12.84	20.72, 27.86, 11.98
	red	47.11, 140.34, 18.92	45.11, 141.30, 20.91	45.67, 144.53, 21.34
	orange	63.66, 100.57, 39.20	62.95, 108.07, 40.54	63.17, 112.57, 40.55
	purple	39.41, 34.62, -74.20	33.59, 31.38, -73.17	28.98, 26.10, -67.19
	pink	57.92, 89.35, -47.95	62.02, 93.45, -48.51	62.82, 96.05, -45.66
	Note. Coordinates are given in the form L		

* , u * , v * .

Table 2 :

 2 Munsell coordinates of the chips closest to the BCT prototypes, for each cutoff point, and for comparison the maximum chroma for the hue-value combination of the chip.

	BCT						cutoff point					
			100				50				25		
		H	V	C	max	H	V	C	max	H	V	C	max
	black	10GY	1	2	2	10GY	1	2	2	10GY	1	2	2
	white	5PB	9	2	2	7.5P	9	2	6	7.5P	9	2	6
	gray	2.5P	5	2	26	2.5P	5	2	26	2.5P	5	2	26
	blue	7.5PB	4	20	26	7.5PB	3	24	24	7.5PB	3	24	24
	green	10GY	7	14	14	10GY	7	14	14	10GY	6	12	12
	yellow	10Y	9	10	10	10Y	9	10	10	10Y	9	10	10
	brown	5YR	3	4	6	5YR	2	4	6	2.5YR	2	4	6
	red	5R	5	16	18	7.5R	5	16	18	7.5R	5	16	18
	orange	2.5YR	6	14	14	2.5YR	6	14	14	10R	7	16	16
	purple	5P	4	18	20	2.5P	3	18	18	2.5P	6	18	22
	pink	2.5RP	7	18	20	2.5RP	6	18	22	2.5RP	6	18	22

For other successful spaces, see[START_REF] Petitot | Morphodynamics and the categorical perception of phonological units[END_REF] auditory spaces,[START_REF] Gärdenfors | Using concept spaces to model actions and events[END_REF] action spaces, Castro, Ramanathan, and Chennubhotla's (2013) olfactory space, Douven's (2016) shape space, Valentine, Lewis, and Hills' (2016) face space, and Peterson's (2017) moral spaces.[START_REF] Gärdenfors | Using conceptual spaces to model the dynamics of empirical theories[END_REF] 

2013),Decock et al. (2014), and Douven (2019a) apply the approach to concepts from physics, epistemology, and linguistics, respectively. But while several recent developments raise hope that the conceptual spaces framework is flexible enough to give, ultimately, an

The convex hulls were generated using the TetGenLink add-on for Mathematica.

Given all the points in CIELUV space that correspond to the clicks associated with one of the BCTs, the medoid is the point that minimizes the average distance to all the other points; this stands to the center of gravity (or centroid) of the set of points like the median stands to the mean. For a more precise explanation of the procedure followed in the pilot, see[START_REF] Douven | Measuring graded membership: The case of color[END_REF].

For instance, in the application of the algorithm to be reported below, the first front consists of all solutions that do better than any solution not in that front either along the dimension of representativeness or along that of contrastiveness and that do at least equally well along whichever the other dimension is. The same holds true for the solutions in the second front if we ignore the solutions in the first front. And so on.

For the purposes of our study, the NSGA-II algorithm was implemented in Julia, a new language for scientific computing[START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]. Readers interested in details of the implementation are invited to consult the code contained in the Supplementary Materials.

Thanks to Steven Verheyen for suggesting the avenues for further research mentioned in this paragraph.
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